2021年宁夏高考数学重难点热点复习:圆锥曲线
2021年高考理数:圆锥曲线
核心考点解读——圆锥曲线椭圆(II ) 双曲线(I ) 抛物线(II ) 直线与圆锥曲线(II )1.从考查题型来看,涉及本知识点的选择题、填空题常结合圆锥曲线的定义及其简单几何性质,利用直线与圆锥曲线的位置关系,通过建立代数方程求解.解答题中则常综合考查椭圆的定义、标准方程、直线与椭圆的位置关系等.2.从考查内容来看,主要考查圆锥曲线的方程,以及根据方程及其相应图形考查简单几何性质,重点是椭圆及抛物线的简单几何性质的综合应用,注重运算求解能力的考查.3.从考查热点来看,直线与圆锥曲线的位置关系是高考命题的热点,利用直线与圆锥曲线的位置关系,通过直线方程与圆锥曲线方程的联立,结合椭圆、双曲线、抛物线的定义考查与之有关的问题,重点突出考查运算的能力,体现了数形结合的思想.1.椭圆(1)椭圆的定义:平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记做122F F c =.定义式:12122(2)PF PF a a F F +=>.要注意,该常数必须大于两定点之间的距离,才能构成椭圆. (2)椭圆的标准方程:焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>. (3)椭圆的图形及其简单几何性质 i)图形焦点在x 轴上 焦点在y 轴上ii)标准方程几何性质范围顶点焦点对称性离心率椭圆22221x y a b += (0)a b >>x a ≤ y b ≤ (,0)a ±,(0,)b ± (,0)c ± 对称轴:x轴,y 轴,对称中心:原点01e <<,ce a=22221y x a b+= (0)a b >>y a ≤ x b ≤ (0,)a ±,(,0)b ±(0,)c ±注意:求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.求椭圆的离心率主要的方法有:根据条件分别求出a 与c ,然后利用ce a=计算求得离心率;或者根据已知条件建立关于,,a b c 的等量关系式或不等关系式,由此得到方程或不等式,通过解方程或不等式求解离心率的值或取值范围. 2.双曲线(1)定义:平面内,到两个定点12,F F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两个定点之间的距离叫做双曲线的焦距,记做122F F c =.定义式:12122(02)PF PF a a F F -=<<. 要注意,常数小于两定点之间的距离. (2)双曲线的标准方程:焦点在x 轴上,22221(0,0)x y a b a b -=>>;焦点在y 轴上,22221(0,0)y x a b a b-=>>.说明:要注意根据焦点的位置选择双曲线的标准方程,知道,,a b c 之间的大小关系和等量关系:222,0,0c a b c a c b -=>>>>. (3)双曲线的图形及其简单几何性质 i)图形焦点在x 轴上 焦点在y 轴上ii)标准方程22221x y a b -=(0,0)a b >> 22221y x a b-=(0,0)a b >> 范围 x a ≥,y ∈R y a ≥,x ∈R顶点 (,0)a ± (0,)a ±焦点 (,0)c ± (0,)c ± 渐近线by x a=±a y x b=±对称性 对称轴:x 轴,y 轴;对称中心:原点离心率ce a=,1e > 注意:求双曲线的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择双曲线的标准方程;也可以利用双曲线的定义及焦点位置或点的坐标确定双曲线的标准方程.求双曲线的离心率主要的方法有:根据条件分别求出a 与c ,然后利用ce a=计算求得离心率;或者根据已知条件建立关于,,a b c 的等量关系式或不等关系式,由此得到方程或不等式,通过解方程或不等式求解离心率的值或取值范围.渐近线是双曲线特有的特征,双曲线的渐近线方程可以根据双曲线的标准方程求解,令双曲线标准方程中的10=,得到渐近线方程为22220x y a b -=或22220y x a b-=.3.抛物线(1)定义:平面内与一个定点F 和一条定直线(l l 不经过点)F 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 定义式:PF d =,d 为动点P 到准线的距离. (2)抛物线的标准方程焦点在x 轴的正半轴上:22(0)y px p =>; 焦点在x 轴的负半轴上:22(0)y px p =->; 焦点在y 轴的正半轴上:22(0)x py p =>; 焦点在y 轴的负半轴上:22(0)x py p =->. (3)抛物线的图形及其简单几何性质 标准 方程22y px = (0)p >22y px =- (0)p >22x py = (0)p >22x py =-(0)p >图形焦点 )0,2(p F )0,2(p F -)2,0(p F )2,0(p F -准线方程 2p x -= 2p x = 2p y -= 2p y =范围 0,x y ≥∈R0,x y ≤∈R ,0x y ∈≥R,0x y ∈≤R对称轴 x 轴y 轴顶点 (0,0)离心率 1e =焦半径12x pPF +=12x pPF +=12y pPF +=12y pPF +=(4)过抛物线的焦点且垂直于对称轴的弦称为通径,抛物线的通径长为2p ;抛物线焦点弦的常用结论:设AB 是过抛物线22(0)y px p =>焦点F 的弦,若1122(,),(,)A x y B x y ,则2124p x x =,212y y p =-,弦长12AB x x p =++,112AF BF p+=等. 4.直线与圆锥曲线的位置关系(1)椭圆、双曲线、抛物线统称为圆锥曲线,直线与圆锥曲线的位置关系可分为相交、相切、相离.位置关系的判定方式:将直线方程与圆锥曲线的方程联立,消元,得到关于()x y 或的方程,通过判别式∆进行判别.要注意,若直线与双曲线的渐近线平行,则直线与双曲线相交,且只有一个交点;若直线与抛物线的对称轴平行或重合,则直线与抛物线相交,且只有一个交点. (2)直线与圆锥曲线相交的弦长问题:弦长公式:221212()()AB x x y y =-+-2121221(1)(1)k x x y y k =+-=+-. (3)已知直线与圆锥曲线相交所得弦的中点,则该弦所在直线方程的表示方式: i)利用点斜式设出直线方程,联立方程,消元后根据根与系数的关系及中点坐标公式建立关于直线斜率的方程,求解方程即可.ii)利用点差法,设弦的端点的坐标分别为1122(,),(,)A x y B x y ,代入曲线方程,然后作差,利用两点坐标求斜率公式,得到斜率,再利用点斜式写出直线方程. (4)圆锥曲线中有关定点、定值的问题:一般可以根据题意求出相关的表达式,再根据已知条件建立方程组(或不等式),消去参数,求出定值或定点的坐标;也可以先利用特殊情况确定定值或定点坐标,再从一般情况进行验证.(5)圆锥曲线中的最值、范围问题:一是根据题中的限制条件求范围,如直线与圆锥曲线的位置关系中∆的范围,方程中变量的范围,角度的大小等;二是将要讨论的几何量,如长度、面积等用参数表示出来,再对表达式进行讨论,应用不等式、三角函数等知识求最值.1.(2021高考新课标I ,理10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .102.(2021高考新课标I ,理15)已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为.3.(2021高考新课标I ,理20)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–13,P 4(13)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.4.(2021高考新课标I ,理5)已知方程222213x y m n m n+=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–3C .(0,3)D .35.(2021高考新课标III ,理11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2021高考新课标II ,理11)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为 A 2B .32C 3D .27.(2021高考新课标I ,理10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42|DE|=25C 的焦点到准线的距离为A .2B .4C .6D .88. (2021高考新课标I ,理5)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A.(33B.(33) C.(2222)D.(2323) 9.(2021高考新课标III ,理20) 已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(II )若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.10.(2021高考新课标I ,理20)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.1.椭圆的离心率为,为椭圆的一个焦点,若椭圆上存在一点与关于直线对称,则椭圆的方程为A .B .C .或D .或2.过双曲线()2222:10,0x y E a b a b-=>>的右焦点,且斜率为2的直线与E 的右支有两个不同的公共点,则双曲线离心率的取值范围是___________. 3.已知抛物线的焦点为.(1)若斜率为的直线过点与抛物线交于两点,求的值;(2)过点作直线与抛物线交于两点,且,求的取值范围.1.过抛物线22(0)y px p =>的焦点F 且斜率为(0)k k >的直线l 交抛物线于点,A B ,若AF FB λ=,且11,32λ⎛⎫∈ ⎪⎝⎭,则k 的取值范围是A .(3B .)3,2C .(2,22D .3,222.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点2F 关于直线b y x a =的对称点为M ,若点M 在双曲线C 上,则双曲线C 的渐近线方程为_______________.3.已知椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为12F F、,过点2F且垂直于x轴的直线截椭圆形成的弦长为2,且椭圆C的离心率为22,过点1F的直线l与椭圆C交于,M N两点.(1)求椭圆C的标准方程;(2)若点(2,0)R,且RM RNλ⋅≤,则当λ取得最小值时,求直线l的方程.真题回顾:1.A【解析】设11223344(,),(,),(,),(,)A x yB x y D x y E x y,直线1l的方程为1(1)y k x=-,联立方程214(1)y xy k x⎧=⎨=-⎩,得2222111240k x k x x k--+=,∴21122124kx xk--+=-212124kk+=,同理直线2l与抛物线的交点满足22342224kx xk++=,由抛物线定义可知1234||||2AB DE x x x x p+=++++=221222222212121224244416482816k kk k k k k k++++=++≥=,当且仅当121k k=-=(或1-)时,取等号.【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sinpABα=,则2222||πcossin(+)2p pDEαα==,所以222221||||4(cos sin cosp pAB DEααα+=+=+222222222111sin cos)4()(cos sin)4(2)4(22)16 sin cos sin cos sinααααααααα=++=++≥⨯+=.2.233AP MN⊥,因为圆A与双曲线C的一条渐近线交于M、N两点,则MN为双曲线的渐近线by xa=上的点,且(,0)A a,||||AM AN b==,而AP MN⊥,所以30PAN∠=,点(,0)A a 到直线by x a=的距离22||1AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =,由222c a b =+得2c b =, 所以233c e a b ===【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 3.(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t 24t -,(t ,24t -.则221242421t t k k ---++==-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=.由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m km k m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-).4.A 【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-.5.A 【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||()FM k a c =-,||OE k a =.设OE 的中点为N ,则OBN FBM △∽△,则1||||2||||OE OB FM BF =,即2(c)k a a k a a c=-+,整理,得13c a =,所以椭圆C 的离心率13e =. 【名师点睛】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c的齐次等式,求得ca或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e . 6.A 【解析】因为1MF 垂直于x 轴,所以2212,2b b MF MF a a a==+,因为211sin 3MF F ∠=,所以2122132b MF ab MF a a==+,化简得b a =,故双曲线的离心率2212b e a =+=. 7.B 【解析】如图,设抛物线方程为22y px =,圆的半径为r ,,AB DE 交x 轴于,C F 点,则22AC =,即A 点纵坐标为22,则A 点横坐标为4p ,即4OC p=,由勾股定理知2222DF OF DO r +==,2222AC OC AO r +==,即22224(5)()(22)()2p p+=+,解得4p =,即C 的焦点到准线的距离为4.8.A 【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF ⋅= 0000(3,)(3,)x y x y --⋅- =2220003310x y y +-=-<,解得033y <<【名师点睛】本题考查利用向量数量积的坐标形式将12MF MF ⋅表示为关于点M 坐标的函数,利用点M 在双曲线上,消去x 0,根据题意化为关于0y 的不等式,即可解出0y 的范围,是基础题,将12MF MF ⋅表示为0y 的函数是解本题的关键.9.由题设)0,21(F .设by l a y l ==:,:21,则≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(I )由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (II )设l 与x 轴的交点为)0,(1x D ,则11112222ABF PQF a b S b a FD b a x S ∆-=-=--=||||||||||,△.由题设可得111222a b b a x ---=||||||,所以01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x y b a .而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .10.(I )因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (II )当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得1248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x .所以34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m:)1(1--=x k y ,A 到m 的距离为122+k ,所以1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积341112||||212++==k PQ MN S .可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[. 当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[.名校预测1.【答案】C 【解析】由题意知,得,不妨设椭圆的方程为22221(0)x y a b a b+=>>,椭圆上任取点,取焦点,则中点,根据条件可得,,联立两式解得,代入椭圆方程解得,,由此可得椭圆的方程为或.故选C .2.【答案】()1,5【解析】由题意知02ba <<,故22222204,115bc b a a a<<<=+<,故15e <<.3.【解析】(1)依题意,.设,则直线.联立,消去y 得,则,则.由抛物线的定义可知,.(2)设直线的方程为与曲线的交点为,∴.将的方程代入抛物线的方程,化简得,.∵,∴.又∵,∴恒成立,∴恒成立.∵,∴只需即可,解得.∴所求的取值范围为.专家押题1.【答案】D 【解析】如图,延长BA 交准线l 于点C ,分别过点A B ,作1AA l ⊥于1A ,1BB l ⊥于1B , 设直线AB 的倾斜角为θ,1FB BB m ==,1FA AA m λ==,则11,cosAAm ACACBC BBλθ==,即coscosmmm mm mλλθλλθ=++,12cos111λθλλ-==-++,则上式是关于λ的减函数,由1132λ⎛⎫∈ ⎪⎝⎭,可得11cos32θ⎛⎫∈ ⎪⎝⎭,,故tankθ=的取值范围是()322,,故选D.2.2y x=±【解析】如图,令1||MF m=,2||MF n=,由题可知2n m a-=①,12MF MF⊥,故n bm a=,即bmna=,将其代入①式,解得22amb a=-,所以2abnb a=-,在12Rt F MF△中,2224m n c+=,即422222444()()a a bcb a b a+=--,结合222a b c+=化简可得2ba=,所以双曲线C的渐近线方程为2y x=±.3. 【解析】(1)联立2222,1,x cx ya b=⎧⎪⎨+=⎪⎩解得2bya=±,故222ba=又2ca=,222a b c=+,解得2a=1b=,故椭圆C的标准方程为2212xy+=.(2)设11(,)M x y,22(,)N x y,故1122(2,)(2,)RM RN x y x y⋅=-⋅-.当直线l垂直于x轴时,121x x==-,12y y=-,且2112y=,此时211117(3,)(3,)92RM RN y y y⋅=-⋅--=-=.当直线l不垂直于x轴时,设直线:(1)l y k x=+,联立22(1),22,y k xx y=+⎧⎨+=⎩整理得2222(12)4220k x k x k+++-=,所以2122412kx xk-+=+,21222212kx xk-=+,故21212122()4(1)(1)RM RN x x x x k x x ⋅=-+++++22222222121222224(1)(2)()4(1)(2)41212k k k x x k x x k k k k k k-=++-+++=+--++++2221721713171222(12)2k k k +==-<++.综上所述,λ的最小值为172,此时直线l 的方程为1x =-.。
2021高考数学教材知识点归纳《圆锥曲线》
高中数学第八章-圆锥曲线方程考试内容:椭圆及其标准方程•椭圆的简单几何性质•椭圆的参数方程.双曲线及其标准方程•双曲线的简单几何性质.抛物线及其标准方程•抛物线的简单几何性质. 考试要求:(1 )掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.(4)了解圆锥曲线的初步应用.§08.圆锥曲线方程知识要点、椭圆方程1.椭圆方程的第一定义:PF* |PF2 2a F1=2方程为椭圆,PF1 PF2 2a F1=2无轨迹,PF1 PF2 2a F1F2以F"F2为端点的线段⑴①椭圆的标准方程:由椭圆方程的第二定义可以推出由椭圆方程的第二定义可以推出由椭圆第二定义可知:pF1e( x0 a2a2—) a ex0( x0 0), pF 2 e( x0) ex> a(x00)归结起来为i.中心在原点,焦点在x轴上:2 2冷1(a b 0). ii.中心在原点,焦点在 a b y轴上:1(a 0).②一般方程: 2 2Ax By 1(A 0, B 0).③椭圆的标准参数方程:x a cosy bsi n(一象限应是属于0⑵①顶点: (a,0)(0, b)或(0, a)( b,0).②轴:对称轴:焦占:(八'、G0)(G0)或(0, c)(0,c) •④焦距:卩疳2x轴,y轴;长轴长2a ,短轴长2b .③—或c2c, c a2 b2 .⑤准线:a2y .⑥离心率:ec-(0a1).⑦焦点半径: 2i.设P(x0,y0)为椭圆冷a 2 yb21(a b 0)上的一点,F1F2为左、右焦点,则3ex0, PF 2 a ex。
