第二章_信源熵-习题答案

合集下载

信息论与编码理论习题答案

信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。

信息论、编码与密码学课后习题答案

信息论、编码与密码学课后习题答案
《信息论、编码与密码学》课后习题答案
第1章 信源编码
1.1考虑一个信源概率为{0.30,0.25,0.20,0.15,0.10}的DMS。求信源熵H(X)。
解: 信源熵
H(X)=-[0.30*(-1.737)+0.25*(-2)+0.2*(-2.322)+0.15*(-2.737)+0.1*(-3.322)]
10100+11110=01010 10100+00111=10011
10100+01101=11001
11110+00111=11001 11110+01101=10011
00111+01101=01010
满足第一条性质
2、全零码字总是一个码字
{00000,01010,10011,11001,10100,11110,00111,01101}
(1)给出此信源的霍夫曼码并确定编码效率。
(2)每次考虑两个符号时,给出此信源的霍夫曼码并确定编码效率。
(3)每次考虑三个符号时,给出此信பைடு நூலகம்的霍夫曼码并确定编码效率。
解:
(1)本题的霍夫曼编码如下图所示:
图1.11 霍夫曼编码
则霍夫曼码如下表:
符号
概率
码字
x1
0.5
1
x2
0.4
00
x3
0.1
01
该信源的熵为:
(2)全零字总是一个码字,
(3)两个码字之间的最小距离等于任何非零码字的最小重量,即
设 ,即 , , , ,
首先证明条件(1):
, , , , , ,
很明显,条件(1)是满足的。条件(2)也是显然成立的。

信息论与编码第二章答案

信息论与编码第二章答案

2—1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。

画出状态图并求出各符号稳态概率。

解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P (0|00)=0.8,P(0|11)=0.2,P (1|00)=0.2,P(1|11)=0.8,P (0|01)=0.5,p(0|10)=0。

5,p(1|01)=0。

5,p (1|10)=0。

5画出状态图,并计算各符号稳态概率。

解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2—1-17)可得方程组。

1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2—3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现"事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。

信息论与编码第二章答案

信息论与编码第二章答案

2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。

画出状态图并求出各符号稳态概率。

解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。

解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。

1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。

第三版信息论答案

第三版信息论答案

【】设有 12 枚同值硬币,其中有一枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现用比较天平左右两边轻重的方法来测量。

为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P 1;12“假币的重量比真的轻,或重”该事件发生的概率为P 1;2为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I log12log2log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P 1 ,因此天3平每一次消除的不确定性为Ilog 3 比特因此,必须称的次数为I1log24I2log3次因此,至少需称 3 次。

【延伸】如何测量?分 3 堆,每堆 4 枚,经过 3 次测量能否测出哪一枚为假币。

【】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为 2”或“面朝上点数之和为 8”或“两骰子面朝上点数是 3 和 4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为 2”有一种可能,即两骰子的点数各为 1,由于二者是独立的,因此该种情况发生的概率为P1 16 61,该事件的信息量为:36I log 36比特“两骰子总点数之和为 8”共有如下可能:2 和 6、3 和 5、4 和 4、5 和 3、6 和2,概率为P 1 1 56 65,因此该事件的信息量为:36I log365比特“两骰子面朝上点数是 3 和 4”的可能性有两种:3 和 4、4 和 3,概率为P因此该事件的信息量为:1 121,6 6 18I log18比特【】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的顺序)?解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P 1,因此此时从答案中获得的信息量为7I log 7比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为1,此时获得的信息量为0 比特。

