2019年吉林中考数学试题(解析版)

合集下载

人教版九年级数学上册 第二十四章 圆 填空题—2019年中考真题汇编(一)(解析版)

人教版九年级数学上册 第二十四章 圆 填空题—2019年中考真题汇编(一)(解析版)

第二十四章圆填空题—2019年中考真题汇编(一)1.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC =100°,∠OCD=35°,那么∠OED=.2.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.4.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为.5.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.6.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为.7.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.8.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.9.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.10.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC ⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.11.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;12.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为.14.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.15.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.16.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).17.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为.18.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.20.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA =2,则四叶幸运草的周长是.21.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.22.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.23.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.24.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.25.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.26.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.28.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.29.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.30.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.31.(2019•哈尔滨)一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.32.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.33.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E 为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.34.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.35.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是.36.(2019•荆门)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.37.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)38.(2019•咸宁)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).39.(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为.第二十四章圆填空题—2019年中考真题汇编(一)参考答案与试题解析1.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.2.【分析】根据S阴影部分=S扇形OAE﹣S△OAE即可求解.【解答】解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积.3.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=S△ABC=S正方形ABCD=×2×2=1故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.4.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【解答】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长==2π,故答案为:2π.【点评】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.5.【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.【分析】连接OA,根据等腰三角形的性质求出∠OAC,根据题意和三角形内角和定理求出∠AOB,代入弧长公式计算,得到答案.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=70°,∴∠OAB=∠OAC﹣∠BAC=70°﹣60°=10°,∵OA=OB,∴∠OBA=∠OAB=10°,∴∠AOB=180°﹣10°﹣10°=160°,则的长==8π,故答案为:8π.【点评】本题考查的是弧长的计算、圆周角定理,掌握弧长公式是解题的关键.7.【分析】根据垂径定理得到AD=DC,由等腰三角形的性质得到AB=2OD=2×2=4,得到∠BAE=∠CAE=∠BAC=90°=45°,求得∠ABD=∠ADB=45°,求得AD=AB=4,于是得到DC=AD=4,根据勾股定理即可得到结论.【解答】解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴AC=8,∴BC===4.故答案为:4.【点评】本题考查了三角形的外接圆与外心,圆周角定理,垂径定理,勾股定理,正确的识别图形是解题的关键.8.【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10【点评】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.9.【分析】根据已知条件得到∠AOB=60°,推出△AOB是等边三角形,得到OA=OB=AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵正六边形ABCDEF内接于⊙O,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∴扇形AOB的面积==,故答案为:.【点评】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是熟练掌握扇形的面积公式.10.【分析】根据垂径定理得到AD=4,由勾股定理得到OD==3,求得OA﹣OD=2,根据弧田面积=(弦×矢+矢2)即可得到结论.【解答】解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD==3,∴OA﹣OD=2,∴弧田面积=(弦×矢+矢2)=×(8×2+22)=10,故答案为:10.【点评】此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.11.【分析】直接利用圆内接四边形的性质:外角等于它的内对角得出答案.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°【点评】考查圆内接四边形的外角等于它的内对角.12.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.13.【分析】根据正六边形的性质即可得到结论.【解答】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB,△COD为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.【点评】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.14.【分析】利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求求AD的长.【解答】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.【分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解答】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°【点评】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.16.【分析】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=﹣8×6=25π﹣48.故答案为:25π﹣48.【点评】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.17.【分析】连接CD,由圆周角定理得出∠BCD=90°=∠CAB,证明△ABC∽△CBD,得出=,即可得出结果.【解答】解:连接CD,如图:∵BD是⊙O的直径,∴∠BCD=90°=∠CAB,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,∴BC2=AB×BD=4×6=24,∴BC==2;故答案为:2.【点评】本题考查了圆周角定理、相似三角形的判定与性质;熟练掌握圆周角定理,证明三角形相似是解题的关键.18.【分析】先根据题意画出图形,再连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,由垂径定理及正方形的性质得出OE=BE=,再由勾股定理即可求解.【解答】解:如图所示,连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,∵OE⊥BC,∴OE=BE=,即a=5.故答案为:5.【点评】本题考查的是正多边形和圆,解答此类问题的关键是根据题意画出图形,利用数形结合求解.19.【分析】根据三角形外角的性质得到∠C=∠ADO﹣∠CAB=65°,根据等腰三角形的性质得到∠AOC =50°,由扇形的面积公式即可得到结论.【解答】解:∵∠ADO=85°,∠CAB=20°,∴∠C=∠ADO﹣∠CAB=65°,∵OA=OC,∴∠OAC=∠C=65°,∴∠AOC=50°,∴阴影部分的扇形OAC面积==,故答案为:.【点评】本题考查了扇形面积的计算,由等腰三角形的性质和三角形的内角和求出∠AOC是解题的关键.20.【分析】由题意得出:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,求出圆的半径,由圆的周长公式即可得出结果.【解答】解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,OA⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.【点评】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.21.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.22.【分析】利用圆周角与圆心角的关系即可求解.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.【点评】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.23.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.24.【分析】由切线的性质得出P A=PB,P A⊥OA,得出∠P AB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠P AB=90°﹣∠OAB=52°,再由三角形内角和定理即可得出结果.【解答】解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.25.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.【分析】连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC=2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH =,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算.【解答】解:连接OB,作OH⊥BC于H,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O =3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质和扇形面积公式.27.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=,解得n=90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.28.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.29.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.30.【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解答】解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.【点评】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.31.【分析】直接利用弧长公式l=即可求出n的值,计算即可.【解答】解:根据l===11π,解得:n=110,故答案为:110.【点评】本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.32.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.33.【分析】根据切线的性质得出△ABD是直角三角形,DB2=CD•AD,根据勾股定理求得AB,即可求得AE,然后分两种情况求得AP的长即可.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.故答案为4和2.56.【点评】本题考查了切线的性质,勾股定理的应用,垂径定理的应用,平行线的判定和性质,分类讨论是解题的关键.34.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.35.【分析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM,解直角三角形即可得到结论.【解答】解:过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC的距离最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.【点评】本题考查了三角形的外接圆与外心,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.36.【分析】过A作AM⊥BC于M,EN⊥BC于N,根据等边三角形的性质得到AM=BC=×2=,求得EN=AM=,根据三角形的面积和扇形的面积公式即可得到结论.【解答】解:过A作AM⊥BC于M,EN⊥BC于N,∵等边三角形ABC的边长为2,∠BAC=∠B=∠ACB=60°,∴AM=BC=×2=,∵AD=AE=1,∴AD=BD,AE=CE,∴EN=AM=,∴图中阴影部分的面积=S△ABC﹣S扇形ADE﹣S△CEF﹣(S△BCD﹣S扇形DCF)=×2×﹣﹣×﹣(×﹣)=+﹣,故答案为:+﹣.【点评】本题考查了扇形的面积的计算,等边三角形的性质,正确的作出辅助线是解题的关键.37.【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.38.【分析】根据题意,作出合适的辅助线,即可求得CD和∠COB的度数,即可得到阴影部分的面积是半圆的面积减去△AOC和扇形BOC的面积.【解答】解:连接OC、BC,作CD⊥AB于点D,∵直径AB=6,点C在半圆上,∠BAC=30°,∴∠ACB=90°,∠COB=60°,∴AC=3,∵∠CDA=90°,∴CD=,∴阴影部分的面积是:=3π﹣,故答案为:3π﹣.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.39.【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD的面积与扇形OBC的面积之和再减去△BDO的面积,本题得以解决.【解答】解:作OE⊥AB于点F,∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.OA=2,∴∠AOD=90°,∠BOC=30°,OA=OB,∴∠OAB=∠OBA=30°,∴OD=OA•tan30°=×=2,AD=4,AB=2AF=2×2×=6,OF=,∴BD=2,∴阴影部分的面积是:S△AOD+S扇形OBC﹣S△BDO==+π,故答案为:+π.【点评】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.。

2019年吉林中考数学试题(解析版)

2019年吉林中考数学试题(解析版)

{来源}2019年吉林中考数学试卷{适用范围:3.九年级}2019年吉林初中毕业生学业水平考试数学试卷考试时间:120分钟满分:120分{题目}1.(2019年吉林)1.如图,数轴上蝴蝶所在点表示的数可能为()(第1题)A.3 B.2 C.1 D.-1{答案}D{解析}本题考查了数轴上有理数的表示,因为负数在原点的左侧,因此本题选D.{分值}2{章节: [1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:1-最简单}{题目}2.(2019年吉林)2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()(第2题)A.B.C.D.{答案}D{解析}本题考查了俯视图,因为该组合图形俯视图由四个正方体连成一排,因此本题选D.{分值}2{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}3.(2019年吉林)3.若a为实数,则下列各式的运算结果比a小的是()A.1a⨯D.1a÷a-C.1a+B.1{答案}B{解析}本题考查了数值大小比较,a-1比a小,因此本题选B.{分值}2{章节:[1-2-2]整式的加减}{考点:实数的大小比较}{类别:常考题}{难度:1-最简单}{题目}4.(2019年吉林)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°(第4题){答案}C{解析}本题考查了图形的旋转运动,因为图形可以分解成三份完全相同的图形,360°÷3=120°,因此本题选C . {分值}2{章节:[1-23-1]图形的旋转} {考点:与旋转有关的角度计算} {类别:常考题} {难度:1-最简单}{题目}5.(2019年吉林)5.如图,在⊙O 中,AB 所对的圆周角∠ACB =50°,若P 为AB 上一点,∠AOP =55°,则∠POB 的度数为( ) A .30° B .45° C .55° D .60°OPC BA (第5题){答案}B{解析}本题考查了圆内角度计算,同弧所对的圆周角是圆心角的一半,因此本题选B . {分值}2{章节:[1-24-1-3]弧、弦、圆心角} {考点:直径所对的圆周角} {类别:常考题} {难度:3-中等难度}{题目}6(2019年吉林)6. 曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光。

中考试题 因式分解(解析版)2019数学全国中考真题

中考试题  因式分解(解析版)2019数学全国中考真题

2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。

1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。

人教版数学八年级下册第18章 平行四边形 解答题—2019年中考真题汇编(解析版)

人教版数学八年级下册第18章 平行四边形 解答题—2019年中考真题汇编(解析版)

第18章平行四边形解答题—2019年中考真题汇编1.(2019•大庆)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.2.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.3.如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.4.(2019•吉林)如图,在▱ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.5.(2019•云南)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.6.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:7.(2019•湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.8.(2019•哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.9.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.10.(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE =DF.11.(2019•荆门)如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.12.(2019•黄冈)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG ⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.13.(2019•天门)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.14.(2019•新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.15.(2019•郴州)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.16.(2019•福建)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.17.(2019•鄂州)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O 的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.18.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.19.(2019•岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.20.(2019•怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.21.(2019•株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.22.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE =DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.23.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.(2019•广安)如图,点E是▱ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.25.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.26.(2019•聊城)在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.27.(2019•遂宁)如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE 交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.28.(2019•凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.29.(2019•安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.30.(2019•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.31.(2019•重庆)在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC.32.(2019•衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.第18章平行四边形解答题—2019年中考真题汇编参考答案与试题解析1.【分析】(1)根据四边形的性质得到AB∥CD,求得∠MAB=∠NCD.根据全等三角形的判定定理得到结论;(2)连接EF,交AC于点O.根据全等三角形的性质得到EO=FO,AO=CO,于是得到结论.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴AC==5,∵E、F分别是AD、BC的中点,∴AE=BF,∴四边形ABFE是矩形,∴EF=AB=3,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.【点评】本题考查了矩形的性质,全等三角形的判定和性质,熟练正确全等三角形的判定和性质是解题的关键.2.【分析】(1)由“AAS”可证△AEB≌△BFC,可得AE=BF;(2)由线段垂直平分线的性质可得BD=AB=2.【解答】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=2【点评】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质,熟练运用菱形的性质是本题的关键.3.【分析】(1)根据正方形的性质得到AB=AD,∠ABC=∠ADC=∠ADF=90°,利用SAS 定理证明结论;(2)根据全等三角形的性质得到AE=AF,∠BAE=∠DAF,得到△AEF为等腰直角三角形,根据勾股定理计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠ADF=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:∵△ABE≌△ADF,∴AE=AF,∠BAE=∠DAF,∵∠BAE+∠EAD=90°,∴∠DAF+∠EAD=90°,即∠EAF=90°,∴EF=AE=5.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、勾股定理,掌握全等三角形的判定定理和性质定理、正方形的性质整式解题的关键.4.【分析】直接利用已知作图方法结合全等三角形的判定方法分析得出答案.【解答】证明:由题意可得:AE=FC,在平行四边形ABCD中,AB=DC,∠A=∠C在△ABE和△CDF中,,所以,△ABE≌△CDF(SAS).【点评】此题主要考查了平行四边形的性质以及全等三角形的判定,正确掌握基本作图方法是解题关键.5.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.6.【分析】连接AC,由SSS证明△ABC≌△CDA得出∠BAC=∠DCA,∠ACB=∠CAD,证出AB∥CD,BC∥AD,即可得出结论.【解答】证明:连接AC,如图所示:在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定定理,证明三角形全等是解题的关键.7.【分析】(1)利用SAS即可证明;(2)用正方形面积减去两个全等三角形的面积即可.【解答】解:(1)在△ABF和△CBE中,∴△ABF≌△CBE(SAS);(2)由已知可得正方形ABCD面积为16,△ABF面积=△CBE面积=×4×1=2.所以四边形BEDF的面积为16﹣2×2=12.【点评】本题主要考查了全等三角形的判定和性质,难度较小,掌握全等三角形的判定方法是解题的关键.8.【分析】(1)由AAS证明△ABE≌△CDF,即可得出结论;(2)由平行线的性质得出∠CBD=∠ADB=30°,由直角三角形的性质得出BE=AB,AE=AD,得出△ABE的面积=AB×AD=矩形ABCD的面积,由全等三角形的性质得出△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,由直角三角形的性质得出EG =BE=×AB=AB,得出△BCE的面积=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠CDF,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF;(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD面积的.理由如下:∵AD∥BC,∴∠CBD=∠ADB=30°,∵∠ABC=90°,∴∠ABE=60°,∵AE⊥BD,∴∠BAE=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=矩形ABCD的面积,∵△ABE≌△CDF,∴△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【点评】本题考查了矩形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质、平行线的性质、三角形面积公式等知识;熟练掌握矩形的性质和含30°角的直角三角形的性质,证明三角形全等是解题的关键.9.【分析】(1)由矩形的性质得出∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,由HL证明Rt△ABE≌Rt△CDF即可;(2)由全等三角形的性质得出BE=DF,得出CE=AF,由CE∥AF,证出四边形AECF是平行四边形,再由AC⊥EF,即可得出四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.10.【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD 边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.【点评】此题考查了平行四边形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.11.【分析】(1)作CE⊥AB交AB的延长线于点E,设BE=x,由勾股定理列出关于x的方程,解方程求出平行四边形的高,进而即可求出其面积;(2)利用全等三角形的判定与性质得出AF=BE=,BF=5﹣=,DF=CE=,从而求出BD的长,在△BCD中利用勾股定理的逆定理即可证明两直线垂直.【解答】解:(1)作CE⊥AB交AB的延长线于点E,如图:设BE=x,CE=h在Rt△CEB中:x2+h2=9①在Rt△CEA中:(5+x)2+h2=52②联立①②解得:x=,h=∴平行四边形ABCD的面积=AB•h=12;(2)作DF⊥AB,垂足为F∴∠DFA=∠CEB=90°∵平行四边形ABCD∴AD=BC,AD∥BC∴∠DAF=∠CBE又∵∠DFA=∠CEB=90°,AD=BC∴△ADF≌△BCE(AAS)∴AF=BE=,BF=5﹣=,DF=CE=在Rt△DFB中:BD2=DF2+BF2=()2+()2=16∴BD=4∵BC=3,DC=5∴CD2=DB2+BC2∴BD⊥BC.【点评】本题主要考查了平行四边形的性质、勾股定理及其逆定理以及全等三角形的判定与性质,综合性较强.12.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.13.【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG得出AE=EG,证出EG=BF,即可得出结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定、平行线的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.14.【分析】(1)根据两直线平行,内错角相等可得∠ODE=∠FCE,根据线段中点的定义可得CE=DE,然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据菱形的对角线互相垂直得出∠COD=90°,即可得出结论.【解答】证明:(1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形OCFD是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCFD是矩形.【点评】本题考查了菱形的性质,全等三角形的判定与性质,矩形的判定,平行四边形的判定,熟练掌握菱形的性质,证明三角形全等是解题的关键.15.【分析】利用平行四边形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE(ASA),∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.16.【分析】由SAS证明△ADF≌△CBE,即可得出AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴AF=CE.【点评】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.17.【分析】(1)根据矩形的性质得到AB∥CD,由平行线的性质得到∠DFO=∠BEO,根据全等三角形的性质得到DF=BE,于是得到四边形BEDF是平行四边形;(2)推出四边形BEDF是菱形,得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2 ﹣OD2=OE2,∴OE=,∴EF=2OE=.【点评】本题考查了矩形的性质,平行四边形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.18.【分析】(1)设出正方形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD和HG的长,即可证明结论成立.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.【点评】本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】由菱形的性质得出AD=CD,由SAS证明△ADF≌△CDE,即可得出结论.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.【点评】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.20.【分析】(1)由平行四边形的性质得出∠B=∠D,AB=CD,AD∥BC,由已知得出∠AEB =∠AEC=∠CFD=∠AFC=90°,由AAS证明△ABE≌△CDF即可;(2)证出∠EAF=∠AEC=∠AFC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)证明:∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.21.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC、BD,可得∠DOA=∠DOC=90°,∠GOE=90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH长,从而求得HO,即可求得MO,再通过MH∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,比例的性质,直角三角形的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.22.【分析】(1)根据矩形的性质得到CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,求得CF=AE=4﹣=,根据勾股定理得到AF=CE==,于是得到结论;(2)过F作FH⊥AB于H,得到四边形AHFD是矩形,根据矩形的性质得到AH=DF=,FH=AD=2,根据勾股定理即可得到结论.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BC=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.【点评】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.23.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG =∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【点评】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.24.【分析】先证明△ADE≌△FCE,得到AD=CF=3,DE=CE=2,从而可求平行四边形的周长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∠D=∠ECF.又ED=EC,∴△ADE≌△FCE(AAS).∴AD=CF=3,DE=CE=2.∴DC=4.∴平行四边形ABCD的周长为2(AD+DC)=14.【点评】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解题的关键是借助全等转化线段.25.【分析】(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA=AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.【点评】本题考查了平行四边形的性质和判定,菱形的判定和性质,直角三角形的斜边中线的性质,熟练掌握平行四边形的性质是解题的关键.26.【分析】(1)根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BOA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.【点评】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键.27.【分析】(1)根据平行线的性质得到∠DAF=∠E,根据线段中点的定义得到DF=CF,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD=EC,等量代换得到AD=BC,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.28.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.29.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.30.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,证出EG=CF,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.31.【分析】(1)作BO⊥AD于O,由平行四边形的性质得出∠BAO=∠D=30°,由直角三角形的性质得出BO=AB=,证出∠ABE=∠AEB,得出AE=AB=,由三角形面积公式即可得出结果;(2)作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,证明△ABG≌△AFP得出AG=FP,再证明△BPC≌△PED得出PC=ED,即可得出结论.【解答】(1)解:作BO⊥AD于O,如图1所示:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∠ABC=∠D=30°,∴∠AEB=∠CBE,∠BAO=∠D=30°,∴BO=AB=,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=,∴△ABE的面积=AE×BO=××=;(2)证明:作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:∵AB=AE,AQ⊥BE,∴∠ABE=∠AEB,BQ=EQ,∴PB=PE,∴∠PBE=∠PEB,∴∠ABP=∠AEP,∵AB∥CD,AF⊥CD,∴AF⊥AB,∴∠BAF=90°,∵AQ⊥BE,∴∠ABG=∠FAP,在△ABG和△FAP中,,∴△ABG≌△AFP(ASA),∴AG=FP,∵AB∥CD,AD∥BC,∴∠ABP+∠BPC=180°,∠BCP=∠D,∵∠AEP+∠PED=180°,∴∠BPC=∠PED,在△BPC和△PED中,,∴△BPC≌△PED(AAS),∴PC=ED,∴ED﹣AG=PC﹣AG=PC﹣FP=FC.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.32.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.。

中考数学专题13 图形的相似(第01期)-2019年中考真题数学试题分项汇编(解析版)

中考数学专题13 图形的相似(第01期)-2019年中考真题数学试题分项汇编(解析版)