2 2ii.设P(x°,y0)为椭圆冷勺b a 1(a b 0)上的一点,F1,F2为上、下焦点,则1 a ey0, PF 2 a ey0左加右减”.注意:椭圆参数方程的推导:得N(acos ,bsin )方程的轨迹为椭圆2 2 2⑧通径:垂直于x轴且过焦点的弦叫做通经•坐标:d 务(C,b)和(C上)a a a⑶共离心率的椭圆系的方程:椭圆 b 0)的离心率是e-(c a2 b2),方ab2t(t是大于0的参数,a b 0)的离心率也是e -我们称此方程为共离心率的a椭圆系方程⑸若P是椭圆:2 2务笃1上的点・F I,F2为焦点,若a bF1PF2,贝V PF1F2的面积为b2ta n (用余弦定理与2二、双曲线方程.1.双曲线的第一定义:PF i PF 2 2a可得).若是双曲线,则面积为b2cot .2PF1PF22a F1F2方程为双曲线PF1PF22a F1F2无轨迹PF1PF22a F1F2以F 1,F2的一个端点的一条射线22⑴①双曲线标准方程:务y21(a,ba b2Ax2Cy21( AC0).⑵①i.焦点在x轴上:20)2a))顶点: (a,0),( a,0)焦点:(c,0),( c,0) 准线方程x b21(a, b 0).2—渐近线方程:2 X2 a 2 y b2ii.焦点在y轴上:顶点: (0, a), (0,a).焦点:(0,c), (0, c).准线方程:2—.渐近线c方程:ya2y2a2 Xb20 ,参数方程:x a secy b tan y a sec②轴x, y为对称轴,实轴长为2a,虚轴长为2b,焦距2c. ③离心率e④准线距空c(两准线的距离);通径空.⑤参数关系c2a a2 b2,e -.⑥焦点半径公式:对于双曲a1 ( F 1,F _分别为双曲线的左、右焦点或分别为双曲线的上下焦点)⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭区域①:无切线,2条与渐近线平行的直线,合计 2条;区域②:即定点在双曲线上, 1条切线,2条与渐近线平行的直线,合计 3条; 区域③:2条切线,2条与渐近线平行的直线,合计 4条; 区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计 2条;区域⑤:即过原点,无切线,无与渐近线平行的直线小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有 0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入 “”法与渐近线求交和两根之和与两根之积同号.2 2⑺若P 在双曲线耸与a b离比为m : n.ex 0 aex 0 a (与椭圆焦半径不同,椭圆焦半其渐近线方程为y x ,离心率e 2 .2 2线方程x_a b2双曲线.a2y_ b _2y_互为共轭双曲线,它们具有共同的渐近线:1,则常用结论1: P 到焦点的距离为m = n ,贝U P 到两准线的距2222⑹直线与双曲线的位置关系:PF i简证:dl 一e_= m .d 2 PF 2ne常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程•注:①ay 2 by c x 顶点(仏b4a③通径为2p ,这是过焦点的所有弦中最短的四、圆锥曲线的统一定义..4.圆锥曲线的统一定义:平面内到定点 当0 e 1时,轨迹为椭圆; 当e 1时,轨迹为抛物线; 当e 1时,轨迹为双曲线;PFP x — ;x 2 2py (p 0)则焦点半径为|PF |P y —1 121 12②y 2 2px (p 0)则焦点半径④y 22px (或x 22py )的参数方程为2x 2pt(或 x y 2pty2pt 22pt(t 为参数)F 和定直线I 的距离之比为常数 e 的点的轨迹当e 0时,轨迹为圆(e —,当c 0,a b时).a5.圆锥曲线方程具有对称性.例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD,即证AD与BC的中点重合即可.2. 等轴双曲线3. 共轭双曲线5.方程y2=ax与x2=ay的焦点坐标及准线方程6•共渐近线的双曲线系方程.。
高考数学复习考点题型专题讲解21 圆锥曲线的基本问题
高考数学复习考点题型专题讲解专题21 圆锥曲线的基本问题高考定位 圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题的一问的形式命题,难度较小.1.(2021·新高考Ⅰ卷)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6 答案 C解析 由椭圆C :x 29+y 24=1,得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.故选C.2.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |=( )A.2B.2 2C.3D.3 2 答案 B解析 法一 由题意可知F (1,0), 抛物线的准线方程为x =-1.设A (y 204,y 0),则由抛物线的定义可知|AF |=y 204+1,又|BF |=3-1=2,故由|AF|=|BF|,可得y24+1=2,解得y0=±2,所以A(1,2)或A(1,-2). 不妨取A(1,2),故|AB|=(1-3)2+(2-0)2=22,故选B.法二由题意可知F(1,0),故|BF|=2,所以|AF|=2.又抛物线通径长为4,所以|AF|=2为通径长的一半,所以AF⊥x轴,所以|AB|=(-2)2+22=22,故选B.3.(2022·全国甲卷)椭圆C:x2a2+y2b2=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为( )A.32B.22C.12D.13答案 A解析设P(m,n)(n≠0),则Q(-m,n),易知A(-a,0),所以k AP·k AQ=nm+a·n-m+a=n2a2-m2=14(*).因为点P在椭圆C上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14,所以e =ca=1-b 2a 2=32.故选A.4.(2022·北京卷)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =________.答案 -3解析法一 依题意得m <0,双曲线的方程化为标准方程为y 2-x 2-m=1,此时双曲线的渐近线的斜率为±1-m=±33,解得m =-3.法二 依题意得m <0,令y 2-x 2-m =0,得y =±1-m x ,则±1-m=±33,解得m =-3.5.(2022·新高考Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是________. 答案 13解析 如图,连接AF 1,DF 2,EF 2,因为C 的离心率为12,所以c a =12,所以a =2c ,所以b 2=a 2-c 2=3c 2.因为|AF 1|=|AF 2|=a =2c =|F 1F 2|, 所以△AF 1F 2为等边三角形,又DE ⊥AF 2,所以直线DE 为线段AF 2的垂直平分线, 所以|AD |=|DF 2|,|AE |=|EF 2|,且∠EF 1F 2=30°, 所以直线DE 的方程为y =33(x +c ),代入椭圆C 的方程x 24c 2+y 23c 2=1,得13x 2+8cx -32c 2=0.设D (x 1,y 1),E (x 2,y 2), 则x 1+x 2=-8c 13,x 1x 2=-32c 213,所以|DE |=⎝⎛⎭⎪⎫1+13[(x 1+x 2)2-4x 1x 2]=43⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8c 132-4×⎝ ⎛⎭⎪⎫-32c 213=48c 13=6, 解得c =138,所以a =2c =134, 所以△ADE 的周长为|AD |+|AE |+|DE |=|DF 2|+|EF 2|+|DE |=4a =13.热点一 圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|).(2)双曲线:||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,l 为抛物线的准线,点F 不在定直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)已知A ,B 分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点与虚轴的上端点,F (2,0)是双曲线C 的右焦点,直线AB 与双曲线C 的一条渐近线垂直,则双曲线C 的标准方程为________.(2)(2022·成都二诊)已知抛物线C 以坐标原点O 为顶点,以⎝ ⎛⎭⎪⎫p 2,0为焦点,直线x -my-2p =0与抛物线C 交于两点A ,B ,直线AB 上的点M (1,1)满足OM ⊥AB ,则抛物线C 的方程为________.答案 (1)x 22-y 22=1 (2)y 2=2x解析 (1)由题意得A (a ,0),B (0,b ),双曲线的渐近线方程为y =±ba x ,而k AB =-b a,∴-b 2a2=-1,∴a =b ,又F (2,0),∴c 2=a 2+b 2=2a 2=4, ∴a 2=b 2=2,∴双曲线C 的标准方程为x 22-y 22=1.(2)由已知直线OM 的斜率为1,则AB 的斜率为-1,所以m =-1,又M (1,1)在直线AB 上, ∴1+1-2p =0,∴p =1. ∴抛物线C 的方程为y 2=2x .易错提醒 求圆锥曲线的标准方程时的常见错误:(1)双曲线的定义中忽略“绝对值”致错;(2)椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;(3)圆锥曲线方程确定时还要注意焦点位置.训练1 (1)(2022·武汉模拟)抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4,则抛物线的方程为( ) A.y 2=8x B.y 2=4x C.y 2=2x D.y 2=x(2)(2022·怀仁二模)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,且离心率为2,则双曲线C 的标准方程为________. 答案 (1)B (2)x 29-y 227=1解析 (1)由抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4, 可得3+p2=4,解得p =2,所以抛物线的方程为y 2=4x ,故选B.(2)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,可得a =3,离心率为2,所以c =6,则b 2=c 2-a 2=62-32=27.所以双曲线C 的标准方程为x 29-y 227=1.热点二 椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e =ca =1-b 2a 2(0<e <1),双曲线的离心率e =c a =1+b 2a2(e >1). (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 离心率问题例2 (1)(2022·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为( ) A.3-1 B.32C.12D.22(2)(2022·浙江卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是________. 答案 (1)A (2)364解析 (1)可画出如图所示图形.△MF 1F 2为等边三角形,F 1(-c ,0),F 2(c ,0),QF 1⊥MF 2,∠F 1F 2Q =60°, ∵|F 1F 2|=2c ,∴|QF 2|=c ,|QF 1|=3c , ∴|QF 1|+|QF 2|=(3+1)c =2a ,∴ca=3-1, 即e =3-1.故选A.(2)结合题意作出图形如图所示,由题意知,过左焦点F (-c ,0)且斜率为b 4a 的直线方程为y =b4a(x +c ), 由⎩⎪⎨⎪⎧y =b 4a (x +c ),y =b a x 解得⎩⎪⎨⎪⎧x =c3,y =bc 3a ,所以B ⎝ ⎛⎭⎪⎫c 3,bc 3a .因为|FB |=3|FA |,所以FB →=3FA →, 即⎝ ⎛⎭⎪⎫4c 3,bc 3a =3(x 1+c ,y 1),得⎩⎪⎨⎪⎧x 1=-5c9,y 1=bc9a ,所以A ⎝ ⎛⎭⎪⎫-5c 9,bc 9a .将⎝ ⎛⎭⎪⎫-5c 9,bc 9a 代入双曲线方程x 2a 2-y 2b 2=1,可得⎝ ⎛⎭⎪⎫-5c 92a 2-⎝ ⎛⎭⎪⎫bc 9a 2b 2=1,结合离心率e =c a得e 2=8124, 又e >1,所以双曲线的离心率为364. 考向2 椭圆、双曲线的几何性质例3 (1)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线C 上一点,PF 2⊥x 轴,tan∠PF 1F 2=34,则双曲线的渐近线方程为( )A.x ±2y =0B.2x ±y =0C.3x ±y =0D.x ±3y =0(2)(2022·南通质检)椭圆C :x 218+y 2b 2=1(b 2<18且b >0)的上、下顶点分别为A ,C ,如图,点B 在椭圆上(异于椭圆顶点),点D 在椭圆内,平面四边形ABCD 满足∠BAD =∠BCD =90°,且S △ABC =2S △ADC ,则该椭圆的短轴长为________.答案 (1)C (2)6解析 (1)因为点P 在双曲线上,且PF 2⊥x 轴,所以点P 的横坐标为c ,代入双曲线的方程可得P ⎝ ⎛⎭⎪⎫c ,±b 2a ,则|PF 2|=b 2a,|F 1F 2|=2c ,所以tan∠PF 1F 2=|PF 2||F 1F 2|=b 2a 2c =b 22ac =34,整理得2b 2=3ac , 所以4⎝ ⎛⎭⎪⎫b a 4-9⎝ ⎛⎭⎪⎫b a 2-9=0,解得ba=3,所以双曲线的渐近线方程为y =±3x ,即3x ±y =0,故选C. (2)根据题意可得A (0,b ),C (0,-b ),设B (x 1,y 1),D (x 2,y 2).连接BD ,由∠BAD =∠BCD =90°可得,点A ,B ,C ,D 均在以BD 为直径的圆E (E 为BD 中点)上,又原点O 为圆E 上的弦AC 的中点,所以圆心E 在AC 的垂直平分线上,即圆心E 在x 轴上, 所以y 1+y 2=0. 又S △ABC =2S △ADC , 所以x 1=-2x 2,故圆心E 的坐标为⎝ ⎛⎭⎪⎫x 14,0,所以圆E 的方程为⎝⎛⎭⎪⎫x -x 142+y 2=916x 21+y 21,将(0,b )代入圆E 的方程,结合x 2118+y 21b 2=1可得b 2=9,所以b =3,短轴长为6.规律方法 1.确定椭圆和双曲线的离心率的值或范围,其关键就是确立一个关于a ,b ,c 的等量关系或不等关系,然后用a ,c 代换b ,进而求ca的值或范围.2.求双曲线渐近线方程的关键在于求b a 或ab 的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.训练2 (1)双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 在y 轴上,且△MF 1F 2为正三角形.若线段MF 2的中点恰好在双曲线E 的渐近线上,则E 的离心率等于( ) A.5B.2 C.3D. 2(2)(2022·张家口一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过原点O 的直线l交椭圆C 于点A ,B ,且2|FO |=|AB |,若∠BAF =π6,则椭圆C 的离心率是________. 答案 (1)B (2)3-1解析 (1)不妨设M 在y 轴的正半轴上, 设M (0,t ),t >0,由于△MF 1F 2为正三角形,所以t =3c ,故M (0,3c ),则MF 2的中点为N ⎝ ⎛⎭⎪⎫c 2,3c 2, 因为N 在渐近线y =b ax 上,所以3c 2=b a ×c 2,即b a =3,e =ca=1+⎝ ⎛⎭⎪⎫b a 2=2,故选B. (2)因为直线AB 过原点,由椭圆及直线的对称性可得|OA |=|OB |, 所以|AB |=2|OA |,设右焦点F ′,连接BF ′,AF ′, 又因为2|OF |=|AB |=2c , 可得四边形AFBF ′为矩形,在Rt△ABF 中,|AF |=2c ·cos∠BAF =2c ·32=3c , |BF |=2c ·sin∠BAF =2c ·12=c ,∴|AF ′|=|BF |=c ,由椭圆定义|AF |+|AF ′|=3c +c =2a , ∴e =c a=3-1.热点三 抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α是弦AB 的倾斜角,则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AB |=x 1+x 2+p =2psin 2α. (3)1|FA |+1|FB |=2p.(4)以线段AB 为直径的圆与准线x =-p2相切.例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( ) A.18B.2 C.14D.4 (2)(多选)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线l 的斜率为3且经过点F ,直线l 与抛物线C 交于A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AF |=8,则以下结论正确的是( ) A.p =4 B.DF →=FA → C.|BD |=2|BF | D.|BF |=4 答案 (1)B (2)ABC解析 (1)依题意F 点的坐标⎝ ⎛⎭⎪⎫p 2,0,设M 在准线上的射影为K , 由抛物线的定义知|MF |=|MK |, ∵FM →=55MN →,∴|FM ||MN |=55, 可得|MK ||MN |=55, 则|KN |∶|KM |=2∶1, ∴k FN =0-2p 2-0=-4p ,∴-4p=-2,求得p =2.故选B.(2)如图所示,分别过点A ,B 作准线的垂线,垂足分别为E ,M ,连接EF .设抛物线C 的准线交x 轴于点P ,则|PF |=p ,由于直线l 的斜率为3,则其倾斜角为60°.又AE ∥x 轴,∴∠EAF =60°,由抛物线的定义可知,|AE |=|AF |,则△AEF 为等边三角形, ∴∠EFP =∠AEF =60°,则∠PEF =30°,∴|AF |=|EF |=2|PF |=2p =8,解得p =4,故A 正确;∵|AE |=|EF |=2|PF |,PF ∥AE ,∴F 为线段AD 的中点,则DF →=FA →,故B 正确; ∵∠DAE =60°,∴∠ADE =30°,∴|BD|=2|BM|=2|BF|(抛物线定义),故C正确;∵|BD|=2|BF|,∴|BF|=13|DF|=13|AF|=83,故D错误.规律方法利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.训练3 (1)(2022·济南模拟)已知抛物线y2=4x的焦点为F,直线l经过F与抛物线交于A,B两点,点P在抛物线的准线上,且PF⊥AB,线段AB的中点为Q.若|PQ|=4,则|AB|=( )A.4B.4 2C.8D.8 2(2)(2022·广州模拟)过抛物线y2=4x焦点F的直线与该抛物线及其准线都相交,交点从左到右依次为A,B,C.若AB→=2BF→,则线段BC的中点到准线的距离为( )A.3B.4C.5D.6答案(1)C (2)B解析(1)由A,B向准线作垂线,垂足分别为C,D,因为PF⊥AB,可知P是线段CD的中点,PQ 是梯形ABDC 的中位线,又由抛物线的定义可知|AB |=2|PQ |=8,故选C. (2)由抛物线的方程可得焦点F (1,0),渐近线的方程为:x =-1, 由AB →=2BF →, 可得|AB ||BF |=2, 如图所示:作BB ′垂直于准线于B ′, 而|BB ′||AB |=22,∴∠ABB ′=45°, 所以直线AB 的斜率为1, 所以直线AB 的方程为x =y +1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎨⎧y 2=4x ,x =y +1,整理可得:x 2-6x +1=0,可得x 1+x 2=6,所以线段BC 的中点到准线的距离为x 1+x 22+1=4,故选B.一、基本技能练1.(2022·温州模拟)双曲线y 2-2x 2=1的离心率是( )A.52B.62C.3D. 5 答案 B解析 双曲线方程化为y 21-x 212=1,则a 2=1,b 2=12,从而e =1+b 2a 2=62,故选B. 2.设经过点F (1,0)的直线与抛物线y 2=4x 相交于A ,B 两点.若线段AB 中点的横坐标为2,则|AB |=( ) A.4 B.5 C.6 D.7 答案 C解析 因为抛物线为y 2=4x ,所以p =2, 设A ,B 两点横坐标为x 1,x 2, 因为线段AB 中点的横坐标为2, 则x 1+x 22=2,即x 1+x 2=4,故|AB |=x 1+x 2+p =4+2=6,故选C.3.(2022·烟台一模)已知点F 为抛物线y 2=2px (p >0)的焦点,点P 在抛物线上且横坐标为8,O 为坐标原点,若△OFP 的面积为22,则该抛物线的准线方程为( ) A.x =-12B.x =-1C.x =-2D.x =-4 答案 B解析 由抛物线的方程可得F ⎝ ⎛⎭⎪⎫p 2,0,不妨设P 在x 轴上方,则y 2=2p ×8,可得y p =4p , 则S △OFP =12|OF |·y p =12×p2×4p =22,解得p =2,所以准线方程为x =-p2=-1,故选B.4.“1<k <5”是方程“x 2k -1+y 25-k=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案 B解析 因为k =3时,x 2k -1+y 25-k=1表示圆,故充分性不成立.若x 2k -1+y 25-k=1表示椭圆,则⎩⎨⎧k -1>0,5-k >0,k -1≠5-k ,∴1<k <5且k ≠3,∴必要性成立. 故“1<k <5”是“方程x 2k -1+y 25-k=1表示椭圆”的必要不充分条件.故选B.5.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与x 轴正半轴所成夹角为π3,则C的离心率为( )A.233B.2C.3D.3 答案 A解析 双曲线C 的渐近线方程为y =±ab x ,由题意可得a b =tanπ3=3, 则b a =33, 所以e =ca =c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2=233,故选A.6.(2022·西安二模)直线y =kx (k >0)与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)在第一、第三象限分别交于P ,Q 两点,F 2是C 的右焦点,有|PF 2|∶|QF 2|=1∶3,且PF 2⊥QF 2,则C 的离心率是( ) A.3B. 6 C.3+1 D.6+1 答案 C解析 由对称性可知四边形PF 1QF 2为平行四边形, 又由PF 2⊥QF 2得四边形PF 1QF 2为矩形, ∴|PQ |=|F 1F 2|=2c , 又|PF 2|∶|QF 2|=1∶3, ∴|QF 2|-|PF 2|=(3-1)c =2a , ∴e =c a=23-1=3+1,故选C.7.(2022·石家庄模拟)已知椭圆M:x2a2+y2=1(a>1)的中心为O,过焦点F的直线l与M交于A,B两点,线段AF的中点为P,若|OP|=|PF|=32,则M的方程为( )A.x22+y2=1 B.x23+y2=1C.x24+y2=1 D.x25+y2=1答案 B解析不妨设F为椭圆M的右焦点,则其左焦点为F1,连接AF1,∵O为FF1中点,P为AF中点.∴OP为△AFF1的中位线.∴|AF1|=2|OP|=3,|AF|=2|PF|= 3.∴|AF1|+|AF|=23=2a,∴a= 3.∴椭圆M的方程为x23+y2=1,故选B.8.