ic4-synthesis and gate level simulation-2012-10-30

合集下载

一名芯片设计工程师的书单

一名芯片设计工程师的书单

一名芯片设计工程师的书单作为一名芯片设计工程师,我一直都对我的专业充满了热情和好奇心。

在这个快速发展的行业中,学习和保持更新是非常重要的。

为了不断提升自己的技能和知识水平,我经常阅读各种与芯片设计相关的书籍。

下面是我个人的书单推荐,希望对同行们有所帮助。

1.《芯片设计导论》:这本书是芯片设计的入门指南,全面介绍了芯片设计的基本概念、流程和方法。

它以简单易懂的语言解释了复杂的技术,适合初学者阅读。

2.《数字集成电路设计与实践》:这本书详细介绍了数字集成电路的设计原理和方法。

它涵盖了从逻辑门到完整数字系统的设计过程,包括电路设计、时序分析和布局布线等内容。

3.《模拟集成电路设计与实践》:与数字集成电路设计不同,模拟集成电路设计更注重信号处理和电路性能的优化。

这本书深入浅出地介绍了模拟电路设计的基本原理和技术,以及常见的设计方法和工具。

4.《射频集成电路设计与实践》:射频集成电路设计是一门高度专业化的领域,需要掌握特定的设计技术和工具。

这本书系统地介绍了射频电路设计的原理、方法和实践经验,对于从事射频电路设计的工程师来说是一本不可或缺的参考书。

5.《数字信号处理与应用》:数字信号处理在现代芯片设计中起着重要的作用,它涉及到信号采集、滤波、编解码等方面的技术。

这本书对数字信号处理的基本原理和常见应用进行了详细介绍,非常适合对于数字信号处理感兴趣的工程师阅读。

6.《半导体物理与器件基础》:作为芯片设计工程师,了解半导体物理和器件基础是非常重要的。

这本书系统地介绍了半导体物理学的基本原理、晶体生长技术和半导体器件的特性及应用,对于理解芯片工作原理和优化设计具有重要意义。

7.《芯片设计中的可靠性考虑》:芯片设计中的可靠性是一个重要的问题,它关系到芯片的寿命和性能稳定性。

这本书介绍了芯片设计中的可靠性考虑和相关的测试方法,帮助工程师提高芯片的可靠性和稳定性。

8.《面向对象的芯片设计方法》:面向对象的设计方法在软件工程中得到了广泛应用,而在芯片设计领域也有着重要的意义。

一颗芯片从构想到完成电路设计的过程是怎样的

一颗芯片从构想到完成电路设计的过程是怎样的

一颗芯片从构想到完成电路设计的过程是怎样的如果只是科普大流程的话,从199X年硅片的制作流程就没怎么变过,唯一对芯片设计造成比较大的影响的是随着MOS管变小增加的Design Rule。

我来简单的说一下模拟电路和数字电路设计/制作方面的差别吧:首先明确一点:所有的ASIC(Application-Specific Integrated Circuit),也即应用芯片,都是有一个Design的目的,如果是在工厂里就是乙方提的要求;在PhD生涯里就是老板布置的活...要成功通关,待我细细道来:小怪:数字电路电路图推荐武器:Verilog数字电路一般用Verilog写,主要是因为方便(我才不告诉你我手动垒Standard Cell呢)。

比如说CPU级别的芯片,动辄上亿的MOS管,就算一秒画一个,不计连线时间,你得画38个月。

小怪:数字电路仿真推荐武器:VCS,MMSIM写完了Verilog,就要跑数字仿真了。

一般会用到Synopsys的VCS或者Mentor Graphics 的MMSIM之类的。

这个仿真非常快,因为每一个MOS管都被看成是开关,然后加上一些非常粗糙的模拟出来的延迟时间,目的是看你写出来的玩意能不能正常工作。

小怪:模拟电路电路图推荐武器:Cadence(允许准确击打),SPICE(自由度高,可长可短)等这个就比较复杂了。

因为模拟电路的自由度非常高! 比方说,一个MOS管在数字电路条件下就是一个开关,但是在模拟电路里面,根据栅极电压和电路结构不一样,分分钟完成:开路-大电阻-放大器-电流源-导通各种功能。

所以呢,模拟电路基本就得手画了。

小怪:模拟电路仿真推荐武器:Spectre(精度最高),HSPICE,PSpice,HFSS等注:最好跟打小怪,模拟电路电路图小怪用一样的武器。

逻辑综合及门级仿真

逻辑综合及门级仿真

DATA STABLE tc 2
q
CLK t
Q
DATA STABLE
t
建立时间(Setup Time,tsu): 在触发时钟边沿之前输入必须稳定 保持时间(Hold Time, thold): 在触发时钟边沿之后输入必须保持 Clock-to-Q时间(tc2q):
– – 在触发时钟边沿,输出并不能立即变化 与逻辑门的延迟类似,也由两部分组成: 内在Clock-to-Q时间 负载相关Clock-to-Q时间
File -> Save 以DB格式保存综合后的结果 File -> Save As 以VHDL/Verilog形式输出电路网表
File -> Save Info -> Design Timing 输出时序反标文件
2008-11-11
清华大学微电子学研究所 张春
26/33
内容摘要
综合及相关基本概念
2008-11-11
清华大学微电子学研究所 张春
5/33
Cell(标准单元) Based ASIC
Use pre-designed logic cells (standard cells) in combination with larger cells (megacells) Standard Cells
2008-11-11
清华大学微电子学研究所 张春
13/33
文件及目录准备
源代码
库文件
建立工作目录work,用于保存中间文件 mkdir work 编写配置文件:.synopsys_dc.setup
define_design_lib work –path “./work” set target_library { /home/ic/library/typical.db } set link_library {* /home/ic/library/typical.db } set symbol_library { /home/ic/library/umc18.sdb }

英语作文-集成电路设计行业:从初学者到专家的必备技能

英语作文-集成电路设计行业:从初学者到专家的必备技能

英语作文-集成电路设计行业:从初学者到专家的必备技能The journey from a novice to an expert in the field of integrated circuit (IC) design is marked by the acquisition of a diverse set of skills, ranging from theoretical knowledge to practical application. Integrated circuits, the bedrock of modern electronics, are found in everything from smartphones to spacecraft. The complexity of designing these microscopic marvels can be daunting, but with the right approach, it is possible to master this domain.Understanding the fundamentals of semiconductor physics is the cornerstone of IC design. One must be well-versed in the behavior of electrons within various materials and the principles of current flow and voltage. This knowledge forms the basis for comprehending how transistors, the fundamental building blocks of ICs, operate. A solid grasp of digital logic design is also crucial. This involves learning how to create complex functions and algorithms using simple logic gates.As one progresses, familiarity with electronic design automation (EDA) tools becomes essential. These sophisticated software suites assist designers in creating and simulating complex circuit designs before they are fabricated. Proficiency in programming languages such as VHDL or Verilog is necessary, as they are used to describe the hardware in a manner that EDA tools can interpret.Another key skill is the ability to perform analog design. Unlike digital circuits, which operate at fixed voltage levels, analog circuits deal with a continuous range of values, making them vital for interfacing with the real world. Designing analog circuits requires a deep understanding of operational amplifiers, resistors, capacitors, and other components.As expertise grows, one must also learn about the manufacturing process. Knowledge of lithography, etching, doping, and other fabrication techniques is important to understand the constraints and possibilities of physical IC design. This includeslearning about different materials such as silicon, gallium arsenide, and silicon carbide, each with its own set of properties and uses.Thermal management is another critical area. As ICs operate, they generate heat, which can affect performance and reliability. Designers must learn how to manage heat through proper circuit design and the use of heat sinks or other cooling methods.Testing and validation are the final steps in the IC design process. A designer must be adept at creating test scenarios to ensure that the IC performs as intended under all conditions. This involves both software simulations and physical testing using oscilloscopes, multimeters, and other equipment.In conclusion, becoming an expert in IC design requires a blend of theoretical knowledge and practical skills. It demands a commitment to continuous learning and adaptation to the rapid technological advancements in the field. With dedication and the right approach, the transition from a beginner to a specialist in IC design is not only possible but also incredibly rewarding, opening doors to a world of innovation and creativity. 。