信息论与编码习题答案-曹雪虹

信息论与编码习题答案-曹雪虹

3-14
信源 符号 xi x1 x2 x3 x4 x5 x6 x7
符号概 率 pi 1/3 1/3 1/9 1/9 1/27 1/27 1/27 1/3 1/3 1/9 1/9 2/27 1/27 1/3 1/3 1/9 1/9 1/9
编码过程
编码 1/3 1/3 1/3 2/3 1/3 00 01 100 101 111 1100 1101
得p0p1p223当p0或p1时信源熵为0第三章无失真信源编码31321因为abcd四个字母每个字母用两个码每个码为05ms所以每个字母用10ms当信源等概率分布时信源熵为hxlog42平均信息传递速率为2信源熵为hx0198bitms198bitsbitms200bits33与上题相同351hu12log2?14log4?18log8?116log16?132log32?164log64?1128log128?1128log128?1984111111112481632641281282每个信源使用3个二进制符号出现0的次数为出现1的次数为p0p134相应的香农编码信源符号xix1x2x3x4x5x6x7x8符号概率pi12141811613216411281128累加概率pi00507508750938096909840992logpxi12345677码长ki12345677码字010110111011110111110111111011111110相应的费诺码信源符号概符号xi率pix1x2x3x4x5x6x7x812141811613216411281128111第一次分组0第二次分组0第三次分组0第四次分组0第五次分组011第六次分组01第七次分组01二元码0101101110111101111101111110111111105香农码和费诺码相同平均码长为编码效率为

第二章 信源熵-习题答案

第二章 信源熵-习题答案

· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生) P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:· 2 ·bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I 811.87log =-= (2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士:sym bolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。

信息论与编码第二章答案

信息论与编码第二章答案

第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。

2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。

2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。

答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。

从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。

2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。

答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。

信息论与编码第2章习题解答

信息论与编码第2章习题解答

2.1设有12枚同值硬币,其中一枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现用比较天平左右两边轻重的方法来测量(因无砝码)。

为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:分三组,每组4个,任意取两组称。

会有两种情况,平衡,或不平衡。

(1) 平衡:明确假币在其余的4个里面。

从这4个里面任意取3个,并从其余8个好的里面也取3个称。

又有 两种情况:平衡或不平衡。

a )平衡:称一下那个剩下的就行了。

b )不平衡:我们至少知道那组假币是轻还是重。

从这三个有假币的组里任意选两个称一下,又有两种情况:平衡与不平衡,不过我们已经知道假币的轻重情况了,自然的,不平衡直接就知道谁是假币;平衡的话,剩下的呢个自然是假币,并且我们也知道他是轻还是重。

(2) 不平衡:假定已经确定该组里有假币时候:推论1:在知道该组是轻还是重的时候,只称一次,能找出假币的话,那么这组的个数不超过3。

我们知道,只要我们知道了该组(3个)有假币,并且知道轻重,只要称一次就可以找出来假币了。

从不平衡的两组中,比如轻的一组里分为3和1表示为“轻(3)”和“轻(1)”,同样重的一组也是分成3和1标示为“重(3)”和“重(1)”。

在从另外4个剩下的,也就是好的一组里取3个表示为“准(3)”。

交叉组合为:轻(3) + 重(1) ?=======? 轻(1) + 准(3)来称一下。

又会有3种情况:(1)左面轻:这说明假币一定在第一次称的时候的轻的一组,因为“重(1)”也出现在现在轻的一边,我们已经知道,假币是轻的。

那么假币在轻(3)里面,根据推论1,再称一次就可以了。

(2)右面轻:这里有两种可能:“重(1)”是假币,它是重的,或者“轻(1)”是假币,它是轻的。

这两种情况,任意 取这两个中的一个和一个真币称一下即可。

(3)平衡:假币在“重(3)”里面,而且是重的。

根据推论也只要称一次即可。

2.2 同时扔一对骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“骰子面朝上之和是3和4”时,试问这三种情况分别获得多少信息量?解:设“两骰子面朝上点数之和为2”为事件A ,则在可能出现的36种可能中,只能个骰子都为1,这一种结果。