(2022·南京调研)已知F1,F2分别为双曲线x2a2-y2b2=1(a>0,b>0)的左焦点和右焦点,过F2的直线l与双曲线的右支交于A,B两点,△AF1F2的内切圆半径为r1,△BF1F2的内切圆半径为r2,若r1=2r2,则直线l的斜率为( )A.1B. 2C.2D.2 2答案 D解析记△AF1F2的内切圆圆心为C,△BF1F2的内切圆圆心为D,边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,易知C ,E 横坐标相等,|AM |=|AN |,|F 1M |=|F 1E |,|F 2N |=|F 2E |,由|AF 1|-|AF 2|=2a ,即|AM |+|MF 1|-(|AN |+|NF 2|)=2a ,得|MF 1|-|NF 2|=2a , 即|F 1E |-|F 2E |=2a ,记C 的横坐标为x 0,则E (x 0,0), 于是x 0+c -(c -x 0)=2a ,得x 0=a , 同样圆心D 的横坐标也为a ,则有CD ⊥x 轴,设直线l 的倾斜角为θ,则∠OF 2D =θ2,∠CF 2O =90°-θ2,在△CEF 2中,tan∠CF 2O =tan ⎝ ⎛⎭⎪⎫90°-θ2=r 1|EF 2|,在△DEF 2中,tan∠OF 2D =tan θ2=r 2|EF 2|,由r 1=2r 2,可得2tan θ2=tan ⎝⎛⎭⎪⎫90°-θ2=1tanθ2,解得tan θ2=22,则直线l 的斜率为tan θ=2tanθ21-tan 2θ2=21-12=22,故选D.9.(多选)(2022·福州模拟)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,P 为C上一点,则( )A.C 的离心率为22B.△PF 1F 2的周长为5C.∠F 1PF 2<90°D.1≤|PF 1|≤3 答案 CD解析 对于A ,由椭圆方程知:a =2,c =4-3=1,∴离心率e =c a =12,A 错误;对于B ,由椭圆定义知:|PF 1|+|PF 2|=2a =4,|F 1F 2|=2c =2, ∴△PF 1F 2的周长为4+2=6,B 错误;对于C ,当P 为椭圆短轴端点时,tan ∠F 1PF 22=c b =33,∴tan∠F 1PF 2=2tan∠F 1PF 221-tan 2∠F 1PF 22=2331-13=3,∴∠F 1PF 2=60°,即(∠F 1PF 2)max =60°, ∴∠F 1PF 2<90°,C 正确;对于D ,∵|PF 1|min =a -c =1,|PF 1|max =a +c =3, ∴1≤|PF 1|≤3,D 正确. 故选CD.10.(多选)(2022·菏泽模拟)设抛物线C:y2=8x的焦点为F,准线为l,点M为C上一动点,E(3,1)为定点,则下列结论正确的有( )A.准线l的方程是y=-2B.以线段MF为直径的圆与y轴相切C.|ME|+|MF|的最小值为5D.|ME|-|MF|的最大值为2答案BC解析抛物线C:y2=8x的焦点为F(2,0),准线为l:x=-2,故A错误;设M(m,n),MF的中点为N,可得|MF|=m+2=2·m+2 2,即N到y轴的距离是|MF|的一半,则以线段MF为直径的圆与y轴相切,故B正确;设M在准线上的射影为H,由|ME|+|MF|=|ME|+|MH|,当E,M,H三点共线时,|ME|+|MH|取得最小值,为3+2=5,故C正确;由|ME|-|MF|≤|EF|,当M为EF的延长线与抛物线的交点时,取得最大值|EF|,为(3-2)2+(1-0)2=2,故D错误.故选BC.11.已知抛物线y2=2px的准线方程为x=-1,则p=________.答案 2解析 y 2=2px 准线方程为x =-p2,则-p2=-1,∴p =2.12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,且其虚轴长大于1,则双曲线C的一个标准方程可以为________. 答案x 2-y 24=1(答案不唯一)解析 依题意,不妨取b =2,由题意可得⎩⎪⎨⎪⎧c a =5,b =2,c 2=a 2+b 2,解得a =1,b =2,c = 5.所以满足题设的一个标准方程为x 2-y 24=1.二、创新拓展练13.(多选)(2022·南通适考)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆C :x 24+y 22=1的左、右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足AF 1→=λF 1B →,则( ) A.△ABF 2的周长为定值B.AB 的长度最小值为1 C.若AB ⊥AF 2,则λ=3D.λ的取值范围是[1,5] 答案 AC解析 AF 1→=λF 1B →,则A ,B ,F 1三点共线,△ABF 2周长=4a =8是定值,A 正确.AB min =2·b 2a=2≠1,B 错误;∵AB ⊥AF 2,则AF 1⊥AF 2,A 在上、下顶点处,不妨设A (0,2),则AB ∶y =x +2,⎩⎨⎧y =x +2,x 24+y 22=1.解得⎩⎨⎧x =0,y =2或⎩⎪⎨⎪⎧x =-423,y =-23,B ⎝ ⎛⎭⎪⎫-423,-23,λ=-2-23=3,C 正确; 令AB :x =my -2,A (x 1,y 1),B (x 2,y 2),⎩⎨⎧x =my -2,x 24+y 22=1消x 可得(m 2+2)y 2-22my -2=0,则y 1+y 2=22mm 2+2, y 1y 2=-2m 2+2,-y 1=λy 2,当m =0时,λ=1,当m ≠0时,λ(1-λ)2=m 2+24m 2>14,∴3-22<λ<3+22,D 错误.故选AC.14.(多选)(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A.||PA 1|-|PA 2||=2aB.若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5C.若双曲线C 为等轴双曲线,则直线PA 1的斜率与直线PA 2的斜率之积为1D.若双曲线C 为等轴双曲线,且∠A 1PA 2=3∠PA 1A 2,则∠PA 1A 2=π10答案 BCD解析 对于A :在△PA 1A 2中,根据三角形两边之差小于第三边, 故||PA 1|-|PA 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0, 设焦点F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎪⎨⎪⎧n m -c ×b a =-1,b ×m +c 2-a ×n 2=0,解得⎩⎪⎨⎪⎧m =a 2-b 2c ,n =2abc,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎪⎫a 2-b 2c ,2ab c , 由题意该对称点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2, 所以e =1+b 2a2=5, ∴e =5,故B 正确;对于C :双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0),设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2,所以x 20-a 2=y 20, 故k PA 1·k PA 2=y 0x 0+a ·y 0x 0-a =y 20x 20-a2=1,故C 正确;对于D :双曲线为等轴双曲线,即C :x 2-y 2=a 2(a >0), 且∠A 1PA 2=3∠PA 1A 2, 设∠PA 1A 2=θ,∠A 1PA 2=3θ, 则∠PA 2x =4θ,根据C 项中的结论kPA 1·kPA 2=1, 即有tan θ·tan 4θ=1,在三角形中,只有两角互余时,它们的正切值才互为倒数, 故θ+4θ=π2,所以θ=π10,即∠PA 1A 2=π10,故D 正确.故选BCD.15.(多选)(2022·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)左、右焦点分别为F 1,F 2,点P 为C 上任意一点,△PF 1F 2的内切圆的圆心为I ,圆I 与PF 1的切点为M ,PI 与x 轴的交点为N ,则以下结论正确的有( ) A.PF 1→·PF 2→有最大值a 2 B.内切圆I 面积有最大值πb 2c 2(a +c )2C.若|PM |=12|F 1F 2|,则椭圆C 的离心率为 12D.若∠F 1PF 2=2π3,则1|PF 1|+1|PF 2|=1|PN |答案 BCD解析 对A :PF 1→·PF 2→=PO →2-c 2≤b 2,故A 不正确;对B :由等面积法,内切圆I 的半径r =S △PF 1F 2a +c ≤bca +c ,所以内切圆面积有最大值πb 2c 2(a +c )2,故B 正确;对C :|PM |=12|F 1F 2|=c ,2|PM |+2c =4c =2a ,椭圆C 的离心率为12,故C 正确;对D :若∠F 1PF 2=2π3,由角平分线性质得则1|PF 1|+1|PF 2|=1|PN |,故D 正确.故选BCD. 16.(多选)(2022·无锡模拟)已知双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,且过点⎝⎛⎭⎪⎫1,32,椭圆C 2:x 2a 2+y 2b 2=1的焦距与双曲线C 1的焦距相同,且椭圆C 2的左、右焦点分别为F 1,F 2,过点F 1的直线交C 2于A ,B 两点,若点A (1,y 1),则下列说法中正确的有( ) A.双曲线C 1的离心率为2 B.双曲线C 1的实轴长为12C.点B 的横坐标的取值范围为(-2,-1)D.点B 的横坐标的取值范围为(-3,-1) 答案 AD解析 双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,则可设双曲线C 1的方程为x 2-y 23=λ,∵过点⎝⎛⎭⎪⎫1,32,∴1-34=λ,解得λ=14,∴双曲线C 1方程为4x 2-43y 2=1,即x 214-y234=1,可知双曲线C 1的离心率e =ca=2,实轴的长为1,故选项A 正确,选项B 错误; 由14+34=1,可知椭圆C 2:x 2a 2+y 2b2=1的焦点F 1(-1,0),F 2(1,0), 不妨设A (1,y 1)(y 1>0),代入x 2a 2+y 2b 2=1,得1a 2+y 21b 2=1,∴y 1=b 2a ,直线AB 的方程为y =b 22a(x +1),联立⎩⎪⎨⎪⎧y =b 22a (x +1),x2a 2+y2b 2=1,消去y 并整理得(a 2+3)x 2+2(a 2-1)x -3a 2-1=0, 根据韦达定理可得1·x B =-3a 2+1a 2+3,可得x B =-3a 2+1a 2+3=-3+8a 2+3,又a 2>1,∴a 2+3>4,0<8a 2+3<2, ∴-3<x B <-1,故选项C 错误,选项D 正确,故选AD.17.(2022·北京石景山区一模)设点F 1,F 2分别为椭圆C :x 24+y 2=1的左、右焦点,点P是椭圆C 上任意一点,若使得PF 1→·PF 2→=m 成立的点恰好是4个,则实数m 的一个取值可以为________. 答案 0(答案不唯一)解析 当m =0时,PF 1→·PF 2→=0,则PF 1→⊥PF 2→,由椭圆方程可知a 2=4,b 2=1,c 2=3,因为c >b ,所以以F 1F 2为直径的圆与椭圆有4个交点. 使得PF 1→·PF 2→=0成立的点恰好有4个. 所以实数m 的一个取值可以为0.18.(2022·湖州质检)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,设椭圆、双曲线的离心率分别为e 1,e 2,则e 21+e 22的最小值为________.答案 1+32解析 由题意,可设椭圆长半轴为a 1,双曲线的实半轴为a 2, 不妨设P 为双曲线右支上一点,由椭圆和双曲线的定义可知 ⎩⎨⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,则|PF 1|=a 1+a 2,|PF 2|=a 1-a 2, 又∠F 1PF 2=π3,由余弦定理可得(2c )2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cosπ3, 整理得4c 2=a 21+3a 22,即1e 21+3e 22=4,则14e 21+34e 22=1, 所以e 21+e 22=⎝ ⎛⎭⎪⎫14e 21+34e 22(e 21+e 22)=1+e 224e 21+3e 214e 22≥1+2e 224e 21·3e 214e 22=1+32. 当且仅当e 224e 21=3e 214e 22,即e 2=43e 1时取等号.。
2021年新高考数学专题复习-圆锥曲线专项练习(含答案解析)
2021年新高考数学专题复习-圆锥曲线专项练习1.已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程; (2)若直线l 的方程为1y x =-+,求1211λλ+的值;(3)若123,试证明直线l 恒过定点,并求此定点的坐标.2.已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1. (1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;(3)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.3.已知椭圆2222:1(0)x y C a b a b +=>>经过点1,2P ⎛⎫ ⎪ ⎪⎝⎭,且离心率2e =. (1)求椭圆C 的标准方程;(2)若斜率为k 且不过点P 的直线l 交C 于,A B 两点,记直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,求直线l 的斜率k .4.如图,已知圆A :22(1)16x y ++=,点()10B ,是圆A 内一个定点,点P 是圆上任意一点,线段BP 的垂直平分线1l 和半径AP 相交于点Q .当点P 在圆上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设过点()4,0D 的直线2l 与曲线C 相交于,M N 两点(点M 在,D N 两点之间).是否存在直线2l 使得2DN DM =?若存在,求直线2l 的方程;若不存在,请说明理由.5.已知双曲线C 的方程为:22186x y -=,其左右顶点分别为:1A ,2A ,一条垂直于x轴的直线交双曲线C 于1P ,2P 两点,直线11A P 与直线22A P 相交于点P .(1)求点P 的轨迹E 的方程;(2)过点)Q的直线,与轨迹E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于M 点,试探讨ABMQ是否为定值.若为定值,求出定值,否则说明理由. 6.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交椭圆C 于M ,N 两点(l 与x 轴不重合),1F MN △,12F F M △的周长分别为12和8. (1)求椭圆C 的方程;(2)在x 轴上是否存在一点T ,使得直线TM 与TN 的斜率之积为定值?若存在,请求出所有满足条件的点T 的坐标;若不存在,请说明理由.7.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =10x +-=被以椭圆C . (1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.8.已知抛物线C :24y x =的焦点为F ,直线l :2y x a =+与抛物线C 交于A ,B 两点.(1)若1a =-,求FAB 的面积;(2)若抛物线C 上存在两个不同的点M ,N 关于直线l 对称,求a 的取值范围. 9.如图,直线l 与圆22:(1)1E x y ++=相切于点P ,与抛物线2:4C x y =相交于不同的两点,A B ,与y 轴相交于点(0,)(0)T t t >.(1)若T 是抛物线C 的焦点,求直线l 的方程;(2)若2||||||TE PA PB =⋅,求t 的值.10.在平面直角坐标系中,己知圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,设动圆的圆心Q 的轨迹为曲线Γ. (Ⅰ)求曲线Γ的方程;(Ⅱ)过点F 的两条直线1l 、2l 与曲线Γ相交于A 、B 、C 、D 四点,且M 、N 分别为AB 、CD 的中点.设1l 与2l 的斜率依次为1k 、2k ,若121k k +=-,求证:直线MN 恒过定点.11.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且直线1x y a b +=与圆222x y +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围. 12.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.13.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为∠AGB 的平分线.14.已知椭圆C :22221(0)x y a b a b +=>>的短轴长为2.(∠)求椭圆C 的方程;(∠)设过定点()02T ,的直线l 与椭圆C 交于不同的两点A 、B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.参考答案1.(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【分析】(1)由题意,得到2b =和222(2)(2)2(2)a b c +=,结合222a b c =+,求得2a 的值,即可求得椭圆Γ的标准方程;(2)由直线l 的方程为1y x =-+,根据12PM MQ PN NQ λλ==,,求得12121211x x x x λλ==--,,得到121212112x xx x λλ++=-,联立方程组,结合根与系数的关系,即可求解;(3)设直线l 的方程为()()0y k x m m =->,由1PM MQ ,得到111x m x λ=-和222xm xλ=-,联立方程组,结合根与系数的关系和123,求得2m =,得到直线l 的方程,即可求解. 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,,设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,,可得(0,)(,0)P km Q m -,,由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111x m x λ=-,同理222x m x λ=-, 又123,∠212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=, 则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③∠代入∠得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∠2m =,(满足∠)故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 2.(1)24y x =;(2)证明见解析,定值1-;(3)证明见解析.【分析】(1)根据题意转化为动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,结合抛物线的定义,即可求得曲线C 的方程;(2)由:2(1)PA l y k x -=-和2(1)PB l y k x -=--:,分别联立方程组,求得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭和()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭,结合斜率公式,即可求解; (3)由::2(1)PA l y k x -=-,2(1)PB l y k x -=--:,分别联立方程组()22242,k k A k k ⎛⎫--⎪ ⎪⎝⎭和()222,22k k B k k ⎛⎫ ⎪ ⎪--⎝⎭,求得2(2)22AB k k k k k -=-+,求得直线AB l 的方程,即可求解. 【详解】(1)已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,由抛物线的定义可得曲线C 的轨迹时以(1,0)F 为焦点,以直线1x =-为准线的方程,且2p =,所以曲线C 的方程为24y x =.(2)设直线PA 的斜率为k ,因为直线PA 的斜率与直线PB 的斜率互为相反数,所以直线PB 的斜率为k -,则:2(1)PA l y k x -=-,2(1)PB l y k x -=--:联立方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭联立方程组22(1)4y k x y x-=--⎧⎨=⎩,整理得24480ky y k +--=,即()()2+420ky k y +-=⎡⎤⎣⎦,可得()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭所以()()22224242122ABk kk k k k k k k ----==-+--,即直线AB 的斜率为定值1-. (3)设直线PA 的斜率为k ,所以直线PB 的斜率为2k -, 则2(1)PA l y k x -=-:,2(1)PB l y k x -=--:两类方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭, 联立方程组()222(1)4y k x y x⎧-=--⎨=⎩,可得()22440k y y k --+=,即()()2220k y k y ---=⎡⎤⎣⎦,可得()222,22k k B k k ⎛⎫⎪ ⎪--⎝⎭所以()()22222242(2)22222ABk kk k k k k k k k k k k ----==-+---, 所以()2222(2)2222AB k k k k l y x k k k k ⎛⎫--=- ⎪ ⎪--+-⎝⎭:,整理得()2(2)122k k y x k k -=+-+ 所以直线AB 恒过()1,0-.3.(1)2212x y +=;(2. 【分析】(1)由题意可得222221112a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解方程组即可求得,,a b c 的值,进而可得椭圆C 的标准方程;(2))设直线PA的方程为()112y k x -=-,()11,A x y ,()22,B x y ,与椭圆方程联立消元可得关于x 的一元二次方程,由韦达定理可得1x ,因为120k k +=,所以21k k =-,同理可得2x ,再利用1212y y k x x -=-即可求得直线l 的斜率k .【详解】(1)因为1,2P ⎛ ⎝⎭在椭圆C 上,所以221112a b +=,又2c e a ==,222a b c =+,由上述方程联立可得22a =,21b =,所以椭圆的标准方程为2212x y +=.(2)设直线PA的方程为()112y k x -=-, 设()11,A x y ,()22,B x y ,由122(1)12y k x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消y 得: ())222111111222210k xk k x k +++--=,所以21112121112k x k --⨯=+,因为120k k +=,所以21k k =-,同理可得21122121112k x k +-⋅=+,因为2112214212k x x k -+=+,1122112x x k --=+,所以()111121112112121212222k x k k x k k x x k y y k x x x x x x ⎛-+--++ +--⎝⎭===---2242212k k k k --+=== 4.