vcs仿真——精选推荐

vcs仿真——精选推荐

vcs仿真1 什么是后仿真?后仿真也成为时序仿真,门级仿真,在芯⽚布局布线后将时序⽂件SDF反标到⽹标⽂件上,针对带有时序信息的⽹标仿真称为后仿真。

2 后仿真是⽤来⼲嘛的?检查电路中的timing violation和 test fail,⼀般都是已知的问题。

⼀般后仿真花销2周左右的时间。

⽹标仿真的⽬的是检查RTL仿真和综合后的⼀致性(logic Equivalence check),由于⽹标仿真⾮常慢,所以⽹标仿真不充分,有的公司没有⽹标仿真,即使有后仿真,后仿真⼀般是时间⾮常少,因为后仿真时间⾮常慢,⼀个case需要⾮常长(跟设计和case有关,⼀般⼀两天跑⼀个case).在实际的芯⽚开发中可以没有⽹标仿真,因为形式化验证和静态时序分析可以保证设计的正确性。

Gate level SimulationInclude the verilog model of standard cell and gate-level netlist to your testbenchAdd the following synopsys directives to the testbench3 有了LEC(等效性检查)和STA(静态时序分析),为什么还要做门级仿真(Gate-level simulation ,GLS)?GLS can catch issues that static timing analysis (STA) or logical equivalence tools are not able to report. The areaswhere GLS is useful include:Overcoming the limitations of STA, such as:–The inability of STA to identify asynchronous interfaces–Static timing constraint requirements, such as those for false and multi-cycle pathsVerifying system initialization and that the reset sequence is correctDFT verification, since scan-chains are inserted after RTL synthesisClock-tree synthesisFor switching factor to estimate powerAnalyzing X state pessimism or an optimistic view, in RTL or GLS4 零延迟仿真(Zero-Delay Simulation)zero-delay mode run much faster than simulation using full timing.在仿真时添加以下仿真参数(VCS)+nospecify+notimingcheck+no_notifier+delay_mode_zero零延迟仿真⽤于调仿真平台,挑testcase, 检验⽹标有没有问题。

四阶蔡氏电路的建模与仿真

四阶蔡氏电路的建模与仿真

四阶蔡氏电路的建模与仿真摘要:混沌现象是一种确定性的非线性运动,在非线性控制领域,混沌控制的研究受到人们越来越多的关注。

典型蔡氏电路结构简单,但有复杂的混沌动力学特征,因而在混沌控制领域中成为研究的重要对象。

本次设计简单介绍了混沌学基本理论,从理论分析和仿真实验两个角度分别研究Chua's Circuit 的混沌行为,用Multisim 软件对电路进行仿真实验,通过改变参数,得到了系统各周期的相轨图,并对实验中遇到的现象进行简单的讨论。

在三阶蔡氏电路的基础上添加一个电感,可以建立四阶蔡氏电路,在此四阶蔡氏电路的基础上,进行了简单的数值分析与仿真分析。

由于普通蔡氏电路在产生混沌现象时, 其元件参数可调围很小,且对初始条件极为敏感,不易于搭建实验电路。

所以引入了电感等效电路,在本文中将蔡氏电路中的电感用等效电路替代,从而实现了无感蔡氏电路。

关键词:混沌;蔡氏电路;Multisim ;等效电感Experimental Study of Chua's circuit chaoticAbstract :Chaos is a deterministic non-linear movement, in the field of nonlinear control, chaotic control get more and more attention by people. Typical Chua's circuit is simple, but complex and chaotic dynamics characteristics, so become an important research object in the field of chaos control . The design simple introduced the basic theory of chaos, study the chaotic behavior of Chua'sCircuit from two angles of the theoretical analysis and experimental with Multisim circuit simulation software, by changing the parameters, get each cycle tracks phase diagram of the system, simple discuss the experimental phenomena encountered, couple the second-order Chua's circuit with a linear circuit ("oscillation absorber"), get even more chaotic behavior of the rich. As the general chaos in Chua's circuit in the production, its range of component parameters adjustable is very small, and extremely sensitive to initial conditions, hard to set up experimental circuit. Therefore introduce the inductor equivalent circuit, in this final, change the inductor of Chua's circuit with the equivalent circuit, thus achieving non- inductor of Chua's circuit.Key words :chaos; Chua's circuit; Multisim; vibration absorber; equivalent inductance目录第一章混沌学基本理论. (5)1.1 混沌的简单介绍 (5)1.1.1 混沌的定义. (5)1.1.2 混沌的主要特征. (6)1.1.3 混沌的现实意义和应用. (7)1.1.4 混沌的前景展望. (8)1.2 蔡氏电路简介 (9)1.3 蔡氏电路的研究 (10)1.4 软件介绍 (10)1.4.1 数值仿真软件. (10)1.4.2 电路仿真软件. (11)第二章三阶蔡氏电路分析. (12)2.1 电路原理与数学建模 (12)2.2 数值仿真分析 (13)2.3 蔡氏二极管等效电路设计 (15)2.4 三阶蔡氏电路制作和电路仿真 (17)2.5 蔡氏电路的平衡点及稳定性 (19)第三章四阶蔡氏电路分析. (22)3.1 四阶蔡氏电路数学建模 (22)3.2 四阶蔡氏电路数值仿真分析 (24)3.3 四阶蔡氏电路电路仿真分析. (25)3.4 三阶蔡氏电路等效电感分析 (27)第四章总结与分析. (30)参考文献. (31)致. (32)附录Matlab 程序 (33)第一章混沌学基本理论1.1 混沌的简单介绍1.1.1 混沌的定义混沌是非线性动力学系统所特有的一种运动形式,是自然界及社会中的一种普遍现象,它是一种在确定性系统中所出现的类似随机而无规则运动的动力学行为。

verilog之四位全加器的编译及仿真(用开源免费的软件——iverilog+GTKWave)

verilog之四位全加器的编译及仿真(用开源免费的软件——iverilog+GTKWave)

verilog之四位全加器的编译及仿真(⽤开源免费的软件——iverilog+GTKWave)四位全加器的verilog的代码⽐⽐皆是,这⾥上⼀个⽐较简单的:/*4位全加器全加器需要有输⼊输出,需要有下级向上进位的输⼊,需要有向上⼀位进位的输出。