信息论与编码习题与答案第二章

信息论与编码习题与答案第二章

第一章信息、消息、信号的定义?三者的关系? 通信系统的模型?各个主要功能模块及作用? 第二章信源的分类?自信息量、条件自信息量、平均自信息量、信源熵、不确定度、条件熵、疑义度、噪声熵、联合熵、互信息量、条件互信息量、平均互信息量以及相对熵的概念?计算方法? 冗余度?具有概率为)(x i p 的符号x i 自信息量:)(log )(x x i i p I -= 条件自信息量:)(log )(y x y x iiiip I -=平均自信息量、平均不确定度、信源熵:∑-=ii i x x p p X H )(log )()(条件熵:)(log ),()(),()(y x y x y x y x jijijijijiji p p I p Y X H ∑∑-==联合熵:),(log ),(),(),()(y x y x y x y x ji jiji ji jiji p p I p Y X H ∑∑-==互信息:)()(log)()()()(log),();(y x yx yx y x yy x jiji jiji jijjiji p p p p p p p Y X I ∑∑==熵的基本性质:非负性、对称性、确定性2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下:11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 6162 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)两个点数求和的概率分布如下:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5){(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),(1,1)}bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得bit x I bit x I bit x I 3)4(,2)3(,2)2(===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++=平均每个符号携带的信息量为87.811.9545=bit/符号 2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

1-4 信源熵-习题答案

1-4 信源熵-习题答案

600
1030 3408 2520
382
489 1808 859
3.137
3.1595 3.1415929 3.1795
利用蒙特卡罗(Monte Carlo)法进行计算机模拟. 取a 1, b 0.85. 单击图形播放/暂停 ESC键退出

概率的公理化定义
概率 P 是在事件域 上有定义的集合函数,它
§1.4

概率的公理化定义及概率的性质
几何概率 古典概型中试验结果是有限的,但许多问题试验
结果是无限的,一般的情况是不易解决的,下面考虑 所谓的“等可能性”问题. 在一个面积为 S 的区域 中,等可能地投点.这 里“等可能”的确切意义是:设在区域 中有任意一个 小区域 A ,如果它的面积为 S A,则点落入 A 中的可 能性大小与 S A成正比,而与 A 的位置和形状无关。
所以 1 P ( S ) P ( A A) P ( A) P ( A) . P ( A) 1 P ( A).
(6) ( 加法公式) 对于任意两事件 A, B 有 P ( A B ) P ( A) P ( B ) P ( AB ).
证明 由图可得
A B A ( B AB),
通常,在
代数 上有定义的非负、可列可加的

集函数称作是 上的测度.概率不过是事件域
的一个规范化的测度.
一般地描述一个随机试验的数学模型,应该有 三件东西: (1) 样本空间 (2) 事件域 (3) 概率(上的规范测度) P 三者写成 ( , , P) 并称它是一个概率空间.
会面问题
例7 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻

第二章 信源熵练习题

第二章 信源熵练习题

6、已知离散随机变量 X 和 Y,及相应的熵 H(X)、H(Y)、H(XY)、 H(X/Y)、H(Y/X)则,X 和 Y 之间的平均互信息 I(X;Y)=( )
A、 H(XY)-H(Y); B、 H(XY)-H(X); C、 H(X)-H(X/Y); D、 H(X)-H(Y/X)
7、已知离散随机变量 X 和 Y,及相应的熵 H(X)、H(Y)、H(XY)、 H(X/Y)、H(Y/X)则,X 和 Y 之间的平均互信息 I(X;Y)=( )
期望(或者概率统计/加权平均) ,在数学上表达为
H XY p( xi y j )I ( xi y j ) p( xi y j ) log p( xi y j ) 。
i 1 j 1 i 1 j 1
n
m
n
m
7. 条件熵是联合离散符号集合 XY 上,条件自信息量的的数学期望(或者概 率统计/加权平均) ,在数学上表达为
是互信息在对应联合概率空间上的数学期望(概率统计平均/概率加权平 均) ,也具有对称性 I (X; Y) I (Y; X) ,有三种表达形式:1)
I ( X; Y) H X H X / Y ;2) I (Y; X) H Y H Y / X ;3) I ( X; Y) H X H Y H XY 。
H X Y p ( xi y j )I ( xi y j ) p ( xi y j ) log p ( xi y j )
i 1 j 1 i 1 j 1
n
m
n
mቤተ መጻሕፍቲ ባይዱ
8. 平均符号熵是离散平稳信源输出 N 长的信源符号序列中平均每个信源符号 所携带的信息量称为平均符号熵,记为 H N X ,数学上表达为