专题13 图形的相似1.(2019•常州)若△ABC~△A′B'C′,相似比为1∶2,则△ABC与△A'B′C'的周长的比为A.2∶1 B.1∶2 C.4∶1 D.1∶4【答案】B【解析】∵△ABC~△A′B'C′,相似比为1∶2,∴△ABC与△A'B′C'的周长的比为1∶2.故选B.2.(2019•兰州)已知△ABC∽△A'B'C',AB=8,A'B'=6,则BCB'C'=A.2 B.43C.3 D.169【答案】B【解析】∵△ABC∽△A'B'C',∴8463BC ABB C A B''''=--.故选B.3.(2019•安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为A.3.6 B.4 C.4.8 D.5【答案】B【解析】如图,作DH∥EG交AB于点H,则△AEG∽△ADH,∴AE EGAD DH=,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴AE EFAD CD=,∴EG EFDH CD=,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12-x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴DH BDAC BC=,即12612x x-=,解得,x=4,∴CD=4,故选B.4.(2019•杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=【答案】C【解析】∵DN∥BM,∴△ADN∽△ABM,∴DN AN BM AM=,∵NE∥MC,∴△ANE∽△AMC,∴NE ANMC AM=,∴DN NEBM MC=.故选C.5.(2019•连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似A.①处B.②处C.③处D.④处【答案】B【解析】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、,“车”、“炮”之间的距离为1,12==,∴马应该落在②的位置,故选B.6.(2019•重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是A.2 B.3 C.4 D.5 【答案】C【解析】∵△ABO∽△CDO,∴BO ABDO DC=,∵BO=6,DO=3,CD=2,∴632AB=,解得AB=4.故选C.7.(2019•赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是A.1 B.2 C.3 D.4【答案】C【解析】∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴AD AEAC AB=,即246AE=,解得AE=3,故选C.8.(2019•凉山州)如图,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=A.1∶2 B.1∶3 C.1∶4 D.2∶3【答案】B【解析】如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD∶DC=1∶2,∴AD=DG=GC,∴AG∶GC=2∶1,AO∶OE=2∶1,∴S△AOB:S△BOE=2,设S △BOE =S ,S △AOB =2S ,又BO =OD ,∴S △AOD =2S ,S △ABD =4S ,∵AD ∶DC =1∶2,∴S △BDC =2S △ABD =8S ,S四边形CDOE=7S ,∴S △AEC =9S ,S △ABE =3S ,∴3193ABE AEC S BE S EC S S ===△△,故选B . 9.(2019•常德)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是A .20B .22C .24D .26【答案】D【解析】如图,根据题意得△AFH ∽△ADE ,∴2239()()416AFH ADE S FH S DE ===△△,设S △AFH =9x ,则S △ADE =16x ,∴16x -9x =7,解得x =1,∴S △ADE =16, ∴四边形DBCE 的面积=42-16=26.故选D .10.(2019•玉林)如图,AB ∥EF ∥DC ,AD ∥BC ,EF 与AC 交于点G ,则是相似三角形共有A .3对B .5对C .6对D .8对【答案】C【解析】图中三角形有:△AEG ,△ADC ,CFG ,△CBA , ∵AB ∥EF ∥DC ,AD ∥BC ,∴△AEG ∽△ADC ∽CFG ∽△CBA ,共有6个组合分别为:∴△AEG ∽△ADC ,△AEG ∽CFG ,△AEG ∽△CBA ,△ADC ∽CFG ,△ADC ∽△CBA ,CFG ∽△CBA ,故选C .11.(2019•淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为A .2aB .52a C .3aD .72a【答案】C【解析】∵∠CAD =∠B ,∠ACD =∠BCA ,∴△ACD ∽△BCA ,∴2()ACD BCA S AC S AB =△△,即14BCA a S =△, 解得,△BCA 的面积为4a ,∴△ABD 的面积为:4a -a =3a ,故选C .12.(2019•邵阳)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是A .△ABC ∽△A ′B ′C ′B .点C 、点O 、点C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′ 【答案】C【解析】∵以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′,点C 、点O 、点C ′三点在同一直线上,AB ∥A ′B ′, AO ∶OA ′=1∶2,故选项C 错误,符合题意.故选C .13.(2019•淮安)如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =__________.【答案】4【解析】∵l 1∥l 2∥l 3,∴AB DEBC EF=,又AB =3,DE =2,BC =6,∴EF =4,故答案为:4.14.(2019•河池)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=__________.【答案】2 5【解析】∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴22235 OA ABOC CD===+.故答案为:25.15.(2019•宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=__________.【答案】16 5【解析】在Rt△ABC中,AB,由射影定理得,AC2=AD·AB,∴AD=2ACAB=165,故答案为:165.16.(2019•本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为12,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为__________.【答案】(2,1)或(-2,-1)【解析】以点O为位似中心,相似比为12,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×12,2×12)或(-4×12,-2×12),即(2,1)或(-2,-1),故答案为:(2,1)或(-2,-1).17.(2019•烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,-1),B1(1,-5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为__________.【答案】(-5,-1)【解析】如图,P点坐标为(-5,-1).故答案为:(-5,-1).18.(2019•南京)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长__________.【解析】∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A =∠A ,∴△ACD ∽△ABC ,∴AC ADAB AC=,∴AC 2=AD ×AB =2×5=10,∴AC19.(2019•吉林)在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长为90 m ,则这栋楼的高度为__________m . 【答案】54【解析】设这栋楼的高度为h m ,∵在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时测得一栋楼的影长为60 m , ∴1.8390h=,解得h =54(m ).故答案为:54. 20.(2019•福建)已知△ABC 和点A ',如图.(1)以点A '为一个顶点作△A 'B 'C ',使△A 'B 'C '∽△ABC ,且△A 'B 'C '的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的△A 'B 'C '三边A 'B '、B 'C '、C 'A '的中点,求证:△DEF ∽△D 'E 'F '.【解析】(1)作线段A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,得△A 'B 'C '即可所求.∵A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC , ∴△ABC ∽△A ′B ′C ′,∴2()4A B C'ABC ''S A B''S AB==△△.(2)如图,∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴111222DE BC DF AC EF AB ===,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.(2019•凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.【解析】(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD,∴AD BD BD CD=,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC,∴∠ADB=∠MBD,且∠ABD=90°,∴BM=MD,∠MAB=∠MBA,∴BM=MD=AM=4,∵BD2=AD·CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=MB2+BC2=28,∴MC=∵BM ∥CD ,∴△MNB ∽△CND ,∴23BM MN CD CN ==,且MC =,∴MN =5. 22.(2019•巴中)△ABC 在边长为1的正方形网格中如图所示.①以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C ,使其位似比为1∶2.且△A 1B 1C 位于点C 的异侧,并表示出A 1的坐标.②作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C . ③在②的条件下求出点B 经过的路径长.【解析】①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3). ②如图,△A 2B 2C 为所作.③OB =点B 经过的路径长=90ππ1802⋅=.23.(2019•荆门)如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E ;再将镜子放到C 处,然后后退到D 处,恰好再次在镜子中看到楼的顶部E (O ,A ,B ,C ,D 在同一条直线上),测得AC =2 m ,BD =2.1 m ,如果小明眼睛距地面髙度BF ,DG 为1.6 m ,试确定楼的高度OE .【解析】如图,设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF 并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴AC MA MO FG MF MH==,即:AC OE OE OEBD MH MO OH OE BF ===++,∴21.62.1OEOE=+,∴OE=32,答:楼的高度OE为32米.24.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2·h3.【解析】(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC,又∠APB =135°,∴∠PAB +∠PBA =45°, ∴∠PBC =∠PAB , 又∵∠APB =∠BPC =135°, ∴△PAB ∽△PBC .(2)∵△PAB ∽△PBC ,∴PA PB ABPB PC BC ==,在Rt △ABC 中,AB =AC ,∴ABBC=∴PB PA ==,,∴PA =2PC .(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,∴PF =h 1,PD =h 2,PE =h 3, ∵∠CPB +∠APB =135°+135°=270°, ∴∠APC =90°, ∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90°, ∴∠EAP =∠PCD , ∴Rt △AEP ∽Rt △CDP , ∴2PE APDP PC==,即322h h =,∴h 3=2h 2,∵△PAB ∽△PBC ,∴12h AB h BC==∴12h =,∴2212222322h h h h h h ==⋅=.即h 12=h 2·h 3.25.(2019•长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题) ②三个角分别相等的两个凸四边形相似;(__________命题) ③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,1111AB BCA B B C =11CDC D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD相似,求21S S 的值.【解析】(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例. ③两个大小不同的正方形相似.是真命题.故答案为:假,假,真. (2)如图1中,连接BD ,B 1D 1.∵∠BCD =∠B 1C 1D 1,且1111BC CDB C C D =, ∴△BCD ∽△B 1C 1D 1,∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD , ∵111111AB BC CD A B B C C D ==,∴1111BD ABB D A B =, ∵∠ABC =∠A 1B 1C 1, ∴∠ABD =∠A 1B 1D 1, ∴△ABD ∽△A 1B 1D 1, ∴1111AD ABA D AB =,∠A =∠A 1,∠ADB =∠A 1D 1B 1, ∴11111111AB BC CD ADA B B C C D A D ===,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)∵四边形ABCD 与四边形EFCD 相似. ∴DE EFAE AB=, ∵EF =OE +OF ,∴DE OE OFAE AB+=, ∵EF ∥AB ∥CD , ∴DE OE DE OC OF AD AB AD AB AB =-=,,∴DE DE OE OF AD AD AB AB +=+,∴2DE DEAD AE =, ∵AD =DE +AE , ∴21DE AE AE=+,∴2AE =DE +AE , ∴AE =DE ,∴12S S =1.祝你考试成功!祝你考试成功!。

2019年吉林省中考数学试卷含答案解析

2019年吉林省中考数学试卷含答案解析

2019年吉林省中考数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2018•吉林)计算(﹣1)×(﹣2)的结果是()A.2B.1C.﹣2D.﹣3 2.(2018•吉林)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(2018•吉林)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3 4.(2018•吉林)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a 与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°5.(2018•吉林)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB =9,BC=6,则△DNB的周长为()A.12B.13C.14D.156.(2018•吉林)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)7.(3分)(2018•吉林)计算:.8.(3分)(2018•吉林)买单价3元的圆珠笔m支,应付元.9.(3分)(2018•吉林)若a+b=4,ab=1,则a2b+ab2=.10.(3分)(2018•吉林)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.11.(3分)(2018•吉林)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为.12.(3分)(2018•吉林)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=m.13.(3分)(2018•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=度.14.(3分)(2018•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k,则该等腰三角形的顶角为度.三、解答题(共12小题,满分84分)15.(5分)(2018•吉林)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.16.(5分)(2018•吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.17.(5分)(2018•吉林)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(5分)(2018•吉林)在平面直角坐标系中,反比例函数y(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(7分)(2018•吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7分)(2018•吉林)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).21.(7分)(2018•吉林)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平测量步骤22.(7分)(2018•吉林)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8分)(2018•吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min 的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8分)(2018•吉林)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10分)(2018•吉林)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.26.(10分)(2018•吉林)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.2018年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2018•吉林)计算(﹣1)×(﹣2)的结果是()A.2B.1C.﹣2D.﹣3【解答】解:(﹣1)×(﹣2)=2.故选:A.2.(2018•吉林)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.3.(2018•吉林)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.4.(2018•吉林)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a 与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.5.(2018•吉林)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB =9,BC=6,则△DNB的周长为()A.12B.13C.14D.15【解答】解:∵D为BC的中点,且BC=6,∴BD BC=3,由折叠性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12,故选:A.6.(2018•吉林)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.【解答】解:由题意可得,,故选:D.二、填空题(共8小题,每小题3分,满分24分)7.(3分)(2018•吉林)计算:4.【解答】解:∵42=16,∴4,故答案为4.8.(3分)(2018•吉林)买单价3元的圆珠笔m支,应付3m元.【解答】解:依题意得:3m.故答案是:3m.9.(3分)(2018•吉林)若a+b=4,ab=1,则a2b+ab2=4.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.10.(3分)(2018•吉林)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.11.(3分)(2018•吉林)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),12.(3分)(2018•吉林)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,解得:AB(米).故答案为:100.13.(3分)(2018•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=29度.【解答】解:连接OC.∵,∴∠AOB=∠BOC=58°,∴∠BDC∠BOC=29°,故答案为29.14.(3分)(2018•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k,则该等腰三角形的顶角为36度.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.三、解答题(共12小题,满分84分)15.(5分)(2018•吉林)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.16.(5分)(2018•吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.17.(5分)(2018•吉林)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【解答】解:列表得:由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率.18.(5分)(2018•吉林)在平面直角坐标系中,反比例函数y(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【解答】解:∵把x=1代入y=x+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y得:k=3,即反比例函数的解析式是y.19.(7分)(2018•吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y 表示甲队修路400米所需时间或乙队修路600米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间或乙队修路600米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间或乙队修路600米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,∴40.答:甲队每天修路的长度为40米.20.(7分)(2018•吉林)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=48π.21.(7分)(2018•吉林)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平测量步骤【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a米,CD=b米.(3)计算过程:∵四边形BCDE是矩形,∴DE=BC=a,BE=CD=b,在Rt△ADE中,AE=ED•tanα=a•tanα,∴AB=AE+EB=a•tanα+b.22.(7分)(2018•吉林)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是乙(答案不唯一,合理即可)(填甲或乙),说明你的理由.【解答】解:整理数据:表一分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙(答案不唯一,合理即可).23.(8分)(2018•吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min 的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000m,小玲步行的速度为100m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【解答】解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折线O ﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=100m/min.故答案为:4000,100(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.24.(8分)(2018•吉林)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为菱形;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:▱ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD AB,∵DE∥AC,点D为AB中点,∴DE AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,故答案为:菱形;(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.25.(10分)(2018•吉林)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN 与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=s;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.【解答】解:(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x s.故答案为s.(2)①如图1中,当0<x时,重叠部分是四边形PQMN.y=2x x=2x2.②如图2中,当<x≤1时,重叠部分是四边形PQEN.y(2﹣x+2x)x x2x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y (2﹣x +2)×[ x ﹣2 (x ﹣1)] x 2﹣3 x +4 ;综上所述,y < < < <.(3)①如图4中,当直线AM 经过BC 中点E 时,满足条件.则有:tan ∠EAB =tan ∠QPB ,∴, 解得x .②如图5中,当直线AM 经过CD 的中点E 时,满足条件.此时tan∠DEA=tan∠QPB,∴,解得x,综上所述,当x或时,直线AM将矩形ABCD的面积分成1:3两部分.26.(10分)(2018•吉林)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为(﹣1,4),OE=3;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC OE=3,∴﹣3a=3,∴a,∴45°≤β≤60°,a的取值范围为a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,DM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).。

2019年吉林省中考数学试题(解析版)

2019年吉林省中考数学试题(解析版)

2019年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.(2分)如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣12.(2分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.3.(2分)若a为实数,则下列各式的运算结果比a小的是()A.a+1B.a﹣1C.a×1D.a÷14.(2分)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°5.(2分)如图,在⊙O中,所对的圆周角∠ACB=50°,若P为上一点,∠AOP=55°,则∠POB 的度数为()A.30°B.45°C.55°D.60°6.(2分)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()A.两点之间,线段最短B.平行于同一条直线的两条直线平行C.垂线段最短D.两点确定一条直线二、填空题(每小题3分,共24分)7.(3分)分解因式:a2﹣1=.8.(3分)不等式3x﹣2>1的解集是.9.(3分)计算:•=.10.(3分)若关于x的一元二次方程(x+3)2=c有实数根,则c的值可以为(写出一个即可).11.(3分)如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=°.12.(3分)如图,在四边形ABCD中,AB=10,BD⊥AD.若将△BCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长为.13.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为m.14.(3分)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a﹣1)2+a(a+2),其中a=.16.(5分)甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.17.(5分)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数解析式;(2)当x=4时,求y的值.18.(5分)如图,在▱ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.四、解答题(每小题7分,共28分)19.(7分)图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段CD,其中A、B、C、D均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD =90°.20.(7分)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(填写序号).(1)bc+d=a;(2)ac+d=b;(3)ac﹣d=b.21.(7分)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)22.(7分)某地区有城区居民和农村居民共80万人.某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”.(1)该机构设计了以下三种调查方案:方案一:随机抽取部分城区居民进行调查;方案二:随机抽取部分农村居民进行调查;方案三:随机抽取部分城区居民和部分农村居民进行调查.其中最具有代表性的一个方案是;(2)该机构采用了最具有代表性的调查方案进行调查.供选择的选项有:电脑、手机、电视、广播、其他,共五个选项.每位被调查居民只选择一个选项.现根据调查结果绘制如下统计图,请根据统计图回答下列问题:①这次接受调查的居民人数为人;②统计图中人数最多的选项为;③请你估计该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数.五、解答题(每小题8分,共16分)23.(8分)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x (h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.24.(8分)性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4,则它的面积为;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).六、解答题(每小题10分,共20分)25.(10分)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P以cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=cm,∠EAD=°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.26.(10分)如图,抛物线y=(x﹣1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,﹣3).P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.2019年吉林省中考数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣1【分析】直接利用数轴得出结果即可.【解答】解:数轴上蝴蝶所在点表示的数可能为﹣1,故选:D.【点评】本题考查了数轴、根据数轴﹣1是解题关键.2.(2分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得四个并排的正方形,如图所示:故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(2分)若a为实数,则下列各式的运算结果比a小的是()A.a+1B.a﹣1C.a×1D.a÷1【分析】根据一个数加上一个正数的和大于本身,加上一个负数小于本身,减去一正数小于本身,减去一个负数大于本身,乘以1等于本身,除以1也等于本身,逐一进行比较便可.【解答】解:A.a+1>a,选项错误;B.a﹣1<a,选项正确;C.a×1=a,选项错误;D.a÷1=a,选项错误;故选:B.【点评】本题主要考查了实数的大小比较,具体考查了一个数加1,减1,乘1,除以1,值的大小变化规律.基础题.4.(2分)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C.【点评】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.5.(2分)如图,在⊙O中,所对的圆周角∠ACB=50°,若P为上一点,∠AOP=55°,则∠POB 的度数为()A.30°B.45°C.55°D.60°【分析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【解答】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点评】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.6.(2分)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()A.两点之间,线段最短B.平行于同一条直线的两条直线平行C.垂线段最短D.两点确定一条直线【分析】利用两点之间线段最短进而分析得出答案.【解答】解:这样做增加了游人在桥上行走的路程,其中蕴含的数学道理是:利用两点之间线段最短,可得出曲折迂回的曲桥增加了游人在桥上行走的路程.故选:A.【点评】此题主要考查了两点之间线段最短,正确将实际问题转化为数学知识是解题关键.二、填空题(每小题3分,共24分)7.(3分)分解因式:a2﹣1=(a+1)(a﹣1).【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式,熟记公式是解题的关键.8.(3分)不等式3x﹣2>1的解集是x>1.【分析】利用不等式的基本性质,将两边不等式同时加上2再除以3,不等号的方向不变.【解答】解:∵3x﹣2>1,∴3x>3,∴x>1,∴原不等式的解集为:x>1.故答案为x>1.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.9.(3分)计算:•=.【分析】根据分式乘除法的法则计算即可.【解答】解:•=,故答案为:.【点评】本题考查了分式的乘除法,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程(x+3)2=c有实数根,则c的值可以为5(答案不唯一,只有c≥0即可)(写出一个即可).【分析】由于方程有实数根,则其根的判别式△≥0,由此可以得到关于c的不等式,解不等式就可以求出c的取值范围.【解答】解:一元二次方程化为x2+6x+9﹣c=0,∵△=36﹣4(9﹣c)=4c≥0,解上式得c≥0.故答为5(答案不唯一,只有c≥0即可).【点评】本题主要考查根与系数的关系,根的判别式,关键在于求出c的取值范围.11.(3分)如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=60°.【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【解答】解:∵ED∥BC,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°﹣50°﹣70°=60°,故答案为:60.【点评】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.(3分)如图,在四边形ABCD中,AB=10,BD⊥AD.若将△BCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长为20.【分析】根据直角三角形斜边上中线的性质,即可得到DE=BE=AB=5,再根据折叠的性质,即可得到四边形BCDE的周长为5×4=20.【解答】解:∵BD⊥AD,点E是AB的中点,∴DE=BE=AB=5,由折叠可得,CB=BE,CD=ED,∴四边形BCDE的周长为5×4=20,故答案为:20.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为54m.【分析】根据同一时刻物高与影长成正比即可得出结论.【解答】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴=,解得h=54(m).故答案为:54.【点评】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.14.(3分)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是25π﹣48(结果保留π).【分析】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=﹣8×6=25π﹣48.故答案为:25π﹣48.【点评】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a﹣1)2+a(a+2),其中a=.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a2﹣2a+1+a2+2a=2a2+1,当时,原式=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.(5分)甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.【分析】画出树状图,共有4种可能结果,其中取出的扇子和手绢都是红色的有1种可能,由概率公式即可得出结果.【解答】解:画树状图如下:共有4种可能结果,其中取出的扇子和手绢都是红色的有1种结果,则取出的扇子和手绢都是红色的概率为.【点评】此题主要考查了列表法与树状图法以及概率公式,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.17.(5分)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数解析式;(2)当x=4时,求y的值.【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)直接利用x=4代入求出答案.【解答】解:(1)y是x的反例函数,所以,设,当x=2时,y=6.所以,k=xy=12,所以,;(2)当x=4时,y=3.【点评】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.18.(5分)如图,在▱ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.【分析】直接利用已知作图方法结合全等三角形的判定方法分析得出答案.【解答】证明:由题意可得:AE=FC,在平行四边形ABCD中,AB=DC,∠A=∠C在△ABE和△CDF中,,所以,△ABE≌△CDF(SAS).【点评】此题主要考查了平行四边形的性质以及全等三角形的判定,正确掌握基本作图方法是解题关键.四、解答题(每小题7分,共28分)19.(7分)图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段CD,其中A、B、C、D均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD =90°.【分析】(1)根据菱形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【解答】解:(1)如图,菱形AEBF即为所求.(2)如图,四边形CGDH即为所求.【点评】本题考查作图﹣应用与设计,菱形的判定和性质,直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(7分)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(2)(填写序号).(1)bc+d=a;(2)ac+d=b;(3)ac﹣d=b.【分析】问题解决设竹签有x根,山楂有y个,由题意得出方程组:,解方程组即可;反思归纳由每根竹签串c个山楂,还剩余d个山楂,得出ac+d=b即可.【解答】问题解决解:设竹签有x根,山楂有y个,由题意得:,解得:,答:竹签有20根,山楂有104个;反思归纳解:∵每根竹签串c个山楂,还剩余d个山楂,则ac+d=b,故答案为:(2).【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.21.(7分)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)【分析】过C作CF⊥AB于F,于是得到∠AFC=90°,解直角三角形即可得到结论.【解答】解:过C作CF⊥AB于F,则∠AFC=90°,在Rt△ACF中,AC=30,∠CAF=43°,∵cos∠CAF=,∴AF=AC•cos∠CAF=30×0.73=21.9,∴CE=BF=AB+AF=170+21.9=191.9≈192(cm),答:花洒顶端C到地面的距离CE为192cm.【点评】本题考查解直角三角形,解题的关键是正确理解题意以及灵活运用锐角三角函数的定义,本题属于中等题型.22.(7分)某地区有城区居民和农村居民共80万人.某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”.(1)该机构设计了以下三种调查方案:方案一:随机抽取部分城区居民进行调查;方案二:随机抽取部分农村居民进行调查;方案三:随机抽取部分城区居民和部分农村居民进行调查.其中最具有代表性的一个方案是方案三;(2)该机构采用了最具有代表性的调查方案进行调查.供选择的选项有:电脑、手机、电视、广播、其他,共五个选项.每位被调查居民只选择一个选项.现根据调查结果绘制如下统计图,请根据统计图回答下列问题:①这次接受调查的居民人数为1000人;②统计图中人数最多的选项为手机;③请你估计该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数.【分析】(1)根据三个方案选出最具有代表性的一个方案即可;(2)①把电脑、手机、电视、广播、其他,这五个选项的总人数相加即可;②从统计图中找出人数最多的选项即可;③用80×该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的人数所占的百分比即可得到结论.【解答】解:(1)最具有代表性的一个方案是方案三,故答案为:方案三;(2)①这次接受调查的居民人数为260+400+150+100+90=1000人;②统计图中人数最多的选项为手机;③80×=52.8万人,答:该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数52.8万人.故答案为:1000,手机.【点评】本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;也考查了用样本估计总体.五、解答题(每小题8分,共16分)23.(8分)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x (h)之间的关系如图所示.(1)m=4,n=120;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.【分析】(1)观察图象即可解决问题;(2)运用待定系数法解得即可;(3)把x=3代入(2)的结论即可.【解答】解:(1)根据题意可得m=2×2=4,n=280﹣280÷3.5=120;故答案为:4;120;(2)设y关于x的函数解析式为y=kx(0≤x≤2),因为图象经过(2,120),所以2k=120,解得k=60,所以y关于x的函数解析式为y=60x,设y关于x的函数解析式为y=k1x+b(2≤x≤4),因为图象经过(2,120),(4,0)两点,所以,解得,所以y关于x的函数解析式为y=﹣60+240(2≤x≤4);(3)当x=3.5时,y=﹣60×3.5+240=30.所以当甲车到达B地时,乙车距B地的路程为30km.【点评】此题考查的知识点是一次函数的应用,解题的关键是熟练掌握待定系数法确定函数的解析式.24.(8分)性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4,则它的面积为4;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为2sinα(用含α的式子表示).【分析】性质探究作CD⊥AB于D,则∠ADC=∠BDC=90°,由等腰三角形的性质得出AD=BD,∠A=∠B=30°,由直角三角形的性质得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出结果;理解运用(1)同上得出则AC=2CD,AD=CD,由等腰三角形的周长得出4CD+2CD=8+4,解得:CD=2,得出AB=4,由三角形面积公式即可得出结果;(2)①由等腰三角形的性质得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH即可;②连接FH,作EP⊥FH于P,由等腰三角形的性质得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四边形内角和定理求出∠FEH=120°,由等腰三角形的性质得出∠EFH=30°,由直角三角形的性质得出PE=EF=5,PF=PE=5,得出FH=2PF=10,证明MN是△FGH的中位线,由三角形中位线定理即可得出结果;类比拓展作AD⊥BC于D,由等腰三角形的性质得出BD=CD,∠BAD=∠BAC=α,由三角函数得出BD=AB ×sinα,得出BC=2BD=2AB×sinα,即可得出结果.【解答】性质探究解:作CD⊥AB于D,如图①所示:则∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴==;故答案为:;理解运用(1)解:如图①所示:同上得:AC=2CD,AD=CD,∵AC+BC+AB=8+4,∴4CD+2CD=8+4,解得:CD=2,∴AB=4,∴△ABC的面积=AB×CD=×4×2=4;故答案为:4(2)①证明:∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;②解:连接FH,作EP⊥FH于P,如图②所示:则PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=5,∴PF=PE=5,∴FH=2PF=10,∵点M、N分别是FG、GH的中点,∴MN是△FGH的中位线,∴MN=FH=5;类比拓展解:如图③所示:作AD⊥BC于D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,∵sinα=,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴==2sinα;故答案为:2sinα.【点评】本题是四边形综合题目,考查了等腰三角形的性质、直角三角形的性质、三角形中位线定理、四边形内角和定理、就直角三角形等知识;本题综合性强,熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.六、解答题(每小题10分,共20分)25.(10分)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P以cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=3cm,∠EAD=45°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.【分析】(1)由勾股定理可求AE的长,由等腰三角形的性质可求∠EAD的度数;(2)分三种情况讨论,由面积和差关系可求解;(3)分三种情况讨论,由勾股定理可求解.【解答】解:(1)∵AB=3cm,BE=AB=3cm,∴AE==3cm,∠BAE=∠BEA=45°∵∠BAD=90°∴∠DAE=45°故答案为:3,45(2)当0<x≤2时,如图,过点P作PF⊥AD,∵AP=x,∠DAE=45°,PF⊥AD∴PF=x=AF,∴y=S△PQA=×AQ×PF=x2,(2)当2<x≤3时,如图,过点P作PF⊥AD,∵PF=AF=x,QD=2x﹣4∴DF=4﹣x,∴y=x2+(2x﹣4+x)(4﹣x)=﹣x2+8x﹣8当3<x≤时,如图,点P与点E重合.∵CQ=(3+4)﹣2x=7﹣2x,CE=4﹣3=1cm ∴y=(1+4)×3﹣(7﹣2x)×1=x+4(3)当0<x≤2时∵QF=AF=x,PF⊥AD∴PQ=AP∵PQ=cm∴x=∴x=当2<x≤3时,过点P作PM⊥CD∴四边形MPFD是矩形∴PM=DF=4﹣2x,MD=PF=x,∴MQ=x﹣(2x﹣4)=4﹣x∵MP2+MQ2=PQ2,∴(4﹣2x)2+(4﹣x)2=∵△<0∴方程无解当3<x≤时,∵PQ2=CP2+CQ2,∴=1+(7﹣2x)2,∴x=综上所述:x=或【点评】本题是四边形综合题,考查了矩形的判定和性质,勾股定理,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.26.(10分)如图,抛物线y=(x﹣1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,﹣3).P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.【分析】(1)将点C(0,﹣3)代入y=(x﹣1)2+k即可;(2)易求A(﹣1,0),B(3,0),抛物线顶点为(1,﹣4),当P位于抛物线顶点时,△ABP的面积有最大值;(3))①当0<m≤1时,h=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m;当1<m≤2时,h=﹣1﹣(﹣4)=1;当m>2时,h=m2﹣2m﹣3﹣(﹣4)=m2﹣2m+1;②当h=9时若﹣m2+2m=9,此时△<0,m无解;若m2﹣2m+1=9,则m=4,则P(4,5),△BCP 的面积=8×4﹣5×1﹣(4+1)×3=6;【解答】解:(1)将点C(0,﹣3)代入y=(x﹣1)2+k,得k=﹣4,∴y=(x﹣1)2﹣4=x2﹣2x﹣3;(2)令y=0,x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴AB=4;抛物线顶点为(1,﹣4),当P位于抛物线顶点时,△ABP的面积有最大值,S==8;(3)①当0<m≤1时,h=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m;当1<m≤2时,h=﹣1﹣(﹣4)=1;当m>2时,h=m2﹣2m﹣3﹣(﹣4)=m2﹣2m+1;②当h=9时若﹣m2+2m=9,此时△<0,m无解;若m2﹣2m+1=9,则m=4,∴P(4,5),∵B(3,0),C(0,﹣3),∴△BCP的面积=8×4﹣5×1﹣(4+1)×3=6;【点评】本题考查二次函数的图象及性质,是二次函数综合题;熟练掌握二次函数的性质,数形结合,分类讨论是解题的关键.。