(1)22143x y+=(2)存在,(4)6y x =-或4)6y x =--.【分析】(1)结合垂直平分线的性质和椭圆的定义,求出椭圆C 的方程.(2)设出直线2l 的方程,联立直线2l 的方程和椭圆方程,写出韦达定理,利用2DN DM =,结合向量相等的坐标表示,求得直线2l 的斜率,进而求得直线2l 的方程.方法一和方法二的主要曲边是直线2l 的方程的设法的不同. 【详解】(1)因为圆A 的方程为22(1)16x y ++=,所以(1,0)A -,半径4r =.因为1l 是线段AP 的垂直平分线,所以||||QP QB =. 所以||||||||||4AP AQ QP AQ QB =+=+=.因为4||AB >,所以点Q 的轨迹是以(1,0)A -,(1,0)B 为焦点,长轴长24a =的椭圆.因为2a =,1c =,2223b a c =-=,所以曲线C 的方程为22143x y +=.(2)存在直线2l 使得2DN DM =.方法一:因为点D 在曲线C 外,直线2l 与曲线C 相交,所以直线2l 的斜率存在,设直线2l 的方程为(4)y k x =-.设112212(,),(,)()M x y N x y x x >,由22143(4)x y y k x ⎧+=⎪⎨⎪=-⎩ 得2222(34)32(6412)0k x k x k +-+-=. 则21223234k x x k +=+, ① 2122641234k x x k-=+, ② 由题意知2222(32)4(34)(6412)0k k k ∆=--+->,解得1122k -<<. 因为2DN DM =,所以2142(4)x x -=-,即2124x x =-. ③把③代入①得21241634k x k +=+,22241634k x k-+=+ ④ 把④代入②得2365k =,得6k =±,满足1122k -<<.所以直线2l的方程为:(4)6y x =-或4)6y x =--. 方法二:因为当直线2l 的斜率为0时,(2,0)M ,(2,0)N -,(6,0)DN =-,(2,0)DM =-此时2DN DM ≠.因此设直线2l 的方程为:4x ty =+.设112212(,),(,)()M x y N x y x x >,由221434x y x ty ⎧+=⎪⎨⎪=+⎩得22(34)24360t y ty +++=. 由题意知22(24)436(34)0t t ∆=-⨯+>,解得2t <-或2t >,则1222434ty y t +=-+, ① 1223634y y t =+, ②因为2DN DM =,所以212y y =. ③把③代入①得12834t y t =-+,221634ty t =-+ ④ 把④代入②得2536t =,t =±2t <-或2t >. 所以直线2l的方程为4)y x =-或4)y x =-. 5.(1)22186x y +;(2)为定值,4.【分析】(1)设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y,利用三点共线得到==,两式相乘化简得22022088y y x x =---,再利用点1P 在双曲线上代入整理即可得到答案;(2)显然直线l 不垂直x 轴,①当0k =时,易证4ABMQ=,②当0k ≠时,利用点斜式设出直线l 方程,联立直线l 与椭圆的方程消y ,得到关于x 的一元二次方程,利用韦达定理以及弦长公式求出AB ,求出AB 的中点坐标,利用点斜式求出线段AB 的垂直平分线的方程,求出点M 的坐标,利用两点间的距离公式求解MQ ,即可得出答案. 【详解】(1)由题意知:()1A -,()2A ,设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y , 由11,,A P P 三点以及22,,A P P 三点共线,则==,两式相乘化简得:22022088y y x x =---, 又2200186x y -=, 代入上式得轨迹E 的方程:22186x y +.(2)显然直线l 不垂直x 轴,①当0k =时,直线l 的方程为:0y =,线段AB 为椭圆的长轴,线段AB 的垂直平分线交x 轴于M 点,则AB =,()0,0M,MQ =所以4ABMQ=; ②当0k ≠时,设方程为:(y k x =,联立方程得(22186y k x x y ⎧=⎪⎨⎪+=⎩,化简整理得:()2222348240kxx k +-+-=,设()11,A x y ,()22,B x y ,212221223482434x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,)2122143k AB x k +=-==+,线段AB的中点的坐标为222,3434P k k ⎛⎫- ⎪ ⎪++⎝⎭,线段AB的垂直平分线的方程为:22213434y x k k k ⎛⎫+=-- ⎪ ⎪++⎝⎭, 令0y =,则M ⎫⎪⎪⎝⎭,)22134k MQ k +==+,∴4ABMQ=. 综上:4ABMQ=. 6.(1)22198x y ;(2)存在,坐标为(3,0)-和(3,0).【分析】(1)由1F MN △,12F F M △的周长分别为12和8,可求椭圆基本量,进一步确定方程. (2)设直线代入消元,韦达定理整体代入定点满足的关系,探求恒成立的条件. 【详解】(1)设椭圆C 的焦距为2(0)c c >,由题意可得412228a a c =⎧⎨+=⎩,解得31a c =⎧⎨=⎩,所以b =因此椭圆C 的方程为22198x y .(2)因为直线l 过点2(1,0)F 且不与x 轴重合,所以设l 的方程为1x my =+,联立方程221198x my x y =+⎧⎪⎨+=⎪⎩,消去x 并整理得()228916640m y my ++-=,设()11,M x y ,()22,N x y ,则12212216896489m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以()1212218289x x m y y m +=++=+, ()()()2212121212272911189m x x my my m y y m y y m -+=++=+++=+. 设(,0)T t ,则直线TM 与TN 的斜率分别为11TM y k x t =-,22TN y k x t=-, 则()()1212TM TN y y k k x t x t ⋅=--()2122221212226489729188989y y m m x x t x x t t t m m -+==-+-++-⋅+++ ()222648729189t m t t -=-+-+.所以当28720t -=,即当3t =-时,m ∀∈R ,49TM TN k k ⋅=-; 当3t =时,m ∀∈R ,169TM TN k k ⋅=-. 因此,所有满足条件的T 的坐标为(3,0)-和(3,0).7.(1)2214x y +=;(2)2]3.【分析】(1)由直线与圆的位置关系可得1b =.由椭圆的离心率可得2a =,则椭圆C 的方程为2214x y +=. (2)当直线l 的斜率为0时,求出MA ,MB ,当直线l 的斜率不为0时,设直线l 方程为4x my =+,()11A x y ,,()22B x y ,,联立方程可得()2248120m y my +++=,满足题意时212m >,结合韦达定理以及弦长公式,化简整理,结合不等式的性质,据此即可所求范围. 【详解】(1)因为原点到直线10x +-=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =. 又22222314c b e a a ==-=,得2a =所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=,所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >,所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y y +=+=+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<<.23λ<≤,即2]3.8.(12)12a <- 【分析】(1)联立直线与抛物线,根据弦长公式求出||AB ,根据点到直线的距离公式求出点F 到直线的距离,根据三角形面积公式可求得结果;(2)设直线MN 的方程为12y x m =-+代入抛物线,利用判别式大于0可得2m >-, 根据韦达定理求出MN 的中点坐标,将其代入直线l 得到m 与a 的关系式,根据m 的范围可得a 的范围. 【详解】抛物线C :24y x =的焦点为F (1,0),(1)当1a =-时,直线:21l y x =-,联立2214y x y x=-⎧⎨=⎩,消去y 得21204x x -+=, 设11(,)A x y ,22(,)B x y ,则122x x +=,1214x x =,所以||AB ===点F 到直线:21l y x =-的距离d ==,所以FAB的面积为11||22AB d ==. (2)因为点M ,N 关于直线l 对称,所以直线MN 的斜率为12-, 所以可设直线MN 的方程为12y x m =-+, 联立2124y x m y x⎧=-+⎪⎨⎪=⎩,消去y 并整理得22(416)40x m x m -++=, 由22(416)160m m ∆=+->,得2m >-,设33(,)M x y ,44(,)N x y ,所以34416x x m +=+,所以343411()2(416)2822y y x x m m m +=-++=-⨯++=-, 所以MN 的中点为(28,4)m +-,因为点M ,N 关于直线l 对称,所以MN 的中点(28,4)m +-在直线:2l y x a =+上,所以42(28)m a -=++,得420a m =--,因为2m >-,所以12a <-.9.(1)1y =+;(2)12. 【分析】(1)由(0,)(0)T t t >为抛物线焦点,即可设直线l 的方程为1y kx =+,根据直线l 与圆相切可求k 值,写出直线方程.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由直线上两点距离公式可知()()0022||||14PA PB kxy ⋅==+-,根据直线l 与圆相切、2||||||TE PA PB =⋅求0y ,切线性质:直线l 与PE 互相垂直及00t y kx =-即可求t 的值.【详解】(1)因为(0,)(0)T t t >是抛物线2:4C x y =的焦点,所以1t =,即(0,1)T ,设直线l 的方程为1y kx =+,由直线l 与圆E1=,即k =,所以,直线l的方程为1y =+.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由24y kx tx y=+⎧⎨=⎩,得2440x kx t --=,124x x k +=,124x x t ⋅=-,∴1020||||PA PB x x ⋅=-⋅-()()221201201kx xx x x x ⎡⎤=+-++⎣⎦()()220014k x kx t ⎡⎤=+-+⎣⎦()()220014k x y =+-. 由直线l 与圆E1=,即221(1)k t +=+.由||1TE t =+,2||||||TE PA PB =⋅,得()()2220014(1)kxy t +-=+.所以20041x y -=,又()220011x y ++=,解得03y =-+.由直线l 与PE 互相垂直,得0011PE xk k y =-=-+, 200001i x t y kx y y =-=++220000001112x y y y y y ++-===++. 10.(Ⅰ)24y x =;(Ⅱ)证明见解析.【分析】(Ⅰ)设(,)Q x y,根据题意得到|1|x +=Γ的方程;(Ⅱ)设1l ,2l 的方程为12(1),(1)y k x y k x =-=-,联立方程组分别求得2121122,k M k k ⎛⎫+ ⎪⎝⎭,和2222222,k N k k ⎛⎫+ ⎪⎝⎭,进而得出MN k ,进而得出()111MN k k k =+,得出直线MN 的方程,即可判定直线MN 恒过定点. 【详解】(Ⅰ)由题意,设(,)Q x y ,因为圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,可得|1|x +=24y x =.(Ⅱ)设1l ,2l 的方程分别为1(1)y k x =-,2(1)y k x =-,联立方程组12(1)4y k x y x=-⎧⎨=⎩,整理得()2222111240k x k x k -++=, 所以21122124k x x k ++=,则2121122,k M k k ⎛⎫+ ⎪⎝⎭,同理2222222,k N k k ⎛⎫+ ⎪⎝⎭ 所以121222121222122222MNk k k k k k k k k k k -==+++-, 由121k k +=-,可得()111MN k k k =+,所以直线MN 的方程为()2111211221k y k k x k k ⎛⎫+-=+- ⎪⎝⎭ 整理得()1121(1)y k k x +=+-,所以直线MN 恒过定点(1,2)-.11.(1)22163x y +=;(2),33⎣⎦. 【分析】(1)依题意得到c a ==,再根据222c b a +=解方程即可;(2)由M 为线段AB 的中点,可得12OM S S OP=,对直线l 的斜率的斜率存在与否分两种情况讨论,当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .联立直线与椭圆方程,消元列出韦达定理,根据0OA OB ⋅=,即可得到12120x x y y +=,从而得到m 与k 的关系,即可求出面积比的取值范围; 【详解】解:(1)∵椭圆的离心率为2,∴2c a =(c 为半焦距). ∵直线1x y a b+=与圆222x y +==.又∵222c b a +=,∴26a =,23b =.∴椭圆C 的方程为22163x y +=.(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△. (ⅰ)当直线l 的斜率不存在时,由OA OB ⊥及椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22A x =.则22M x =,26P x =,∴123OM S S OP ==. (ⅱ)当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .由22163y kx mx y =+⎧⎪⎨+=⎪⎩,消去y ,得()222214260k x kmx m ++-=+. ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630k m -+>.∴122421km x x k +=-+,21222621m x x k -=+. ∵点O 在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=. ∴()()221212121210x x y y kx xkm x x m +=++++=. ∴()22222264102121m km k km m k k -⎛⎫++-+= ⎪++⎝⎭. 化简,得2222m k =+.经检验满足0∆>成立.∴线段AB 的中点222,2121kmm M k k ⎛⎫-⎪++⎝⎭. 当0k =时,22m =.此时123S S ==. 当0k ≠时,射线OM 所在的直线方程为12y x k=-.由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y ,得2221221P k x k =+,22321P y k =+. ∴M P OM y OP y == ∴12S S ==12,33S S ⎛∈ ⎝⎭. 综上,12S S的取值范围为33⎣⎦.12.(1)24x y =;(2)[)(,)610--⋃∞+∞,. 【分析】()1由抛物线的定义可得022p y =-,再代入可求得p ,可得抛物线E 的标准方程为24x y =.()2由直线垂直的条件建立关于点A 、B 的坐标的方程,由根的判别式可求得范围.【详解】解:()1依题意得0,,2p F ⎛⎫ ⎪⎝⎭设()002,,22p P y y =-, 又点Р是E 上一点,所以4222p p ⎛⎫=-⎪⎝⎭,得2440p p -+=,即2p =, 所以抛物线E 的标准方程为24x y =.()2由题意知()2,1P , 设221212,,,,44x x A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则()2111114224APx k x x -==+-,因为12x ≠-,所以142AB k x =-+,AB 所在直线方程为()2111442x y x x x --=-+,联立24x y =. 因为1x x ≠,得11(216(0))x x x +++=,即()21122160x x x x ++++=,因为()224216)0(x x ∆=+-+≥,即24600x x --≥,故10x ≥或6x ≤-经检验,当6x =-时,不满足题意.所以点B 的横坐标的取值范围是[)(,)610--⋃∞+∞,. 13.(1)y 2=4x ;(2)证明见解析. 【分析】(1)利用抛物线定义,由|AF |=2+2p=3求解. (2)根据点A (2,m )在抛物线E 上,解得m ,不妨设A (2,),直线AF 的方程为y(x -1),联立)214y x y x⎧=-⎪⎨=⎪⎩,然后论证k G A +k G B =0即可 【详解】(1)由抛物线定义可得|AF |=2+2p=3,解得p =2. ∠抛物线E 的方程为y 2=4x .(2)∠点A (2,m )在抛物线E 上, ∠m 2=4×2,解得m,由抛物线的对称性,不妨设A (2,),由A (2,,F (1,0),∠直线AF 的方程为y (x -1),由)214y x y x⎧=-⎪⎨=⎪⎩ 得2x 2-5x +2=0,解得x =2或12,∠B 1,2⎛ ⎝.又G (-1,0),∠k G A =3,k G B =3-∠k G A +k G B =0, ∠∠AGF =∠BGF . ∠GF 为∠AGB 的平分线. 【点睛】关键点点睛:由GF 为∠AGB 的平分线,即∠AGF =∠BGF ,转化为 k G A +k G B =0结合韦达定理证明.14.(∠)23x +y 2=1;(∠)11k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎝⎭⎝⎭. 【分析】(∠)根据椭圆短轴长公式、离心率公式,结合椭圆中,,a b c 的关系进行求解即可;(∠)根据平面向量数量积公式,结合一元二次方程根与系数关系、根的判别式进行求解即可. 【详解】(∠)由已知得 2b =2,所以1b =,又因为c a =所以有:2223c a =,而222c a b =-, 解得23a =,即椭圆C 的方程为23x +y 2=1.(∠)直线l 方程为y =kx +2,将其代入23x +y 2=1,得(3k 2+1)x 2+12kx +9=0,设A (x 1,y 1),B (x 2,y 2),∴△=(12k )2﹣36(1+3k 2)>0,解得k 2>1,由根与系数的关系,得x 1+x 2=21213kk -+,x 1x 2=2913k + ∵∠AOB 为锐角, ∴OA ⋅OB >0, ∴x 1x 2+y 1y 2>0,∴x 1x 2+(kx 1+2)(kx 2+2)>0, ∴(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,化简得2213313k k -+>0,解得2133k <,由21k >且2133k <,解得1133k ⎛⎫⎛∈--⋃ ⎪ ⎪ ⎝⎭⎝⎭,.。
2021高考数学必考点解题方式秘籍 圆锥曲线2 理(1)
2021高考理科数学必考点解题方式秘籍:圆锥曲线2第一、知识储蓄: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一样式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2AB x =-= 或2AB y =-(4)两条直线的位置关系 ①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且二、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n +=>>≠且2a +=参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n +=⋅<距离式方程:|2a=(3)、三种圆锥曲线的通径你记得吗? (4)、圆锥曲线的概念你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个核心,平面内一个动点M 知足221=-MF MF 那么动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、核心三角形面积公式:122tan2F PF P b θ∆=在椭圆上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22p px x y ++抛物线焦点在轴上时为焦点在y 轴上时为(6)、椭圆和双曲线的大体量三角形你清楚吗? 第二、方式储蓄一、点差法(中点弦问题)设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点那么有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =b a43-二、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?若是有两个参数如何办?设直线的方程,而且与曲线的方程联立,消去一个未知数,取得一个二次方程,利用判别式0∆≥,和根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程取得○1○2两个式子,然后○1-○2,整体消元··,假设有两个字母未知数,那么要找到它们的联系,消去一个,比如直线过核心,那么能够利用三点A 、B 、F 共线解决之。
2021年高考文数第二轮第3讲 圆锥曲线中的热点问题
P1(1,1),P2(0,1),P3-1,
23,
P41,
23中恰有三点在椭圆
C
上.
(1)求 C 的方程;
(2)设直线 l 不经过 P2 点且与 C 相交于 A,B 两点.若直线 P2A 与直线 P2B 的斜率的 和为-1,证明:l 过定点.
第5页
赢在微点 无微不至
考前顶层设计·英语
(1)解 由于点 P3,P4 关于 y 轴对称,由题设知 C 必过 P3,P4.又由a12+b12>a12+43b2知,
设l:x=m,A(m,yA),B(m,-yA),
k1+k2=yAm-1+-ymA-1=-m2=-1,得 m=2,
此时l过椭圆C右顶点,与椭圆C不存在两个交点,故不满足.
从而可设l:y=kx+m(m≠1). 将 y=kx+m 代入x42+y2=1 得(4k2+1)x2+8kmx+4m2-4=0.
由题设可知Δ=16(4k2-m2+1)>0.