信息论第二章课后习题解答

信息论第二章课后习题解答
这样,平均每个像素携带的信息量为:
每帧图像含有的信息量为:
按每秒传输30帧计算,每秒需要传输的比特数,即信息传输率 为:
(2)需30个不同的色彩度,设每个色彩度等概率出现,则其概 率空间为:
由于电平与色彩是互相独立的,因此有
这样,彩色电视系统的信息率与黑白电视系统信息率的比值为
【2.13】每帧电视图像可以认为是由3×105个像素组成,所以 像素均是独立变化,且每一像素又取128个不同的亮度电平,并 设亮度电平等概率出现。问每帧图像含有多少信息量? 若现有一广播员在约 10000 个汉字的字汇中选 1000 个来口述 此电视图像,试问广播员描述此图像所广播的信息量是多少 (假设汉字是等概率分布,并且彼此无依赖)?若要恰当地描 述此图像,广播员在口述中至少需用多少汉字?
解: 信源为一阶马尔克夫信源,其状态转换图如下所示。
根据上述c) ,
【2.20】黑白气象传真图的消息只有黑色和白色两种,即信源, X={白 黑} ,设黑色出现的概率为 P(黑) =0.3 ,白色出现的 概率为P(白)=0.7。 (1) 假设图上黑白消息出现前后没有关联,求熵H(X) ; (2) 假设消息前后有关联,其依赖关系为P(白|白)=0.9 , P(白|黑)=0.2 ,P(黑|白)=0.1 ,P(黑|黑)=0.8 ,求此一阶马 尔克夫信源的熵H2 。 (3) 分别求上述两种信源的冗余度,并比较H(X)和H2的大小, 并说明其物理意义。
解:(1)如果出现黑白消息前后没有关联,信息熵为:
(2)当消息前后有关联时,首先画出其状态转移图,如下所 示:
设黑白两个状态的极限概率为Q(黑) 和Q (白) ,
解得:
此信源的信息熵为: (3)两信源的冗余度分别为:
结果表明:当信源的消息之间有依赖时,信源输出消息的不确 定性减弱。有依赖时前面已是白色消息,后面绝大多数可能 是出现白色消息;前面是黑色消息,后面基本可猜测是黑色 消息。这时信源的平均不确定性减弱,所以信源消息之间有 依赖时信源熵小于信源消息之间无依赖时的信源熵,这表明 信源熵正是反映信源的平均不确定的大小。而信源剩余度正 是反映信源消息依赖关系的强弱,剩余度越大,信源消息之 间的依赖关系就越大。

信源及信源熵习题答案

信源及信源熵习题答案
解:
(1)
(2)
(3)
H(X) > H2(X)
表示得物理含义就是:无记忆信源得不确定度大与有记忆信源得不确定度,有记忆信源得结构化信息较多,能够进行较大程度得压缩。
2、12 同时掷出两个正常得骰子,也就就是各面呈现得概率都为1/6,求:
(1) “3与5同时出现”这事件得自信息;
(2) “两个1同时出现”这事件得自信息;
第二章:
2、1 试问四进制、八进制脉冲所含信息量就是二进制脉冲得多少倍?
解:
四进制脉冲可以表示4个不同得消息,例如:{0, 1, 2, 3}
八进制脉冲可以表示8个不同得消息,例如:{0, 1, 2, 3, 4, 5, 6, 7}
二进制脉冲可以表示2个不同得消息,例如:{0, 1}
假设每个消息得发出都就是等概率得,则:
若把这些频度瞧作概率测度,求:
(1) 忙闲得无条件熵;
(2) 天气状态与气温状态已知时忙闲得条件熵;
(3) 从天气状态与气温状态获得得关于忙闲得信息。
解:
(1)
根据忙闲得频率,得到忙闲得概率分布如下:
(2)
设忙闲为随机变量X,天气状态为随机变量Y,气温状态为随机变量Z
(3)
2、15 有两个二元随机变量X与Y,它们得联合概率为
(1) 求符号得平均熵;
(2) 有100个符号构成得序列,求某一特定序列(例如有m个“0”与(100m)个“1”)得自信息量得表达式;
(3) 计算(2)中序列得熵。
解:
(1)
(2)
(3)
2、14 对某城市进行交通忙闲得调查,并把天气分成晴雨两种状态,气温分成冷暖两个状态,调查结果得联合出现得相对频度如下:
(2) 若从中抽取13张牌,所给出得点数都不相同能得到多少信息量?