2019年吉林省中考数学试题(含解析)

2019年吉林省中考数学试题(含解析)

2019吉林省数学中考解析一、单项选择题1.(2019吉林省,1,2分)如图,数轴上蝴蝶所在点表示的数可能为(A) 3 (B) 2 (C) 1 (D) -1【答案】D【解析】从图中可以看出蝴蝶在原点的左侧,所以可能是-1,故选择D【知识点】数轴2. (2019吉林省,2,2分)如图,由6个相同的小正方体组合成一个立方体,它的俯视图为【答案】D【解析】从上面看是一行四个小正方形,故选D【知识点】三视图3. (2019吉林省,3,2分)若a 为实数,则下列格式的运算结果比a 小的是(A) a+1 (B) a-1 (C) 1a ⨯ (D) 1a ÷【答案】B【解析】选项A 比a 大1;选项C ,选项D 和a 相等,只有选项B 比a 小,故选B【知识点】实数的大小4. (2019吉林省,4,2分)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为(A) 30° (B) 90° (C) 120° (D) 180°【答案】C【解析】这个交通标志图案是由3个基本图案组成的,所以旋转角至少为120°,故选C【知识点】图形的旋转5. (2019吉林省,5,2分)如图,在⊙O 中,弧AB 所对的圆周角∠ACB=50°,若P 为弧AB 上一点,∠AOP=55°,则∠POB 的度数为(A) 30° (B) 45° (C) 55° (D) 60°【答案】B【解析】根据同弧所对的圆周角是圆心角的一半可知,∠AOB=2∠ACB=110°,因为∠AOP=55°,所以∠POB 的度数为45°,故选B【知识点】同弧所对的圆周角与圆心角的关系6. (2019吉林省,6,2分)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A 、B 两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是(A) 两点之间,线段最短 (B) 平行于同一条直线的两条直线平行(C) 垂线段最短 (D) 两点确定一条直线【答案】A【解析】这里主要体现了长度问题,所以蕴含的数学道理是两点之间,线段最短,选择A【知识点】生活中的数学应用二、填空题7. (2019吉林省,7,3分)分解因式:a 2-1=【答案】(a+1)(a-1)【解析】平方差公式:两数和与这两数的差的积【知识点】公式法因式分解8. (2019吉林省,8,3分)不等式3x-2>1的解集是【答案】x >1【解析】移项,得3x >2+1,即3x >3,∴x >1【知识点】解不等式9. (2019吉林省,9,3分)计算yx x 22y = 【答案】x21 【解析】单项式乘以单项式,分子分母分别相乘,能约分的要约分【知识点】整式的乘法,约分10. (2019吉林省,10,3分)若关于x 的一元二次方程(x+3)2=c 有实数根,则c 的值可以为 (写出一个即可)【答案】答案不唯一,例如5,(c ≥0时方程都有实数根)【解析】c ≥0时方程都有实数根【知识点】一元二次方程根的情况11. (2019吉林省,11,3分)如图,E 为△ABC 边CA 延长线上一点,过点E 作ED ∥BC ,若 ∠BAC=70°,∠CED=50°,则∠B=【答案】60°【解析】因为ED ∥BC ,所以∠CED=∠C=50°,因为∠BAC=70°,三角形内角和为80°,所以∠B=60°【知识点】平行线的性质,三角形内角和定理12. (2019吉林省,12,3分)如图,在四边形ABCD 中,AB=10,BD ⊥AD ,若将△BCD 沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BCDE 的周长为【答案】20【解析】∵BD ⊥AD ,E 为AB 的中点,∴BE=DE=AB 21=5,∵折叠,∴BC=BE=5,CD=DE=5,∴四边形BCDE 的周长为5+5+5+5=20【知识点】直角三角形斜边的中线等于斜边的一半,折叠的性质13. (2019吉林省,13,3分)在某一时刻,侧的一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为 m【答案】54 【解析】由同一时刻阳光下的影子与物高之间的关系可得2121影影物物=,∴9038.12=物 ∴可求得这栋楼的高度为54米.【知识点】由同一时刻阳光下的影子与物高之间的关系,图形的相似的实际应用14. (2019吉林省,14,3分)如图,在扇形OAB 中,∠AOB=90°,D 、E 分别是半径OA,OB 上的点,以OD,OE 为邻边的 ODCE 的顶点C 在弧AB 上,若OD=8,OE=6,则阴影部分图形的面积是 (结果保留π)【答案】25π-48【解析】如图,连接DE,OC∵ ODCE ,∠AOB=90°,∴ ODCE 是矩形,∴DE=OC ,Tt △DOE 中,OD=8,OE=6,∴DE=10=OC ,∴S 阴=S 扇-S 矩=86-10412⨯⨯π=25π-48 【知识点】矩形的性质,扇形的面积三、解答题15.(2019吉林省,15,5分)先化简,再求值:(a-1)2+a(a+2),其中a=2【思路分析】将原代数式化简求值即可【解题过程】解:原式=a 2-2a+1+a 2+2a=2a 2+1,当a=2时, 原式=51221222=+⨯=+⨯)( 【知识点】整式的运算16.(2019吉林省,16,5分)甲口袋中装有红色、绿色两把扇子,这两把扇子出颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别,从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用树状图或列表的方法,求取出的扇子和手绢都是红色的概率.【思路分析】根据题意画出树状图或者列出表格,即可求出概率【解题过程】解:如图,共有4种等可能结果,其中取出的擅自和手绢都是红色的有1种可能,∴P (取出的擅自和手绢都是红色)=41【知识点】概率17. (2019吉林省,17,5分)已知y 是x 的反比例函数,并且当x=2时,y=6,(1)求y 关于x 的函数解析式;(2)当x=4时,求y 的值【思路分析】(1)将x=2时,y=6代入解析式即可求出待定系数,即可求出解析式;(2)当x=4时,代入(1)中的解析式,可求出y 的值【解题过程】解:(1)∵y 是x 的反比例函数,∴设y=xk (k ≠0), ∵当x=2时,y=6,∴k=xy=12,∴y=x12 (2)当x=4时,代入y=x12得, y=3412= 【知识点】反比例函数18. (2019吉林省,18,5分)如图,在 ABCD 中,点E 在边AD 上,以C 为圆心,AE 长为半径画弧,交边BC 于点F ,连接BE ,DF求证:△ABE ≌△CDF【思路分析】由作图可知,AE=CF ,有平行四边形的性质可知对边相等,对角相等,由SAS 可以证明两个三角形全等.【解题过程】解:由题意得AE=FC∵ ABCD ,∴AB=DC ,∠A=∠C在△ABE 和△CDF 中,AE=CF,∠A=∠C,AB=DC ,∴△ABE ≌△CDF【知识点】平行四边形的性质,三角形的全等四、解答题19.(2019吉林省,19,7分)图①,图②均为44⨯的正方形网格,每个小正方形的顶点称为格点,在图①中已画出线段AB ,在图②中已画出线段CD ,其中A,B,C,D 均为格点,按下列要求画图:(1)在图①中,以AB 为对角线画一个菱形AEBF ,且E,F 为格点;(2)在图②中,以CD 为对角线画一个对边不相等的四边形CGDH ,且G,H 为格点,∠CGD=∠CHD=90°【思路分析】(1)AB 为对角线长为4,则另一条对角线在AB 的中垂线上,如图所示;(2)根据勾股定理,画出格点三角形,如图所示【解题过程】【知识点】菱形,勾股定理20.(2019吉林省,20,7分)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖而成,现将一些山楂分别串在若干跟竹签上,如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签,这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂,若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(填写序号)(1)bc+d=a; (2)ac+d=b; (3)ac-d=b【思路分析】(1)根据题意表示出山楂的个数,列出二元一次方程组即可解决(2)表示出山楂的总个数,即竹签串的山楂与剩余的山楂的和就是总山楂的个数【解题过程】问题解决解:设竹签x根,山楂y个,根据题意得答:竹签有20根,山楂104个反思归纳(2)【知识点】二元一次方程组的应用,代数式21.(2019吉林省,21,7分)墙壁及淋浴花洒截面如图所示,已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°,求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)【思路分析】如图,过点C 作CM ⊥BD 于点M ,解Rt ▲ACM ,可以求出AM 的长,从而可以求出BM 的长,由于CE=BM 问题可以解决.【解题过程】解:如图,过点C 作CM ⊥BD 于点M ,Rt ▲ACM 中AC=30m,∠CAD=43°,cos ∠CAD=30AM AC AM = ∴AM=30cos ∠CAD=73.030⨯=21.9,所以CE=AM+AB=21.9+170=191.9≈192cm答:花洒顶端C 到地面的距离为192cm【知识点】解直角三角形22. (2019吉林省,22,7分)某地区有城市居民和农村居民共80万人,某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”.(1)该机构设计了以下三种调查方案:方案一:随机抽取部分城区居民进行调查;方案二:随机抽取部分农村居民进行调查;方案三:随机抽取部分城区居民和农村居民进行调查,其中最具有代表性的一个方案是 ;(2)该机构采用了最具代表性的调查方案进行调查,供选择的选项有:电脑、手机、电视、广播、其他,共五个选项,每位被调查居民只选择一个选项,现根据调查结果绘制如下统计图,请根据统计图回答下列问题:①这次接受调查的居民的人数为 ;②统计图中人数最多的选项为 ;③请你估计该地区城区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数【思路分析】(1)具有代表性的人群要包括城区居民和农村居民;(2)①五种选项的总人数之和就是所求的总人数;②从统计图中可以看出选择手机的人数最多;③从抽取的人数中可以算出“电脑和手机”的人数占总抽取人数的比例,从而计算出该地区的总人数.【解题过程】(1)方案三;(2)①260+400+150+100+90=1000(人)②手机③528000800001000260400=⨯+(人) 答:该地区城区居民和农民居民将电脑和手机作为获取信息的最主要途径的总人数为52800人.【知识点】条形统计图,样本估计总体五、解答题23. (2019吉林省,23,8分) 甲、乙两车分别从A 、B 两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B 地。

2019年吉林省长春市中考数学试卷(含答案与解析)

2019年吉林省长春市中考数学试卷(含答案与解析)