⼤家看⼀下,这个模块已经包含全部的输⼊输出信息。

⼤家都知道,N位加法器得出来的出来的和最多是N+1位因此可以清晰从下⾯代码中看到相关信息。

然后assign⽤的是阻塞赋值。

相加即满⾜相关的需求。

*/module adder4(cout,sum,ina,inb,cin);output[3:0] sum;output cout;input[3:0] ina,inb;input cin;assign {cout,sum}=ina+inb+cin;endmodule在写testbeach⽂件之前,先普及⼀点testbeach的知识:⼀般来讲,在数据类型声明时,和被测模块的输⼊端⼝相连的信号定义为reg类型,这样便于在initial语句和always语句块中对其进⾏赋值;和被测模块输出端⼝相连的信号定义为wire类型,便于进⾏检测。

Testbench模块最重要的的任务就是利⽤各种合法的语句,产⽣适当的时序和数据,以完成测试,并达到覆盖率要求。

那么testbeach⽂件如下:/*File Name : test_adder4.vDescription : The testbench of the adder_4.vWritten By : LiMingData : 2011/04/18 20:13modefied : 在仿真的时候,把延时从10ns改为5ns: cout显⽰为2位*///test_adder4 (top-level module)`timescale 1ns/1nsmodule test_adder4;//Declare variableswire[3:0] sum;wire cout;reg[3:0] ina,inb;reg cin;//Instantiate the module adder4adder4 adder4_1(cout,sum,ina,inb,cin);//Stimulate the inputs, Finish the stimulation at 90 time unitsinitialbegin#0 ina = 4'b0001; inb = 4'b1010; cin = 1'b0;#5 ina = 4'b0010; inb = 4'b1010; cin = 1'b1;#5 ina = 4'b0010; inb = 4'b1110; cin = 1'b0;#5 ina = 4'b0011; inb = 4'b1100; cin = 1'b1;#5 ina = 4'b0111; inb = 4'b1001; cin = 1'b0;#5 ina = 4'b0001; inb = 4'b1100; cin = 1'b1;#5 ina = 4'b0011; inb = 4'b1100; cin = 1'b0;#5 ina = 4'b0111; inb = 4'b1111; cin = 1'b1;#5 $finish;endinitial$monitor("At time %t, ina(%b) + inb(%b) + cin(%b) = sum(%b)(%2d),cout(%b)",$time, ina, inb, cin, sum, sum, cout);initialbegin$dumpfile("test.vcd");$dumpvars(0,test_adder4);endendmodule由于是在windows的cmd下进⾏命令⾏的运⾏,所以有时候每次输⼊⼀个命令显得很费时间,所以我这⾥⼜写了⼀个(批处理⽂件)bat⽂件:go.batECHO OFFECHO *********************************ECHO * Batch fileECHO *********************************ECHO *ECHO ONiverilog -o test adder4.v test_adder4.vvvp -n test -lxt2cp test.vcd test.lxtgtkwave test.lxt(说明⼀下,我在windows下安装了gnuwin的软件,即能在windows下⽤gnu的⼀些⼩的实⽤的⼯具!)哈哈,这⾥就可以⼀键运⾏了,上⾯的⼀些命令的解释可以到我的“wndows下如何⽤Iverilog+GTKWave进⾏verilog的编译和查看仿真波形”的博⽂⾥去看看吧。

模电第四版习题解答

模电第四版习题解答

模拟电子技术基础第四版清华大学电子学教研组编童诗白华成英主编自测题与习题解答目录第1章常用半导体器件‥‥‥‥‥‥‥‥‥‥3第2章基本放大电路‥‥‥‥‥‥‥‥‥‥‥14第3章多级放大电路‥‥‥‥‥‥‥‥‥‥‥31第4章集成运算放大电路‥‥‥‥‥‥‥‥‥41第5章放大电路的频率响应‥‥‥‥‥‥‥‥50第6章放大电路中的反馈‥‥‥‥‥‥‥‥‥60第7章信号的运算和处理‥‥‥‥‥‥‥‥‥74第8章波形的发生和信号的转换‥‥‥‥‥‥90第9章功率放大电路‥‥‥‥‥‥‥‥‥‥‥114第10章直流电源‥‥‥‥‥‥‥‥‥‥‥‥‥126第1章常用半导体器件自测题一、判断下列说法是否正确,用“×”和“√”表示判断结果填入空内。

(1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。

( √ )(2)因为N 型半导体的多子是自由电子,所以它带负电。

( × )(3)PN 结在无光照、无外加电压时,结电流为零。

( √ )(4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。

( × )(5)结型场效应管外加的栅一源电压应使栅一源间的耗尽层承受反向电压,才能保证其R大的特点。

( √ )GSU大于零,则其输入电阻会明显变小。

(6)若耗尽型N 沟道MOS 管的GS( × )二、选择正确答案填入空内。

(l) PN 结加正向电压时,空间电荷区将 A 。

A.变窄B.基本不变C.变宽(2)稳压管的稳压区是其工作在 C 。

A.正向导通B.反向截止C.反向击穿(3)当晶体管工作在放大区时,发射结电压和集电结电压应为 B 。

A.前者反偏、后者也反偏B.前者正偏、后者反偏C.前者正偏、后者也正偏(4) U GS=0V时,能够工作在恒流区的场效应管有 A 、C 。

A.结型管B.增强型MOS 管C.耗尽型MOS 管三、写出图Tl.3所示各电路的输出电压值,设二极管导通电压U D=0.7V。

模拟射频IC设计理论学习过程

模拟射频IC设计理论学习过程

模拟射频IC设计基础理论知识学习及进阶过程模拟集成电路设计最重要的是基础理论知识,基础理论的重要性很多人一开始并没有意识到,工作一段时间,做过几个项目以后就会深有感触。

除此之外就是个人的学习能力和分析问题、解决问题的能力,其实这些能力还是与基础知识有极大关系。

因为理论知识的学习需要一个系统的学习过程,其中涉及到非常多的相关课程,并不是一门实践课所能解决的。

基础理论知识的学习途径很多,可以是学校的基础课和专业课,也可以是个人自学相关课程,IC设计所需要的理论知识的深度不是完成学业应付考试的水平所能比拟的,因此需要一个刻苦的深入学习过程。

本文主要介绍模拟射频IC设计中所需要的相关基础理论知识的学习过程。

本文就从模拟、射频IC所需要的基础理论知识说起,一步一步说明如何进阶学习。

最基础的是高等数学,电路分析基础,模拟电路基础,数字电路,信号与系统,自动控制理论,高频电路基础,射频微波电路理论,无线通信原理,这些是电路方面需要具备的基础知识,其中模拟电路和射频电路需要深入学习,学校课程上的那点皮毛是完全不够用的,需要做到知其然也知其所以然,很多公式及理论的计算推导过程最好彻底吃透;射频电路的S参数、smith圆图、阻抗匹配、噪声系数、线性度、射频收发机结构等理论知识很关键,这个过程非常考验个人的学习能力;无线通信原理是做射频ic必须熟悉的系统方面的知识,射频ic绝大部分是用于通信领域的。

然后需要学习的是半导体工艺相关的基础知识,包括半导体器件物理、半导体工艺技术及流程等微电子基础理论知识,因为模拟射频集成电路用到的晶体管、无源器件建模和半导体工艺关系紧密,射频电路实际设计中采用的增强隔离性及降低噪声耦合等的方法和工艺息息相关。

基础知识扎实以后可以开始具体模拟ic设计的课程学习,当然这部分的学习过程也可以和基础知识学习过程结合起来,很多经典ic设计教材都是从基础知识开始讲起,一步一步进阶模拟ic设计的。