第3页
赢在微点 无微不至
考前顶层设计·英语
以 x22=m-(3-2y2)2=-14m2+52m-94=-14(m-5)2+4≤4,所以当 m=5 时,点 B 的 横坐标的绝对值最大,最大值为 2. 答案 5
第4页
赢在微点 无微不至
考前顶层设计·英语
2.(2017·全国Ⅰ卷)已知椭圆
C:ax22+by22=1(a>b>0),四点
第2页
赢在微点 无微不至
考前顶层设计·英语
真题感悟 1.(2018·浙江卷)已知点 P(0,1),椭圆x42+y2=m(m>1)上两点 A,B 满足A→P=2P→B,
则当 m=________时,点 B 横坐标的绝对值最大. 解析 设 A(x1,y1),B(x2,y2),由A→P=2P→B,得- 1-x1y=1=2x22(,y2-1),即 x1=-2x2, y1=3-2y2.因为点 A,B 在椭圆上,所以4x4422x+22+y22(=3m-,2y2)2=m,得 y2=14m+34,所
2021高考数学专题复习:圆锥曲线(2)
12021高考数学专题复习:椭圆1.定义:122.PF PF a +=()()()()()()12122222122222222212,,,0,,0220,021 1.00,2P x y F c F c a PF PF a a c x y y x a A a A A a x y a a c a b x y b B b B B b b a c -⇒=+⇒=>⎧=⇒=±⇒±⇒=⎧+=⎪⎪-⇒⇒+=⎨⎨=⇒=±⇒±⇒=⎪⎪⎩=-⎩令2.标准方程:()()2222222211x y F x a b y x F y ab ⎧+=⎪⎪⎪⎨⎪⎪+=⎪⎩在轴在轴 222222222222242222112x y cy y a c a b a b b a x c b b b y y MN a a a⎧+=-⎪⇒+=⇒=⎨⎪=⎩⇒=⇒=±⇒=3.长轴长:2a 短轴长:2b 焦距:2c 通径:22b MN a=4.勾股关系: 222a b c =+,1BF a5.离心率: ce a=取值范围: ()0,1 6.椭圆上点P 到焦点1F 的距离最大值为 a c + ,最小值为 a c -7.椭圆22221+=x y a b的左右焦点为,,21F F 过点1F 的弦,AB 则2ABF ∆的周长为 4a ,直线m x =与椭圆交于D C ,两点,当m 时CD F 1,∆的周长最大值为 4a21.定义:()()()121221222PF PF a PF PF a PF PF a ⎧-=⎪⇒-=⎨⎪-=⎩右支双曲线左支()()()()()()1212222212222222222212,,,0,,0220,021 1.0........0,2P x y F c F c a PF PF a a c x y y x a A a A A a x y a c a a b x y b B b B B b b c aφ-⇒=-⇒=<⎧=⇒=±⇒±⇒=⎧-=⎪⎪-⇒⇒-=⎨⎨=⇒=-⇒±⇒=⎪⎪⎩=-⎩令2.标准方程:()()2222222211x yF x a b y x F y a b⎧-=⎪⎪⎪⎨⎪⎪-=⎪⎩在轴在轴 222222222222242222112x y cy y c a a ba b b a x c b b b y y MN a a a⎧-=-⎪⇒-=⇒=⎨⎪=⎩⇒=⇒=±⇒=3.实轴长:2a 虚轴长:2b 焦距:2c 通径:22b a4.勾股关系: 222c b a =+,5.离心率: ce a=取值范围: ()1,+∞ 6.渐近线()()..b y x F x aa y x F yb ⎧=±⎪⎪⎨⎪=±⎪⎩在轴在轴 ()()22222222222222222222222211x y x y b x b y y x F x a b a b a a y x y x a x a y y x F y a b a b b b ⎧-=⇒=⇒=⇒=±⎪⎪⎨⎪-=⇒=⇒=⇒=±⎪⎩在轴在轴7.双曲线右支上点P 到左焦点1F 的距离最小值为,a c +P 到右焦点2F 的距离最小值为 c a - 双曲线上点P 到焦点距离最小值为3一.定义:.MF d =()2222,,,0,:2.22222p p p p p M x y F l x x x y x y px ⎛⎫⎛⎫⎛⎫⎛⎫=-⇒=--⇒-+=+⇒= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭二.抛物线px y 22=一点()A A y x A ,焦半径2p x d AF A +== 抛物线px y 22-=一点()A A y x A ,焦半径22p x p x AF A A +-=+= 三.过焦点的直线l 与抛物线px y 22=交于()()B B A A y x B y x A ,,,两点()00,,y x M 是AB 的中点,则: 焦半径2px d AF A +==,,2p x BF B +=焦点弦()p x p x x BF AF AB B A +=++=+=02过焦点的直线l 与抛物线px y 22-=交于()()B B A A y x B y x A ,,,两点()00,,y x M 是AB 的中点,则: 焦半径2px d AF A +==,,2p x BF B += 焦点弦()p x p x p x x BF AF AB B A +-=+=++=+=002241.椭圆的两个焦点为()(),0,1,0,1-椭圆的长轴长为4,则椭圆方程为 ( )A.2214x y += B.2214y x +=C.22134x y +=D.22143x y +=2.椭圆221925x y +=的长轴长是 ( ) A.5 B.6 C.10 D.503.椭圆2212516x y +=上有一点P 到左焦点的距离是4,则点P 到右焦点的距离是 ( ) A.3 B.4 C.5 D.64.已知椭圆的焦点为()()()0,3,1,0,1,0P-在椭圆上,则椭圆的方程为 ( )A.13422=+y xB.1422=+y x C.14322=+y x D.1422=+x y5.椭圆63222=+y x 的焦距是 ( )A.2B.()232- C.52D.()232+6.椭圆长轴长为,33该椭圆的方程为 ( ) A.221128x y += B.221128x y +=或221128y x += C.22132x y += D.22132x y +=或22132y x +=57.椭圆141622=+y x 上的两个焦点是,,21F F 弦AB 过焦点,1F 则2ABF ∆的周长为 ( ) A .8 B .16 C .24 D .328.21,F F 是椭圆191622=+y x 两焦点,过2F 的直线交椭圆于点B A ,,若5=AB ,则=+11BF AF ( ) A.9 B.10 C.11 D.16 9.椭圆的焦距等于2,则=m ( ) A.5或3B.8C.5D.1610.椭圆2214x y +=的左焦点为,F P 为椭圆上一点,其横坐标为,3则=PF ( ) A.12 B.32 C.52 D.7211.()()22223310x y x y +++-=表示的曲线的标准方程为12.椭圆06322=-+m y mx 的一个焦点为(),2,0则=m ( )A.2B.3C.5D.613.椭圆5522=+ky x 的一个焦点是(),1,0那么=k14.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A.116922=+y x B.1162522=+y x C.1162522=+y x 或1251622=+y xD.以上都不对615.椭圆的焦点坐标为()(),0,1,0,121F F -过2F 垂直于长轴的直线交椭圆于Q P ,两点,且3=PQ ,求椭圆的方程16.椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ) A.22 B.2 C.21D.2317.已知中心在原点的椭圆C 的右焦点为(),0,1F 离心率等于21,则C 的方程是 ( ) A.14322=+y xB.13422=+y xC.12422=+y xD.13422=+y x18.焦点在x 轴的椭圆过,21,3,22,2⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-B A 则椭圆的离心率为 ( ) A.23 B.21C.26D.3319.若椭圆的两焦点为()(),0,2,0,2-且椭圆过点,23,25⎪⎭⎫⎝⎛-则椭圆方程是720.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则=m ( )A.41B.21C.2D.421.椭圆121022=-+-m y m x 焦点在y 轴上,若焦距为4,则=m ( )A.4B.5C.8D.1422.21,F F 是椭圆125922=+y x 的焦点,直线AB 是过点(),4,0-若8=AB ,则=+B F A F 22 ( )A.12B.16C.4D.823.已知椭圆离心率为31,长轴长为12,则椭圆方程为24.已知椭圆焦点在x 轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上点的最短 距离为3,这个椭圆方程为825.已知椭圆的离心率32=e ,短轴顶点坐标为()54,0±,椭圆的方程26.已知椭圆C: ()222210x y a b a b+=>>的左顶点和下顶点分别为,,A B AB =过椭圆焦点且与长轴垂直的弦的长为2求椭圆C 的方程27.已知椭圆2222:1x y C a b+=过点()2,1A --,且2a b =.求椭圆C 的方程28.圆()()(),.164:22+∈=-+-N m m y x C 直线43160x y --=过椭圆()0,1:2222>>=+b a by a x E的右焦点,交圆C 所得弦长为()32,3,15A 在椭圆E 上.=m ,椭圆E 方程9()()()()()()()()()()()222221122221242,13.2255210.35410.41,2.511.32612.74416.84416,511.91,4/4.110.2115,3162a a c b D a a a C a PF D c b a C x y c A a c b D a l a B a l a AB AF BF C c a b A P D x y a c =⇒==⇒=⇒=⇒=⇒=⇒=⇒+=⇒==⇒=⇒+=⇒=⇒==⇒=⇒=⇒==⇒=⇒===⇒+=⇒===⇒⎫⇒⎪⎭==⇒+()()()()()()()()2222222222222 1.51212645.6255131115294141.539221315323202143116::.1171,2.212181x y m m C my x k k k a b b a b C a c a b b a x y a a a b aa c abc A c e a b D m mx ny =+=⇒=+⇒=⇒+=⇒=+⇒=+==⎧⎧⇒-=⇒⇒⎨⎨==⇒-=⎩⎩⎧-=⎪⇒=⇒--=⇒=⇒=+=⎨⎪=⎩=⇒==⇒=⇒=++=⇒()()()()()()()()2222122222222222112141421314192110612014.112124108.22420812:113632236,2323:3632n m x y e n m n x y a PF PF A C x y A mmm m m C F A F B AB a F A F B Ax y x a e c b y x y ⎧=⎧⎪=⎪⎪⇒⇒+=⇒=⎨⎨⎪⎪=+=⎩⎪⎩=+===+=+=⇒=⇒-=+-⇒=⇒++=⇒+=-=⇒+===⇒=⇒=⇒+=1⎧⎪⎪⎨⎪⎪⎩10()()()()()()2222222222222222122::2:243 1.1292::232512 1.144802026 1.16412712148242823,12a b c a x y b a c c e a b c x y a b a b x y bax y x y b b b c a a AF AF A E b ⎧⎧==⎪⎪⇒=⇒+=⎨⎨-==⎪⎪⎩⎩⎧=⇒=⎪⇒=⇒+=⎨⎪=⎩⎧+=⎪⇒+=⎨=⎪⎩+=⇒=⇒+=⎧=⎧=⎪⇒=+=⇒⎨⎨∈=⎪⎩224: 1.1618251631612455r x y E l m d m =⎧⎪⎪⇒+=⇒⎨=⎪⎪⎩⎩--===⇒=2021高考数学专题复习:双曲线(2)1.双曲线22145x y -=的离心率为 ( ) A.23 B.43 C.32D.22.以双曲线2213x y -=的一个焦点为圆心,离心率为半径的圆的方程可以是 ( ) A.()2224x y -+= B.()2222x y +-= C.()2222x y -+= D.()2224x y +-=3.双曲线221412x y -=的离心率等于 ;渐近线方程为 .4.双曲线2291x y -=-的渐近线方程为 .5.双曲线方程为2221x y -=,则它的右焦点坐标为 ( )A.,02⎛⎫ ⎪ ⎪⎝⎭B.⎫⎪⎪⎝⎭C.⎫⎪⎪⎝⎭D.)6.双曲线8222=-y x 的实轴长是 ( ) A.2 B.22 C.4 D.247.已知双曲线15222=-y ax 的右焦点为()0,3,则该双曲线的离心率等于 ( )A.14 B.4 C.32 D.438.双曲线122=-x my 与椭圆2215y x +=有相同的焦点,则该双曲线的渐近线方程为 ( )A.y =B.3y x =±C.13y x =± D.3y x =±9.双曲线12222=-bx a y 的两条渐近线互相垂直,则离心率=e ( )A.2B.3C.2D.2310.与双曲线2214y x -=有共同的渐近线,且过点()2,2的双曲线方程为 ( )A.221312x y -= B.18222=-x y C.18222=-y x D.221312y x -=11.双曲线122=+y mx 的虚轴长是实轴长的2倍,则=m ( )A.41- B.4- C.4 D.4112.以15422=-y x 的焦点为顶点,顶点为焦点的椭圆的方程为13.双曲线116922=-y x 上的点M 到点()0,5-的距离为,7则M 到点()0,5的距离为 ( ) A.1或13 B.15 C.13 D.114.双曲线122=-my x 的一个焦点坐标为(),0,5-则双曲线的渐近线方程为 ( )A. x y 41±=B. xy 21±=C. x y 2±=D. x y 4±=15.双曲线1322=-y m x 的离心率为,2则=m .16.经过点()62,62-M 且与双曲线22134y x -=有共同渐近线的双曲线方程为 ( ) A.22186y x -= B.22168x y -=C.22186x y -=D.22168y x -=17.已知双道曲线()0,0.1:2222>>=-b a by a x C 的离心率为2,则双曲线C 的渐近线方程为 ( )A .y x =±B .y x =C .y =D .y x =18.焦点在y 轴上的双曲线的离心率为,3则它的渐近线方程为 ( )A.2y x =±B.2y x =± C.x y 2±= D.x y 22±=19.已知中心在原点,焦点在x 轴上的双曲线的离心率为3,2实轴长为4,则双曲线的方程为 .20.已知双曲线1822=-y m x 的离心率为,3则实数=m .21.以椭圆192522=+y x 的焦点为焦点,离心率2=e 的双曲线方程是 ( )A.112622=-y x B.114622=-y x C.114422=-y x D.112422=-y x22.双曲线122=-y mx 的焦点到它的渐近线的距离为23.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为 ( )A .22144x y -= B .2214y x -= C .2214x y -= D .221x y -=24.双曲线过点()(),6,3,3,2B A -则该双曲线的方程为25.设P 是双曲线19222=-y ax 上一点,该双曲线的一条渐近线方程是043=+y x 21,,F F 分别是 双曲线的左、右焦点,若101=PF ,则=2PF( )A.2B.18C.2或18D.1626.已知双曲线焦点在x 20y -+=平行,若点()3,2在双曲线上,求 双曲线的标准方程27.已知双曲线13222=-by x 的右焦点到一条渐近线的距离为1,则该双曲线的离心率为 ( ) A.2 B.3 C.332 D. 22328.双曲线()0,0,12222>>=-b a b y a x 和椭圆191622=+y x 有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,求双曲线的方程29.若双曲线112422=-y x 上的一点P 到它的右焦点的距离为,8则点P 到它的左焦点的距离是 ( ) A .4B .12C .4或12D .630.中心在原点,焦点在x 轴上的双曲线的一条渐近线与直线112yx =+平行,则它的离心率为( )31.与椭圆1121622=+x y 共焦点且过点()3,1的双曲线的标准方程为32.F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长,点()5,0A 在线段PQ 上,则PQF ∆的周长为33.已知双曲线22:13x C y -=的左,右焦点分别为,,21F F 过点2F 的直线与双曲线C 的右支相交于 Q P ,两点,且点P 的横坐标为,2则Q PF 1∆的周长为 ( )A .3B .C .3D .34.0241022=+-+x y x 的圆心是()0.19222>=-a y ax 的一个焦点,此双曲线渐近线方程为 ( ) A.x y 34±= B.x y 43±= C.x y 53±= D.x y 54±=35.双曲线223x y m m -1=的一个焦点是()2,0,椭圆221y x n m-=的焦距等于,4则=n36.与双曲线12422=-y x 共焦点,且过点()2,3的椭圆方程37.双曲线与椭圆1641622=+y x 有相同的焦点,它的一条渐近线为,x y -=双曲线方程38.与椭圆1422=+y x 共焦点且过点()1,2Q 的双曲线方程39.已知12,F F 为双曲线22:1916x y C -=的左右焦点,点P 在C 的渐近线上12,0,PF PF P ⋅<横坐标取值 范围40.已知椭圆()()102222=++++-y c x y c x 的短轴长为2,b 那么直线:30l bx cy ++=截圆122=+y x 所得的弦长为41.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO的面积为42青花瓷是中华陶瓷烧制工艺的珍品,也是中国瓷器的主流品种之一.如图,是一青花瓷花瓶,其外形上下对称,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶的瓶口直径为瓶身最小直径的2倍,花瓶恰好能放入与其等高的正方体包装箱内,则双曲线的离心率为 ( ) A .3B .62C .213D .7243.(多选)12,F F 为双曲线()2222:1,,0x y C a b a b-=>的左右焦点,点P 在C 上,若渐进线方程为30,x y ±=焦距为42,下列说法正确的是 A.实轴长2 B.离心率2C.双曲线焦点到渐近线距离6D.存在点P ,使得21F P =44.(单选)双曲线221:14x C y -=,双曲线22222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F 、2F ,M 是双曲线2C 的一条渐近线上的点,且2OM MF ⊥,O 为坐标原点,若216OMF S =△,且双曲线12,C C 的离心率相同,则双曲线2C 的实轴长是 ( ) A .32 B .16 C .8 D .4()()()()()()()()()()()()()()()()()()()()()()()()222222222222212.32,.43.351.11226 1.9579542.841.319.10.11.12.13.14.151.16.17.18.19 1.45204.2122123.49112413613C D e y y x x y c e C x y a a C y x c A C A A C C C D C D x y D D m n m mx ny x m n n ===±-=⇒=⇒=⇒+==-=⇒=⇒=⇒-=⇒-=+==⎧⎧+=⇒⇒⇒⎨⎨+==-⎩⎩()()()()()()2222221 2.325.26 1.327.2814329.130::2:1:2y e C y x C x y C b a b c e D a -=⇒=-=-==⇒==⇒()()()()()()()()()2222222222231310,211344421442232216,42121628.233242345,04.353411,253236166Py x y x F t t t t t t t t t t m b l a m b x c PQ x PQ l a PQ A a F a B y m m m x c n nx y c t t t t ±⇒-=⇒-=⇒+-=-+⇒=⇒=⇒-=--===+=+===⇒⊥⇒==⇒=+=⇒⇒=⇒-+=⇒=-⇒+==⇒==⇒+=⇒+=++()()()()()()()())222222222221213122612031.93::1:1:37 1.2424483812 1.323953,43,3.338405.5541,:t t t t t t t x y a b a b c y x a b c c x y x F t y t t PF PF OP c P a d l a PO PFF l ⇒++=+⇒+-=⇒=⇒+=⎧=⇒=⎪==-=⎨=⇒=⎪⎩⇒-=⇒=⇒-=-⊥⇒==⇒⇒-=⇒===⇒===()()()()()222222222122224214424143::22,20::1:243.2.2181632442:2:12P S y x x y a a b a b c e a bb P a a y a bc BC a b e PF c a c c a S ab ab b a b a b⎧⎛⎪⇒⇒== ⎨ =⎝⎭⎪⎩⎧-=⎪⇒-=⇒=⇒=⇒=⎨⎪⎩±=⇒=⇒===≥-==⇒=⎪⎩⎧===⇒=⎪⇒⎨⎪=⇒=⎩.4B ⎧⇒⎨=⎩2021高考数学专题复习:抛物线(3)1.抛物线24y x =的准线方程是 ( ) A.1y = B.1y =- C.116y = D.116y =-2.已知抛物线22y px =的准线方程是2,x =-则=p ( ) A.2 B.4 C.2- D.4-3.