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前吉林省长春市2019年中考数学试卷数 学一、选择题(共8小题,每小题3分,满分24分) 1.如图,数轴上表示2-的点A 到原点的距离是( )A .2-B .2C .12-D .122.2019年春运前四日,全国铁路、道路、水路、民航共累计发送旅客约为275 000 000人次,275 000 000这个数用科学记数法表示为( )A .727.510⨯B .90.27510⨯C .82.7510⨯D .92.7510⨯3.如图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是 ( )AB C D4.不等式20x -+≥的解集为( )A .2x -≥B .2x -≤C .2x ≥D .2x ≤5.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A .911616x y x y +=⎧⎨+=⎩B .911616x y x y -=⎧⎨-=⎩C .911616x y x y +=⎧⎨-=⎩D .911616x y x y -=⎧⎨+=⎩6.如图,一把梯子靠在垂直水平地面的墙上,梯子AB 的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离C 为 ( )A .3sin α米B .3cos α米C .3sin α米D .3cos α米 7.如图,在ABC △中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使2ADC B ∠=∠,则符合要求的作图痕迹是 ( )ABCD8.如图,在平面直角坐标系中,Rt ABC △的顶点A 、C 的坐标分别是(0,3)、(3,0).90ACB ∠=︒,2AC BC =,则函数k(0,0)xy k x =>>的图象经过点B ,则k 的值为( )A .92B .2C .278D .274-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共26页) 数学试卷 第4页(共26页)二、填空题(共6小题,每小题3分,满分18分) 9.计算:= . 10.分解因式:2ab b += .11.一元二次方程2310x x -+=的根的判别式的值是 .12.如图,直线MN PQ ∥,点A 、B 分别在MN 、PQ 上,33MAB ∠=︒.过线段AB 上的点C 作CD AB ⊥交PQ 于点D ,则CDB ∠的大小为 .13.如图,有一张矩形纸片ABCD ,8AB =,6AD =.先将矩形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF △沿EF 翻折,AF 与BC 相交于点G ,则GCF △的周长为 .14.如图,在平面直角坐标系中,抛物线282(0)3y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M .P 为抛物线的顶点.若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为 .三、解答题(共10小题,满分78分) 15.(本小题满分6分)先化简,再求值:2(21)4(1)a a a +--,其中18a =.16.(本小题满分6分)一个不透明的口袋中有三个小球,每个小球上只标有一个汉字,分别是“家”、“家”、“乐”,除汉字外其余均相同.小新同学从口袋中随机摸出一个小球,记下汉字后放回并搅匀;再从口袋中随机摸出一个小球记下汉字,用画树状图(或列表的)方法,求小新同学两次摸出小球上的汉字相同的概率.17.(本小题满分6分)为建国70周年献礼,某灯具厂计划加工9 000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.18.(本小题满分7分)如图,四边形ABCD 是正方形,以边AB 为直径作O ⊙,点E 在BC 边上,连结AE 交O ⊙于点F ,连结BF 并延长交CD 于点G . (1)求证:ABE BCG △≌△;(2)若55AEB ∠=︒,3OA =,求»BF的长.(结果保留π)数学试卷 第5页(共26页) 数学试卷 第6页(共26页)19.(本小题满分7分)网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,据如下(单位:时):根据以上信息,解答下列问题:(1)上表中的中位数m 的值为 ,众数n 的值为 .(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间.(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数.20.(本小题满分7分)图①、图②、图③均是66⨯的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A 、B 、C 、D 、E 、F 均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法. (1)在图①中以线段AB 为边画一个ABM △,使其面积为6. (2)在图②中以线段CD 为边画一个CDN △,使其面积为6.(3)在图③中以线段EF 为边画一个四边形EFGH ,使其面积为9,且90EFG ∠=︒.图①图②图③-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________21.(本小题满分8分)已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.22.(本小题满分9分)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC△中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:13GE GDCE AD==.证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCDY中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若ABCDY为正方形,且6AB=,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为12,则ABCDY的面积为.图①图②图③数学试卷第7页(共26页)数学试卷第8页(共26页)数学试卷 第9页(共26页) 数学试卷 第10页(共26页)23.(本小题满分10分)如图,在Rt ABC △中,90C ∠=︒,20AC =,15BC =.点P 从点A 出发,沿AC 向终点C 运动,同时点Q 从点C 出发,沿射线CB 运动,它们的速度均为每秒5个单位长度, 点P 到达终点时,P 、Q 同时停止运动.当点P 不与点A 、C 重合时,过点P 作PN AB ⊥于点N ,连结PQ ,以PN 、PQ 为邻边作PQMN Y .设PQMN Y 与ABC △重叠部分图形的面积为S ,点P 的运动时间为t 秒. (1)①AB 的长为 ;②PN 的长用含t 的代数式表示为 . (2)当PQMN Y 为矩形时,求t 的值;(3)当PQMN Y 与ABC △重叠部分图形为四边形时,求S 与t 之间的函数关系式; (4)当过点P 且平行于BC 的直线经过PQMN Y 一边中点时,直接写出t 的值.24.(本小题满分12分)已知函数22,()1,()222x nx n x n y n nx x x n ⎧-++⎪=⎨-++⎪⎩≥<(n 为常数) (1)当n =5,①点(4,)P b 在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为(2,2)A 、(4,2)B ,当此函数的图象与线段AB 只有一个交点时,直接写出n 的取值范围.(3)当此函数图象上有4个点到x 轴的距离等于4,求n 的取值范围.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第11页(共26页) 数学试卷 第12页(共26页)吉林省长春市2019年中考数学试卷数学答案解析一、选择题 1.【答案】B【解析】解:数轴上表示2-的点A 到原点的距离是2. 故选:B .【考点】绝对值的定义. 2.【答案】C【解析】解:将275 000 000用科学记数法表示为:82.7510⨯. 故选:C .【考点】科学记数法. 3.【答案】A【解析】解:从正面看易得第一层有2个正方形,第二层最右边有1个正方形. 故选:A . 【考点】三视图. 4.【答案】D【解析】解:移项得:2x --≥, 系数化为1得:2x ≤. 故选:D .【考点】合并同类项. 5.【答案】D【解析】解:设人数为x ,买鸡的钱数为y ,可列方程组为:911616x yx y -=⎧⎨+=⎩.故选:D .【考点】列方程解决问题. 6.【答案】A【解析】解:由题意可得:sin 3BC BCAB α==, 故3sin ()BC m α=. 故选:A .【考点】锐角三角函数关系. 7.【答案】B【解析】解:2ADC B ∠=∠∵且ADC B BCD ∠=∠+∠,B BCD ∠=∠∴, DB DC =∴,∴点D 是线段BC 中垂线与AB 的交点, 故选:B .【考点】线段的中垂线的性质. 8.【答案】D【解析】解:如图,过点B 作BD x ⊥轴,垂足为D , ∵A 、C 的坐标分别是(0,3)、(3,0), ∴3OA OC ==,在Rt AOC △中,AC =, 又2AC BC =∵,2BC =∴ 又90ACB ∠=︒∵,45OAC OCA BCD CBD ∠=∠=︒=∠=∠∴,32CD BD ===∴,39322OD =+=∴93,22B ⎛⎫⎪⎝⎭∴代入k y x =得:274k =,故选:D .数学试卷 第13页(共26页) 数学试卷 第14页(共26页)【考点】直角坐标系. 二.填空题 9.【答案】【解析】解:原式= 故答案为:【考点】合并同类二次根式. 10.【答案】(2)b a +【解析】解:2(2)ab b b a +=+. 故答案为:(2)b a +. 【考点】分解因式. 11.【答案】5【解析】解:1,3a b ==-∵,1c =,224(3)4115b ac ∆=-=--⨯⨯=∴.故答案为:5. 【考点】判别式. 12.【答案】57【解析】解:∵直线MN PQ ∥, ∴33MAB ABD ∠=∠=︒∴,CD AB ⊥∵, 90BCD ∠=︒∴,903357CDB ∠=︒-︒=︒∴.故答案为:57.【考点】平行线的性质,三角形内角和定理. 13.【答案】4+【解析】解:由折叠的性质可知,45DAF BAF ∠=∠=︒,6AE AD ==∴,2EB AB AE =-=∴,由题意得,四边形EFCB 为矩形,2FC ED ==∴, AB FC ∵∥,45GFC A ∠=∠=︒∴, 2GC FC ==∴,由勾股定理得,GF = 则GCF △的周长4GC FC GF =++=+ 故答案为:4+【考点】折叠的性质,矩形的性质,勾股定理,周长公式. 14.【答案】2【解析】解:∵抛物线282(0)3y ax ax a =-+>与y 轴交于点A ,80,3A ⎛⎫⎪⎝⎭∴,抛物线的对称轴为1x =.∴顶点P 坐标为8(1,)3a -,点M 坐标为8(2,)3.∵点M 为线段AB 的中点, ∴点B 坐标为8(4,)3设直线OP 解析式为y kx =(k 为常数,且0k ≠),将点8(1,)3P a -代入得83a k -=,83y a x ⎛⎫=- ⎪⎝⎭∴.将点8(4,)3B 代入得88()433a =-⨯,解得2a =.数学试卷 第15页(共26页) 数学试卷 第16页(共26页)故答案为:2.【考点】抛物线解析式,对称性. 三、解答题 15.【答案】2【解析】解:原式224414481a a a a a =++-+=+81a =+,当18a =时,原式812a =+=.【考点】完全平方公式,单项式乘以多项式.16.【答案】59【解析】解:画树状图如图:共有9个等可能的结果,小新同学两次摸出小球上的汉字相同的结果有5个,∴小新同学两次摸出小球上的汉字相同的概率为59.【考点】概率. 17.【答案】300【解析】解:该灯具厂原计划每天加工这种彩灯的数量为x 套,则实际每天加工彩灯的数量为1.2x 套,由题意得:9000900051.2x x -=,解得:300x =,经检验,300x =是原方程的解,且符合题意.答:该灯具厂原计划每天加工这种彩灯的数量为300套. 【考点】列方程,解方程.18.【答案】(1)证明:∵四边形ABCD 是正方形,AB 为O ⊙的直径,90ABE BCG AFB ∠=∠=∠=︒∴,90BAF ABF ∠+∠=︒∴,90ABF EBF ∠+∠=︒,EBF BAF ∠=∠∴,在ABE △与BCG △中,EBF BAF AB BC ABE BCG ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABE BCG ASA ∴△≌△;(2)解:如图,连接OF ,90ABE AFB ∠=∠=︒∵,55AEB ∠=︒ , 905535BAE ∠=︒-︒=︒∴, 270BOF BAE ∠=∠=︒∴, 3OA =∵,∴»BF的长70π37π1806⨯==g .【解析】(1)根据四边形ABCD 是正方形,AB 为O ⊙的直径,得到90ABE BCG AFB ∠=∠=∠=︒,根据余角的性质得到EBF BAF ∠=∠,根据全等三角形的判定定理即可得到结论;(2)连接OF ,根据三角形的内角和得到905535BAE ∠=︒-︒=︒,根据圆周角定理得到270BOF BAE ∠=∠=︒,根据弧长公式即可得到结论.【考点】正方形的性质,圆的性质,余角的性质,余角的性质,三角形的内角和,圆周角定理,弧长公式.数学试卷 第17页(共26页) 数学试卷 第18页(共26页)19【答案】(1) 2.5 2.5(2)43.2(小时) (3)130(人)【解析】解:(1)从小到大排列为:0.6,1,1.5,1.5,1.8,2,2,2.2,2.4,2.5,2.5,2.5,2.5,2.8,3,3.1,3.3,3.3,3.5,4,∴中位数m 的值为2.5 2.52.52+=,众数n 为2.5; 故答案为:2.5,2.5. (2)2.41843.2⨯=(小时),答:估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间为43.2小时.(3)1320013020⨯=(人), 答:该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数为130人. 【考点】中位数,众数,平均数.20.【答案】解:(1)如图①所示,ABM △即为所求; (2)如图②所示,CDN △即为所求; (3)如图③所示,四边形EFGH 即为所求;图①图②图③【解析】(1)利用三角形的面积的计算方法得出符合题意的图形; (2)利用三角形面积求法得出答案;(3)根据矩形函数三角形的面积的求法进而得出答案.21.【答案】解:(1)乙车的速度为:(270602)275-⨯÷=千米/时,27075 3.6a =÷=,27060 4.5b =÷=.故答案为:75;3.6;4.5. (2)60 3.6216⨯=(千米),当2 3.6x <≤时,设11y k x b =+,根据题意得:1111203.6216k b k b +=⎧⎨+=⎩,解得11135270k b =⎧⎨=-⎩, 135270(2 3.6)y x x =-∴<≤;当6 4.6x <≤时,设60y x =,135270(2 3.6)60(3.6 4.5)x x y x x -⎧=⎨⎩<≤<≤∴;(3)甲车到达距B 地70千米处时行驶的时间为:20(27070)606-÷=(小时), 此时甲、乙两车之间的路程为:201352701806⨯-=(千米). 答:当甲车到达距B 地70千米处时,求甲、乙两车之间的路程为180千米.【解析】(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定a 、b 的值; (2)运用待定系数法解得即可;(3)求出甲车到达距B 地70千米处时行驶的时间,代入(2)的结论解答即可. 22.【答案】证明:如图①,连结ED .∵在ABC △中,D ,E 分别是边BC ,AB 的中点, ∴DE AC ∥,12DE AC =, ∴DEG ACG △∽△,2CG AG AC GE GD DE===∴, 3CG GE AG GD GE GD ++==∴,13GE GD CE AD ==∴; 结论应用: (1)解:如图②.∵四边形ABCD 为正方形,E 为边BC 的中点,对角线AC 、BD 交于点O ,数学试卷 第19页(共26页) 数学试卷 第20页(共26页)AD BC ∴∥,1122BE BC AD ==,12BO BD =,∴BEF DAF △∽△,12BF BE DF AD ==∴, 12BF DF =∴,13BF BD =∴,12BO BD =∵,111236OF OB BF BD BD BD =-=-=∴,∵正方形ABCD 中,6AB =,BD =∴OF =∴;(2)解:如图③,连接OE . 由(1)知,13BF BD =,16OF BD =, 2BF OF=∴. BEF ∵△与OEF △的高相同,BEF ∴△与OEF △的面积比2BFOF==, 同理,CEG △与OEG △的面积比2=,∴CEG △的面积BEF +△的面积2=(OEG △的面积OEF +△的面积)1212=⨯=, BOC ∴△的面积32=, ∴ABCD Y 的面积3462=⨯=.故答案为6.图①图②图③【解析】教材呈现:如图①,连结ED .根据三角形中位线定理可得DE AC ∥,12DE AC =,那么DEG ACG △∽△,由相似三角形对应边成比例以及比例的性质即可证明13GE GD CE AD ==; 结论应用:(1)如图②.先证明BEF DAF △∽△,得出12BF DF =,那么13BF BD =,又12BO BD =,可得16OF OB BF BD =-=,由正方形的性质求出BD =,即可求出OF = (2)如图③,连接OE .由(1)易证2BFOF=.根据同高的两个三角形面积之比等于底边之比得出BEF △与OEF △的面积比2BFOF==,同理,CEG △与OEG △的面积比= 2,那么CEG △的面积BEF +△的面积= 2(OEG △的面积OEF +△的面积)1212=⨯=,所以BOC △的面积32=,进而求出□ABCD 的面积3462=⨯=.23.【答案】(1)解:在Rt ABC △中,90C ∠=︒,20AC =,15BC =.25AB ==∴.3sin 5CAB ∠=∴,由题可知5AP t =,3sin 535PN AP CAB t t =∠==g g ∴.故答案为:①25;②3t .(2)当PQMN Y 为矩形时,90NPQ ∠=︒, ∵PN AB ⊥,数学试卷 第21页(共26页) 数学试卷 第22页(共26页)∴PQ AB ∥,CP CQCA BC=∴, 由题意可知5AP CQ t ==,205CP t =-,20552015t t-=∴, 解得127t =,即当PQMN Y 为矩形时127t =. (3)当PQMN Y ABC △重叠部分图形为四边形时,有两种情况, Ⅰ.如解图(3)1所示.▱PQMN 在三角形内部时.延长QM 交AB 于G 点, 由(1)题可知:4cos sin 5A B ==,3cos 5B =,5AP t =,155BQ t =-,3PN QM t ==. ∴cos 4AN AP A t ==g ∴,cos 93BG BQ B t ==-g ,sin 124QG BQ B t ==-g , ∵PQMN Y 在三角形内部时.有0QM QG <≤,03124t t -∴<≤,1207t ∴<≤.254(93)16NG t t t =---=-∴.∴当1207t ∴<≤时,PQMN Y 与ABC △重叠部分图形为PQMN Y ,S 与t 之间的函数关系式为23(16)348S PN NG t t t t ==-=-+g g .Ⅱ.如解图(3)2所示.当0QG QM <<,□PQMN 与ABC △重叠部分图形为梯形PQMG时,即:0243t t -<<,解得:1237t ≤<, PQMN Y 与ABC △重叠部分图形为梯形PQMG 的面积2111()(16)(3124)1496222S NG PN QG t t t t t =+=-+-=-+.综上所述:当1207t ∴<≤时,2348S t t =-+.当1237t ≤<,2114962S t t =-+.(4)当过点P 且平行于BC 的直线经过□PQMN 一边中点时,有两种情况,Ⅰ.如解题图(4)1,PR BC ∥,PR 与AB 交于K 点,R 为MN 中点,过R 点作RH AB ⊥,PKN HKR B ∠=∠=∠∴,39cot 344tNK PN PKN t =∠==g g ,NR MR =∵,HR PN QM ∥∥,1(16)2NH GH t ==-∴,12HR GM =,3(124)712GM QM QG t t t =-=--=-∴,11(712)22HR GM t ==-.133cot (712)(712)248KH HR HKR t t =∠=-⨯=-g ∴,NK KH NH +=∵,931(712)(16)482t t t +-=-∴, 解得:10043t =,Ⅱ.如解题图(4)2,PR BC ∥,PR 与AB 交于K 点,R 为MQ 中点,过Q 点作QH PR ⊥,HPN A QRH ∠=∠=∠∴,四边形PCQH 为矩形,339sin 2510t tHQ QR QRH =∠==g g ∴205PC t =-∵,920510tt -=∴,解得20059t =. 综上所述:当10043t =或20059时,点P 且平行于BC 的直线经过□PQMN 一边中点.数学试卷 第23页(共26页) 数学试卷 第24页(共26页)【解析】(1)根据勾股定理即可直接计算AB 的长,根据三角函数即可计算出PN . (2)当PQMN Y 为矩形时,由PN AB ⊥可知PQ AB ∥,根据平行线分线段成比例定理可得CP CQCA BC=,即可计算出t 的值. (3)当PQMN Y 与ABC △重叠部分图形为四边形时,有两种情况,Ⅰ.PQMN Y 在三角形内部时,Ⅱ.PQMN Y 有部分在外边时.由三角函数可计算各图形中的高从而计算面积.(4)当过点P 且平行于BC 的直线经过PQMN Y 一边中点时,有两种情况,Ⅰ.过MN 的中点,Ⅱ.过QM 的中点.分别根据解三角形求相关线段长利用平行线等分线段性质和可列方程计算t 值.【考点】勾股定理,三角函数,平行线分线段成比例定理,解三角形. 24.【答案】解:(1)当n =5时, 2255(5)155(5)222x x x y x x x ⎧-++⎪=⎨-++⎪⎩≥<, ①将(4,)P b 代入2155222y x x =-++, 92b =∴; ②当5x ≥时,当5x =时有最大值为5;当5x <时,当52x =时有最大值为458; ∴函数的最大值为458;(2)将点(4,2)代入2y x nx n =-++中,185n =∴, 1845n ∴<≤时,图象与线段AB 只有一个交点; 将点(2,2)代入2y x nx n =-++中, ∴2n =,将点(2,2)代入21222n ny x x =-++中, ∴83n =, 823n ∴≤<时图象与线段AB 只有一个交点;综上所述:1845n <≤,823n ≤<时,图象与线段AB 只有一个交点;(3)当x n =时,22112222n n y n n =-++=,n42>,8n ∴>;当2nx =时,182n y =+,1n 482+≤,312n ∴≥,当x n =时,22y n n n n =-++=,4n <;∴函数图象上有4个点到x 轴的距离等于4时,8n >或3142n ≤<. 【解析】(1)①将(4,)P b 代入2155222y x x =-++;②当5x ≥时,当5x =时有最大值为5;当5x <时,当52x =时有最大值为458;故函数的最大值为458;(2)将点(4,2)代入2y x nx n =-++中,得到185n =,所以1845n <≤时,图象与线段AB只有一个交点;将点(2,2)代入2y x nx n =-++和21222n ny x x =-++中,得到2n =,83n =,所以823n ≤<时图象与线段AB 只有一个交点;(3)当x n =时,n 42>,得到8n >;当2n x =时,1n 482+≤,得到312n ≥,当x n =时,22n<.=-++=,4y n n n n数学试卷第25页(共26页)数学试卷第26页(共26页)。

2019年中考数学试题汇编 二元一次方程组解答题部分(解析版)

2019年中考数学试题汇编  二元一次方程组解答题部分(解析版)

1.(2019年山东省烟台市)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.2.(2019年福建省)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2019年海南省)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.4.(2019年吉林省)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(2)(填写序号).(1)bc+d=a;(2)ac+d=b;(3)ac﹣d=b.【分析】问题解决设竹签有x根,山楂有y个,由题意得出方程组:,解方程组即可;反思归纳由每根竹签串c个山楂,还剩余d个山楂,得出ac+d=b即可.【解答】问题解决解:设竹签有x根,山楂有y个,由题意得:,解得:,答:竹签有20根,山楂有104个;反思归纳解:∵每根竹签串c个山楂,还剩余d个山楂,则ac+d=b,故答案为:(2).【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.5.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,求解即可;【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点评】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.6.(2019年山西省)解方程组:【分析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.【解答】解:(2)①+②得,4x=﹣8,∴x=﹣2,把x=﹣2代入①得,﹣6﹣2y=﹣8,∴y=1,∴.【点评】本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.7.(2019年广西河池市)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【分析】(1)设跳绳的单价为x元/条,毽子的单件为y元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.【解答】解:(1)设跳绳的单价为x元/条,毽子的单件为y元/个,可得:,解得:,答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x折销售,可得:(100×16+100×4)×=1800,解得:x=9,答:该店的商品按原价的9折销售.【点评】本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.8.(2019年广东省广州市)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2019年湖南省益阳市)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.求去年每千克小龙虾的养殖成本与售价;【分析】设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;【点评】本题考查了二元一次方程组的应用;根据题意列出方程组或不等式是解题的关键.10(2019年山东省淄博市)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润【分析】设A,B两种产品的销售件数分别为x件、y件;由题意列出方程组,解方程组即可.【解答】解:设A,B两种产品的销售件数分别为x件、y件;由题意得:,解得:;答:A,B两种产品的销售件数分别为160件、180件.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.11(2019年浙江省丽水市)解方程组【分析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;【解答】解:,将①化简得:﹣x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴;【点评】本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.12(2019年江苏省盐城市)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【分析】(1)直接利用1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克得出方程求出答案;(2)利用分类讨论得出方程的解即可.【解答】解:(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)∵现有A型球、B型球的质量共17千克,∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),综上所述:A型球、B型球各有3只、2只.【点评】此题主要考查了二元一次方程组的应用,正确分类讨论是解题关键.13(2019年湖南省怀化市)解二元一次方组:【分析】直接利用加减消元法进而解方程组即可.【解答】解:,①+②得:2x=8,解得:x=4,则4﹣3y=1,解得:y=1,故方程组的解为:.【点评】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.14(2019年山东省潍坊市)己知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.【分析】先用加减法求得x﹣y的值(用含k的式子表示),然后再列不等式求解即可.【解答】解:①﹣②得:x﹣y=5﹣k,∵x>y,∴x﹣y>0.∴5﹣k>0.解得:k<5.【点评】本题主要考查的是二元一次方程组的解,求得x﹣y的值(用含k的式子表示)是解题的关键.15(2019年浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.16(2019年甘肃省武威市、陇南市)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【分析】根据对话分别利用总钱数得出等式求出答案.【解答】解:设中性笔和笔记本的单价分别是x元、y元,根据题意可得:,解得:,答:中性笔和笔记本的单价分别是2元、6元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.17(2019年山东省枣庄市)对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出所求.【解答】解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=﹣3,则x+y=﹣1.【点评】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.。