第2章 -1信源与信息熵1【单符号离散信源】

第2章 -1信源与信息熵1【单符号离散信源】
y信道传输的平均信息量有扰离散信道结论因信道有扰而产生的平均信息量称噪声熵反映了信道中噪声源的不确定度唯一地确定信道噪声所需要的平均信息量hyy的先验不确定度hyx发出x后关于y的后验不确定度在已知x的条件下对于随机变量y存在的平均不确定度发出x前后y不确定度的平均减少量可看作在有扰离散信道上传递消息时唯一地确定接收符号y所需要的平均信息量hy减去当信源发出符号x为已知时需要确定接收符号y所需要的平均信息量hyx
1. 离散信源熵 (平均自信息量/无条件熵)
[定义] 自信息量的数学期望为信源的平均信息量,记为:H(X)。
H(X)=E[I(xi)]= –∑p(xi)log2 p(xi)
——平均不确定度的度量、体现: 总体平均
[单位]
二进制:bit/(信源)符号,或bit/(信源)序列 [含义]信息熵具有以下三方面物理含义: ⑴ 表示信源输出前,信源的平均不确定性 ⑵ 表示信源输出后,每个符号所携带的平均信息量 ⑶ 表示信源的的随机性(不同的信源有不同的统计特性) 信息熵的意义: 信源的信息熵是从整个信源的统计特性来考虑的。它是从 平均意义上来表征信源的总体特性的。对于某特定的信源, 其信息熵只有一个。不同的信源因统计特性不同,其信息熵 也不同。

(后续章节)
一、概述
⒈ 信息的一般概念 一个人获得消息→消除不确定性→获得信息。 ⒉ 信息度量的定性分析 事件发生的概率越大,不确定性越小,该事件 包含的信息量越小; 事件发生的概率越小,不确定性越大,该事件 包含的信息量越大; 如果一个事件发生的概率为1,那么它包含的 信息量为0; 两个相互独立事件所提供的信息量应等于它们 各自提供的信息量之和。
2.2.1
自信息量
1.自信息量 [定义] 若信源发出符号xi,由于信道无干扰,收到的就

信源熵-习题答案

信源熵-习题答案

C
1 m1
C
2 m
2
+…+
C n1 m n 1
C n1 mn
P(A3)=
!! (
)!
[C
0 2
1

C 1
2
]
评注:
=
!! (
)!
C
1
1
=
如果把题中的“白球”、“黑球”换为“正品”、 “次品”或“甲物”、“乙物”等等,我们就可以得到各 种各样的“摸球模型”.
二. 古典概型的基本模型:分球入盒模型
排列.所以样本点总数为107.
(1)事件A1,要求所取的7个数是互不相同的,考虑到各 个数取出时有先后顺序之分,所以有利场合相当于从10个 相异元素里每次取出7个相异元素的排列.因此,A1所包含 的样本点数为 A170,于是
.
P(A1)=
A170 10 7
0.06048
(2)A2:不含10与1;
(1)杯子容量无限
问题1 把 4 个球放到 3个杯子中去,求第1、2个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球.
3
3
3
3
4个球放到3个杯子的所有放法 3 3 3 3 34种,
4种 2
2种 2
2个
2个
因此第1、2个杯子中各有两个球的概率为
p 4 2 34 2 .
个样本点,.这样
评注:
P(C)=
Cnm (N 1)nm Nn
Cnm
(
1 N
)m
(1
.
1 N
) nm
不难发现当n和N确定时P(C)只依赖于m.如果把 P(C)记作Pm,依二项式定理有