抛物线x y 122=上与焦点的距离等于6的点横坐标是 ( )A.1B.2C.3D.44.已知抛物线x y 42=的焦点,F 该抛物线上的一点A 到y 轴的距离为3,则=AF( )A.4B.5C.6D.75.过抛物线24y x =的焦点F 的直线交该抛物线于点,A 若3,AF =则点A 的坐标为 ( )A.()22,2B.()22,2-C.()22,2± D.()2,1±6.抛物线x y 412=上的一点M 到焦点的距离为1,则点M 到y 轴的距离是 ( ) A .1716 B.78 C.1 D .15167.O 为坐标原点,直线x =2与抛物线()2:2,0C y px p =>交于D ,E 两点,若,OD OE ⊥则C 的焦点坐标为8.抛物线x y 82-=的准线与双曲线12822=-y x 的两条渐近线所围成的三角形的面积为 ( ) A.8 B.6 C.4 D.29.已知点P 在抛物线y x 42=上,且点P 到x 轴的距离与点P 到此抛物线的焦点的距离之比为1:3, 则点P 到x 轴的距离是 ( ) A.41 B.12 C.1 D.210.若抛物线212y x m=的焦点与椭圆12622=+y x 的右焦点重合,则m =11.点P 是抛物线x y 42=上一点P ,到该抛物线焦点的距离为4,则点P 的横坐标为 ( ) A .2 B. 3 C. 4 D.512.抛物线x y 42=上一点P 到焦点F 的距离为10,则P 的坐标为 ( ) A.()9,6± B.()6,9 C.()6,9± D.()9,613.双曲线122=-my x 与抛物线x y 82=的一个交点为F P ,为抛物线的焦点,若,5=PF 则 双曲线的渐近线方程为 ( ) A.02=±y x B.02=±y x C.03=±y x D.03=±y x14.过抛物线24y x =的焦点作直线交抛物线于()()2211,,,y x B y x A 两点,若==+AB x x ,821( )A.10B.8C.6D.415.过抛物线24y x =的焦点作直线l 交抛物线与B A ,两点,若中点的横坐标为3,则=AB ( ) A.10 B.8 C.6 D.416.过24y x =的焦点直线l 交抛物线于()()2211,,,y x Q y x P 两点,如果,621=+x x 则=PQ17.()0.22>=p px y 上一点M 到准线和抛物线的对称轴的距离分别为10和6,该点横坐标为 ( )A.10或 1B.9或 1C.10或2D.9或218.已知双曲线()0,0.12222>>=-b a by a x 的一个焦点与抛物线x y 42=的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为19.抛物线y x 22=上有一点,P 它到()3,1A 的距离与到焦点的距离之和最小,则点P 的坐标是( )A.()1,2-B.11,2⎛⎫⎪⎝⎭C.()1,2D.()2,1-20.双曲线2221x y a-=()0>a 的一个焦点与抛物线218x y =的焦点重合,则此双曲线的离心率为( )A .332 B .3 C .233 D .43321.已知点P 是抛物线28y x =-上一点,设P 到此抛物线准线的距离是1d ,到直线100x y +-= 的距离是,2d 则12d d +的最小值是 ( ) A.3B.23C.62D.322. 点()2,1A -x y 4,2-=的焦点是P F ,是24y x =-上的动点,为使PA PF +取得最小值,则P 点坐标为 ( ) A.⎪⎭⎫ ⎝⎛-1,41 B.()22,2- C.⎪⎭⎫⎝⎛--1,41 D.()22,2--23.双曲线22214x y b-=右焦点与抛物线x y 122=焦点重合,双曲线的焦点到其渐近线距离等于 ( )A.5B.24C.3D.524.440kx y k --=与x y =2交B A ,两点,若,4=AB 弦AB 的中点到直线102x +=的距离 ( ) A .74 B.2 C .94D.425.抛物线焦点在x 轴,经过点()O y M ,,20为坐标原点,若点M 到该抛物线焦点的距离为3,则=OM ( )A ...4 D .26.24x y =焦点为,F 上有两点()()1122,,,A x y B x y 满足2AF BF -=,则221122y x y x +--=( )A.4 B .6 C.8 D .1027.双曲线()2222 1.0,0-=>>x y a b a b与抛物线28y x =有一个共同焦点F ,两曲线的一个交点为P ,若5,=PF 则点F 到双曲线的渐进线的距离为 ( )B.2D.328.抛物线mx y =2的焦点为,F 点()22,2P 在此抛物线上M ,为线段PF 的中点,则点M 到该抛物线准线的距离为 ( ) A.1 B.23 C.2 D. 2529.()0,22>=p px y 焦点为()()()333222111,,,,,,y x P y x P y x P F 在抛物线上,2132x x x =+,则有( )A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+D.3122FP FP FP ⋅=30.双曲线22221x y a b-=()0,0a b >>的一条渐近线方程是,3x y =它的一个焦点在抛物线x y 682=的准线上,求双曲线的方程31.抛物线x y 42=的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,l PA ⊥,垂足为A ,4PF =, 则直线AF 的倾斜角等于 ( ) A .712π B .23π C .34π D .56π32.等轴双曲线C 的焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,34,=AB 则C 的 方程为33.双曲线C 的焦点在x 轴上,离心率为,25C 与抛物线x y 82=的准线交于,A B 两点,2,=AB 则C 的 方程为34.某桥的桥洞呈抛物线形,桥下水面宽16米,当水面上涨2米后达到警戒水位,水面宽变12米,此时 桥洞顶部距水面高度约为 米35.已知抛物线2:12C y x =的焦点为,F A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于,B D 两点,且,,A F B 三点共线,则FA =( )A .16B .10C .12D .836.设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线 ( )A. 经过点OB.经过点PC.平行于直线OPD.垂直于直线OP37.F 为24y x =的焦点,C B A ,,为该抛物线上三点,若0=++FC FB FA ,FA FB FC ++=( ) A .9 B .6 C .4 D .338.(2020青岛模拟15)已知直线():1l y k x =-与抛物线()2:2,0C y px p =>在第一象限交点为,A l 过C 的焦点,3,F AF =则抛物线的准线方程为 ,k =39.圆058:22=-+++ay x y x C 经过抛物线:E y x 42=焦点E ,的准线与圆C 相交所得弦长为40.已知点P 是抛物线22y x =上的一个动点,则点P 到点()2,0A 的距离与P 到该抛物线准线的距离d 之 和的最小值为 ( )A B .3 CD .9241.抛物线()0.2:2>=p px y C 的准线为l ,过()0,1M l 相交于点A ,与C 的一个 交点为B ,若,=则p = .()()()()()()()()()()()()()()(()()()()()()()()()201.2.3.4.5.6.172,22,0.28.9.110.1611.12.133,3.148210.152********181,61710,6362101820.2229,6118D B C A C D D y x D B B C P m y D AB A AB x p B PQ p M p p M p p p B p M c ⎛⎫⇒=⇒ ⎪⎝⎭⇒=⇒=⇒=+=⇒=+=+=⇒=+==⇒±⎧⎪⎛⎫⎛⎫-±⇒=-⇒--=⇒⇒⎨⎪ ⎪=⇒±⎝⎭⎝⎭⎪⎩=()()()()22255 1.4::1:2:1191.22082.212,0,y a b x a b c x y B y x c a C F d C⎧⎪==⇒-=⎨=⎪⎩=⇒=⇒=⇒=⇒=-==⇒()()()()(()()()()0022212121212121221.4233,2.1792442.2442532242,.2261122,4448.y x A c a b d A x x d C pp y x M OM A y y y y x x y y y y D =⇒=-⇒==⇒=⇒=⇒=+⇒=⇒=⇒=+⇒=⇒=⇒±⇒=⇒+-+=⇒-=⇒-=-=-=⇒31()(()()()()()()((1221313222213213222273,,2,0221.352841,0.22292222230 1.618::2313,1,AF P F a PF PF a b A y x F M d D FP FP x x pp FP x FP x p FP FP FP Cx x x c x y a b a b c P A k ±⇒=-=⇒=⇒=⎛=⇒⇒⇒=⇒⎝+=++⎧⎪⎪=+⇒=+⇒+=⇒⎨⎪+=⎪⎩⎧=⎪⇒==-=⎨=⎪⎩⇒-⇒=()(()()()()()()()2222222.1612321,4,1422411331,2,11141222228,64181834,14146,.776,2362359,9312.36B x y A t a a t t tx y x y A t t m am x ay a x y d y m am AF FB A y AF PQ ⇒--=-⇒=⇒=⇒=⇒=⎛-=-⇒-=⇒=⇒-= ⎝⎭⇒=⎧⎪⎛⎫=⇒=-⇒=-⇒⇒-⇒==⎨⎪+⇒=+⎝⎭⎪⎩=⇒⇒=+==()()()()()()()(()()()()()()()123123123222min.371110336.381,0:4, 1.32,54225390,1421:140.241,2PF B x x x x x x FA FB FC x x x B F C y xx AFA k r x yF a AB l d l y PA d PA PF PA PFAF A p A ⇒⇒-+-+-=⇒++=⇒++=+++=⇒⇒==-=⇒⇒=⎧=⎧+++=⎪⇒=⇒⇒⇒==⎨⎨==-⎩⎪⎩+=+⇒+==⇒-())22222222,1,0,1241202B A p p p x B y M AM MB y x y pxp p p ⎧⎛⎫⎧⎫=+++⎪⎪⎛⎫⎪ ⎪=⇒⇒⇒⎭⎝⎭⎨⎨⎪⎝⎭⎪⎪=-=⎩⎩+-=⇒=322021高考数学专题复习:面积方程问题1.点P在椭圆1222=+yx上21,,FF两焦点012,90,F PF∠=则21PFF∆的面积是2.21,FF为双曲线141622=-yx两焦点,双曲线上点P满足021120=∠PFF,21PFF∆的面积为( )A.334B.25C.2D.53.21,FF为椭圆22214x yb+=两个焦点,,221=FF点P在双曲线上且,90021=∠PFF21PFF∆的面积是4.P为椭圆13422=+yx上的一点,21,FF为该椭圆的两个焦点,若,60021=∠PFF则21PFF∆的面积等于 ( )A.3B.3C.32 D.25.椭圆C两焦点()()0,4,0,421FF-P,在C上,若21FPF∆面积的最大值为C,12方程为336.已知21,F F 为双曲线1:22=-y x C 左右焦点,点P 在C 上,=⋅=∠21021,60PF PF PF F ( )A .2 B.4 C.6 D.87.21,F F 是14922=+y x 的两焦点,P 是椭圆上的点,且,1:2:21=PF PF 21F PF ∆面积为 ( ) A.4 B.6 C.22 D.248.2218y x -=两个焦点为12,F F P ,是双曲线上的一点,,4:3:21=PF PF 则=∆21F PF S ( ) A.310 B.38 C.58 D.5169.设21,F F 是椭圆1422=+y x 的两个焦点,点P 在椭圆上,0,21=⋅PF PF=3410.1422=+y x 焦点为21,F F ,P 为其上的动点,当021120=∠PF F 时,=∆21PF F S . 当21PF F ∠为钝角时,点P 横坐标取值范围11.椭圆22221x y a b+=两焦点为()(),0,1,0,1-满足P b a ,4322=在椭圆上,1,21=-PF PF 椭圆方程 =∠21cos PF F12.已知点P 是椭圆22184x y +=上一点,21,F F 分别为左右焦点,若12PF F ∆的面积为,312cos F PF ∠=3513.双曲线15422=-y x 与椭圆1162522=+y x 交于点,P 左右焦点分别为12,,F F=14.已知()(),0,5,0,5BA -动点C 到B A ,两点的距离之和为6,设P 为C 上一点,0,=⋅=15.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =16.21,F F 是椭圆12222=+by a x 的左右焦点,()4,3P 是椭圆上一点,,21PF PF ⊥椭圆方程36()()()()()()()()()000022220121211tan 45142.tan 6033tan 45 3.43tan 30.1512835 1.22592414286cos 604.222274,2,4.6:3:486,2S S A S S B x y b b a m n mn c mn mn B mn mnm nm n F F PF PF S A m n m n m n m =⋅===⇒=⋅==⋅=⇒=⋅⋅⇒=⇒=⇒+=-+-+-=⇒=⇒=⇒=⎧⇒===⊥⇒=⇒⎨+=⎩=⎧⇒=⎨-=⎩()()()122200221221121218,68.249 2.121101tan 6012.22::211 1.431534,2212A A A n F F S C m n mn m n S S c y y x x a x y a b c c b PF PF PF PF PF PF F F c ==⇒=⋅⋅=⇒+=⎧⇒=⎨+=⎩⎛=⋅===⋅⋅⇒=⇒=⇒∈ ⎝⎭=⎧⎧=⎪⎪⇒⇒+=⎨⎨==⎪⎪⎩⎩⎧⇒+===⎪⇒⎨-=⎪⎩==()()()()2222121122122222203cos .252347124tan3tancos cos 2cos 1.2242522510134100168421.4146321208.94tan 454215::1:PF PF F F F PF PF PF m n mn mn m n x y m n a b m n mn S b b e a b c θθθθθ⎧+-⎪⇒∠==⎨⋅⎪⎩⋅=⇒=⇒=⇒=-=+=⎧⇒=-=⇒=⎨-=⎩+=⇒=⇒=⇒+=⇒+=⇒===⇒===()222221219161624415 1.2444520a x y S cb bc c c c c ⎧⎪⇒=⎨⎪⎩=⋅=⇒=⇒+=⇒=⇒+=+372021高考数学专题复习:离心率1.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF ∆为等边三角形的椭圆的离心率是( )A.41B.21C.22D.232.椭圆的一个顶点与两个焦点构成等边三角形,则该椭圆的离心率为 ( ) A.51 B.43 C.33 D.213.直线:220l x y -+=与坐标轴的交点分别是一个椭圆的焦点和顶点,椭圆的离心率为 ( )A.5B.5C.5或5 D.254.椭圆()5.15222>=+a y ax 的的左焦点为,F 直线x m =与椭圆相交于点,,B A FAB ∆的周长的最大值 是12,则该椭圆的离心率=e38 5.已知点12,F F分别是椭圆()2222:1,0x yC a ba b+=>>的左右焦点,O为坐标原点,点P在椭圆上,且满足12212,3,F F OP tan PF F=∠=则C的离心率为6.已知P是以21,FF为焦点的双曲线()0,,12222>=-babyax上一点,若21tan,2121=∠⊥FPFPFPF,则双曲线的离心率为7.设21,FF分别是双曲线()0,0,12222>>=-babyax的左右焦点,若双曲线右支上存在一点P,使()OPFOFOP,022=⋅+为坐标原点,=则该双曲线的离心率为()1B.12++2+8.设双曲线()0,0.1:2222>>=-babyaxC的左右焦点分别为21,FF P,是C上的点,,212FFPF⊥,45021=∠FPF则C的离心率为399.已知21,F F 是双曲线22221-=x y a b的左右焦点,点P 是以21,F F 为直径的圆与双曲线的一个交点,且12215,PF F PF F ∠=∠则双曲线离心率为10.已知双曲线()0,0.1:2222>>=-b a by a x C 的一条渐近线截圆()11:22=+-y x M,则该双曲线的离心率为 ( ) A.43B.3C.35311.已知21,F F 是双曲线()0,0.1:2222>>=-b a by a x C 的左、右焦点,过1F 的直线与C 的左支交于B A ,两点.若5:4:3::22=AF BF AB ,则双曲线的离心率为.12.已知抛物线x y 82=的准线与双曲线1:222=-y ax C 相切,则双曲线C 的离心率为 ( )A.25B.23C.552D.33240 13.设点P是双曲线(abyax12222=-)0,0>>b与圆2222bayx+=+在第一象限的交点,其中21,FF分别是双曲线的左右焦点,且212PFPF=,则该双曲线的离心率为14.21,FF是双曲线22221x ya b-=的左右两个焦点,过点1F作垂直于x轴的直线与双曲线的两条渐近线分别交于BA,两点2,ABF∆是直角三角形,则该双曲线的离心率为15.已知21,FF是双曲线22221x ya b-=的左右两个焦点,过点1F作垂直于x轴的直线与双曲线分别交于BA,两点2,ABF∆是直角三角形,则该双曲线的离心率是16.过双曲线()0,0.12222>>=-b a b y a x 的右焦点F 作垂直于x 轴的直线,交双曲线的渐近线于,A B 两点, 若OAB ∆(O 为坐标原点)是等边三角形,则双曲线的离心率为 ( )D.217.21,F F 是双曲线12222=-b y a x 左右焦点,过2F 作与x 轴垂直的弦,PQ 且==∠e Q PF ,6001 ( ) A.3 B.2 C.2 D.2618.过双曲线()0,0.12222>>=-b a b y a x 的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF的垂直平分线上,则双曲线的离心率为 ( )A .2BC .3D .219.椭圆22221x y a b +=的左、右顶点分别是B A ,,左右焦点分别是21,F F 若B F F F AF 1211,,成等比数列,则此椭圆的离心率为20.椭圆2222+=1x y a b的左右焦点分别是,,21F F 过2F 作倾斜角为0120的直线与椭圆的一个交点为,M 若1MF 垂直于x 轴,则椭圆的离心率为21.双曲线()0,0.12222>>=-b a by a x 的渐近线与抛物线21y x =+相切,该双曲线的离心率为 ( )B.2C.5D.622.双曲线()0,0,12222>>=-b a b y a x 焦距为1161,1022+=x y 与其渐近线相切,双曲线方程为( ) A.22182x y -= B.22128x y -= C.2214x y -= D.2214y x -=23.点P 在椭圆12222=+by a x 上21,,F F 是椭圆的两个焦点,90,021=∠PF F 且21PF F ∆的三条边长成等差数列, 则此椭圆的离心率是24.已知双曲线一个焦点为(),0,51-F 点P 在双曲线上,且线段1PF 的中点坐标为()2,0,则此双曲线 的离心率是 .25.双曲线的中心为原点O ,实轴在x 轴上,虚轴顶点为A ,左右焦点分别为,,21F F 线段12,OF OF 的中点 分别为12,B B ,且21B AB ∆是直角三角形,该双曲线的离心率为26.设12,F F 是双曲线1:2222=-b y a x C 的两个焦点.若在C 上存在一点,P 使,30,02121=∠⊥F PF PF PF则C 的离心率为 .27.椭圆22221+=x y a b 上一点与其中心及长轴的一个端点构成等腰直角三角形,则此椭圆的离心率为28.点A 是抛物线()0,2:21>=p px y C 与双曲线:2C 22221x y a b -=的一条渐近线的交点,若点A 到 抛物线1C 的准线的距离为,p 则双曲线2C 的离心率等于 ( ) A.2 B.3 C.5 D.629.设双曲线的一个焦点为,F 虚轴的一个端点为,B 如果直线FB 与该双曲线的一条渐进线垂直,那么此 双曲线的离心率为 ( )30.椭圆的两个焦点和短轴两顶点是一个含060角的菱形的四个顶点,则椭圆离心率为31.若双曲线()0,0,12222>>=-b a by a x 离心率[],2,2∈e 则两条渐近线夹角θ的取值范围是32.12,F F 是双曲线()22221,0,0-=>>x y a b a b 的两个焦点,过2F 作x 轴的垂线交双曲线于,A B 两点,若1,3AF B π∠<则双曲线离心率取值范围为33.已知双曲线()22221,0,0-=>>x y a b a b 的左顶点为,A 右焦点为(),0,c F 直线c x =与双曲线C 在第一象限的交点为,P 过F 的直线l 与双曲线C 过二、四象限的渐近线平行,且与直线AP 交于点,B 若ABF ∆与PBF ∆的面积的比值为2,则双曲线C 的离心率为34.已知1,F 2F 是双曲线()2222:1,0,0x y C a b a b-=>>的左右焦点,若直线2y x =与双曲线C 交于,P Q 两点,且四边形12PF QF 是矩形,则双曲线的离心率为 ( )A .525-B .525+C .5+25D .525-35.若双曲线()0,0,12222>>=-b a by a x 的左右焦点分别为,,21F F 线段21F F 被抛物线22y bx =的焦点 分成5:7的两段,则此双曲线的离心率为36.已知抛物线()0,22>=p px y 与双曲线12222=-b y a x 有相同的焦点,F 点A 是两曲线的交点, 且x AF ⊥轴,则双曲线的离心率为 ( )51+2131+ D.221237.