2019年吉林省中考数学试卷含答案

2019年吉林省中考数学试卷含答案

绝密★启用前 在吉林省2019 年初中毕业生学业水平考试数 学数学试题共6 题,包括六道大题,共26 道小题。

全卷满分120 分,考试时间为120 分此钟。

考试结束后,将本试卷和答题卡一并交回。

5.如注意事项:A1.答题前,请您将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码 区域内。

2.答题时,请您按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答题无效。

卷一、单项选择题(每小题 2 分,共 12 分) 1.如图,数轴上蝴蝶所在点表示的数可能为()上答题无效6.曲更A .3B .2C .1D .-1 (2.如图,由6 个相同的小正方体组合成一个立体图形,它的俯视图为 )中ABC正面D(第2题)二、7.分8.不9.计AB C D 10.3.若a 为实数,则下列各式的运算结果比a 小的是A . a 1B . a 1() C . a 1D . a 1 4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至11.少为 ()A .30°B .90°C .120°D .180°数学试卷 第 1 页(共 8 页)16.甲口袋中装有红色、绿色两子,从乙口袋都是红色的概EDCAB(第11题)12.如图,在四边形ABC D 中,AB 10 ,BD AD .若将 △BC D 沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BC DE 的周长为.BECDA(第12题)13.在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长 为90 m ,则这栋楼的高度为m .17.已知y 是x 的(1)求y 关于x14.如图,在扇形OAB 中,AO B 90 ,D ,E 分别是半径OA ,OB 上的点,以O D ,OE 为邻边的OD CE 的顶点C 在 AB 上,若O D 8 ,OE 6 ,则阴影部分图形的面积是 (2)当 x 4 时________(结果保留 ).B CE18.如图,在ABF ,连接BE 、O D A(第14题)AE三、解答题(每小题 5 分,共 20 分)15.先化简,再求值:a 12a a 2,其中a 2 .B(第1数学试卷 第 3 页(共 8 页)四、解答题(每小题 7 分,共 28 分) 19.图①,图②均为4 4 的正方形网格,每个小正方形的顶点称为格点.在图①中已画出 线段AB ,在图②中已画出线段C D ,其中A 、B 、C 、D 均为格点,按下列要求画图: (1)在图①中,以AB 为对角线画一个菱形AEBF 且E ,F 为格点;(2)在图②中,以C D 为对角线画一个对边不相等的四边形C G D H ,且G ,H 为格点,在此卷上答题无效CG D CH D 90 .22.20.问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根 竹签上.如果每根竹签串5 个山楂,还剩余4 个山楂;如果每根竹签串8 个山楂,还剩 余7 根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立 的是________(填写序号).(1)bc d a ;(2)ac d b ;(3)ac d b .21.墙壁及淋浴花洒截面如图所示,已知花洒底座A 与地面的距离AB 为 170 cm ,花洒A C 的长为 30 cm ,与墙壁的夹角CA D 为 43°.求花洒顶端C 到地面的距离CE (结果精确到1 cm )(参考数据:s in43 0.68 ,cos43 0.73 ,tan43 0.93)数学试卷 第 5 页(共 8 页)五、解答题(每小题 8 分,共 16 分)六、解答题(每小23.甲、乙两车分别从A , B 两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原 速行驶到B 地,乙车立即以原速原路返回到B 地,甲、乙两车距B 地的路程y (k m) 与 各自行驶的时间x (h) 之间的关系如图所示. 25.如图,在矩形AE .动点P 、以2 cm/s 的过程中,点P (1)AE(1)m,n;(2)求乙车距B 地的路程y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)当甲车到达B 地时,求乙车距B 地的路程(2)求y 关于x5(3)当P QC ED Q(第226.如图,抛物线y于点C (0,-324.性质探究如图①,在等腰三角形 A BC 中,ACB 120 ,则底边 A B 与腰 A C 的长度之比为 ________.(1)求此抛物(2)当点P 位于(3)设此抛物差为h .ECHABFG ①求h 关②当h 9图①图②(第24题)理解运用(1)若顶角为120°的等腰三角形的周长为8 4 3 ,则它的面积为 (2)如图②,在四边形EF G H 中,EF EG EH .①求证:EFG EH G FG H ;;②在边F G ,G H 上分别取中点M , N ,连接M N .若FG H 120 ,EF 10 ,直接写 出线段M N 的长. 类比拓展顶角为2 的等腰三角形的底边与一腰的长度之比为________(用含 的式子表示).数学试卷 第 7 页(共 8 页)吉林省2019年初中毕业生学业水平考试数学答案解析一、单项选择题1.【答案】D【解析】蝴蝶在原点的左边,应为负数,所以,选项中,只有1有可能,选D.【考点】数轴的定义2.【答案】D【解析】从上面往下看,能看到一排四个正方形,D 符合.【考点】三视图3.【答案】B【解析】a1表示比a小1 的数,所以,B 符合.【考点】实数的运算法则4.【答案】C【解析】一个圆周360°,图中三个箭头,均分圆,每份为120°,所以,旋转120°后与自身重合。

2019年吉林省长春市中考数学试卷(含答案解析)

2019年吉林省长春市中考数学试卷(含答案解析)

2019年吉林省长春市中考数学试卷(含答案解析)一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图,数轴上表示﹣2的点A到原点的距离是()A.﹣2B.2C.﹣D.2.(3分)2019年春运前四日,全国铁路、道路、水路、民航共累计发送旅客约为275000000人次,275000000这个数用科学记数法表示为()A.27.5×107B.0.275×109C.2.75×108D.2.75×1093.(3分)如图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是()A.B.C.D.4.(3分)不等式﹣x+2≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≥2D.x≤25.(3分)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.6.(3分)如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离C为()A.3sinα米B.3cosα米C.米D.米7.(3分)如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A.B.C.D.8.(3分)如图,在平面直角坐标系中,Rt△ABC的顶点A、C的坐标分别是(0,3)、(3、0).∠ACB=90°,AC=2BC,则函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.9C.D.二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算:3﹣=.10.(3分)分解因式:ab+2b=.11.(3分)一元二次方程x2﹣3x+1=0的根的判别式的值是.12.(3分)如图,直线MN∥PQ,点A、B分别在MN、PQ上,∠MAB=33°.过线段AB 上的点C作CD⊥AB交PQ于点D,则∠CDB的大小为度.13.(3分)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC 相交于点G,则△GCF的周长为.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.三、解答题(共10小题,满分78分)15.(6分)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.16.(6分)一个不透明的口袋中有三个小球,每个小球上只标有一个汉字,分别是“家”、“家”“乐”,除汉字外其余均相同.小新同学从口袋中随机摸出一个小球,记下汉字后放回并搅匀;再从口袋中随机摸出一个小球记下汉字,用画树状图(或列表的)方法,求小新同学两次摸出小球上的汉字相同的概率.17.(6分)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.18.(7分)如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)19.(7分)网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时):3 2.50.6 1.5122 3.3 2.5 1.82.5 2.23.54 1.5 2.5 3.1 2.8 3.3 2.4整理上面的数据,得到表格如下:网上学习时间x(时)0<x≤11<x≤22<x≤33<x≤4人数2585样本数据的平均数、中位数、众数如下表所示:统计量平均数中位数众数数值 2.4m n根据以上信息,解答下列问题:(1)上表中的中位数m的值为,众数n的值为.(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间.(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数.20.(7分)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.21.(8分)已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.22.(9分)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.23.(10分)如图,在Rt△ABC中,∠C=90°,AC=20,BC=15.点P从点A出发,沿AC向终点C运动,同时点Q从点C出发,沿射线CB运动,它们的速度均为每秒5个单位长度,点P到达终点时,P、Q同时停止运动.当点P不与点A、C重合时,过点P 作PN⊥AB于点N,连结PQ,以PN、PQ为邻边作▱PQMN.设▱PQMN与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)①AB的长为;②PN的长用含t的代数式表示为.(2)当▱PQMN为矩形时,求t的值;(3)当▱PQMN与△ABC重叠部分图形为四边形时,求S与t之间的函数关系式;(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,直接写出t的值.24.(12分)已知函数y=(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值;②求此函数的最大值.(2)已知线段AB的两个端点坐标分别为A(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4,求n的取值范围.2019年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图,数轴上表示﹣2的点A到原点的距离是()A.﹣2B.2C.﹣D.【分析】根据绝对值的定义即可得到结论.【解答】解:数轴上表示﹣2的点A到原点的距离是2,故选:B.【点评】本题考查了数轴,绝对值的意义,熟练掌握绝对值的意义是解题的关键.2.(3分)2019年春运前四日,全国铁路、道路、水路、民航共累计发送旅客约为275000000人次,275000000这个数用科学记数法表示为()A.27.5×107B.0.275×109C.2.75×108D.2.75×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将275000000用科学记数法表示为:2.75×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)不等式﹣x+2≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≥2D.x≤2【分析】直接进行移项,系数化为1,即可得出x的取值.【解答】解:移项得:﹣x≥﹣2系数化为1得:x≤2.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.(3分)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.【解答】解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.6.(3分)如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离C为()A.3sinα米B.3cosα米C.米D.米【分析】直接利用锐角三角函数关系得出sinα==,进而得出答案.【解答】解:由题意可得:sinα==,故BC=3sinα(m).故选:A.【点评】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.7.(3分)如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A.B.C.D.【分析】由∠ADC=2∠B且∠ADC=∠B+∠BCD知∠B=∠BCD,据此得DB=DC,由线段的中垂线的性质可得答案.【解答】解:∵∠ADC=2∠B且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴DB=DC,∴点D是线段BC中垂线与AB的交点,故选:B.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握三角形外角的性质、中垂线的性质及其尺规作图.8.(3分)如图,在平面直角坐标系中,Rt△ABC的顶点A、C的坐标分别是(0,3)、(3、0).∠ACB=90°,AC=2BC,则函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.9C.D.【分析】根据A、C的坐标分别是(0,3)、(3、0)可知OA=OC=3,进而可求出AC,由AC=2BC,又可求BC,通过作垂线构造等腰直角三角形,求出点B的坐标,再求出k 的值.【解答】解:过点B作BD⊥x轴,垂足为D,∵A、C的坐标分别是(0,3)、(3、0),∴OA=OC=3,在Rt△AOC中,AC=,又∵AC=2BC,∴BC=,又∵∠ACB=90°,∴∠OAC=∠OCA=45°=∠BCD=∠CBD,∴CD=BD==,∴OD=3+=∴B(,)代入y=得:k=,故选:D.【点评】直角三角形的性质、勾股定理,等腰三角形性质和判定以及反比例函数图象上点的坐标特征是解决问题必备知识,恰当的将线段的长与坐标互相转化,使问题得以解决.二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算:3﹣=2.【分析】直接合并同类二次根式即可求解.【解答】解:原式=2.故答案为:2.【点评】本题考查了二次根式的加减运算,解答本题的关键是掌握同类二次根式的合并.10.(3分)分解因式:ab+2b=b(a+2).【分析】直接提取公因式b,进而分解因式即可.【解答】解:ab+2b=b(a+2).故答案为:b(a+2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.(3分)一元二次方程x2﹣3x+1=0的根的判别式的值是5.【分析】根据根的判别式等于b2﹣4ac,代入求值即可.【解答】解:∵a=1,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×1×1=5,故答案为:5.【点评】本题考查了根的判别式,熟记根的判别式的公式△=b2﹣4ac.12.(3分)如图,直线MN∥PQ,点A、B分别在MN、PQ上,∠MAB=33°.过线段AB 上的点C作CD⊥AB交PQ于点D,则∠CDB的大小为57度.【分析】直接利用平行线的性质得出∠ABD的度数,再结合三角形内角和定理得出答案.【解答】解:∵直线MN∥PQ,∴∠MAB=∠ABD=33°,∵CD⊥AB,∴∠BCD=90°,∴∠CDB=90°﹣33°=57°.故答案为:57.【点评】此题主要考查了平行线的性质以及三角形内角和定理,正确掌握平行线的性质是解题关键.13.(3分)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC 相交于点G,则△GCF的周长为4+2.【分析】根据折叠的性质得到∠DAF=∠BAF=45°,根据矩形的性质得到FC=ED=2,根据勾股定理求出GF,根据周长公式计算即可.【解答】解:由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=6,∴EB=AB﹣AE=2,由题意得,四边形EFCB为矩形,∴FC=ED=2,∵AB∥FC,∴∠GFC=∠A=45°,∴GC=FC=2,由勾股定理得,GF==2,则△GCF的周长=GC+FC+GF=4+2,故答案为:4+2.【点评】本题考查的是翻折变换的性质、矩形的性质一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为2.【分析】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.【点评】本题综合考查了如何求抛物线与y轴的交点坐标,如何求抛物线的对称轴,以及利用对称性求抛物线上点的坐标,同时还考查了正比例函数解析式的求法,难度中等.三、解答题(共10小题,满分78分)15.(6分)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:原式=4a2+4a+1﹣4a2+4a=8a+1,当a=时,原式=8a+1=2.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.16.(6分)一个不透明的口袋中有三个小球,每个小球上只标有一个汉字,分别是“家”、“家”“乐”,除汉字外其余均相同.小新同学从口袋中随机摸出一个小球,记下汉字后放回并搅匀;再从口袋中随机摸出一个小球记下汉字,用画树状图(或列表的)方法,求小新同学两次摸出小球上的汉字相同的概率.【分析】画出树状图,共有9个等可能的结果,小新同学两次摸出小球上的汉字相同的结果有5个,由概率公式即可得出结果.【解答】解:画树状图如图:共有9个等可能的结果,小新同学两次摸出小球上的汉字相同的结果有5个,∴小新同学两次摸出小球上的汉字相同的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.【分析】该灯具厂原计划每天加工这种彩灯的数量为x套,由题意列出方程:﹣=5,解方程即可.【解答】解:该灯具厂原计划每天加工这种彩灯的数量为x套,则实际每天加工彩灯的数量为1.2x套,由题意得:﹣=5,解得:x=300,经检验,x=300是原方程的解,且符合题意;答:该灯具厂原计划每天加工这种彩灯的数量为300套.【点评】本题考查了分式方程的应用以及分式方程的解法;熟练掌握分式方程的解法,根据题意列出方程是解题的关键.18.(7分)如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)【分析】(1)根据四边形ABCD是正方形,AB为⊙O的直径,得到∠ABE=∠BCG=∠AFB=90°,根据余角的性质得到∠EBF=∠BAF,根据全等三角形的判定定理即可得到结论;(2)连接OF,根据三角形的内角和得到∠BAE=90°﹣55°=35°,根据圆周角定理得到∠BOF=2∠BAE=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,AB为⊙O的直径,∴∠ABE=∠BCG=∠AFB=90°,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF,在△ABE与△BCG中,,∴△ABE≌△BCG(ASA);(2)解:连接OF,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°﹣55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴的长==.【点评】本题考查了弧长的计算,全等三角形的判定和性质,正方形的性质,圆周角定理,熟练掌握弧长的计算公式是解题的关键.19.(7分)网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时):3 2.50.6 1.5122 3.3 2.5 1.82.5 2.23.54 1.5 2.5 3.1 2.8 3.3 2.4整理上面的数据,得到表格如下:网上学习时间x(时)0<x≤11<x≤22<x≤33<x≤4人数2585样本数据的平均数、中位数、众数如下表所示:统计量平均数中位数众数数值 2.4m n根据以上信息,解答下列问题:(1)上表中的中位数m的值为 2.5,众数n的值为 2.5.(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间.(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数.【分析】(1)把20个数据从小到大排列,即可求出中位数;出现次数最多的数据即为众数;(2)由平均数乘以18即可;(3)用总人数乘以每周网上学习时间超过2小时的学生人数所占的比例即可.【解答】解:(1)从小到大排列为:0.6,1,1.5,1.5,1.8,2,2,2.2,2.4,2.5,2.5,2.5,2.5,2.8,3,3.1,3.3,3.3,3.5,4,∴中位数m的值为=2.5,众数n为2.5;故答案为:2.5,2.5;(2)2.4×18=43.2(小时),答:估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间为43.2小时.(3)200×=130(人),答:该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数为130人.【点评】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.20.(7分)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.【分析】(1)直接利用三角形的面积的计算方法得出符合题意的图形;(2)直接利用三角形面积求法得出答案;(3)根据矩形函数三角形的面积的求法进而得出答案.【解答】解:(1)如图①所示,△ABM即为所求;(2)如图②所示,△CDN即为所求;(3)如图③所示,四边形EFGH即为所求;【点评】此题主要考查了作图﹣应用与设计,以及三角形面积求法,正确掌握三角形面积求法是解题关键.21.(8分)已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为75千米/时,a= 3.6,b= 4.5.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.【分析】(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定a、b的值;(2)运用待定系数法解得即可;(3)求出甲车到达距B地70千米处时行驶的时间,代入(2)的结论解答即可.【解答】解:(1)乙车的速度为:(270﹣60×2)÷2=75千米/时,a=270÷75=3.6,b=270÷60=4.5.故答案为:75;3.6;4.5;(2)60×3.6=216(千米),当2<x≤3.6时,设y=k1x+b1,根据题意得:,解得,∴y=135x﹣270(2<x≤3.6);当3.6<x≤4.6时,设y=60x,∴;(3)甲车到达距B地70千米处时行驶的时间为:(270﹣70)÷60=(小时),此时甲、乙两车之间的路程为:135×﹣270=180(千米).答:当甲车到达距B地70千米处时,求甲、乙两车之间的路程为180千米.【点评】此题主要考查了一次函数的应用问题,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程.22.(9分)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为6.【分析】教材呈现:如图①,连结ED.根据三角形中位线定理可得DE∥AC,DE=AC,那么△DEG∽△ACG,由相似三角形对应边成比例以及比例的性质即可证明==;结论应用:(1)如图②.先证明△BEF∽△DAF,得出BF=DF,那么BF=BD,又BO=BD,可得OF=OB﹣BF=BD,由正方形的性质求出BD=6,即可求出OF =;(2)如图③,连接OE.由(1)易证=2.根据同高的两个三角形面积之比等于底边之比得出△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,那么△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,所以△BOC的面积=,进而求出▱ABCD的面积=4×=6.【解答】教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE=AC,∴△DEG∽△ACG,∴===2,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE=BC=AD,BO=BD,∴△BEF∽△DAF,∴==,∴BF=DF,∴BF=BD,∵BO=BD,∴OF=OB﹣BF=BD﹣BD=BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF=.故答案为;(2)解:如图③,连接OE.由(1)知,BF=BD,OF=BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴▱ABCD的面积=4×=6.故答案为6.【点评】本题考查了三角形中位线定理,三角形的重心,平行四边形、正方形的性质,三角形的面积,相似三角形的判定与性质,综合性较强,难度适中.熟练掌握各定理是解题的关键.23.(10分)如图,在Rt△ABC中,∠C=90°,AC=20,BC=15.点P从点A出发,沿AC向终点C运动,同时点Q从点C出发,沿射线CB运动,它们的速度均为每秒5个单位长度,点P到达终点时,P、Q同时停止运动.当点P不与点A、C重合时,过点P 作PN⊥AB于点N,连结PQ,以PN、PQ为邻边作▱PQMN.设▱PQMN与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)①AB的长为25;②PN的长用含t的代数式表示为3t.(2)当▱PQMN为矩形时,求t的值;(3)当▱PQMN与△ABC重叠部分图形为四边形时,求S与t之间的函数关系式;(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,直接写出t的值.【分析】(1)根据勾股定理即可直接计算AB的长,根据三角函数即可计算出PN.(2)当▱PQMN为矩形时,由PN⊥AB可知PQ∥AB,根据平行线分线段成比例定理可得,即可计算出t的值.(3)当▱PQMN与△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.▱PQMN在三角形内部时,Ⅱ.▱PQMN有部分在外边时.由三角函数可计算各图形中的高从而计算面积.(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,有两种情况,Ⅰ.过MN 的中点,Ⅱ.过QM的中点.分别根据解三角形求相关线段长利用平行线等分线段性质和可列方程计算t值.【解答】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=15.∴AB===25.∴,由题可知AP=5t,∴PN=AP•sin∠CAB==3t.故答案为:①25;②3t.(2)当▱PQMN为矩形时,∠NPQ=90°,∵PN⊥AB,∴PQ∥AB,∴,由题意可知AP=CQ=5t,CP=20﹣5t,∴,解得t=,即当▱PQMN为矩形时t=.(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,由(1)题可知:cos A=sin B=,cos B=,AP=5t,BQ=15﹣5t,PN=QM=3t.∴AN=AP•cos A=4t,BG=BQ•cos B=9﹣3t,QG=BQ•sin B=12﹣4t,∵.▱PQMN在三角形内部时.有0<QM≤QG,∴0<3t≤12﹣4t,∴0<t.∴NG=25﹣4t﹣(9﹣3t)=16﹣t.∴当0<t时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16﹣t)=﹣3t2+48t.Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQMG 时,即:0<12﹣4t<3t,解得:,▱PQMN与△ABC重叠部分图形为梯形PQMG的面积S===.综上所述:当0<t时,S=﹣3t2+48t.当,S=.(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,有两种情况,Ⅰ.如解题图(4)1,PR∥BC,PR与AB交于K点,R为MN中点,过R点作RH⊥AB,∴∠PKN=∠HKR=∠B,NK=PN•cot∠PKN=3t=,∵NR=MR,HR∥PN∥QM,∴NH=GH=,HR=,∴GM=QM﹣QG=3t﹣(12﹣4t)=7t﹣12.HR=.∴KH=HR•cot∠HKR==,∵NK+KH=NH,∴,解得:t=,Ⅱ.如解题图(4)2,PR∥BC,PR与AB交于K点,R为MQ中点,过Q点作QH⊥PR,∴∠HPN=∠A=∠QRH,四边形PCQH为矩形,∴HQ=QR•sin∠QRH=∵PC=20﹣5t,∴20﹣5t=,解得t=.综上所述:当t=或时,点P且平行于BC的直线经过▱PQMN一边中点,【点评】此题考查了相似形的综合,用到的知识点是勾股定理、三角形中位线定理及相似三角形的判定与性质等,关键是根据题意画出图形,分情况进行讨论,避免出现漏解.24.(12分)已知函数y=(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值;②求此函数的最大值.(2)已知线段AB的两个端点坐标分别为A(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4,求n的取值范围.【分析】(1)①将P(4,b)代入y=﹣x2+x+;②当x≥5时,当x=5时有最大值为5;当x<5时,当x=时有最大值为;故函数的最大值为;(2)将点(4,2)代入y=﹣x2+nx+n中,得到n=,所以<n<4时,图象与线段AB只有一个交点;将点(2,2)代入y=﹣x2+nx+n和y=﹣x2+x+中,得到n =2,n=,所以2≤n<时图象与线段AB只有一个交点;(3)n>0时,n>,①当x=时,y=﹣++=+=4时,n=4或n=﹣8(舍去),得n=4;②当x=n时,y=﹣++≥4,得n≥8;n<0时,n<,③当x=n时,y=﹣++≤﹣4,得n≤﹣4,得n≤﹣8;④当﹣x2+nx+n=4有唯一解时,n=﹣2﹣2或n=﹣2+2(舍去),得n=﹣2﹣2.【解答】解:(1)当n=5时,y=,①将P(4,b)代入y=﹣x2+x+,。

长春市2019年中考数学试卷及答案解析(word版)

长春市2019年中考数学试卷及答案解析(word版)