这个过程比较推荐P.R.Gray的《模拟集成电路分析与设计》,当然最好是英文原版,翻译版本错误多多,容易把初学者带沟里,这本教材的分析推导过程无比详细,能够跟着推导一遍的话绝对收获无穷,从基础的工艺,器件模型,基本放大电路到模拟电路的精髓---运算放大器每一部分都是ic设计的核心基础。

404数字电路EDA实验

404数字电路EDA实验

reg[3:0]count_out;
always@(posedge clk) begin if(!rest) count_out=4'b0000;
else if(!load)
count_out=in_data; else if(up_down) count_out=count_out+1; else
绿灯 黄灯
左转灯
黄灯
红灯
2013-4-11
19
CUST
2、设计一个十字路口智能交通灯控制器,AB方向和CD
方向各有红灯、黄灯、绿灯和左转灯四种类型灯,
四种灯按照合理的顺序依次亮灭,并能够将对应灯 亮的时间以倒计时形式显示出来。
2013-4-11
20
CUST
3、利用三个计数器,分别对应绿灯、黄灯、左转灯。 利用三个信号监测3种灯的计数是否完毕。当检测到 信号发生变化时状态就转换到下一个状态,即完成 灯亮的变化。在显示方面,AB方向和CD方向各需要
程等,会用原理图输入和硬件描述语言VHDL设计逻辑电路。
2013-4-11
2
CUST
实验设备
微型计算机45台
2013-4-11
3
实验一:三人表决器设计
一:实验目的
熟悉利用MAX+plusII的原理图输入方法设计简单 组合电路,初步了解相关EDA软件,通过三人表决器 的设计掌握利用EDA软件进行数字电路设计的详细流 程。
四个数码管显示,记数输出采用BCD码,每个方向红
灯亮的时间=每个方向绿灯(64s)+2次黄灯(2*4s)+ 左转灯(15s)的时间。
2013-4-11
21
CUST
4、交通灯的状态转移表

集成电路工艺制程虚拟仿真实验设计

集成电路工艺制程虚拟仿真实验设计

集成电路工艺制程虚拟仿真实验设计
刘海涛;方衡;林智;陈彦孜;曾浩
【期刊名称】《自动化应用》
【年(卷),期】2024(65)10
【摘要】高校普遍存在难以建造完整的集成电路工艺线,导致工艺实验难以有效开展,在一些特殊情况(如突发疫情)下,原本建立的校企、校校合作方式开展的工艺实验难以实施等问题。

针对存在的问题,以在功率集成电路中广泛应用的横向扩散金属氧化物半导体(LDMOS)器件为例,开展集成电路工艺制程虚拟仿真实验设计。

基于半导体工艺计算机辅助设计(Sentaurus TCAD)虚拟仿真平台,完成LDMOS器件的结构设计、工艺设计、性能测试等实验环节,涵盖了集成电路从硅片选型到芯片成型的全流程工艺。

【总页数】4页(P209-211)
【作者】刘海涛;方衡;林智;陈彦孜;曾浩
【作者单位】重庆大学微电子与通信工程学院;重庆大学本科生院
【正文语种】中文
【中图分类】G642
【相关文献】
1.邮件分拣机控制程序虚拟仿真实验设计
2.复合材料热压罐成型工艺虚拟仿真实验设计
3.OLED制备工艺虚拟仿真实验设计与实现
4.纺织品染色工艺虚拟仿真实验设计与开发初探
因版权原因,仅展示原文概要,查看原文内容请购买。

芯片设计相关书籍

芯片设计相关书籍

芯片设计相关书籍1. 引言芯片设计是现代电子技术领域中重要的一部分,它涉及到硬件设计、电路设计、信号处理以及计算机科学等多个学科的知识。

在进行芯片设计时,掌握相关书籍是非常重要的,因为它们能够帮助我们深入了解芯片设计的原理、方法和最新的研究成果。

本文将介绍一些与芯片设计相关的经典著作,希望能对读者选择适合自己的书籍提供一些参考。

2. 经典著作推荐2.1 《芯片设计——硬件描述语言与Verilog HDL》这本书由华盛顿大学的约翰·巴尔和Handle Kurshan共同撰写,是芯片设计领域的经典之作。

书中首先介绍了芯片设计的基本原理和流程,然后详细介绍了硬件描述语言(HDL)和Verilog HDL的基本概念和语法规则,以及如何使用Verilog HDL进行芯片设计。

此外,还介绍了如何进行仿真、实现和验证等重要环节。

本书内容详尽,并且配有大量的例子和习题,非常适合初学者入门。

2.2 《数字集成电路设计与仿真》这本书是由美国加州大学伯克利分校的Richard S. Sandige和Leight J. Cohen合著的经典教材。

该书主要介绍了数字集成电路(IC)的设计与仿真的基本原理和方法。

内容包括数字逻辑门电路、组合电路和时序电路的设计、时序逻辑和状态机的设计、数字集成电路的测试和故障诊断等。

书中还详细介绍了基于硬件描述语言(HDL)的数字电路设计和仿真工具,如Verilog HDL和ModelSim等。

这本书对于理解数字集成电路的设计和仿真过程非常有帮助。

2.3 《VLSI物理设计自动化》这本书由美国加州大学圣地亚哥分校的Carla Barroso和Gene H. Hocuole共同撰写,是关于VLSI(Very Large Scale Integration)物理设计自动化的经典教材。

该书主要介绍了VLSI物理设计自动化的基本原理和技术。

内容包括物理设计流程、逻辑综合和优化、布局和布线、时钟和功耗优化等方面。

2024版年度芯片设计全部课程

2024版年度芯片设计全部课程

发展趋势与挑战
智能化、高性能、低功耗 等是发展趋势,同时面临 技术瓶颈、成本压力等挑 战。
5
学习目标与课程安排
01
02
03
学习目标
课程安排
学习建议
掌握芯片设计基本原理、方法和 技能,培养解决实际问题的能力。
包括理论课程、实验课程和项目 设计等,注重理论与实践相结合。
建议学生具备扎实的电子信息技 术基础,并注重自主学习和实践 能力的培养。
芯片架构设计原则
介绍芯片架构设计的基本原则, 包括模块化、层次化、可重用性
等。
2024/2/3
芯片优化技术
详细阐述芯片优化技术,包括逻辑 优化、电路优化、版图优化等,以 提高芯片性能和降低功耗。
芯片可靠性设计
介绍芯片可靠性设计的基本原则和 方法,以确保芯片在恶劣环境下的 稳定性和可靠性。
20
芯片功能模块划分与实现
11
数字电路优化与仿真
数字电路优化的目的和方 法
2024/2/3
数字电路仿真的概念和作 用
常见的数字电路优化技术: 逻辑化简、门级优化等
常见的数字电路仿真工具 及其使用方法
12
03
模拟电路基础
2024/2/3
13
模拟电路基本概念与元件
电流、电压、功率等基本电 学概念
二极管、三极管、场效应管 等主动元件
2024/2/3
7
02
数字电路基础
2024/2/3
8
数字电路基本概念与逻辑门
2024/2/3
数字电路的基本组成元素
01
逻辑门
常见的逻辑门类型及其功能
02
与门、或门、非门、异或门等
逻辑门的实现方式