信息论第二章课件及习题答案

信息论第二章课件及习题答案

2013-8-1
2
§2.1 离散型随机变量的非平 均信息量(事件的信息量)
(本章将给出各种信息量的定义和 它们的性质。)
I ( xk ; y j )
loga rkj qk w j
定义2.1.1(非平均互信息量) 给定 一个二维离散型随机变量 {(X, Y), (xk, yj), rkj, k=1~K; j=1~J} (因此就给定了两个离散型随机 变量 {X, xk, qk, k=1~K}和{Y, yj, wj, j=1~J})。 事件xk∈X与事件yj∈Y的互信息 量定义为I(xk; yj)
2013-8-1
3
§2.1 离散型随机变量的非平 均信息量(事件的信息量)
(本章将给出各种信息量的定义和 它们的性质。)
I ( xk ; y j )
loga loga rkj qk w j P(( X , Y ) ( xk , y j )) P( X xk ) P(Y y j )
2013-8-1 17
图2.2.1
H(X) 1.0
0.5
0
2013-8-1
0.5
1
P
18
§2.2 离散型随机变量的平均 自信息量(熵)
定义2.2.2(条件熵) 给定一个二维离散型 随机变量 {(X, Y), (xk, yj), rkj, k=1~K; j=1~J}。
称如下定义的H(X|Y) 为X相对于Y的条件 熵。
2013-8-1 13
§2.1 离散型随机变量的非平 均信息量(事件的信息量)
小结 非平均互信息量I(xk; yj)。 非平均自信息量h(xk),h(yj)。 条件的非平均自信息量h(xk|yj), h(yj|xk)。 联合的非平均自信息量h(xk, yj)。 相互关系: I(xk; yj)≤min{h(xk),h(yj)}。 h(xk|yj)=h(xk)-I(xk; yj) 。 h(xk, yj)=h(yj)+h(xk|yj)=h(xk)+h(yj|xk)。 h(xk, yj)=h(xk)+h(yj)-I(xk; yj)。