2019年吉林省长春市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B.C.﹣5 D.52.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×1033.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A 在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3=.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为度.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=(用含a 的代数式表示)23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E 运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD 时,t的值为.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.2019年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B.C.﹣5 D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:45000这个数用科学记数法表示为4.5×104,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到的平面图形即为该组合体的俯视图,据此求解.【解答】解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.【点评】本题考查了简单组合体的三视图的知识,解题的关键是了解俯视图的定义,属于基础题,难度不大.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故不等式组的解集为:﹣2<x≤3.在数轴上表示为:.故选C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用完全平方公式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2,故选A【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A 在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°【考点】旋转的性质.【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,=AC•CQ=(m﹣1)n=mn﹣n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S=AC•CQ=4﹣n,四边形ACQE∵当m>1时,n随m的增大而减小,∴S=4﹣n随m的增大而增大.四边形ACQE故选B.【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3=a3b3.【考点】幂的乘方与积的乘方.【专题】计算题;整式.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=a3b3,故答案为:a3b3【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是1.【考点】根的判别式.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为10.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC的周长=AC+AB,由此即可解决问题.【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.故答案为10.【点评】本题考查基本作图、线段垂直平分线性质、三角形周长等知识,解题的关键是学会转化,把△ADC 的周长转化为求AC+AB来解决,属于基础题,中考常考题型.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为﹣2.【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B点坐标,再代入直线y=kx+3,求出k的值即可.【解答】解:∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),∴B(1,1).∵点B在直线y=kx+3上,∴1=k+3,解得k=﹣2.故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为30度.【考点】圆周角定理.【分析】由∠BAO=25°,利用等腰三角形的性质,可求得∠AOB的度数,又由∠OCA=40°,可求得∠CAO 的度数,继而求得∠AOC的度数,则可求得答案.【解答】解:∵∠BAO=25°,OA=OB,∴∠B=∠BAO=25°,∴∠AOB=180°﹣∠BAO﹣∠B=130°,∵∠ACO=40°,OA=OC,∴∠C=∠CAO=40°,∴∠AOC=180°﹣∠CAO﹣∠C=100°,∴∠BOC=∠AOB﹣∠AOC=30°.故答案为30°.【点评】本题考查了圆周角定理以及等腰三角形的性质.注意利用等腰三角形的性质求解是关键.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.【考点】二次函数的性质;菱形的性质.【分析】设D(x,﹣x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,然后根据三角形面积公式得出∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,根据二次函数的性质即可求得最大值.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,∵﹣<0,∴S△BCD有最大值,最大值为,故答案为.【点评】本题库存了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.【考点】整式的混合运算—化简求值.【专题】计算题;探究型.【分析】根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=代入化简后的式子,即可解答本题.【解答】解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=时,原式=.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是3的概率.【解答】解:列表得:1 2 3和1 2 3 42 3 4 53 4 5 6∴P(和为3)=.【点评】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题的关键是要区分放回实验还是不放回实验.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.【考点】分式方程的应用.【分析】关键描述语为:“A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400÷A型机器每小时加工零件的个数=300÷B型机器每小时加工零件的个数.【解答】解:设A型机器每小时加工零件x个,则B型机器每小时加工零件(x﹣20)个.根据题意列方程得:=,解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.【考点】条形统计图;用样本估计总体.【分析】(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的百分比,继而求得答案.【解答】解:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100;(2)根据题意得:×1100=385(人),答:估计该校1100名学生中一年的课外阅读量超过10本的人数为:385人.【点评】此题考查了条形统计图的知识以及由样本估计总体的知识.注意能准确分析条形统计图是解此题的关键.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】【考点】解直角三角形的应用-仰角俯角问题.【分析】作DE⊥AB于E,根据正切的概念求出AE的长,再结合图形根据线段的和差计算即可求解.【解答】解:作DE⊥AB于E,由题意得DE=BC=27米,∠ADE=47°,在Rt△ADE中,AE=DE•tan∠ADE=27×1.072=28.944米,AB=AE+BE≈30.4米,答:纪念碑的高度约为30.4米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵DF=BE,∴四边形BEFD是平行四边形,∴BD∥EF;(2)∵四边形BEFD是平行四边形,∴DF=BE=4.∵DF∥EC,∴△DFG∽CEG,∴=,∴CE==4×=6.【点评】本题考查了相似三角形的判定与性质,利用了平行四边形的判定与性质,相似三角形的判定与性质.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.【考点】一次函数的应用.【分析】(1)根据题意列算式即可得到结论;(2)根据题意列方程组即可得到结论;(3)根据题意列算式即可得到结论.【解答】解:(1)300÷(180÷1.5)=2.5(小时),答:甲车从A地到达B地的行驶时间是2.5小时;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550;(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米,答:乙车到达A地时甲车距A地的路程是175千米.【点评】本题考查了待定系数法一次函数的解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=a(用含a的代数式表示)【考点】全等三角形的判定与性质.【分析】探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=EB即可解决问题.【解答】探究:证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DC=DB.应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DF=DE,CF=BE,在RT△ADF和RT△ADE中,,∴△ADF≌△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在RT△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=a,∴AB﹣AC=a.故答案为a.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E 运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为4;当OO′⊥AD时,t的值为3.【考点】四边形综合题.【分析】(1)由题意知:AE=2t,由锐角三角函数即可得出EF=t;(2)当H与D重合时,FH=GH=8﹣t,由菱形的性质和EG∥AD可知,AE=EG,解得t=;(3)矩形EFHG与菱形ABCD重叠部分图形需要分以下两种情况讨论:①当H在线段AD上,此时重合的部分为矩形EFHG;②当H在线段AD的延长线上时,重合的部分为五边形;(4)当OO′∥AD时,此时点E与B重合;当OO′⊥AD时,过点O作OM⊥AD于点M,EF与OA相交于点N,然后分别求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.【解答】解:(1)由题意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴EF=t;(2)∵AE=2t,∠AEF=30°,∴AF=t,当H与D重合时,此时FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四边形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=;(3)当0≤t≤时,此时矩形EFHG与菱形ABCD重叠部分图形为矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EF•EG=t•2t=2t2,当<t≤4时,如图1,设CD与HG交于点I,此时矩形EFHG与菱形ABCD重叠部分图形为五边形FEGID,∵AE=2t,∴AF=t,EF=t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=,∴HI=DH,∴S=EF•EG﹣DH•HI=2t2﹣(3t﹣8)2=﹣t2+24t﹣32;(4)当OO′∥AD时,如图2此时点E与B重合,∴t=4;当OO′⊥AD时,如图3,过点O作OM⊥AD于点M,EF与OA相交于点N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,FM=t,∵O′O⊥AD,O′是FG的中点,∴O′O是△FNG的中位线,∴O′O=FN=t,∵AB=8,∴由勾股定理可求得:OA=4∴OM=2,∴O′M=2﹣t,∵FE=t,EG=2t,∴由勾股定理可求得:FG2=7t2,∴由矩形的性质可知:O′F2=FG2,∵由勾股定理可知:O′F2=O′M2+FM2,∴t2=(2﹣t)2+t2,∴t=3或t=﹣6(舍去).故答案为:t=4;t=3.【点评】本题考查四边形的综合问题,涉及矩形和菱形的性质,勾股定理,锐角三角函数,解方程等知识,综合程度较高,考查学生灵活运用知识的能力.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.【考点】二次函数综合题.【分析】(1)把(0,0)代入y=a(x﹣3)2+4即可解决问题.(2)①用m的代数式表示PQ、QQ′,即可解决问题.②分0<m≤3或3<m<6两种情形,画出图形,利用相似三角形或锐角三角函数求出相应线段即可解决.(3),①当h=3时,两个抛物线对称轴x=3,四边形OAQQ′是等腰梯形.②当四边形OQ′1Q1A是菱形时,求出抛物线对称轴即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣3)2+4经过原点,∴x=0时,y=0,∴9a+4=0,∴a=﹣.(2)∵抛物线y=a(x﹣h)2经过原点时,∴h=0,∵a=﹣,∴y=﹣x2.①∵P(m,﹣+m),Q(m,﹣),∴PQ=﹣+m﹣(﹣)=m,QQ′=2m,∴==.②如图1中,当0<m≤3时,设PQ与OB交于点E,与OA交于点F,∵=,∠PQQ′=∠BMO=90°,∴△PQQ′∽△BMO,∴∠QPQ′=∠OBM,∵EF∥BM,∴∠OEF=∠OBM,∴∠OEF=∠QPQ′,∴OE∥PQ′,∵=,∴EF=,OE=,∴l=OF+EF+OE=m++m=4m,当3<m<6时,如图2中,设PQ′与AB交于点H,与x轴交于点G,PQ交AB于E,交OA于F,作HM⊥OA 于M.∵AF=6﹣m,tan∠EAF==,∴EF=m,AE=,∵tan∠PGF==,PF=﹣+,∴GF=﹣m2+2m,∴AG=﹣m2+m+6,∴GM=AM=﹣m2+m+3,∵HG=HA=,=﹣m2+m+5,∴l=GH+EH+EF+FG=﹣m2++10.综上所述l=.(3)如图3中,①当h=3时,两个抛物线对称轴x=3,∴点O、A关于对称轴对称,点Q,Q′关于对称轴对称,∴OA∥QQ′,OQ′=AQ,∴四边形OAQQ′是等腰梯形,属于轴对称图形.②当四边形OQ′1Q1A是菱形时,OQ′1=OA=6,∵Q′1Q1=OA=6,∴点Q1的纵坐标为4,在RT△OHQ′1,中,OH=4,OQ′1=6,∴HQ′1=2,∴h=3﹣2或3+2,综上所述h=3或3﹣2或3+2时点O,A,Q,Q′为顶点的四边形是轴对称图形.【点评】本题考查二次函数的综合题、相似三角形的性质和判定、菱形的性质、等腰梯形的性质,锐角三角函数等知识,解题的关键是学会分类讨论,需要正确画出图象解决问题,属于中考压轴题.。

2019年吉林省长春市二道区中考数学一模试卷 解析版

2019年吉林省长春市二道区中考数学一模试卷  解析版

2019年吉林省长春市二道区中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)互为相反数的两个数的和为()A.0B.﹣1C.1D.22.(3分)国产电影《流浪地球》深受观众喜爱,截止到2019年4月15日,该电影票房已达到46.86亿元,46.86亿用科学记数法表示为()A.0.4686×1010B.46.86×108C.4.686×108D.4.686×1093.(3分)某物体的三视图如图所示,则该物体的形状是()A.正方体B.长方体C.圆柱体D.球体4.(3分)点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.5.(3分)若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断6.(3分)小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为∠α,已知tanα=,则点D到地面的距离CD是()A.2.7米B.3.0米C.3.2米D.3.4米7.(3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD 即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对8.(3分)数学课上,老师提出一个问题:如图①,在平面直角坐标系中,点A的坐标为(0,2),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使∠BAC =90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图②所示.题中用“…”表示的缺失的条件应补为()A.边AB的长B.△ABC的周长C.点C的横坐标D.点C的纵坐标二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)×=.10.(3分)分解因式:x3﹣9x=.11.(3分)直线l1∥l2,一块含45°角的直角三角板如图放置.若∠1=75°,则∠2=度.12.(3分)如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=.13.(3分)如图,在平面直角坐标系中,直线y=x﹣1与函数y=(k>0,x>0)的图象交于点A,与x轴交于点B,与y轴交于点C.若点B为AC的中点,则k的值为.14.(3分)对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:,其中x的值从﹣1,2,3中选择一个适当的数.16.(6分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.17.(6分)图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上.在图①、图②给定的网格中各画一个△APC,使点P在线段AB上,点C为格点,且∠APC的正切值为2.要求:(1)图①中的△APC为直角三角形,图②中的△APC为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹18.(7分)每年的4月23日,是“世界读书日”.据统计,“幸福家园小区”1号楼的住户一年内共阅读纸质图书460本,2号楼的住户一年内共阅读纸质图书184本,1号楼住户的人数比2号楼住户人数的2倍多20人,且两栋楼的住户一年内人均阅读纸质图书的数量相同.求这两栋楼的住户一年内人均阅读纸质图书的数量是多少本?19.(7分)如图,△ABC的边BC为⊙O的直径,边AC和⊙O交点D,且∠ABD=∠ACB.(1)求证:AB是⊙O的切线;(2)若BD=4,AB=5,则BC的长为.20.(7分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整【收集数据】甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83【整理数据】按如下分数段整理、描述这两组样本数据在表中,a=,b=.【分析数据】(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.21.(8分)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与x(时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x 的取值范围.22.(9分)【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F 分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.23.(10分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点D为边AB的中点.点P从点A出发,沿AC方向以每秒1个单位长度的速度向终点C运动,同时点Q从点C 出发,以每秒2个单位长度的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP、DQ为邻边构造▱PEQD,设点P运动的时间为t秒.(1)设点Q到边AC的距离为h,直接用含t的代数式表示h;(2)当点E落在AC边上时,求t的值;(3)当点Q在边AB上时,设▱PEQD的面积为S(S>0),求S与t之间的函数关系式;(4)连接CD,直接写出CD将▱PEQD分成的两部分图形面积相等时t的值.24.(12分)我们约定,在平面直角坐标系中两条抛物线有且只有一个交点时,我们称这两条抛物线为“共点抛物线”,这个交点为“共点”.(1)判断抛物线y=x2与y=﹣x2是“共点抛物线”吗?如果是,直接写出“共点”坐标;如果不是,说明理由;(2)抛物线y=x2﹣2x与y=x2﹣2mx﹣3是“共点抛物线”,且“共点”在x轴上,求抛物线y=x2﹣2mx﹣3的函数关系式;(3)抛物线L1:y=﹣x2+2x+1的图象如图所示,L1与L2:y=﹣2x2+mx是“共点抛物线”;①求m的值;②点P是x轴负半轴上一点,设抛物线L1、L2的“共点”为Q,作点P关于点Q的对称点P′,以PP′为对角线作正方形PMP′N,当点M或点N落在抛物线L1上时,直接写出点P的坐标.2019年吉林省长春市二道区中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)互为相反数的两个数的和为()A.0B.﹣1C.1D.2【分析】直接利用相反数的定义分析得出答案.【解答】解:互为相反数的两个数的和为:0.故选:A.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)国产电影《流浪地球》深受观众喜爱,截止到2019年4月15日,该电影票房已达到46.86亿元,46.86亿用科学记数法表示为()A.0.4686×1010B.46.86×108C.4.686×108D.4.686×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点确定n=9.【解答】解:46.86亿=46.86×108=4.686×109,故选:D.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)某物体的三视图如图所示,则该物体的形状是()A.正方体B.长方体C.圆柱体D.球体【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是正方形可判断出这个几何体应该是长方体.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及动手操作能力.4.(3分)点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【分析】由第二象限纵坐标大于零得出关于m的不等式,解之可得.【解答】解:由题意知m+1>0,解得m>﹣1,故选:C.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.(3分)若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【分析】计算根的判别式,利用k的取值范围进行判断其符号即可求得答案.【解答】解:∵x2+4x+k=0,∴△=42﹣4k=4(4﹣k),∵k>4,∴4﹣k<0,∴△<0,∴该方程没有实数根,故选:A.【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.6.(3分)小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为∠α,已知tanα=,则点D到地面的距离CD是()A.2.7米B.3.0米C.3.2米D.3.4米【分析】通过解直角△ADE得到DE的长度,然后由矩形ABCE的性质求得CE的长度,易得CD=CE+DE.【解答】解:在直角△ADE中,∠DAE=α,AE=5米,tan,∴tanα===,∴DE=1.5米.又CE=AB=1.7米,∴CD=CE+DE=3.2米.故选:C.【点评】考查了解直角三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD 即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【分析】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【解答】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选:A.【点评】本题考查了作图﹣复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.8.(3分)数学课上,老师提出一个问题:如图①,在平面直角坐标系中,点A的坐标为(0,2),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使∠BAC =90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图②所示.题中用“…”表示的缺失的条件应补为()A.边AB的长B.△ABC的周长C.点C的横坐标D.点C的纵坐标【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y 与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,如右图所示,由已知可得,OB=x,OA=2,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离2,∴y=x+2(x>0).故选:D.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)×=2.【分析】根据二次根式的乘法法则计算,结果要化简.【解答】解:×===.【点评】主要考查了二次根式的乘法运算.二次根式的乘法法则=(a≥0,b≥0).10.(3分)分解因式:x3﹣9x=x(x+3)(x﹣3).【分析】根据提取公因式、平方差公式,可分解因式.【解答】解:原式=x(x2﹣9)=x(x+3)(x﹣3),故答案为:x(x+3)(x﹣3).【点评】本题考查了因式分解,利用了提公因式法与平方差公式,注意分解要彻底.11.(3分)直线l1∥l2,一块含45°角的直角三角板如图放置.若∠1=75°,则∠2=30度.【分析】给图中各角标上序号,由直线l1∥l2可得出∠4=∠1=75°,由三角形外角的性质及等腰直角三角形的性质可求出∠3的度数,再利用对顶角相等即可求出∠2的度数.【解答】解:给图中各角标上序号,如图所示.∵直线l1∥l2,∴∠4=∠1=75°.∵∠4=∠3+45°,∴∠3=∠4﹣45°=30°,∴∠2=∠3=30°.故答案为:30.【点评】本题考查了等腰直角三角形、平行线的性质以及三角形外角的性质,利用三角形外角的性质,求出∠3的度数是解题的关键.12.(3分)如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=1:2.【分析】△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.【解答】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2.故答案为:1:2.【点评】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.13.(3分)如图,在平面直角坐标系中,直线y=x﹣1与函数y=(k>0,x>0)的图象交于点A,与x轴交于点B,与y轴交于点C.若点B为AC的中点,则k的值为2.【分析】求出B,C的坐标,根据点B为AC的中点,求出A点的坐标,进而求k;【解答】解:y=x﹣1与x轴交于点B,与y轴交于点C,∴B(1,0),C(0,﹣1),设A(m,n),∵点B为AC的中点,∴m=2,n=1,∴k=2,故答案为2;【点评】本题考查一次函数和反比例函数的图象和性质;能够利用中点的特点,找到点之间的等量关系是解题的关键.14.(3分)对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为1≤a≤2.【分析】根据y的取值范围可以求得相应的x的取值范围.【解答】解:∵二次函数y=x2﹣4x+4=(x﹣2)2,∴该函数的顶点坐标为(2,0),对称轴为:x=﹣,把y=0代入解析式可得:x=2,把y=1代入解析式可得:x1=3,x2=1,所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,故可得:1≤a≤2,故答案为:1≤a≤2.【点评】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:,其中x的值从﹣1,2,3中选择一个适当的数.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=•=,当x=3时,原式=3.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.16.(6分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.17.(6分)图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②给定的网格中各画一个△APC,使点P在线段AB上,点C为格点,且∠APC的正切值为2.要求:(1)图①中的△APC为直角三角形,图②中的△APC为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹【分析】根据正切函数的定义,结合网格特点作图即可.【解答】解:如图所示,图①中的△APC为直角三角形,图②中的△APC为锐角三角形.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握正切函数的定义.18.(7分)每年的4月23日,是“世界读书日”.据统计,“幸福家园小区”1号楼的住户一年内共阅读纸质图书460本,2号楼的住户一年内共阅读纸质图书184本,1号楼住户的人数比2号楼住户人数的2倍多20人,且两栋楼的住户一年内人均阅读纸质图书的数量相同.求这两栋楼的住户一年内人均阅读纸质图书的数量是多少本?【分析】设这两栋楼的住户一年内人均阅读纸质图书的数量为x本.根据等量关系“1号楼住户的人数比2号楼住户人数的2倍多20人”列出方程并解答.【解答】解:设这两栋楼的住户一年内人均阅读纸质图书的数量为x本.由题意,得.解得x=4.6.经检验,x=4.6是原方程的解,且符合题意.答:这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.19.(7分)如图,△ABC的边BC为⊙O的直径,边AC和⊙O交点D,且∠ABD=∠ACB.(1)求证:AB是⊙O的切线;(2)若BD=4,AB=5,则BC的长为.【分析】(1)根据圆周角定理得到∠BDC=90°,求得∠C+∠DBC=90°,等量代换得到∠ABD+∠DBC=90°,于是得到结论;(2)根据勾股定理得到AD=3,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵BC为⊙O的直径,∴∠BDC=90°,∴∠C+∠DBC=90°,∵∠ABD=∠C,∴∠ABD+∠DBC=90°,∴∠ABC=90°,∴AB是⊙O的切线;(2)解:∵∠ADB=90°,BD=4,AB=5,∴AD=3,∵∠ADB=∠BDC=90°,∠C=∠ABD,∴△ABD∽△BCD,∴,∴=,∴BC=.故答案为:.【点评】本题考查了切线的判定和性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.20.(7分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整【收集数据】甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83【整理数据】按如下分数段整理、描述这两组样本数据在表中,a=7,b=4.【分析数据】(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x=85,y=80.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有40人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【解答】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点评】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.21.(8分)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与x(时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x 的取值范围.【分析】(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻.【解答】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米∴(25﹣5)÷(8﹣4)=5(立方米/时)∴每小时的进水量为5立方米.(2)设函数y=kx+b经过点(8,25),(12,37)解得:∴当8≤x≤12时,y=3x+1(3)∵8点到12点既进水又出水时,每小时水量上升3立方米∴每小时出水量为:5﹣3=2(立方米)当8≤x≤12时,3x+1≥28,解得:x≥9当x>14时,37﹣2(x﹣14)≥28,解得:x≤∴当水塔中的贮水量不小于28立方米时,x的取值范围是9≤x≤【点评】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.22.(9分)【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为5.【分析】【问题背景】延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;【探索延伸】延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;【学以致用】过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【解答】【问题背景】解:如图1,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.【探索延伸】解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;【学以致用】如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点评】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.23.(10分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点D为边AB的中点.点P从点A出发,沿AC方向以每秒1个单位长度的速度向终点C运动,同时点Q从点C 出发,以每秒2个单位长度的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP、DQ为邻边构造▱PEQD,设点P运动的时间为t秒.(1)设点Q到边AC的距离为h,直接用含t的代数式表示h;(2)当点E落在AC边上时,求t的值;(3)当点Q在边AB上时,设▱PEQD的面积为S(S>0),求S与t之间的函数关系式;(4)连接CD,直接写出CD将▱PEQD分成的两部分图形面积相等时t的值.【分析】(1)分点Q在线段BC,线段AB上两种情形分别求解即可.(2)利用平行线等分线段定理解决问题即可.(3)分点Q在线段BD,在线段AD上两种情形分别求解即可.(4)当点E落在直线CD上时,CD将▱PEQD分成的两部分图形面积相等.有两种情形:①当点E在CD上,且点Q在CB上时(如图3所示),②当点E在CD上,且点Q 在AB上时(如图4所示),分别求解即可解决问题.【解答】解:(1)当0<t≤时,h=2t.当<t≤4时,h=3﹣(2t﹣3)=﹣t+.(2)当点E落在AC边上时,DQ∥AC,∵AD=DB,∴CQ=QB,∴2t=,∴t=.(3)①如图1中,当≤t<时,作PH⊥AB于H,则PH=PA•sin A=t,DQ=﹣2t,∴S=t•(﹣2t)=﹣t2+t.②如图2中,当<t≤4时,同法可得S=t•(2t﹣)=t2﹣t.(4)当点E落在直线CD上时,CD将▱PEQD分成的两部分图形面积相等.有两种情形:①当点E在CD上,且点Q在CB上时(如图3所示),过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,易证Rt△PGE≌Rt△DHQ,∴PG=DH=2,∴CG=2﹣t,GE=HQ=CQ﹣CH=2t﹣,∵CD=AD,∴∠DCA=∠DAC∴在Rt△CEG中,tan∠ECG===,∴t=.②当点E在CD上,且点Q在AB上时(如图4所示),过点E作EF⊥CA于点F,∵CD=AD,∴∠CAD=∠ACD.∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,∴PF=PC=,PE=DQ=﹣2t,∴在Rt△PEF中,cos∠EPF===,∴t=综上所述,满足要求的t的值为或.【点评】本题考查四边形综合题、平行四边形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论,学会利用参数构建方程解决问题,属于中考压轴题.24.(12分)我们约定,在平面直角坐标系中两条抛物线有且只有一个交点时,我们称这两条抛物线为“共点抛物线”,这个交点为“共点”.(1)判断抛物线y=x2与y=﹣x2是“共点抛物线”吗?如果是,直接写出“共点”坐标;如果不是,说明理由;(2)抛物线y=x2﹣2x与y=x2﹣2mx﹣3是“共点抛物线”,且“共点”在x轴上,求抛物线y=x2﹣2mx﹣3的函数关系式;(3)抛物线L1:y=﹣x2+2x+1的图象如图所示,L1与L2:y=﹣2x2+mx是“共点抛物。