几本经典模拟ic教科书的比较

几本经典模拟ic教科书的比较

其他论坛上转载的几本经典模拟ic教科书的比较1、CMOS analog circuit designbyP.E.ALLEN评定:理论性90实用性70编写100精彩内容:运放的设计流程、比较器、开关电容这本书在国内非常流行,中文版也翻译的很好,是很多人的入门教材。

建议大家读影印版,因为ic领域的绝大部分文献是以英文写成的。

如果你只能读中文版,你的学习资料将非常有限。

笔者对这本书的评价并不高,认为该书理论有余,实用性不足,在内容的安排上也有不妥的地方,比如没有安排专门的章节讲述反馈,在小信号的计算方面也没有巧方法。

本书最精彩的部分应该就是运放的设计流程了。

这是领域里非常重要的问题,像Allen教授这样将设计流程一步一步表述出来在其他书里是没有的。

这正体现了Allen教授的治学风格:苛求理论的完整性系统性。

但是,作为一项工程技术,最关键的是要解决问题,是能够拿出一套实用的经济的保险的方案。

所以,读者会发现,看完最后一章关于ADC/DAC的内容,似乎是面面俱到,几种结构的ADC都提到了,但是当读者想要根据需求选择并设计一种ADC/DAC时,却无从下手。

书中关于比较器的内容也很精彩,也体现了Allen教授求全的风格。

不过,正好其它教科书里对比较器的系统讲述较少,该书正好弥补了这一缺陷。

Allen教授是开关电容电路和滤波器电路的专家。

书中的相关章节很适合作为开关电容电路的入门教材。

该书的排版、图表等书籍编写方面的工作也做的很好。

像Allen这样的理论派教授不管在那所大学里,大概都会很快的获得晋升吧。

另外,Allen教授的学生Rincon Moca教授写的关于LDO的书非常详尽,值得一读。

2、CMOS Circuit Design Layout and SimulationCMOS Mixed-Signal Circuit DesignbyR.J.Baker评定:理论性80实用性100编写80精彩内容:数据转换器的建模和测量、hspice网表这本书的风格和Allen的书刚好相反:理论的系统性不强,但是极为实用,甚至给出大量的电路仿真网表和hspice仿真图线。

模拟芯片设计的四重境界(Fourlevelsofanalogchipdesign)

模拟芯片设计的四重境界(Fourlevelsofanalogchipdesign)

模拟芯片设计的四重境界(Four levels of analog chip design)This is a person I know, relatively cattle, in Guangzhou do AIC is famous, to turn his past in the industry at the end of the year to talk about things for your reference learning! The name is not to be revealed,From Fudan University to study microelectronics professional analog chip design direction, graduate students began to work now five years experience, has been eight years, during which many experts listened to domestic and foreign experts. Recently, at the invitation of friends, write a little experience and share with you.I remember just graduated from undergraduate, because I wanted to study the sensor, then into the Fudan Yifu Building a strange combination of circumstances of ASIC and System State Key Laboratory of graduate student. Now the lab name great meaning, but was frustrated. Circuits and systems appear to be two concepts and two levels. My classmates were in Graduate School in electronics and information systems. At that time, they knew that they were "systems", and we were doing analog "circuit" design, and naturally we wanted to bias the circuit. The analog chip design for beginners is the worship of many clever circuit prostitution, especially in the field of the most authoritative magazine JSSC (IEEE Journal of solid state circuits), used to love to see, was determined after nearly twenty years of the article, through the eight extra meridians, at that time the domestic magazine articles on this very rare, is read Dr. abroad, can above a is also an outstanding.Graduate school, my tutor is Professor Zheng Zengyu, Leeteacher was already retired, invited Li Yifu Building every week over the guide. Zheng teachers rigorous scholarship, bravado beauties. Mr. Li is a domestic pioneer in analog circuits and is now employed as an expert or consultant in many companies. A book written by Professor Li in 87 (op amp Design); even now it seems classic. Li and Zheng are classmates, so they are very good friends, and I naturally get lucky with my teacher's advice relative to my classmates. Miss Li and Zheng teacher to my training plan is: first, from the operational amplifier. So I remember I just started designing from a little current source. At that time, the sense of design was to adjust the parameters by simulation. But I always remember the teacher's words: is the basis of sincere words and earnest wishes OP, op amp design done, the other is easy. At that time my classmates do not understand the topic was AD/DA, PLL and "high-end" stuff, and Miss Li and Zheng teacher wanted me to do the "original" module, I only in (Solid State Electronics) (domestic garbage magazine) issued a paper is rail to rail (rail-to-rail) amplifier. Very depressed the process of doing, is very envious of my classmates, but the feeling of Li and Zheng teacher always have their reasons, so I specially to see JSSC operational aspects of the article, basically 20 years of full see. I thought I knew it, but later I found out that I didn't understand it. The so-called understanding, is to truly digest, otherwise, plug in the head of knowledge is much more, is also dead. But the operational amplifier is the cornerstone of the analog circuit, only the solid foundation can understand only after two with luxuriant foliage, the teacher's good intentions to work. On the whole, in Fudan University, what I feel most deeply is Zheng Zheng's rigorous scholarship and the words of Teacher LiGraduate, to find a job, there were several offer. My brother Sun Liping, close disciple Li, I recommend going to the new Tao technology, he said there is a Chang Zhongyuan, doctor of the Catholic University of Leuven, very powerful. I followed my advice and went. Xin Tao has already been bought by IDT for 85 million dollars, becoming the first successful chip company in china. My interview was with Howard. C. Yang (Yang Chonghe), one of the founders of the company. Howard is Dr. Oregon State University, a PLL expert. During the interview, he asked me to draw a two stage amplifier with Miller compensation, and I was very skilled. He said you have zero, I very strange, never heard of, foggy, but only know that this is Howard in the world first proposed, an equivalent resistance model, he named the young's resistance. At that time, out of politeness, nodded. But they were satisfied, anyway, and went in like this. What about me? The only regret for the interview was that I didn't see Chang Zhongyuan. Maybe he was on a business tripAfter entering the new Tao, determined to specialize in. Because undergraduate and graduate students like physics, mathematics and philosophy, they spend a lot of energy on these. Work is the real thing to do. Work every day after the simulation, and after work, crazy read English original book. The first one is the book that is now popular with Razavi. I read it three times. Feel fruitful. At that time, in the new Tao, newborn calves are not afraid of tigers, it should be said, I still do a very good, so often received total recognition,He was rated as the most potential person in the company. Occasionally often come over to point out