双曲线()0,0,12222>>=-b a b y a x 左右焦点分别为A F F ,,21是双曲线上一点122,,⊥F F AF 若直线1AF 与圆22229++=a b x y 相切,切点为,M 则双曲线离心率为38.椭圆22221+=x y a b 的左焦点1,F 该椭圆上一点A 满足1OAF ∆是等边三角形,则椭圆离心率为39.双曲线()22221,,0x y a b a b -=>的左、右焦点分别为为12,,F F 过2F 作倾斜角为60︒的直线与y 轴和双曲 线的左支分别交于点,,A B 若()21,2OA OB OF =+则该双曲线的离心率为40.已知双曲线()22221,,0x y a b a b-=>的左右焦点分别为12,,F F 圆222x y b +=与双曲线在第一象限内的交点为,M 若123,MF MF =则该双曲线的离心率为41.设双曲线()2222:1,0,0x y C a b a b-=>>的左焦点为1,F 直线:43200l x y -+=过点1F 且与双曲线C 在第二象限的交点为P ,O 为原点1,,OP OF =则双曲线C 的右焦点的坐标为 ,离心率为 .42.已知F 为双曲线()2222:10x y C a b a b-=>>的右焦点,,A B 是双曲线C 的一条渐近线上关于原点对称的两点,0AF BF ⋅=且AF 的中点在双曲线C 上,则C 的离心率为 ( )1B.1- 1+ 143.已知O 为坐标原点,双曲线()2222:10,0x y C a a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 的一条渐近线交于点A (点A 在第一象限),点B 在双曲线C 的渐近线上,且BF//OA ,若0AB OB ⋅=,则双曲线C 的离心率为 ( )D.244.已知双曲线22221(0,0)x y a b a b-=>>的渐近线分别为1l ,2l ,点A 是x 轴上与坐标原点O 不重合的一点,以OA 为直径的圆交直线1l 于点O ,B ,交直线2l 于点O ,C ,若2BC OA =,则该双曲线的离心率是45.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A , 以A 为圆心的圆与双曲线C 的某一条渐近线交于两点,P Q .若60PAQ ∠=,且3OQ OP =(其中O 为原点),则双曲线C 的离心率为 ( )A .2 B .7 C D .46.已知,,A B C 是双曲线()22221,0,0x y a b a b-=>>上的三个点,AB 经过坐标原点,O AC 经过双曲线的右焦点2,F 若22,2,BF AC AF CF ⊥=则该双曲线的离心率是 ( ) A.53 B.17 C.17 D.9447.设双曲线()222210x y C a b a b-=>0,>:的左、右焦点分别为12122,,2,F F FF c F =过作x 轴的垂线,与双曲线 在第一象限的交点为A ,点Q 坐标为3,2a c ⎛⎫ ⎪⎝⎭且满足22F Q F A >,若在双曲线C 的右支上存在点P 使得11276PF PQ F F +<成立,则双曲线的离心率的取值范围是___________.48.双曲线()222210x y a b a b-=>0,>的左、右焦点分别为12,,F F 过2F 作一条渐近线的垂线,垂足为,A 交另一条渐近线于点,B 且221,3AF F B =则双曲线的离心率为 ( ) A.53 17 17 D.9449.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123PF F π∠=,记椭圆和双曲线的离心率分别为12,,e e 则221213e e +的值为 ( ) A.1 B.2512C.4D.16。
2021年高考数学专题10 圆锥曲线 (解析版)
专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点0(1)F ,,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅,求动点P 的轨迹.【错解】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x .【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别. 【试题解析】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x . 故动点P 的轨迹为焦点坐标为(1,0)的抛物线.【参考答案】动点P 的轨迹为焦点坐标为(1,0)的抛物线.1.求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点,()P x y 却随另一动点(),Q x y ''的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ',y '表示成关于x ,y 的式子,再代入Q 的轨迹方程整理化简即得动点P 的轨迹方程.(4)参数法:若动点,()P x y 坐标之间的关系不易直接找到,且无法判断动点,()P x y 的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点,()P x y 中的x ,y 分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2.求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.1.已知定点(1,0)A -及直线:2l x =-,动点P 到直线l 的距离为d ,若||PA d =. (1)求动点P 的轨迹C 方程;(2)设,M N 是C 上位于x 轴上方的两点,B 坐标为(1,0),且AM BN ∥,MN 的延长线与x 轴交于点(3,0)D ,求直线AM 的方程.【答案】(1)2212x y +=;(2)(1)2y x =+.【解析】(1)设(,)P x y ,则由(1,0)A -,知||PA = 又:2l x =-,∴|2|d x =+,2=∴2221(1)(2)2x y x ++=+, ∴2222x y +=,∴点P 的轨迹方程为2212x y +=.(2)设1122(,),(,)M x y N x y ()120,0y y >>,∵(1,0)(1,0),(3,0)A B D -,, ∴B 为AD 中点, ∵//AM BN ,∴1212,322x x y y +==, ∴1223x x =-,又221112x y +=,∴()222223412x y -+=, 又222212x y +=,∴2151,42x x ==-,∵0y >,∴14y =,∴1112AM y k x ==+, ∴直线AM的方程为1)2y x =+. 【名师点睛】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等.易错点2 求轨迹方程时忽略变量的取值范围已知曲线C :y=x 2-2x +2和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.【错解】依题意,由⎩⎨⎧y =x 2-2x +2,y =kx ,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有12212212121x x x k y y k y k +⎧==⎪⎪-⎨+⎪==⎪-⎩,故线段AB 中点的轨迹方程为220x y x --=.【错因分析】消元过程中,由于两边平方,扩大了变量y 的允许范围,故应对x ,y 加以限制.【试题解析】依题意,由⎩⎨⎧y =x 2-2x +2y =kx,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有⎩⎪⎨⎪⎧x =x 1+x 22=11-k 2, ③y =y 1+y 22=k1-k 2, ④又对②应满足222212221221044(2)(1)0201201k k k k k y y k k y y k ∆⎧-≠⎪=-⨯-⨯->⎪⎪⎨+=>-⎪⎪⎪=>-⎩,解得22<k <1.结合③④,则有x >2,y > 2.所以所求轨迹方程是x 2-y 2-x =0(x >2,y >2). 【参考答案】轨迹方程是x 2-y 2-x =0(x >2,y >2).1.一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明x ,y的取值范围.2.已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,则动圆圆心M的轨迹方程为A .2218y x -=B .221(1)8y x x -=≤-C .2218x yD .221(1)8y x x -=≥【答案】B【解析】设动圆的圆心M 的坐标为(,)x y ,半径为r , 则由题意可得121,3MC r MC r =+=+,相减可得21122MC MC C C -=<,所以点M 的轨迹是以12,C C 为焦点的双曲线的左支, 由题意可得22,3a c ==,所以b =,故点M 的轨迹方程为221(1)8y x x -=≤-,故选B.【名师点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义、性质和标准方程的应用,其中解答中根据圆与圆的位置关系,利用双曲线的定义得到动点的轨迹是以12,C C 为焦点的双曲线的左支是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.易错点3 忽略椭圆定义中的限制条件若方程22186x y k k +=--表示椭圆,则实数k 的取值范围为________________.【错解】由8060k k ->⎧⎨->⎩,可得68k <<,所以实数k 的取值范围为(6,8).【错因分析】忽略了椭圆标准方程中a >b >0这一限制条件,当a =b >0时表示的是圆的方程.【试题解析】由806086k k k k ->⎧⎪->⎨⎪-≠-⎩,可得68k <<且7k ≠,所以实数k 的取值范围为(6,7)∪(7,8).【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性.【参考答案】(6,7)∪(7,8).平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3.已知F 1,F 2为两定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是A .椭圆B .直线C .圆D .线段【答案】D【解析】虽然动点M 到两个定点F 1,F 2的距离为常数8,但由于这个常数等于|F 1F 2|,故动点M 的轨迹是线段F 1F 2,故选D .平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.若忽略了椭圆定义中|F 1F 2|<2a 这一隐含条件,就会错误地得出点M 的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为2221(0)36x ykk+=>,并且焦距为8,则实数k的值为_____________.1.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.②表示焦点在y 轴上的椭圆⇔0,0m n >>且m n <; ③表示椭圆⇔0,0m n >>且m n ≠.对于形如:Ax 2+By 2=1(其中A >0,B >0,A ≠B )的椭圆的方程,其包含焦点在x 轴上和在y 轴上两种情况,当B >A 时,表示焦点在x 轴上的椭圆;当B <A 时,表示焦点在y 轴上的椭圆. 2.求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(其中A >0,B >0,A ≠B ).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4.关于曲线C :222214x y a a +=-性质的叙述,正确的是A .一定是椭圆B .可能为抛物线C .离心率为定值D .焦点为定点【答案】D【解析】因为曲线方程没有一次项,不可能为抛物线,故B 错误;因为24a -可正也可负,所以曲线可能为椭圆或双曲线.若曲线为椭圆,则()22244c a a =--=,∴2c =,2e a=,离心率不是定值,焦点()2,0,()2,0-,为定点. 若曲线为双曲线,方程为222214x y a a-=-,则()22244c a a =+-=,∴2c =,2e a =,离心率不是定值,焦点()2,0,()2,0-为定点,故选D.【名师点睛】本题考查了圆锥曲线的标准方程和性质,体现了分类讨论的思想.易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x 轴上,离心率32e =,已知点3(0,)2P 到椭圆的最远距离为7,求椭圆的标准方程.1.椭圆22221(0)x ya ba b+=>>的范围就是方程中变量x,y的范围,由22221x ya b+=得222211x ya b=-≤,则||x a≤;222211y xb a=-≤,则||y b≤.故椭圆落在直线x=±a,y=±b围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩形”范围以外的点了.同时,在处理椭圆的一些参数或最值问题时要注意x,y的取值范围.2.设椭圆22221(0)x y a b a b+=>>上任意一点,()P x y ,则当0x =时,||OP 有最小值b ,P 点在短轴端点处;当x a =±时,||OP 有最大值a ,P 点在长轴端点处. 3.(1)解决椭圆x 2a 2+y 2b 2=1(a >b >0)中的范围问题常用的关系有:①-a ≤x ≤a ,-b ≤y ≤b ; ②离心率0<e <1;③一元二次方程有解,则判别式0∆≥.(2)解决与椭圆有关的最值问题常用的方法有以下几种: ①利用定义转化为几何问题处理;②利用三角替代(换元法)转化为三角函数的最值问题处理; ③利用数与形的结合,挖掘数学表达式的几何特征,进而求解;④利用函数最值的研究方法,将其转化为函数的最值问题来处理,此时,应注意椭圆中x 、y 的取值范围,常常是化为闭区间上的二次函数的最值来求解.5.已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)B ,且过点2P . (1)求椭圆C 的方程及其离心率;(2)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值.【答案】(1)2214x y +=,2e =;(2)1. 【解析】(1)由题意可得1b =.又2P 在椭圆C 上,所以22212a +=,解得2a =,所以椭圆C 的方程为2214x y +=,所以c C 的离心率2c e a ==.(2)设直线l 的方程为()0y kx m m =+≠.由22,14y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,得()222418440k x kmx m +++-=, 所以22222(8)4(41)(44)6416160km k m k m ∆=-+-=-+>,设()()1122,,,M x y N x y ,则2121222844,4141km m x x x x k k --+==++. ()()()2212121212121212OM ONkx m kx m k x x km x x my y k k x x x x x x +++++===222222244841414441m kmk km m k k m k --⨯+⨯+++=-+222444m k m -=-, 由题意,OM ON k k 为定值,所以21444k -=-,即214k =,解得12k =±.此时MN===, 点O 到直线y kx m =+的距离|5m d =.11||22MON S MN d m ==△== 显然,当21m =(此时214k =,21m =满足226416160k m ∆=-+>),即1m =±时,S 取得最大值,最大值为1.易错点6 忽略双曲线定义中的限制条件已知F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,当a 为3和5时,点P 的轨迹分别为A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能正确解题.当||MF 1|-|MF 2||=2a <|F 1F 2|(a >0),即|MF 1|-|MF 2|=±2a ,0<2a <|F 1F 2|时,点M 的轨迹是双曲线,其中取正号时为双曲线的右(上)支,取负号时为双曲线的左(下)支;当||MF 1|-|MF 2||=2a =|F 1F 2|(a >0)时,点M 的轨迹是以点F 1,F 2为端点的两条射线; 当||MF 1|-|MF 2||=2a >|F 1F 2|(a >0)时,点M 的轨迹不存在.6.如图,在ABC △中,已知||AB =A ,B ,C 满足2sin sin 2sin A C B +=,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,求顶点C 的轨迹方程.【答案】221(26x y x -=>.【解析】由题意可得(A -,B .因为2sin sin 2sin A C B +=,由正弦定理可得||||||22BC AB AC +=,故|||||12|||AC BC AB AB -=<=, 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).由题意,设所求轨迹方程为22221()x y x a a b-=>,因为a =c =2226b c a =-=,故所求轨迹方程为221(26x y x -=>.【名师点睛】求解与双曲线有关的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.易错点7 忽略双曲线中的隐含条件已知M 是双曲线2216436x y -=上一点,F 1,F 2是双曲线的左、右焦点,且1||17MF =,则2MF =_____________.1.在求解双曲线上的点到焦点的距离d 时,一定要注意d c a ≥-这一隐含条件.2.双曲线方程中,a b 的大小关系是不确定的,但必有0,0c a c b >>>>.3.由22221(0,0)x y a b a b-=>>,知x 2a2≥1,所以x ≤-a 或x ≥a ,因此双曲线位于不等式x ≥a 和x ≤-a 所表示的平面区域内,同时,也指明了坐标系内双曲线上点的横坐标的取值范围.7.过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于,P Q ,1F 是另一焦点,若1=3PFQ π∠,则双曲线的离心率e 等于 A 1 BC 1D 2+【答案】B【解析】由双曲线的对称性可知,12PF F △是以点2F 为直角顶点,且126PF F π∠=,则122PF PF =,由双曲线的定义可得1222PF PF PF a -==, 在12Rt PF F △中,212122tan 2PF a PF F F F c ∠===c e a∴== B. 【名师点睛】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.易错点8 忽略双曲线的焦点所在位置的讨论已知双曲线的渐近线方程是23y x=±,焦距为226,求双曲线的标准方程. 2b1.求解双曲线的标准方程时,先确定双曲线的类型,也就是确定双曲线的焦点所在的坐标轴是x 轴还是y 轴,从而设出相应的标准方程的形式,然后利用待定系数法求出方程中的22,a b 的值,最后写出双曲线的标准方程.2.在求双曲线的方程时,若不知道焦点的位置,则进行讨论,或可直接设双曲线的方程为221(0)Ax By AB +=<.8.已知双曲线的一条渐近线方程为0x y ±=,且过点()12P ,--,则该双曲线的标准方程为__________.【答案】22133y x -=【解析】根据题意,双曲线的一条渐近线方程为0x y ±=,可设双曲线方程为()220x y λλ-=≠,∵双曲线过点()12P ,--,∴14λ-=,即3λ=-.∴所求双曲线方程为22133y x -=,故答案为22133y x -=.【名师点睛】本题考查双曲线的标准方程的求法,需要学生熟练掌握已知渐近线方程时,如何设出双曲线的标准方程.易错点9 忽略直线与双曲线只有一个公共点的特殊情况若过点(1,1)P 且斜率为k 的直线l 与双曲线2214y x -=只有一个公共点,则k =___________.【方法点睛】解决直线与双曲线的位置关系的题目时,要注意讨论联立直线与双曲线的方程消元后得到的方程是否为一元一次方程,即二次项系数是否为0,因为直线与双曲线有一个公共点包含直线与双曲线的渐21. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线. (2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一点.2.研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.9.已知直线y kx =与双曲线22416x y -=.当k 为何值时,直线与双曲线: (1)有两个公共点;(2)有一个公共点;(3)没有公共点. 【答案】见解析.【解析】由22416x y y kx -==⎧⎨⎩消去y 得22(4)160k x --= ①,当240k -=,即2k =±时,方程①无解;当240k -≠时,2204(4)(16)64(4)k k ∆=---=-, 当0∆>,即22k -<<时,方程①有两解; 当0∆<,即2k <-或2k >时,方程①无解; 当0∆=,且240k -≠时,这样的k 值不存在.综上所述,(1)当22k -<<时,直线与双曲线有两个公共点; (2)不存在使直线与双曲线有一个公共点的k 值; (3)当2k ≤-或2k ≥时,直线与双曲线没有公共点.【名师点睛】研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.易错点10 忽略抛物线定义中的限制条件已知点P 到F (4,0)的距离与到直线5x =-的距离相等,求点P 的轨迹方程.【参考答案】2189y x =+.1.