(真题)吉林省2019年中考数学试题(有答案)(Word版)

(真题)吉林省2019年中考数学试题(有答案)(Word版)

吉林省2019年中考数学试卷一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣2【答案】A.【解析】考点:有理数的乘方.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B. C.D.【答案】B.【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C.【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.不等式x+1≥2的解集在数轴上表示正确的是()A.B. C.D.【答案】A.【解析】考点:解一元一次不等式;在数轴上表示不等式的解集.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【答案】C.【解析】试题解析:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.考点:三角形内角和定理.6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8【答案】D.【解析】考点:切线的性质.二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.【答案】8.4×107【解析】试题解析:84 000 000=8.4×107考点:科学记数法—表示较大的数.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).【答案】0.8x.【解析】试题解析:依题意得:该苹果现价是每千克80%x=0.8x.考点:列代数式.9.分解因式:a2+4a+4=.【答案】(a+2)2.【解析】试题解析:a2+4a+4=(a+2)2.考点:因式分解﹣运用公式法.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.【答案】同位角相等,两直线平行.【解析】∵∠1=∠2,∴a∥b(同位角相等,两直线平行);考点:平行线的判定.11.如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为.【答案】1.【解析】试题解析:由旋转的性质得到AB=AB′=5,在直角△AB′D中,∠D=90°,AD=3,AB′=AB=5,所以==4,所以B′C=5﹣B′D=1.故答案是:1.考点:旋转的性质;矩形的性质.12.如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.【答案】9.【解析】即旗杆AB的高为9m.考点:相似三角形的应用.13.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画»BE,ºCE.若AB=1,则阴影部分图形的周长为(结果保留π).【答案】65π+1.【解析】试题解析:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴»BE=ºCE=10831805ABππ︒⨯⨯=︒,∴C阴影=»BE+ºCE+BC=65π+1.考点:正多边形和圆.14.我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为.【答案】1.【解析】考点:两条直线相交或平行问题.三、解答题(每小题5分,共20分)15.某学生化简分式出现了错误,解答过程如下:原式=(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.【答案】(1)一、分式的基本性质用错;(2)过程见解析. 【解析】试题分析:根据分式的运算法则即可求出答案. 试题解析:(1)一、分式的基本性质用错; (2)原式=12(1)(1)(1)(1)x x x x x -++-+-=x+1(1)(1)x x +-=11x -. 考点:分式的加减法.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度. 【答案】隧道累计长度为126km ,桥梁累计长度为216km . 【解析】解得:126216x y ⎧=⎨=⎩.答:隧道累计长度为126km ,桥梁累计长度为216km . 考点:二元一次方程组的应用.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 【答案】49.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.试题解析:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.考点:列表法与树状图法.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见解析.【解析】考点:全等三角形的判定与性质.四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:【答案】(1)8.7,9.7,9.9;(2)甲,理由见解析.【解析】(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.考点:众数;加权平均数;中位数.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【答案】(1)作图见解析;(2)作图见解析.【解析】(2)如图③所示,▱ABCD即为所求.考点:等腰三角形的判定;等边三角形的性质;平行四边形的判定.21.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【答案】求A,B两点间的距离约为1.7km.【解析】∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.考点:解直角三角形的应用﹣仰角俯角问题.22.如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【答案】(1)4;8;4;(2)4.3【解析】∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴12CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=kx可得k=8,∵点B(2,n)在y=8x的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=12AC•BE=12×4×2=4,即△ABC的面积为4.考点:反比例函数与一次函数的交点问题.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【答案】(1)证明见解析;(2);(3)或.【解析】∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵,∴四边形ABC'D′的周长为∴矩形周长为或.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【答案】(1)10;(2)y=58x+52(12≤x ≤28);(3)4秒 【解析】(2)设线段AB 对应的函数解析式为:y=kx+b , ∵图象过A (12,0),B (28,20), ∴1202820k b k b ⎧+=⎨+=⎩,解得:5852k b ⎧=⎪⎪⎨⎪=⎪⎩,∴线段AB 对应的解析式为:y=58x+52(12≤x ≤28); (3)∵28﹣12=16(cm ),∴没有立方体时,水面上升10cm ,所用时间为:16秒, ∵前12秒由立方体的存在,导致水面上升速度加快了4秒, ∴将正方体铁块取出,经过4秒恰好将此水槽注满. 考点:一次函数的应用.六、解答题(每小题10分,共20分)25.如图,在Rt △ABC 中,∠ACB=90°,∠A=45°,AB=4cm .点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 运动.过点P 作PQ ⊥AB 交折线ACB 于点Q ,D 为PQ 中点,以DQ 为边向右侧作正方形DEFQ .设正方形DEFQ 与△ABC 重叠部分图形的面积是y (cm 2),点P 的运动时间为x (s ).(1)当点Q 在边AC 上时,正方形DEFQ 的边长为 cm (用含x 的代数式表示); (2)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值; (3)当0<x <2时,求y 关于x 的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【答案】(1)x;(2)x=45;(3)见解析;(4)1<x<32.【解析】(3)如图②,当0<x≤45时,根据正方形的面积公式得到y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,根据正方形和三角形面积公式得到y=﹣232x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,,得到x=32,于是得到结论.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ﹣S△MNF=DQ2﹣12FM2,∴y=x2﹣12(5x﹣4)2=﹣232x2+20x﹣8,∴y=﹣232x2+20x﹣8;∴DQ=2﹣x,∴y=S△DEQ=12DQ2,∴y=12(2﹣x)2,∴y=12x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,,PB=1,∴AP=3,∴2x=3,∴x=32,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<32.考点:四边形综合题.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m 的取值范围.【答案】【问题】:a=13;【操作】:y=2214(2)(0或4)3314(2)(04)33xx x xx<<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;【探究】:当1<x<2或x>2+7时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【解析】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P 在C 的左侧或F 的右侧部分时,设P[m ,214(2)33m --],根据h ≥1,列不等式解出即可; ②如图③,作对称轴由最大面积小于1可知:点P 不可能在DE 的上方; ③P 与O 或A 重合时,符合条件,m=0或m=4. 试题解析:【问题】 ∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13; 【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0), 沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43如图②,图象G 对应的函数解析式为:y=2214(2)(0或4)3314(2)(04)33x x x x x <<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;解得:x 1=3,x 2=1, ∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >时,函数y 随x 增大而增大; 【应用】:∵D (1,1),E (3,1), ∴DE=3﹣1=2, ∵S △PDE = 12DE•h ≥1,∴h≥1;②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,43),∴HM=43﹣1=13<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2或m≥.考点:二次函数综合题.。

吉林省2019年中考数学真题试题(含解析)

吉林省2019年中考数学真题试题(含解析)

吉林省2019年初中毕业生学业水平考试数学试题数学试题共6题,包括六道大题,共26道小题。

全卷满分120分,考试时间为120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,请您将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。

2.答题时,请您按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答题无效。

一、单项选择题(每小题2分,共12分)1.如图,数轴上蝴蝶所在点表示的数可能为()(第1题)A.3 B.2 C.1 D.-1答案:D考点:数轴。

解析:蝴蝶在原点的左边,应为负数,所以,选项中,只有-1有可能,选D。

2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()(第2题)A.B.C.D.答案:D考点:三视图。

解析:从上面往下看,能看到一排四个正方形,D符合。

3.若a为实数,则下列各式的运算结果比a小的是()A.1a÷a⨯D.1a+B.1a-C.1答案:B考点:实数的运算。

解析:1a 表示比a 小1的数,所以,B 符合。

4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为( ) A .30°B .90°C .120°D .180°(第4题)答案:C 考点:旋转。

解析:一个圆周360°,图中三个箭头,均分圆,每份为120°, 所以,旋转120°后与自身重合。

选C 。

5.如图,在⊙O 中,AB 所对的圆周角∠ACB =50°,若P 为AB 上一点,∠AOP =55°,则∠POB 的度数为( ) A .30°B .45°C .55°D .60°OPC BA (第5题)答案:B考点:同弧所对圆周角与圆心角之间的关系。

解析:圆周角∠ACB 、圆心角∠AOB 所对的弧都是弧AB , 所以,∠AOB =2∠ACB =100°,∠POB =∠AOB -∠AOP =100°-55°=45°, 选B 。

吉林省2019年中考:数学卷考试真题与答案解析

吉林省2019年中考:数学卷考试真题与答案解析

吉林省2019年中考:数学卷考试真题与答案解析一、选择题1. 如图,数轴上表示﹣2的点到原点的距离是( )AA. ﹣2B. 2C.D.12-12答案:B2. 2019年春运前四日,全国铁路、道路、水路、民航共累计发送旅客约为275000000人次,275000000这个数用科学记数法表示为( )A. B. 727.510⨯90.27510⨯C. D. 82.7510⨯92.7510⨯答案:C3. 下图是由4个相同的小正方体组成的立体图形,这个立休图形的主视图是()A. B. C. D.答案:A4. 不等式的解集为( )20x -+≥A. B. 2x ≥-2x -≤C. D. 2x ≥2x ≤答案:D5. 《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数x 为,可列方程组为( )y A. B. 911616x y x y +=⎧⎨+=⎩911616x y x y -=⎧⎨-=⎩C. D. 911616x y x y +=⎧⎨-=⎩911616x y x y-=⎧⎨+=⎩答案:D6. 如图,一把梯子靠在垂直水平地面的墙上,梯子的长是3米.若梯子与地面的夹角为AB ,则梯子顶端到地面的距离BC 为( )αA. 米B. 米3sin α3cos αC. 米D. 米3sin α3cos α答案:A7. 如图,在中,为钝角.用直尺和圆规在边上确定一点.使ABC ∆ACB ∠AB D ,则符合要求的作图痕迹是( )ADC 2B∠=∠A.B.C. D.答案:B8. 如图,在平面直角坐标系中,的顶点、的坐标分别是,,Rt ABC ∆A C ()()0,33,0、090ACB ∠=,则函数的图象经过点,则的值为( )2AC BC =()0,0ky k x x=>>B kA.B. 992C.D.278274答案:D二、填空题9. 计算:_____.=答案:10. 分解因式:_____.2ab b +=答案:()2b a +11. 一元二次方程x 2﹣3x+1=0的根的判别式的值是______.答案:512. 如图,直线,点、分别在上,.过线段上的点//MN PQ A B MN PQ 、033MAB ∠=AB C 作交于点,则的大小为_____度.CD AB ⊥PQ D CDB ∠答案:5713. 如图,有一张矩形纸片,.先将矩形纸片折叠,使边落在ABCD 8,6AB AD ==ABCD AD 边上,点落在点处,折痕为;再将沿翻折,与相交于点,则AB D E AF AEF ∆EF AF BC G 的周长为_____.GCF ∆答案:4+14. 如图,在平面直角坐标系中,抛物线与轴交于点,过点作()28203y ax ax a =-+>y A A x 轴的平行线交抛物线于点.为抛物线的顶点.若直线交直线于点,且为线段M P OP AM B M 的中点,则的值为_____.AB a答案:2三、解答题(共10小题,满分78分)15. 先化简,再求值:,其中.()()22141a a a +--18a =答案:216. 一个不透明的口袋中有三个小球,每个小球上只标有一个汉字,分别是“家”、“家”“乐”,除汉字外其余均相同.小新同学从口袋中随机摸出一个小球,记下汉字后放回并搅匀;再从口袋中随机摸出一个小球记下汉字,用画树状图(或列表的)方法,求小新同学两次摸出小球上的汉字相同的概率.答案:.5917. 为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.答案:原计划每天加工这种彩灯的数量为300套.18. 如图,四边形是正方形,以边为直径作,点在边上,连结交ABCD AB O E BC AE O于点,连结并延长交于点.F BF CD G (1)求证:;ABE BCG ∆≅∆(2)若,求的长.(结果保留)55,3AEB OA ∠== BF π答案:(1)详见解析;(2)76π19. 网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时):3 2.50.6 1.5122 3.3 2.5 1.82.52.23.541.52.53.12.83.32.4整理上面的数据,得到表格如下:网上学习时间(时)x 01x <≤12x <≤23x <≤34x <≤人数2585样本数据的平均数、中位数、众数如下表所示:统计量平均数中位数众数数值2.4m n根据以上信息,解答下列问题:(1)上表中的中位数的值为 ,众数的值为 .m n (2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间.(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数.答案:(1)2.5,2.5;(2)估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间为43.2小时.(3)该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数为130人.20. 图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点均在格点上.在图①、图②、图③中,只用无刻度的直尺,A B C D E F 、、、、、在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段为边画一个,使其面积为6.AB ABM ∆(2)在图②中以线段为边画一个,使其面积为6.CD CDN ∆(3)在图③中以线段为边画一个四边形,使其面积为9,且.EF EFGH 090EFG ∠=答案:(1)详见解析;(2)详见解析;(3)详见解析.21. 已知、两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的A B 速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地A B B A 后停止.甲、乙两车相距的路程(千米)与甲车的行驶时间(时)之间的函数关系如图所y x 示.(1)乙车的速度为 千米/时, , .a =b =(2)求甲、乙两车相遇后与之间的函数关系式.y x (3)当甲车到达距地70千米处时,求甲、乙两车之间的路程.B答案:(1)75;3.6;4.5;(2);()()1352702 3.660 3.6 4.5x x y x x ⎧-<≤⎪=⎨<≤⎪⎩(3)当甲车到达距地70千米处时,求甲、乙两车之间的路程为180千米.B 22. 教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在中,分别是边的中点,相交于点,求证:ABC ∆,D E ,BC AB ,AD CE G ,13GE GD CE AD ==证明:连结.ED 请根据教材提示,结合图①,写出完整的证明过程.结论应用:在中,对角线交于点,为边的中点,、交于点ABCD AC BD 、O E BC AE BD .F (1)如图②,若为正方形,且,则的长为 .ABCD 6AB =OF (2)如图③,连结交于点,若四边形的面积为,则的面积DE ACG OFEG 12ABCD 为 .答案:教材呈现:详见解析;结论应用:(1;(2)6.23. 如图,在中,.点从点出发,沿向终点运动,Rt ABC ∆090,20,15C AC BC ∠===P A AC C 同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,Q C CB P 同时停止运动.当点不与点、重合时,过点作于点,连结,以P Q 、P A C P PN AB ⊥N PQ 为邻边作.设与重叠部分图形的面积为,点的运动时间PN PQ 、PQMN PQMN ABC ∆S P 为秒.t (1)①的长为 ;AB ②的长用含的代数式表示为 .PN t (2)当为矩形时,求的值;PQMN t (3)当与重叠部分图形为四边形时,求与之间的函数关系式;PQMN ABC ∆S t (4)当过点且平行于的直线经过一边中点时,直接写出的值.P BC PQMN t答案:(1)① 25;②.3t (2).127t =(3)当时,.当,.(4)当或1207t <≤2348S t t =-+1237t ≤<2114962S t t =-+10043t =20059时,点且平行于的直线经过一边中点.P BC PQMN 24. 已知函数(为常数)()()22,1,222x nx n x n y n nx x x n ⎧-++≥⎪=⎨-++<⎪⎩n (1)当,5n =①点在此函数图象上,求的值;()4,P b b ②求此函数的最大值.(2)已知线段的两个端点坐标分别为,当此函数的图象与线段只有AB ()()2,24,2A B 、AB 一个交点时,直接写出的取值范围.n (3)当此函数图象上有4个点到轴的距离等于4,求的取值范围.x n 答案:(1)①②;92b =458(2)当或时,图象与线段只有一个交点;1845n <<823n ≤<AB (3)函数图象上有4个点到轴的距离等于4时,n≤-8或n=或n=4或n≥8.x 2--。

精品解析:【市级联考】吉林省长春市2019届九年级第一次试考(4月)数学试题(原卷版)

精品解析:【市级联考】吉林省长春市2019届九年级第一次试考(4月)数学试题(原卷版)

2019年长春市中考第一次试考数学试题一、选择题:(本大题共8个小题,每小题3分,共24分.)1.的绝对值是()A. -2019.B. 2019.C.D.2.据统计,截止2019年2月,某市实际居住人口约4210000人,4210000这个数,用科学记数法表示为:()A. B. C. D.3.如图是一个正六棱柱的茶叶盒,其俯视图为()A. B. C. D.4.不等式的解集在数轴上表示正确的是()A. B. C. D.5.如图,为直角三角形,,若沿图中虚线剪去,则的度数是()A. B. C. D.6. 如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行. 张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为()A. 5.5mB. 6.2mC. 11 mD. 2.2 m7.如图,某地修建高速公路,要从地向修一座隧道(在同一水平面上),为了测量两地之间的距离,某工程师乘坐热气球从地出发,垂直上升200米到达处,在处观察地的俯角为,则两地之间的距离为()A. B. C. D.8.如图,在平面直角坐标系中,点、的坐标分别为(0,3)、(1、0).将线段绕着点顺时针旋转,得到线段.若点落在函数的图象上,则的值为()A. 3B. 4C. 6D. 8二、填空题(本大题共6小题,每小题3分,共18分)9.比较大小:__________3.(添“>”或“<”)10.计算:__________.11.如图,直线与直线(为常数)的交点在第三象限,则的值可以为_________.(写出一个即可)12.如图,四边形内接于.若,则的大小为__________度.13.如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为________.14.如图,在平面直角坐标系中,抛物线交轴于点,过点作轴交抛物线于点,点在抛物线上,连结、.若点关于轴的对称点恰好落在直线上,则的面积是_____________.三、解答题(本大题共10小题,共78分)15.小明解方程出现了错误,解答过程如下:方程两边都乘以,得(第一步)去括号,得(第二步)移项,合并同类项,得(第三步)检验,当时(第四步)所以是原方程的解. (第五步)(1)小明解答过程是从第步开始出错的,原方程化为第一步的根据是 . (2)请写出此题正确的解答过程.16.某校对初三学生进行物理、化学实验操作能力测试.物理、化学各有3个不同的操作实验题目,物理实验分别用①、②、③表示,化学实验分别用a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.王刚同学对物理的①、②号实验和化学的b、c号实验准备得较好.请用画树状图(或列表)的方法,求王刚同学同时抽到两科都准备得较好的实验题目的概率.17.定义:有一组对边相等而另一组对边不相等........的凸四边形叫做“等对边四边形”.(1)己知:图①、图②是的正方形网格,线段、的端点均在格点上.在图①、图②中,按要求以、为边各画一个等对边四边形.要求:四边形的顶点在格点上,且两个四边形不全等.(2)如图③,在Rt△BCP中,∠C=90°,点A是BP的中点,BP=13,BC=5,点D在边CP上运动,设CD=x,直接写出四边形ABCD为等对边四边形时x的值为_____________.18.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,己知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?19.如图,在中,以为直径的分别与,交于点,,过点作的切线,交于点.(1)求证:(2)若的半径为4,,请直接写出弧的长.20.为弘扬中华传统文化,某校组织七年级800名学生参加诗词大赛,为了解学生整体的诗词积累情况,随机抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,请根据尚未完成的下列图表,解答问题:(1)本次抽样中,= ,= ,样本成绩的中位数落在第组内. (2)补全频数分布直方图.(3)若规定成绩超过80分为优秀,请估计该校七年级学生中诗词积累成绩为优秀的人数.21.在一条笔直的公路上依次有、、三地,自行车爱好者甲、乙两人分别从、两地同时出发,沿直线匀速骑向地.己知甲的速度为,如图所示,甲、乙两人与地的距离....与行驶时间的函数图象分别为线段、.(1)、两地的距离为.(2)求线段所在直线对应的函数关系式.(3)若两人在出发时都配备了通话距离为3的对讲机,求甲、乙两人均在骑行过程中可以用对讲机通话的时间段.22.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)23.如图,在△ABC中,∠C=90°,AC=8厘米,BC=6厘米.动点P在线段AC上以5厘米/秒的速度从点A 运动到点C.过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP.设点P的运动时间为x(秒).(1)求点A′落在边BC上时x的值;(2)设△A′DP和△ABC重叠部分图形周长为y(厘米),求y与x之间的函数关系式;(3)如图,另有一动点Q与点P同时出发,在线段BC上以5厘米/秒的速度从点B运动到点C.过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ.①求点A′在△B′EQ内部时x的取值范围;②连接A′B′,当直线A′B′与△ABC的边垂直或平行时,直接写出线段A′B′的长.24.定义:在平面直角坐标系中,将点绕点旋转180°得到点则称点为点的“发展点”.(1)当时,点(0,0)的“发展点”坐标为,点(-1,-1)的“发展点”坐标为 .(2)若,则点(3,4)的“发展点”的横坐标为 (用含的代数式表示).(3)若点在直线上,其“发展点”在直线上,求点的坐标.(4)点(3,3)在抛物线上,点在这条抛物线上,点为点的“发展点”.若是以是以点为直角顶点的等腰直角三角形,求的值.。