one, others envy verymuch. In fact, I remember a time when chatting often told me the experience, he is said to have three realm of analog circuit design: the first is hand count, mean pensile-to-paper, the circuit should in fact in computer simulation, just to prove the hand count results. The second is, after calculation, to think, to make the circuit into an intuitive thing. Third is the creation of circuits. I generally follow this trilogy. Razavi the book behind the exercises I carefully. In the project of the company, I tried to calculate the parameters of the amplifier first. The parameters of the amplifier were calculated first, and then compared with the simulation results. Over time, I have greatly improved the ability to calculate, and some small signal analysis and calculation, I feel very comfortable. Here is a small episode, once in a project, a total of AC protection circuit simulation is not stable, adjusted, the total no, here with a capacitor and resistor, there, try a few times are not good, often find the total. Because of the large loop, so the feeling is completely.Often a total of over three, five in addition to two on the balance, he carefully looked at, and then derive a formula to find the main pole and bandwidth expression. Through this thing, I often admiring, but also know the power of intuition. So then when reading, the book will be carefully derived formula, and then the signal flow is not intuitive intuitive thinking, don't stop. More than a year down to a thorough understanding of the amplifier was finally able to feel, learn, follow through after the discovery. Finally, the amplifier has two difficulties, one is the frequency response, and the other is feedback. In fact, the so-called intuitive circuit, that is, from the angle of feedback to consider the circuit. Every time you analyze someweird "circuits" on a book or on JSSC, you'll sigh: feedback, feedback! Then write the analysis on paperLearning a field and then learning other related fields can have some kind of "acceleration" function. The usual way is to let each of you study first when you do a new project each time.I made a phase locked loop before leaving Xin tao. I didn't do it before, and then I took my classmate's master's thesis, and the book and a lot of paper to study, studied for a month and a half, often always ask me: PLL 3dB bandwidth to understand it? I smiled and answered, "I got it long ago.". My powerful operational amplifier's frequency response knowledge is used in pll. I've been studying advanced phase noise and jitter at this time. Not long after, a more than 30 page English study was given, and it was always appreciated!. Later, at COMMIT, there was a project to modify a RF Transceiver chip from WCDMA to TD-SCDMA. There is a baseband analog filter. I have never had contact with filter, it took two months, read three English original books, the first more than 900 pages, and N paper, all of a sudden the whole field of switched capacitor filter, GmC, Active, RC all understand. When I proposed the modification plan, because I have a good operational amplifier, it is easy to understand the filter signal flow, so I can put forward a chip circuit principle analysis and modification plan in a short time. Write the final report (and another of my favourite work), to TI. TI there on the side of a sudden awe,Conference call, they first said that this report is "Great job", "I didn't understand English," Julian said to me with a thumbs up. "They think highly of you."". Then I went to Dallas, TI, and there was a lot of respect for me. When I was making thereport, a lot of people came to listen. In short, now know that all things, the foundation is very important, practical basis tie others are easy to cut, and learn more and more quicklyI went to COMMIT in November of 02, and I was interviewed by my employer, Julian. Julian asks me, "where do you think SOC (system, on, chip) is designed? I said: analog circuits should be it, this is more difficult. Julian is wrong. It's the system.I was very dismissive of it and felt that analog circuit engineers should concentrate on the analysis and design of the circuit. Julian later run himself, now the company On-Bright, I also brought, but also pulled two from TI, there is a Dr. fang. What about me? Dr. Zhu recommended to Julian. In the last two years, Dr. I and Dr. Zhu admiring each other. Dr. Fang is a top expert in TI Chinese, and is capable of super product. On-Bright is now a power chip, and I've been working with Dr. Zhu for almost two years, and I know the importance of the system. The chip design must finally move toward the system, this is the chip design fourth realms. The circuit is like brick and tile, and the system is like a building.The chip engineer must consider the problem from the point of view of the system, or else the trees and the forest will disappear. In power chips, amplifiers and comparators are the most common, and the difficulty lies in a thorough understanding of the system. At On-Bright, I was really knowledgeable about making products, from definition to design, to debug, chip testing and system testing, and finally to RTP (release to production). Julian introduces TI's advanced product development process and project management approach to On-Bright, and I and Dr. Zhu are both eye opening and know howhard it is to make a productThe product and the academic are two domains, the academic can be unconstrained, make a sample, is OK. Product development is a systems engineering, involving all aspects of work, and more people working together N, and ultimately make the product successfully to the market. I used to worship the chips, the academic level of industry expert, now found is the academic leader, Dr Zhu said he was in the Swiss Polytechnic Huang Qiuting (the famous Fellow IEEE) there was a study done for half a year, the worship of yellow, now found a higher level of dr.. So like (Denon eight), a nameless monk is sweeping the top master. But both the industrial and academic circles, these four realms are common. Each analog chip designer should step by step, down-to-earth, and step by step across the four realms.。