第2章 信源熵

第2章 信源熵
2 2
最大熵值随平均功率 P的变化而变化。
2

1 1 1 log 2 2 log e log 2e 2 2 2 2
11
均值受限条件下的最大熵定理
定理3:若连续信源X输出非负信号的均值受限,则其 输出信号幅度呈指数分布时,连续信源X具有最大熵值。
证明:连续信源 X呈指数分布时的概率密 度函数为 1 m p( x ) e ( x 0 ),其它任意分布的概率密 度函数记为q( x ) m 由限制条件知:
... q( x) log
aN a1 N
bN
b1
p ( x) dx ... dx log e ... q ( x ) 1 dx1...dxN 1 N N aN a1 q ( x ) (bi ai ) 1
bN b1 i 1
log (bi ai ) (1 1) log e H c [ p ( x), X ]
R2 R2 R2
p( x ) dxdy p( x / y )
log x log e ln x, ln x x 1, x 0; p( x ) 0, p( x / y ) 0, 则x p( x ) I c ( X ;Y ) log e p( xy ) 1dxdy p( x / y ) R2 log e[ p( x ) p( y )dxdy p( xy )dxdy] 0
当( b a ) 1时,H c ( x ) 0, 为负值
这是由连续熵的相对性所致。
1
2.3.3 连续熵的性质及最大连续熵定理
2.可加性
H c ( XY ) H c ( X ) H c ( Y / X ) Hc( Y ) Hc( X / Y ) 证明: H c ( XY ) p( xy) log p( xy)dxdy
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 居住某地区的女孩子有 25%是大学生,在女大学生中有 75%是身高 160 厘米以上的,而女 孩子中身高 160 厘米以上的占总数的一半。假如我们得知“身高 160 厘米以上的某女孩是大 学生”的消息,问获得多少信息量?
解: 设随机变量 X 代表女孩子学历 X x1(是大学生) P(X) 0.25 设随机变量 Y 代表女孩子身高 Y y1(身高>160cm) P(Y) 0.5
2.9 设有一个信源,它产生 0,1 序列的信息。它在任意时间而且不论以前发生过什么符号, 均按 P(0) = 0.4,P(1) = 0.6 的概率发出符号。 (1) 试问这个信源是否是平稳的? (2) 试计算 H(X2), H(X3/X1X2)及 H∞; (3) 试计算 H(X4)并写出 X4 信源中可能有的所有符号。
2.5 从大量统计资料知道,男性中红绿色盲的发病率为 7%,女性发病率为 0.5%,如果你问一 位男士: “你是否是色盲?”他的回答可能是“是” ,可能是“否” ,问这两个回答中各含多少 信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量 是多少?
解: 男士:
p ( xY ) 7% I ( xY ) log p ( xY ) log 0.07 3.837 bit p ( x N ) 93% I ( x N ) log p ( x N ) log 0.93 0.105 bit H ( X ) p ( xi ) log p ( xi ) (0.07 log 0.07 0.93 log 0.93) 0.366 bit / symbol
2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?
解: 四进制脉冲可以表示 4 个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示 8 个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示 2 个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则: 四进制脉冲的平均信息量 H ( X 1 ) log n log 4 2 bit / symbol 八进制脉冲的平均信息量 H ( X 2 ) log n log 8 3 bit / symbol 二进制脉冲的平均信息量 H ( X 0 ) log n log 2 1 bit / symbol 所以: 四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的 2 倍和 3 倍。
x2(不是大学生) 0.75
y2(身高<160cm) 0.5
已知:在女大学生中有 75%是身高 160 厘米以上的 即: p ( y1 / x1 ) 0.75 bit 求:身高 160 厘米以上的某女孩是大学生的信息量 即: I ( x1 / y1 ) log p ( x1 / y1 ) log
p( x1 ) p ( y1 / x1 ) 0.25 0.75 log 1.415 bit 0.5 p( y1 )
2.3 一副充分洗乱了的牌(含 52 张牌) ,试问 (1) 任一特定排列所给出的信息量是多少? (2) 若从中抽取 13 张牌,所给出的点数都不相同能得到多少信息量?
解: (1) 52 张牌共有 52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:
解: (1) 此消息总共有 14 个 0、13 个 1、12 个 2、6 个 3,因此此消息发出的概率是:
1 3 1 p 8 8 4
14
25
6
此消息的信息量是: I log p 87.811 bit (2) 此消息中平均每符号携带的信息量是: I / n 87.811 / 45 1.951 bit
·3·
I ( X N ; X 1 X 2 ... X n1 ) 0
H ( X N ) H ( X N / X 1 X 2 ... X n1 )
H ( X 1 X 2 ... X n ) H ( X 1 ) H ( X 2 ) H ( X 3 ) ... H ( X n )
p ( xi )
1 52!
I ( xi ) log p ( xi ) log 52! 225.581 bit
(2) 52 张牌共有 4 种花色、13 种点数,抽取 13 张点数不同的牌的概率如下:
·1·
p ( xi )
413 13 C52 413 13.208 bit 13 C52
H(X) > log6 不满足信源熵的极值性。
解:
·2·
H ( X ) p( xi ) log p ( xi )
i
6
(0.2 log 0.2 0.19 log 0.19 0.18 log 0.18 0.17 log 0.17 0.16 log 0.16 0.17 log 0.17) 2.657 bit / symbol H ( X ) log 2 6 2.585
I ( xi ) log p( xi ) log
X x1 0 x2 1 x3 2 x4 3 2.4 设离散无记忆信源 ,其发出的信息为 1/ 4 1/ 4 1/ 8 P( X ) 3 / 8
(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少? (2) 此消息中平均每符号携带的信息量是多少?
2.8 证明:H(X1X2 。 。 。 Xn) ≤ H(X1) + H(X2) + … + H(Xn)。
证明:
H ( X 1 X 2 ... X n ) H ( X 1 ) H ( X 2 / X 1 ) H ( X 3 / X 1 X 2 ) ... H ( X n / X 1 X 2 ... X n 1 ) I ( X 2; X1) 0 I ( X 3; X1 X 2 ) 0 ... H ( X 2 ) H ( X 2 / X1) H ( X 3 ) H ( X 3 / X1 X 2 )
不满足极值性的原因是
p( x ) 1.07 1 。
i i
6
2.7 证明:H(X3/X1X2) ≤ H(X3/X1),并说明当 X1, X2, X3 是马氏链时等式成立。
证明:
p( xi1 xi 2 xi 3 ) log p ( xi 3 / xi1 xi 2 ) p ( xi1 xi 3 ) log p( xi 3 / xi1 ) p( xi1 xi 2 xi 3 ) log p ( xi 3 / xi1 xi 2 ) p ( xi1 xi 2 xi 3 ) log p( xi 3 / xi1 )