抛物线的标准方程是特殊的抛物线方程,对坐标轴的位置有严格的要求.若从题意中无法判断方程是否为标准方程,可按求曲线方程的一般步骤求解.2.抛物线定义中要求直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线.因此当动点P 到定点F 的距离与它到定直线l 的距离相等时,不能盲目套用抛物线定义.10.已知圆C 的方程22100x y x +-=,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.【答案】220(0)y x x =>或)00(y x =<.【解析】设P 点坐标为(x ,y ),动圆的半径为R ,∵动圆P 与y 轴相切,∴R x =,∵动圆与定圆C :2252)5(x y -+=外切,∴5PC R =+,∴5PC x =+.当点P 在y 轴右侧,即x >0时,5PC x =+,点P 的轨迹是以(5,0)为焦点的抛物线,则圆心P 的轨迹方程为220(0)y x x =>;当点P 在y 轴左侧,即x <0时, 5PC x =-+,此时点P 的轨迹是x 轴的负半轴,即方程)00(y x =<.故点P 的轨迹方程为220(0)y x x =>或)00(y x =<.【名师点睛】抛物线的轨迹问题,既可以用轨迹法直接求解,也可以转化为利用抛物线的定义求解,利用抛物线的定义求解的关键是找到条件满足动点到定点的距离等于到定直线的距离,需要依据条件进行转化.易错点11 忽略抛物线的焦点所在位置的讨论设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程.【错解】易知准线方程为x =-m4,因为准线与直线x =1的距离为3, 所以准线方程为x =-2, 所以-m4=-2,解得m =8,故抛物线方程为y 2=8x .【错因分析】题目条件中未给出m 的符号,当m >0或m <0时,抛物线的准线是不同的,错解中考虑问题欠周到.【试题解析】当m >0时,准线方程为x =-m4,由条件知1-(-m4)=3,所以m =8.此时抛物线方程为y 2=8x ; 当m <0时,准线方程为x =-m4,由条件知-m4-1=3,所以m =-16,此时抛物线方程为y 2=-16x .所以所求抛物线方程为y 2=8x 或y 2=-16x . 【参考答案】y 2=8x 或y 2=-16x .1.抛物线的四种标准方程与对应图形如下表所示:图 形标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦点坐标(,0)2p (,0)2p -(0,)2p(0,)2p -准线方程2p x =-2p x =2p y =-2p y =注:抛物线标准方程中参数p 的几何意义是:抛物线的焦点到准线的距离,所以p 的值永远大于0. 2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.11.顶点在原点,且过点(1,1)-的抛物线的标准方程是A .2y x =-B .2x y =C .2y x =-或2x y =D .2y x =或2x y =-【答案】C【解析】当焦点在x 轴上时,设方程为2y ax =,将(1,1)-代入得1a =-,2y x ∴=-;当焦点在y 轴上时,设方程为2x ay =,将(1,1)-代入得1a =,2x y ∴=.故选C .本题若只考虑焦点在x 轴的负半轴上的情况,而忽略了焦点也可能在y 轴的正半轴上的情况,则会出现漏解.易错点12 忽略直线与抛物线有一个公共点的特殊情况求过定点(11)P -,,且与抛物线22y x =只有一个公共点的直线l 的方程.直线l y kx b =+:与抛物线22(0)y px p =>公共点的个数等价于方程组22y x p bxy k ⎧⎨==+⎩的解的个数.(1)若0k ≠,则当0∆>时,直线和抛物线相交,有两个公共点;当0∆=时,直线和抛物线相切,有一个公共点;当0∆<时,直线和抛物线相离,无公共点.(2)若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点.特别地,当直线l 的斜率不存在时,设x m =,则当0m >时,直线l 与抛物线相交,有两个公共点;当0m =时,直线l 与抛物线相切,有一个公共点;当0m <时,直线l 与抛物线相离,无公共点.12.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”,“直线与抛物线只有一个公共点”时,直线可能与对称轴平行,此时不相切,故“直线与抛物线相切”是“直线与抛物线只有一个公共点”的充分不必要条件.故选A .本题易忽略直线平行于抛物线的对称轴时,直线与抛物线也只有一个交点,而漏掉k =0.一、曲线与方程 1.求曲线方程的步骤求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{|()}P M p M =; (3)用坐标表示条件p (M ),列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写.若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x ,y 的取值范围予以剔除.另外,也可以根据情况省略步骤(2),直接列出曲线方程. 2.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.二、椭圆 1.椭圆的定义平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆. 2.椭圆的标准方程焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>.3.椭圆的几何性质标准方程22221x y a b +=(a >b >0) 22221y x a b +=(a >b >0) 图形范围 a x a -≤≤,b y b -≤≤ b x b -≤≤,a y a -≤≤对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1 (-c ,0),右焦点F 2 (c ,0)下焦点F 1 (0,-c ),上焦点F 2 (0,c )顶点1212(,0),(,0),(0,),(0,)A a A a B b B b -- 1212(0,),(0,),(,0),(,0)A a A a B b B b --三、双曲线 1. 双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距.(2)符号语言:1212202,MF MF a a F F =<-<. (3)当122MF MF a -=时,曲线仅表示焦点2F 所对应的双曲线的一支; 当122MF MF a -=-时,曲线仅表示焦点1F 所对应的双曲线的一支;当12||2a F F =时,轨迹为分别以F 1,F 2为端点的两条射线; 当12||2a F F >时,动点轨迹不存在. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程为22221x y a b-=(a >0,b >0),焦点分别为F 1(-c ,0),F 2(c ,0),焦距为2c ,且222c a b =+.(2)焦点在y 轴上的双曲线的标准方程为22221y x a b-=(a >0,b >0),焦点分别为F 1(0,-c ),F 2(0,c ),焦距为2c ,且222c a b =+. 3.双曲线的几何性质标准方程22221x y a b -=(a >0,b >0) 22221y x a b -=(a >0,b >0) 图形范围 ||x a ≥,y ∈R ||y a ≥,x ∈R对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1(-c ,0),右焦点F 2(c ,0)下焦点F 1(0,-c ),上焦点F 2(0,c )顶点12(,0),(,0)A a A a - 12(0,),(0,)A a A a -轴线段A 1A 2是双曲线的实轴,线段B 1B 2是双曲线的虚轴;实轴长|A 1A 2|=2a ,虚轴长|B 1B 2|=2b渐近线 b y x a=±a y x b=±离心率e22c ce a a==(1)e >在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件12||||||2PF PF a -=的应用;其次是要利用余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用. 4.等轴双曲线四、抛物线 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>;(2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->;(3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>;(4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 3.抛物线的几何性质标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->图 形几 何 性质范 围 0,x y ≥∈R0,x y ≤∈R0,y x ≥∈R0,y x ≤∈R对称性 关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称焦点(,0)2p F (,0)2p F -(0,)2p F(0,)2p F -准线方程 2p x =-2p x =2p y =-2p y =顶 点 坐标原点(0,0)离心率1e =4.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:抛物线方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->。
数学高考圆锥曲线知识点
数学高考圆锥曲线知识点圆锥曲线是高中数学中重要的知识点,广泛应用于数理化、工程学等领域。
本文将介绍圆锥曲线的基本概念和性质,以及与几何图形和实际问题的联系。
一、基本概念圆锥曲线是由圆锥和平面相交所得的曲线。
根据所切割的位置不同,圆锥曲线可分为椭圆、双曲线和抛物线三种类型。
1. 椭圆椭圆是平面与圆锥相交时,切割位置在圆锥两侧并且切割面是圆锥的两个对称面的情况。
椭圆具有如下性质:- 离心率小于1,离焦点距离小于两倍长轴。
- 长轴和短轴是椭圆的两个重要参数,可用于描述椭圆的形态。
2. 双曲线双曲线是平面与圆锥相交时,切割位置在圆锥两侧并且切割面不包含圆锥顶点的情况。
双曲线具有如下性质:- 离心率大于1,离焦点距离大于两倍长轴。
- 长轴和短轴是双曲线的两个重要参数,可用于描述双曲线的形态。
3. 抛物线抛物线是平面与圆锥相交时,切割位置在圆锥两侧并且切割面与圆锥对称的情况。
抛物线具有如下性质:- 离焦点距离等于两倍焦半径。
- 抛物线的开口方向由焦点和准线的相对位置决定。
二、性质和方程圆锥曲线的性质和方程是研究圆锥曲线的核心内容。
根据圆锥曲线的类型,我们可以得到如下性质和方程:1. 椭圆的性质和方程椭圆有很多独特的性质,如焦点、离心率、焦半径等。
椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$其中,a为长半轴长度,b为短半轴长度。
2. 双曲线的性质和方程双曲线也有很多独特的性质,如焦点、离心率、焦半径等。
双曲线的方程分为两种情况:- 横轴为x轴时,方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$;- 横轴为y轴时,方程为$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$;其中,a为实轴长度,b为虚轴长度。
3. 抛物线的性质和方程抛物线也有诸多性质,如焦点、准线、抛物线方程等。
抛物线的方程为:$y=ax^2+bx+c$其中,a、b、c为常数,a决定了抛物线的开口方向。
2021版新高考数学:圆锥曲线中的定点、定值问题含答案
第八节圆锥曲线中的定点、定值问题
[考点要求]会证明与曲线上动点有关的定值问题、会处理动曲线(含直线)过定点的问题.
(对应学生用书第164页)
考点1定点问题
直线过定点
在平面直角坐标系xOy 中、动点
E 到定点(1、0)的距离与它到直线x =-1的距离相等.
(1)求动点E 的轨迹C 的方程;
(2)设动直线l :y =kx +b 与曲线C 相切于点P 、与直线x =-1相交于点Q 、证明:以PQ 为直径的圆恒过x 轴上某定点.
[解] (1)设动点E 的坐标为(x 、y )、由抛物线的定义知、动点E 的轨迹是以(1、0)为焦点、x =-1为准线的抛物线、所以动点E 的轨迹C 的方程为y 2=4x .
(2)证明:易知k ≠0.由⎩⎨⎧y =kx +b y2=4x
、消去x 、得ky 2-4y +4b =0.因为直线l 与抛物线相切、所以Δ=16-16kb =0、即b =1k 、所以直线l 的方程为y =kx +1k 、令
x =-1、得y =-k +1k 、所以Q (-1、-k +1k ).设切点P (x 0、y 0)、则ky 20-4y 0+4k =
0、解得P (1k2、2k )、设M (m 、0)、则MQ →·MP →=(1k2-m )·(-1-m )+2k (-k +1k )=m 2
+m -2-m -1k2、所以当⎩⎨⎧m2+m -2=0,m -1=0,
即m =1时、MQ →·MP →=0、即MQ ⊥MP . 所以、以PQ 为直径的圆恒过x 轴上的定点M (1、0).
考点2 定值问题。
2021数学圆锥曲线知识点提纲
2021数学圆锥曲线知识点提纲数学想要得高分,就要把大部分的精力放在基础学问和解题的基本技能上面,由于在数学的考试中,基础题占了试卷的大部分,所以基础学问肯定要记坚固。
下面是我整理的数学圆锥曲线学问点提纲,数学圆锥曲线学问点提纲(一)曲线与方程首先第一个问题,我们想到的就是曲线与方程的这部分内容了。
在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。
在这部分呢,我们要留意到的是几种常见求轨迹方程的方法。
在这里呢,简洁的说一下,一共有四种方法:1。
直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满意的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。
2。
定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。
这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何学问分析得出这些条件。
3。
相关点法若动点P(x,y)随已知曲线上的.点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。
这种方法称为相关点法(或代换法)。
4。
待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求(二)椭圆,双曲线,抛物线这部分就可以讨论其次个问题了呢。
在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,由于我们可以从它们的标准方程中看到很多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必需要会的。
在一般做题的时候,我们要首先要依据题意来画图,这点特殊重要,我们要清晰题目要我们求什么才能连续做下去不是。
接下来就是依据题意来写过程了,我们的一般步骤呢都是建系,设点,联立方程,化简,推断△,韦达定理,列关系式,整理,作答。
在考试中,我们根据步骤一步一步的写,写到韦达定理至少8分有了。
当然了,各圆锥曲线的几何性质也尤其重要,包括离心率,顶点,对称性,范围,以及焦点弦,准线,渐近线等等。
(2021年整理)(完整)圆锥曲线复习提纲与重要题型
(完整)圆锥曲线复习提纲与重要题型编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆锥曲线复习提纲与重要题型)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆锥曲线复习提纲与重要题型的全部内容。
圆锥曲线复习提纲名称椭圆双曲线图 象定 义平面内到两定点21,F F 的距离的和为常数(大于21F F )的动点的轨迹叫椭圆即a MF MF 221=+当2a ﹥2c 时,轨迹是椭圆, 当2a =2c 时,轨迹是一条线段21F F当2a ﹤2c 时,轨迹不存在平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线. 即当2a ﹤2c 时,轨迹是双曲线当2a =2c 时,轨迹是两条射线当2a ﹥2c 时,轨迹不存在标准方 程 焦点在x 轴上时: 12222=+by a x焦点在y 轴上时:12222=+bx a y注:根据分母的大小来判断焦点在哪一坐标轴上焦点在x 轴上时:12222=-by a x 焦点在y 轴上时:12222=-b x a y常数c b a ,,的关 系 222b c a +=,0>>b a ,a 最大,bc b c b c ><=,,222b a c +=,0>>a c c 最大,b a b a b a ><=,,渐近线焦点在x 轴上时:0x ya b ±=焦点在y 轴上时:0y xa b±=1。
椭圆的性质:椭圆方程)0(122>>=+b a by a x(1)范围:b y b a,x a ≤≤-≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。
2021高考数学圆锥曲线考什么?7大题型考点预测解析
2021高考数学圆锥曲线考什么?7大题型考点预测解析2021高考数学圆锥曲线考什么?今天给大家带来高考数学圆锥曲线7大题型预测解析,一起来掌握练习吧!学好圆锥曲线的几个关键点?1、牢记核心知识点核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2、计算能力与速度计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
GaoKaoZhiTongChe当然也要掌握一些解题的小技巧,加快运算速度。
3、思维套路拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
4、题型总结圆锥曲线中常见题型总结1、直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
2、圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年宁夏高考数学重难点热点复习:圆锥曲线
1.已知点A (0,﹣2),椭圆E :
x 2a 2
+
y 2b 2
=1(a >b >0)的离心率为
√2
2
,F 是椭圆E 的右焦点,直线AF 的斜率为2,O 为坐标原点. (1)求E 的方程;
(2)设过点P (0,√3),且斜率为k 的直线l 与椭圆E 交于不同的两M 、N ,且|MN |=8√2
7,求k 的值.
【解答】解:(1)由离心率e =c
a =√2
2,则a =√2c , 直线AF 的斜率k =0−(−2)
c−0=2,则c =1,a =√2,b 2=a 2﹣c 2=1, ∴椭圆E 的方程为
x 2
2
+y 2=1;
(2)设直线l :y =kx −√3,设M (x 1,y 1),N (x 2,y 2), 则{y =kx −√3
x 22+y 2=1,整理得(1+2k 2)x 2﹣4√3kx +4=0,
△=(﹣4√3k )2﹣4×4×(1+2k 2)>0,即k 2>1,∴x 1+x 2=
4√3k 1+2k
2,x 1x 2=41+2k 2,
∴|MN |=2|x 1−x 2|=√1+k 2√(x 1
+x 2
)2
−4x 1x 2=
4√(+k 2
)(k 2
−1)
1+2k
2
=8√2
7,
即17k 4﹣32k 2﹣57=0,解得k 2=3或−19
17(舍去), ∴k =±√3, 2.已知双曲线C :
x 2a 2
−
y 2b 2
=1(a >0,b >0)与双曲线
x 216
−
y 24
=1有相同的渐近线,且
双曲线C 过点(4,√3).
(1)若双曲线C 的左、右焦点分别为F 1,F 2,双曲线C 上有一点P ,使得∠F 1PF 2=60°,求△F 1PF 2的面积;
(2)过双曲线C 的右焦点F 2作直线l 与双曲线右支交于A ,B 两点,若△F 1AB 的周长是
403
,求直线l 的方程.
【解答】解:(1)设双曲线C :x 2
16
−
y 2
4
=λ,把点(4,√3)代入得:λ=1
4,
∴双曲线的方程为
x 24
−y 2=1.
在△PF 1F 2中,设|PF 1|=m ,|PF 2|=n ,
∴{
|m −n|=4cos∠F 1PF 2=m 2+n 2−202mn =
12
,
可得(m ﹣n )2+2mn ﹣20=mn , 即16+2mn ﹣20=mn ,mn =4, ∴△F 1PF 2的面积S =mn sin60°=√3;
(2)∵△F 1AB 的周长是|AF 1|+|BF 1|+|AB |=|AF 2|+2a +|BF 2|+2a +|AB |=8+2|AB |=40
3
, ∴|AB |=8
3,
1°当直线AB 的斜率不存在时,|AB |=1,不符合题意(舍), 2°当直线AB 斜率存在时,设AB :y =k (x −√5),
联立{y =k(x −√5)
x 24−y 2=1,消y 可得(4k 2﹣1)x 2﹣8√5k 2x +20k 2+4=0,
∴|AB |=√1+
k 2•|x
1﹣x 2|=
√1+k 2⋅√16k 2+16
|4k 2
−1|
=
4(k 2
+1)|4k 2
−1|
=8
3,
解得k =±1,此时△>0,
∴直线l 的方程:y =x −√5或y =﹣x +√5.
3.已知动圆C 的圆心为点C ,圆C 过点P (3,0)且与被直线x =1截得弦长为4√2.不过原点O 的直线l 与点C 的轨迹交于A ,B 两点,且|OA →
+OB →
|=|OA →
−OB →
|. (1)求点C 的轨迹方程;
(2)求三角形OAB 面积的最小值.。