2019年吉林长春中考数学试题(解析版)

2019年吉林长春中考数学试题(解析版)

{来源}2019年吉林省长春市中考数学试卷{适用范围:3.九年级}{标题}2019年吉林省长春市中考数学试卷考试时间:100分钟满分:120分{题型:1-选择题}一、选择题(本大题共8小题,每小题3分,共24分){题目}1.(2019吉林长春,T1)如图,数轴上表示-2的点A到原点的距离是()A.-2B.2C.12D.12A{答案} B{解析}本题考查了数轴,解题的关键是利用数形结合求出数轴上两点的距离.因为022,故选择B.{分值}3{章节:[1-1-2-4]绝对值}{考点:绝对值的意义}{类别:常考题}{难度:1-最简单}{题目}2. (2019吉林长春,T2)2019年春运期间,全国铁路、道路、水路、民航共累计发送旅客约为275000000人次,275000000这个数用科学记数法表示为()A. 2.75×107B. 2.75×109C. 2.75×108D. 2.75×109 {答案}C{解析}本题考查了用科学记数法表示较大的数,解题的关键是能根据科学记数法的记数规则确定表示的结果.根据科学记数法的定义,需要将140 000改写成a×10n的形式(其中1≤a <10,n为整数),因此,先确定a的值,再确定n的值即可.275000000=2.75×108,故选择C.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}3. (2019吉林长春,T3)如图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是(){答案}A{解析}本题考查了三视图,解题的关键是会从不同侧面观察立体图形,并且抽象出平面图形.主视图是从前面看得到的图形,按照这个方法得出本题答案. 解:主视图有二列,第一列有一层,第二列有两层,故选择 A .{分值}3{章节:[1-4-1-1]立体图形与平面图形} {考点:简单组合体的三视图} {类别:常考题}{类别:易错题} {难度:3-中等难度}{题目}4. (2019吉林长春,T4)不等式-x+2≥0的解集为( ) A.x ≥-2 B. x ≤-2 C. x ≥2 D. x ≤2 {答案}D{解析}本题考查了解一元一次不等式,掌握不等式的基本性质是解题关键.按照解不等式的步骤,先移项,然后后系数化为1即得到不等式的解集. 解:移项得-x ≥-2,系数化为1得, x ≤2,故选择D . {分值}3{章节:[1-9-2]一元一次不等式} {考点:解一元一次不等式} {类别:常考题}{类别:易错题} {难度:3-中等难度}{题目}5.(2019吉林长春,T5)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( ) A. ⎩⎨⎧=+=+y x y x 166119 B.⎩⎨⎧=-=-y x yx 166119 C.⎩⎨⎧=-=+y x yx 166119 D. ⎩⎨⎧=+=-y x yx 166119{答案} D{解析}本题考查了根据实际问题列二元一次方程组,解题的关键是能从给定的问题中找出相等关系.不难发现题中有两个相等关系:x 人每人出9钱的总数-11钱=买鸡的钱数为y ;x 人每人出6钱的总数+16钱=买鸡的钱数为y ,据此列出方程组即可.解:∵每人出9钱,会多出11钱;每人出6钱,又差16钱,∴可列方程组为⎩⎨⎧=+=-yx yx 166119,故答案为D . {分值}3{章节:[1-8-3]实际问题与一元一次方程组}{考点:二元一次方程组的应用} {类别:常考题} {难度:2-简单}{题目}6. (2019吉林长春,T6)如图,一把梯子靠在垂直于水平地面的墙上,梯子AB 的长是3米,若梯子与地面的夹角为,则梯子顶端到地面的距离BC 为( )米. A. 3sin B. 3cosC.3sinD. 3cos{答案} A{解析}本题考查了锐角三角函数,解题的关键是熟练并准确掌握锐角三角函数的计算公式.根据锐角三角函数定义得出sin =BCAB ,代入求出即可.∵sin =BCAB,AB =3,∴BC =3sin ,故选A. {分值}3{章节:[1-28-1-2]解直角三角形} {考点:解直角三角形的应用} {类别:常考题}{类别:易错题}{难度:4-较高难度}{题目}7. (2019吉林长春,T7)如图,在ABC 中,ACB 为钝角,用直尺和圆规在边AB 上确定一点D ,使∠ADC=2∠B ,则符合要求的作图痕迹是( ).{答案}B{解析}本题考查了尺规作图及线段垂直平分线的应用,解题的关键是掌握线段垂直平分线的性质和判定.按作图的痕迹一一分析哪种作图的结束满足CD =BD .假设点D 在AB 上存在,由CD =BD ,可得∠BCD=∠B ,所以有∠ADC=2∠B ,于是点D 在BC 垂直平分线上,故选B. {分值}3{章节:[1-11-2]与三角形有关的角} {考点:垂直平分线常见辅助线的作法} {类别:常考题}{难度:4-较高难度}{题目}8. (2019吉林长春,T8)如图,在平面直角坐标系中,Rt ABC 的顶点A ,C 的坐标分别为(0,3)和(3,0),∠ACB=90°,AC=2BC ,函数0,0ky k x x的图象经过点B ,则k 的值为( )A.92B. 9C. 278D. 274{答案}D{解析}过点B 作BD ⊥x 轴,∴∠AOC =∠BDC =90°,∵AC ⊥BC ,∴∠ACO=∠C BD ,∴△AOC ∽△CDB ,∴2AO OC AC CD BD BC,∵AO=3,CO=3,∴32BD CD,∴39322OD,∴B 点的坐标为(92,32),∵函数0,0ky k x x的图象经过点B ,∴9327224k.{分值}3{章节:[1-27-1-1]相似三角形的判定} {考点:相似基本图形}{考点:一线三等角} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}9.(2019吉林长春,T9)计算:355 = .{答案}25{解析}本题考查了二次根式的化简与加减运算,解题的关键是掌握二次根式的化简与合并法则.解:原式=355=2525{分值}3{章节:[1-16-3]二次根式的加减} {考点:二次根式的加减法} {类别:常考题} {难度:1-最简单} {题目}10.(2019吉林长春,T10)分解因式:2ab b = . {答案}2b a{解析}本题考查了运用提公因式法把多项式进行因式分解,解题的关键是熟练掌握提因式法分解因式的方法与步骤.先找到多项式各项的公因式,再提取公因式. 解:因为2ab b =2b a . {分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{类别:常考题}{难度:1-最简单}x x根的判别式的值为. {题目}11.(2019吉林长春,T11)一元二次方程2310{答案}5{解析}本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式(b2-4ac)与一元二次方程根字母系数之间的关系.△=(﹣3)2﹣4×1×1=5.{分值}3{章节:[1-21-2-2]公式法}{考点:根的判别式}{类别:常考题}{难度:1-简单}{题目}12.(2019吉林长春,T12)如图,直线MN∥PQ,点A,B分别在MN、PQ上,∠MAB=33°,过线段AB上的点C作CD⊥AB交PQ于点D,则∠CDB的大小为度.{答案}57°{解析}本题考查了几何初步知识,涉及到的知识点有:平行线的性质、三角形的内角和定理,解题的关键是能熟练运用上述有关知识求得∠CDB的度数.解:如图1,∵MN∥PQ,∴∠MAB=∠ABD=33°,∵∠BCD=90°,∴∠CDB=90°-33°=57°.{分值}3{章节:[1-5-3]平行线的性质}{考点:两直线平行同位角相等}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}13.(2019吉林长春,T13)如图,有一张矩形纸片ABCD,AB=8,AD=6,先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC相交于点G,则△GCF的周长为.{答案}422{解析}考查折叠的性质,相似三角形的判定与性质,以及矩形的性质等知识,由矩形纸片ABCD ,AB=8,AD=6,AB=DC-DF ,DF=AD ,AB ∥FC ,∴△ABG ∽△FCG ,根据相似三角形的对为边成比例,即可求得GC ,FG 的长度,继而求得周长为422.{分值}3{章节:[1-18-2-1]矩形}{考点:相似三角形的判定(两角相等)} {类别:常考题}{类别:易错题} {难度:4-较高难度}{题目}14.(2019吉林长春,T14)如图,在平面直角坐标系中,抛物线28203y ax axa 与y 轴交于点A ,过A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为 .{答案}2{解析}考查二次函数图象与性质,由A 纵坐标为83,因顶点坐标公式,点P 的横坐标为1,根据对称关系求得M (2,83),M 为线段AB 中点,所以B (4, 83),代入直线AM 的解析式y kx 中,求得其解析式为23y x ,再由顶点坐标公式求得P (1, 83a)代入计算可得a =2.{分值}3{章节:[1-22-1-1]二次函数}{考点:含参系数的二次函数问题} {类别:常考题}{类别:易错题} {难度:5-高难度}{题型:4-解答题}三、解答题(本大题共10小题,满分78分,解答应写出文字说明、证明过程或演算步骤){题目}15.(2019吉林长春,T15)先化简,再求值:22141a a a ,其中18a.{解析}本题考查了整式的混合计算-化简求值,解题的关键是利用整式的乘法法则和加减法法则进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

{来源}2019年吉林中考数学试卷{适用范围:3.九年级}2019年吉林初中毕业生学业水平考试数学试卷考试时间:120分钟满分:120分{题目}1.(2019年吉林)1.如图,数轴上蝴蝶所在点表示的数可能为()(第1题)A.3 B.2 C.1 D.-1{答案}D{解析}本题考查了数轴上有理数的表示,因为负数在原点的左侧,因此本题选D.{分值}2{章节: [1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:1-最简单}{题目}2.(2019年吉林)2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()(第2题)A.B.C.D.{答案}D{解析}本题考查了俯视图,因为该组合图形俯视图由四个正方体连成一排,因此本题选D.{分值}2{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}3.(2019年吉林)3.若a为实数,则下列各式的运算结果比a小的是()A.1a⨯D.1a÷a-C.1a+B.1{答案}B{解析}本题考查了数值大小比较,a-1比a小,因此本题选B.{分值}2{章节:[1-2-2]整式的加减}{考点:实数的大小比较}{类别:常考题}{难度:1-最简单}{题目}4.(2019年吉林)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°(第4题){答案}C{解析}本题考查了图形的旋转运动,因为图形可以分解成三份完全相同的图形,360°÷3=120°,因此本题选C . {分值}2{章节:[1-23-1]图形的旋转} {考点:与旋转有关的角度计算} {类别:常考题} {难度:1-最简单}{题目}5.(2019年吉林)5.如图,在⊙O 中,AB 所对的圆周角∠ACB =50°,若P 为AB 上一点,∠AOP =55°,则∠POB 的度数为( ) A .30° B .45° C .55° D .60°OPC BA (第5题){答案}B{解析}本题考查了圆内角度计算,同弧所对的圆周角是圆心角的一半,因此本题选B . {分值}2{章节:[1-24-1-3]弧、弦、圆心角} {考点:直径所对的圆周角} {类别:常考题} {难度:3-中等难度}{题目}6(2019年吉林)6. 曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光。

如图,A 、B 两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是( )A .两点之间,线段最短B .平行于同一条直线的两条直线平行C .垂线段最短D .两点确定一条直线曲桥(第6题)BA{答案}A{解析}本题考查几何定理在生活中的应用,两点之间,直线最短,因此本题选A . {分值}2{章节:[1-4-2]直线、射线、线段} {考点:线段公理}{类别:常考题} {难度:2-简单}{题型:2-填空题}二、填空题:本大题共 8小题,每小题 3 分,合计24分. {题目}7.(2019年吉林)7.分解因式:21a -=________.{答案}(a+1)(a-1){解析}本题考查了利用平方差公式因式分解,因此本题答案是(a+1)(a-1). {分值}3{章节:[1-14-3]因式分解} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单} {题目}8.(2019年吉林) 8.不等式321x ->的解集是________.{答案}x>1{解析}本题考查了解不等式,移项3x>3,因此本题x>1. {分值}3{章节:[1-3-2-1]解一元一次方程(一)合并同类项与移除} {考点:解一元一次方程(移项)}{考点:解一元一次方程(系数化整后去分母)} {类别:常考题} {难度:2-简单}{题目}9.(2019年吉林)9.计算:22y xx y⋅=________.{答案}{解析}本题考查了分式乘法运算,先约分,因此本题.{分值}3{章节:[1-15-2-1]分式的乘除} {考点:两个分式的乘除} {类别:常考题} {难度:2-简单}{题目}10.(2019年吉林)10.若关于x 的一元二次方程()23x c +=有实数根,则c 的值可以为________(写出一个即可).{答案}任意一个非负数皆可{解析}本题考查了一元二次方程是否具有实数根,因为(x+3)2值是非负数,因此本题任意一个非负数皆可. {分值}3{章节:[1-21-3] 一元二次方程根与系数的关系} {考点:直接开平方法} {考点:根的判别式} {类别:易错题} {难度:3-中等难度}{题目}11.(2019年吉林)11.如图,E 为△ABC 边CA 延长线上一点,过点E 作ED ∥B C .若∠BAC =70°,∠CED =50°, 则∠B =________°.(第11题)EDCAB{答案}60{解析}本题考查了平行线性质和三角形内角和定理,由于平行得到∠C=50°,再由三角形内角和计算可得,因此本题答案是60. {分值}3{章节:[1-11-2]与三角形有关的角} {考点:两直线平行内错角相等} {考点:三角形内角和定理} {类别:常考题} {难度:1-最简单} {题目}12.(2019年吉林)12.如图,在四边形ABCD 中,AB =10,BD ⊥A D .若将△BCD 沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BCDE 的周长为________.(第12题)ABCD E{答案}20{解析}本题考查了图形的翻折,由翻折得到 △BCD 与△BED 全等,得BC=BE ,CD=ED ,因为点E 是中点,利用直角三角形性质,可得DE=BE= AB=5,,因此本题20{分值}3{章节:[1-18-2-1]矩形} {考点:全等图形}{考点:全等三角形的性质}{考点:直角三角形斜边上的中线} {类别:常考题} {难度:4-较高难度}{题目}13.(2019年吉林)13.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为________m .{答案}54{解析}本题考查了相似三角形性质或有关锐角三角比的计算,利用对应边成比例,因此本题54. {分值}3{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用—测高测距离} {类别:常考题} {难度:2-简单} {题目}14.(2019年吉林)14.如图,在扇形OAB 中,∠AOB =90°,D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的□ODCE 的顶点C 在AB 上,若OD =8,OE =6,则阴影部分图形的面积是________(结果保留π).AD OEB (第14题)C{答案}25π-48{解析}本题考查了几何图形面积的计算,用扇形的面积减去三角形的面积即可,因此本题25π-48 {分值}3{章节:[1-24-4]弧长和扇形面积} {考点:扇形的面积} {类别:易错题} {难度:3-中等难度}{题型:3-解答题}三、解答题:本大题共4小题,每小题5分,合计20分.{题目}15(2019年吉林)15.先化简,再求值:()()212a a a -++,其中2a =.{解析}本题考查了整式计算和求代数式的值. {答案}解:原式a a a a 21222+++-= (2分) 122+=a (3分) 当2=a 时,原式=2×=5 (5分){分值}5分{章节:[1-16-3]二次根式的加减} {难度:2-简单} {类别:常考题} {考点:整式加减} {考点:代数式求值} {考点:简单的实数运算}{题目}16(2019年吉林)16.甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.(第16题)乙口袋甲口袋{解析}本题考查了概率的计算,可以利用树形图或表格法. {答案}解:解法一根据题意,,画树状图如下:(3分)由树状图可以看出,所有等可能出现的结果共有4种,且取出的扇子和手绢都是红色的结果有1种,所以P (扇子和手绢都是红色)=41(5分)(3分)由表可以看出,所有等可能出现的结果共有4种,且取出的扇子和手绢都是红色的结果有1种,所以P (扇子和手绢都是红色)=41(5分) {分值}5分{章节:[1-25-2]用列举法求概率} {难度:2-简单} {类别:常考题}{考点:两步事件不放回}{题目}17(2019年吉林)17.已知y 是x 的反比例函数,并且当2x =时,6y =. ⑴求y 关于x 的函数解析式; ⑵当4x =时,求y 的值.{解析}本题考查了待定系数法求反比例函数解析式以及求函数值,{答案}解:(1)设x ky =(1分) 因为x=2时,y=6,所以6=2k,(2分)解得k=12,因此x y 12=(3分)(2)把x=4代入x y 12=,得3412==y (5分){分值}5分{章节:[1-26-1]反比例函数的图像和性质} {难度:2-简单} {类别:常考题}{考点:反比例函数的解析式}{题目}18(2019年吉林)18.如图,在□ABCD 中,点E 在边AD 上,以C 为圆心,AE 长为半径画弧,交边BC 于点F ,连接BE 、DF .求证:△ABE ≌△CDF .结果 甲 乙 红扇子 绿扇子红手绢 (红扇子,红手绢) (绿扇子,绿手绢)绿手绢 (红扇子,绿手绢)(绿扇子,绿手绢)B A AF F E CC CGH H H B E D D GD FE CDBA (第18题){解析}本题考查了三角形全等的判定,根据等半径作弧AE=CF ,根据平行四边形性质可以得到一组边和一组角分别对应相等,全等即可证明. {答案}证明:∵四边形ABCD 是平行四边形, ∴AB=CD ∠A=∠C 。

由作图得AE=CF ∴△BCD ≌△BED{分值}5分{章节:[1-24-1-3]弧、弦、圆心角} {难度:2-简单} {类别:常考题}{考点:全等三角形的判定SAS} {考点:圆的认识}{题型:4-解答题}四、解答题:本大题共4小题,每小题7分,合计28分.{题目}19(2019年吉林)19.图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图②中已画出线段CD ,其中A 、B 、C 、D 均为格点,按下列要求画图: ⑴在图①中,以AB 为对角线画一个菱形AEBF ,且E ,F 为格点;⑵在图②中,以CD 为对角线画一个对边不相等的四边形CGDH ,且G ,H 为格点,∠CGD =∠CHD =90°{解析}本题考查了菱形的判定以及画简单的几何图形. {答案}解:答案不唯一,以下答案仅供参考 (1)(2)评分说明:点E 、点F标注的位置互换不扣分;(2)点G 、点H 标注的位置互换不扣分 {分值}7分{章节:[1-18-2-2]菱形} {类别:思想方法} {难度:4-较高难度} {考点:菱形的判定} {考点:中心对称图形}{考点:利用轴对称设计图案}{题目} 20.(2019年吉林)20.问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?(第20题)反思归纳现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立的是________(填写序号). ⑴bc +d =a ;⑵ac +d =b ;⑶ac -d =b .{解析}本题考查了方程的应用解决实际问题,可以利用二元一次方程或一元一次方程. {答案}解: 解法一设设竹等有x 根,山有y 个 (1分) 根据题意,得⎩⎨⎧=-=+y x yx )7(845 (3分) ⎩⎨⎧==10420y x (5分) 答:竹签有20根,山植有104个 解法二设竹签有x 根 (1分) 根据题意,得5x+4=8(x-7) (3分) 解得x=205x+4=5x20+4=104. (5分) 答:竹签有20根,山楂有104个 反思归的2⑴bc +d =a ;⑵ac +d =b ;⑶ac -d =b . {分值}7分{章节:[1-8-3]实际问题与一元一次方程组} {难度:3-中等难度} {类别:常考题}{考点:二元一次方程组的应用}{考点:一元一次方程的应用(配套问题)}{题目}21(2019年吉林)21.墙壁及淋浴花洒截面如图所示,已知花洒底座A 与地面的距离AB 为170cm ,花洒AC 的长为30cm ,与墙壁的夹角∠CAD 为43°.求花洒顶端C 到地面的距离CE (结果精确到1cm )(参考数据:sin 43°=0.68,cos 43°=0.73,tan 43°=0.93)(第21题){解析}本题考查了解直角三角形的应用以及学生对距离概念的理解,首先根据可以作辅助线构造直角三角形,把所求的距离分成两段,根据锐角三角函数的应用解直角三角形所需要线段,,全等即可证明. {答案}解:如图,过点C 作CF ⊥AB 于点F ,则∠AFC =90° (1分)在Rt △ACF 中,AC =30,∠CAF =43°ACAFCAF =∠cos (3分) ∴CAF AC AF ∠•=cos . =30×cos 43°=30x0.73=21.9 (5分)∴ CE=BF= AB+AF=170+21.9≈192(cm) (7分)因此,花洒的顶端C 到地面的距离CE 约为192㎝。

相关文档
最新文档