p( xi 3 / xi1 ) 1 0时等式成立 p( xi 3 / xi1 xi 2 )
p( xi 3 / xi1 ) p( xi 3 / xi1 xi 2 ) p( xi1 xi 2 ) p( xi 3 / xi1 ) p ( xi 3 / xi1 xi 2 ) p( xi1 xi 2 ) p( xi1 ) p( xi 2 / xi1 ) p( xi 3 / xi1 ) p( xi1 xi 2 xi 3 ) p( xi 2 / xi1 ) p( xi 3 / xi1 ) p( xi 2 xi 3 / xi1 ) 等式成立的条件是X 1 , X 2 , X 3是马 _ 氏链
i
H lim H ( X N / X 1 X 2 ... X N 1 ) H ( X N ) 0.971 bit / symbol
N ห้องสมุดไป่ตู้
(3)
H ( X 4 ) 4 H ( X ) 4 (0.4 log 0.4 0.6 log 0.6) 3.884 bit / symbol X 4的所有符号: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
i 2
女士:
H ( X ) p( xi ) log p ( xi ) (0.005 log 0.005 0.995 log 0.995) 0.045 bit / symbol
i
2
x2 x3 x4 x5 x6 X x1 2.6 设信源 ,求这个信源的熵,并解释为什么 P( X ) 0.2 0.19 0.18 0.17 0.16 0.17
2.10 一阶马尔可夫信源的状态图如下图所示。信源 X 的符号集为{0, 1, 2}。 (1) 求平稳后信源的概率分布; (2) 求信源的熵 H∞。
解: (1) ·4·
p (e1 ) p (e1 ) p (e1 / e1 ) p (e2 ) p (e1 / e2 ) p ( e 2 ) p ( e 2 ) p ( e 2 / e 2 ) p ( e3 ) p ( e 2 / e 3 ) p ( e ) p (e ) p ( e / e ) p ( e ) p ( e / e ) 3 3 3 1 3 1 3 p (e1 ) p p (e1 ) p p (e2 ) p ( e 2 ) p p (e 2 ) p p ( e3 ) p (e3 ) p p (e3 ) p p (e1 ) p (e1 ) p (e2 ) p (e3 ) p (e1 ) p (e2 ) p (e3 ) 1 p(e1 ) 1 / 3 p (e 2 ) 1 / 3 p (e ) 1 / 3 3 p ( x1 ) p (e1 ) p ( x1 / e1 ) p (e2 ) p ( x1 / e2 ) p p (e1 ) p p (e2 ) ( p p ) / 3 1 / 3 p ( x 2 ) p ( e 2 ) p ( x 2 / e 2 ) p ( e 3 ) p ( x 2 / e 3 ) p p ( e 2 ) p p ( e3 ) ( p p ) / 3 1 / 3 p ( x3 ) p (e3 ) p ( x3 / e3 ) p (e1 ) p ( x3 / e1 ) p p (e3 ) p p(e1 ) ( p p ) / 3 1 / 3 1 2 X 0 P( X ) 1 / 3 1 / 3 1 / 3
相关文档
最新文档