模拟IC设计界牛人及他们所作的书

模拟IC设计界牛人及他们所作的书

模拟IC设计界牛人及他们所作的书模拟IC设计界牛人及他们所作的书A.Razavi1.Principles of Data Conversion System Design2.High Speed CMOS Circuits for Optical Receivers3.RF Microelectronics4.Monolithic Phase Locked Loops and Clock Recovery Circuits5.Fundamentals of Microelectronics6.Design of ICs for Optical Communications7.Design of Analog CMOS Integrated Circuits8.Phase-Locking in High Performance Systems,此书是论文集,Razavi主编B.Thomas H.Lee1.The Design of Low Noise Oscillators2.Multi-GHz Frequency Synthesis and Division3.Feedback Linearization of RF Power Amplifiers4.Low Power CMOS Radio Receivers5.The design of CMOS RFIC 2nd6.Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits(2004,Cambridge)7.Physics and Engineering of High Power Switching Devices (1975,Cambridge)C.Abidi1.The Designer's Guide to High-Purity Oscillators2.Integrated Circuits for Wireless Communications by Asad A. Abidi, Paul R. Gray, and Robert G. Meyer(1998,Wiley)3. Effects of random & periodic excitations on relaxation oscillators(Abidi的PHD Dissertation)(1981)4. On the dynamics of Josephson junction circuits(1978)D.Gray1.Analysis and Design of Analog Integrated Circuits,4thE.Sansen1.Analog Design Essentials2.Design of Analog Integrated Circuits and Systems3.Distortion Analysis of Analog Integrated Circuits4.Design of Wireless Autonomous Datalogger IC’s by Wim Claes, Robert Pures, and Willy M.C. Sansen5.Matching Properties of Deep Sub-Micron MOS Transistors by Jeroen A. Croon, Herman E. Maes, and Willy M.C. Sansen6.Systematic Modeling and Analysis of Telecom Frontends and Their Building Blocks by Piet Vanassche, Georges Gielen, and Willy M.C. Sansen7.Analog Layout Generation Performance and Manufacturability by Koen Lampaert, Georges Gielen, and Willy M.C. Sansen (1999,Springer)8.Symbolic Analysis for Automated Design of Analog Integrated Circuits by Georges Gielen and Willy M.C. Sansen (1991,Springer)9.Low-Noise Wide-Band Amplifiers in Bipolar and CMOS Technologies by Zhong Yuan Chong and Willy M.C. Sansen(1990,Springer)10.Analog Interfaces for Digital Signal Processing Systems by Frank op 't Eynde and Willy M.C. Sansen (1993,Springer)11.A Computer-Aided Design and Synthesis Environment for Analog Integrated Circuits by Van der Plas, Geert, Gielen, Georges, Sansen, Willy M.C. (2002,Springer)F.Steyaert1.Wireless CMOS Frequency Sythesizer Design(Craninckx&Steyaert,非常难找的经典).2.Systematic Design of Analog IP Blocks3.Design and Analysis of High Efficiency Line Drivers for xDSL4.CMOS FRACTIONAL-N SYNTHESIZERS Design for High Spectral Purity and Monolithic Integration5.CMOS Cellular Receiver Front Ends-From Specification to Realization6.Integrated CMOS Circuits for Optical Communications7.Broadband Opto-Electrical Receivers in Standard CMOS8.Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS9.LNA-ESD Co-Design for Fully Integrated CMOS Wireless Receivers10.Design of multi-bit delta-sigma A/D converters11.High Data Rate Transmitter Circuits: RF CMOS Design and Techniques for Design Automation12.RF Power Amplifiers for Mobile Communications13.Design of High Voltage xDSL Line Drivers in Standard CMOS, by Bert Serneels and Michiel Steyaert(2008,Springer)14.Analog VLSI Integration of Massive Parallel Processing Systems, by Peter Kinget and Michiel Steyaert(1997,Springer)15.Static and Dynamic Performance Limitations for High Speed D/A Converters, by Anne van den Bosch, Michiel Steyaert, and Willy M.C. Sansen(2004,Springer)16.Design of Low-Voltage Low-Power CMOS DeltaSigma A/D Converters, by Vincenzo Peluso, Michiel Steyaert, and Willy M.C. Sansen(1999,Springer)17.CMOS Wireless Transceiver Design, by Jan Crols and Michiel Steyaert(1997,Springer)18.High-Performance CMOS Continuous-Time Filters ,by José Silva-Martínez, Michiel Steyaert, and Willy M.C. Sansen(1993,Springer)Analog Circuit Design(系列丛书有很多都是Sansen和Steyaert 编辑,就全归入Styaert了)1.Volt Electronics; Mixed-Mode Systems; Low-Noise and RF PA for Telecommunication2.Fractional-N Synthesizers,Design for Robustness, Line and Bus Drivers3.High-Speed A-D Converters, Automotive Electronics and Ultra-Low Power Wireless4.MOST RF Circuits, Sigma-Delta Converters and Translinear Circuits5.RF Circuits ~ Wide band, Front-Ends, DAC's, Design Methodology and Verification for RF and Mixed-Signal Systems, Low Power and Low Voltage6.Structured Mixed-Mode Design, Multi-Bit Sigma Converters,Short Range RF Circuits7.Operational Amplifiers, Analog to Digital Convertors,Analog Computer Aided Design by Johan H. Huijsing, Rudy J. van de Plassche, and Willy M.C. Sansen (1992,Springer)8.RF Analog-to-Digital Converters; Sensor and Actuator Interfaces; Low-Noise Oscillators, PLLs and Synthesizers by Rudy J. van de Plassche, Johan H. Huijsing, and Willy M.C. Sansen(1997,Springer)9.Low-Noise, Low-Power, Low-Voltage; Mixed-Mode Design with CAD Tools; Voltage, Current and Time References by Johan H. Huijsing, Rudy J. van de Plassche, and Willy M.C. Sansen (1995,Springer)10.Mixed A/D Circuit Design, Sensor Interface Circuits and Communication Circuits by Willy M.C. Sansen, Johan H. Huijsing, and Rudy J. van de Plassche (1994,Springer)11.Scalable Analog Circuit Design, High-Speed D/A Converters, RF Power Amplifiers by Johan H. Huijsing, Michiel Steyaert, and Arthur H.M. van Roermund (2002,Springer)12. Sensor and actuator interface electronics, integrated high-voltage electronics and power management, low-power and high-resolution ADC's by Huijsing, J.H.; Steyaert, Michiel; van Roermund, Arthur H. M. (2004,Springer)13. (X)DSL and other Communication Systems; RF MOST models; Integrated Filters and Oscillators by Sansen, W.M.C., Huijsing, J.H., van de Plassche, R.J. (1999,Springer)14. Low-Power Low-Voltage, Integrated Filters and Smart Power by Plassche, R.J.v.d., Sansen, W.M.C., Huijsing, J.H. (1995,S[romger)15. High-Speed Analog-to-Digital Converters, Mixed Signal Design; PLLs and Synthesizers by Plassche, R.J.v.d., Huijsing, J.H., Sansen, W.M.C.(2000,Springer)。

芯片科普书籍

芯片科普书籍

芯片科普书籍以下是一些关于芯片科普的书籍推荐:1. 《芯片危机:设计者的驱动器》(The Chip War: The Battlefor the World of Electronics) - Michael S. Malone这本书介绍了芯片产业的竞争和发展历程,涵盖了设计、制造、市场等各个方面,适合初学者了解芯片行业的背景和动态。

2. 《芯片:设计、制造及测试》(Chip Design, Manufacture, and Test) - Cayetano A. Rebollo, Ricardo Toledo-Caballero这本书从设计、制造和测试等多个环节详细讲解了芯片的生命周期和技术细节,适合学习芯片设计和制造工艺。

3. 《面向对象的硬件设计:使用C++进行芯片设计》(Object-Oriented Hardware Design: Using C++) - Tomasz Ganchev这本书介绍了如何使用C++编程语言进行芯片设计,通过面向对象的设计方法帮助读者理解和应用芯片设计的核心概念。

4. 《芯片设计与实战》(ASIC Design and Verification: A Guideto Hardware Modeling) - Laung-Terng Wang这本书从芯片设计和验证的角度,详细介绍了硬件建模和验证的方法和工具,适合希望深入了解芯片设计流程和技术的读者。

5. 《数字集成电路设计》(Digital Integrated Circuit Design) -Ken Martin, Jan M. Rabaey这本书详细讲解了数字集成电路的设计原理、方法和技术,适合深入学习数字电路和芯片设计的读者。

以上书籍可以帮助初学者和专业人士了解芯片设计、制造和验证的基本知识和技术,帮助读者从理论到实践上掌握芯片科学。

超快速IV测试技术-半导体器件特性测试的变革

超快速IV测试技术-半导体器件特性测试的变革

超快速IV测试技术-半导体器件特性测试的变革
超快速IV测量技术是过去十年里吉时利推出的最具变革性的方法和仪器,吉时利一直以其高精度高品质的SMU即原测试单元而著称,吉时利的原测试
单元在过去的三十年里一直被当做直流伏安测试的标准,一些著名的产品例如236、237、240、2600、4200都被广泛应用于半导体、光电、光伏、纳米材料等行业,如2010年诺贝尔物理学奖获得者所研究的石墨硒就是使用吉时利的
原测试单元进行量测的。

随着科学的发展,科学家和工程师发现越来越多的器件具有瞬态效应,
例如功率的瞬态效应会在1微秒内完成,这些瞬态效应往往瞬态即逝,难以捕捉。

为了研究这些效应就需要SMU具有更快的测量速度,但是由于SMU在设计上的一些局限性,使得SMU无法提供非常快速的量测,于是基于超快速IV
量测技术的PMU就应运而生。

这里将介绍测试单元PUM和超快速IV量测技
术给半导体器件特性分析带来的革命性的变化。

使用超快速IV量测的目的
SMU即原测试单元由四个部分组成:电压源、电流源、电压表和电流表,SMU可以输出电压测量电流,也可以输出电流测量电压。

需要强调的是,
SMU内部集成的四个仪表都是直流的高精度仪表,吉时利最高精度的SMU可
以分辨0.01fA的电流和1µV的电压。

为了得到如此高的测量精度,
SMU使用的AV转换是积分模式的,如果您使用过SMU,您一定知道SMU
是需要积分概念的,积分时间的单位是PLC,一个PLC等于20个毫秒,要得
到准确的测量结果,就需要在至少一个PLC内做积分,这样看来SMU是一个
测得准但测得很慢的仪器。

IC设计行业经典书籍

IC设计行业经典书籍

IC设计行业经典书籍No.1 Writing Testbenches, Functional Verification of HDL Modelsby Janick Bergeron本书主要以HDL(verilog/vhdl)为例,详细讲述了在IC DESIGN FLOW 中Verification 以及Test 的设计思想、方法和技巧,涵概了测试的各个方面,是目前进行IC 设计的同仁们最为推荐的一本宝典!!作者的个人网页有详细的介绍:janick.bergeron/wtb/toc.htmlNo.2 Priciples of Verifiable RTL Design, 2nd Ed.by Lionel Bening & Harry Foster比较早的介绍有关RTL Validation 设计的宝典书籍,是原来HP 的一位大牛撰写的!!你可以到作者的网站看看,有相关的本书的设计范例以及script 下载!如果想使RTL 设计非常的完美,保证你的后端设计一次成功的,这本书是不可缺少的。

homecast/~bening/povrd.htmNo .3 A Practical Guide for Designing, Synthesizing, and Simulating ASICs and FPGAs using VHDL or Verilog(HDL Chip Design) by Douglas J. Smith最为经典的讲述VHDL 以及Verilog 设计的宝典书籍!设计范例涵盖很多设计中经常用的设计模块,堪称IC 设计的“词典”,书中的很多范例都可以作为你设计应用中的IP 进行应用!!doone/hdl_chip_des.htmlNo.4 Advanced ASIC Chip Synthesis Using Synopsys Design Compiler and。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先,综合工具分析HDL代码,用一种模型(GTECH) ,对HDL进 行映射,这个模型是与技术库无关的 然后,在设计者的控制下,对这个模型进行逻辑优化; 最后一步,进行逻辑映射和门级优化,将逻辑根据约束,映射为 专门的技术目标单元库(target cell library)中的cell,形成综合 后的网表。
Design -> Report Area
Library(s) Used: typical (File: /home/zhangchun/demo/typical.db) Number of ports: Number of nets: Number of cells: Number of references: 6 13 11 6
2014-8-20
清华大学微电子学研究所 张春
7/33
Synchronous Sequential Logic
所有的存储单元都由同一时钟边沿到来时进行时钟同步( clocked) 组合逻辑电路部分:
– 在每个时钟信号有效时,输入才改变 – 在下一次时钟信号有效之前, 所有输出必须稳定
2014-8-20 清华大学微电子学研究所 张春 8/33
Place & Route
Layout
2014-8-20
清华大学微电子学研究所 张春
3/33
什么是综合
逻辑综合 使用EDA工具将设计从RTL到逻辑门级的转换过程。
逻辑综合的目的 决定电路门级结构、寻求时序、面积、功耗的平衡。
2014-8-20
清华大学微电子学研究所 张春
4/33
综合的过程
逻辑综合及门级仿真
2014-8-20
清华大学微电子学研究所 张春
1/33
内容摘要
综合及相关基本概念
– Cell-based ASIC(标准单元) – Static timing analysis (STA,静态时序分析)
基本的综合过程 门级仿真
2014-8-20
清华大学微电子学研究所 张春
– – 在触发时钟边沿,输出并不能立即变化 与逻辑门的延迟类似,也由两部分组成: • 内在Clock-to-Q时间 • 负载相关Clock-to-Q时间
2014-8-20
清华大学微电子学研究所 张春
9/33
Critical path & Clock cycle
关键路径: 任何两个寄存器之间的最慢路径 最高时钟频率依赖于这条关键路径 具体而言, 时钟周期必须大于:
2014-8-20
392.515198 undefined
清华大学微电子学研究所 张春 23/33
检查综合结果-Area
Attributes: b - black box (unknown) h - hierarchical n - noncombinational r - removable u - contains unmapped logic
Design -> Report Cell Design -> Report Reference
Cell Reference Library Area Attributes -------------------------------------------------------------------------------U24 XOR2X1 typical 26.611200 U25 NOR2X1 typical 9.979200 U26 MXI2X1 typical 23.284800 U27 NAND2X1 typical 9.979200 U28 CLKINVX1 typical 9.979200 U29 MXI2X1 typical 23.284800 U30 CLKINVX1 typical 9.979200 q_reg[0] DFFRHQX1 typical 69.854401 n q_reg[1] DFFRHQX1 typical 69.854401 n q_reg[2] DFFRHQX1 typical 69.854401 n q_reg[3] DFFRHQX1 typical 69.854401 n -------------------------------------------------------------------------------Total 11 cells 392.515198 2014-8-20 清华大学微电子学研究所 张春 24/33
Analyze, elaborate read_verilog, read_VHDL
Analyze and resolve design problems
report_timing report_area
Define design environment
set_operating_conditions set_wire_load_model set_driving_cell, set_load
create_clock, set_clock_uncertainty set_input_delay, set_output_delay set_max_area
Specify library
target_library link_library
Compile design
compile
Read design
清华大学微电子学研究所 张春
21/33
检查电路图
Schematic View
Symbol View
2014-8-20
清华大学微电子学研究所 张春
22/33
检查综合结果-Area
**************************************** Report : area Design : counter Version: V-2004.06-SP2 Date : Thu Oct 25 11:52:46 2007 ****************************************
Save design database
write write_sdf
2014-8-20
清华大学微电子学研究所 张春
13/33
文件及目录准备
源代码
库文件
建立工作目录work,用于保存中间文件 mkdir work
编写配置文件:.synopsys_dc.setup
define_design_lib work –path “./work” set target_library { /home/ic/library/typical.db } set link_library { * /home/ic/library/typical.db } set symbol_library { /home/ic/library/umc18.sdb }
检查综合结果-Timing
Timing -> Report Timing Paths
2014-8-20
清华大学微电子学研究所 张春
25/33
输出结果(DB/VHDL/Verilog/SDF)
File -> Save 以DB格式保存综合后的结果 File -> Save As 以VHDL/Verilog形式输出电路网表
File -> Save Info -> Design Timing 输出时序反标文件
2014-8-20
清华大学微电子学研究所 张春
26/33
内容摘要
综合及相关基本概念
– Cell-based ASIC(标准单元) – Static timing analysis (STA,静态时序分析)
2/33
典型的ASIC设计流程
Funct. Spec RTL Logic Synth. Front-end Gate-level Net. Floorplanning Behav. Simul.
Stat. Wire Model
Gate-Lev. Sim. Parasitic Extrac.
Back-end
基本的综合过程 门级仿真
2014-8-20
清华大学微电子学研究所 张春
27/33
门级仿真
综合工具
RTL级设计文件 Counter.vhd 测试平台文件 tb.vhd
门级网表文件 post.v (post.vhdl)
时序反标文件 Counter-post.sdf
仿真器
功能仿真
仿真器
门级仿真
库文件 Umc18.v
Combinational area: 113.097603 Noncombinational area: 279.417603 Net Interconnect area: undefined (No wire load specified) Total cell area: Total area:
2014-8-20
清华大学微电子学ed ASIC
使用预先设计好的逻辑单元 (标准单元,standard cells)和功 能单元 (宏单元,megacells) 标准单元
– 基本门电路,Primitive Gates (and, or, inv, …) – 多路选择器,Multiplexers – 寄存器,Registers
内容摘要
综合及相关基本概念
– Cell-based ASIC(标准单元) – Static timing analysis (STA,静态时序分析)
基本的综合过程 门级仿真
2014-8-20
清华大学微电子学研究所 张春
12/33
基本综合过程
Prepare HDL Code
Set design constraints
相关文档
最新文档