五年级高斯奥数之直线型计算三含答案
高斯小学奥数五年级上册含答案_整除问题进阶
第二讲整除问题进阶例题1.答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有208++是99的倍数,只能是99.两个空中先后要填1和7.例题2.答案:123483789详解:设这个九位数为1234789++++=+是99a b baab,两位截断求和1234789160的倍数,只能是198.所以a=8,b=3.例题3.答案:6详解:利用7的整除特性,895930-=能被7整除,只能填6.例题4.答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|59就可以了.空格中要填5.例题5.答案:768768详解:形如abcabc一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6.答案:20999详解:利用数字谜,从后往前逐位确定.练习1.答案:6237简答:两位截断后的和是99.练习2.答案:12327678简答:两位截断后的和是198. 练习3. 答案:5712或5782简答:利用7的整除特性,72与5的差是7的倍数,空格中可以填1或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下.它是13的倍数,那么空格中只能填0.作业1. 答案:7的倍数有7315,58674,360360;13的倍数有325702,360360简答:牢记7和13的判断方法.作业2. 答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知能被7整除,框中填5满足条件.作业4. 答案:9简答:应用三位截断,可知能被7和13整除,即是91的倍数,框中填9满足条件.作业5. 答案:3简答:应用三位截断,可知能被7整除,框中填3满足条件. 第二讲 整除问题进阶13 81 81 76上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等.现在我们再来学习一些新的判断方法.一、截断作和能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位数)之和能被99整除.六位数2008能同时被9和11整除.这个六位数是多少?【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数能被99整除,这个八位数是多少?二、截断作差能被7、11、13整除的数的特征:从个位开始,每三位一截,奇数段之和与偶数段之和的差能被7或11或13整除.【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小高写一个一位数放在59与89之间拼成一个五位数5989,使得这个五位数能被7整除.请问:小高写的数是多少?123678 已知九位数1234789能被99整除,这个九位数是多少?23四位数572能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.【分析】在本题中,255259555999□个个能被13整除.这个数的位数太多,我们可以想办法使它变得简短一些.因为1001是13的倍数,而555555、999999分别是555、999与1001的乘积,说明它们都是13的倍数.那我们是不是可以去掉这个51位数上的一些5和9,并仍然保证它能被13整除?已知多位数2010120103111333个个能被13整除,那么中间方格内的数字是多少?【分析】能被6,7,8整除的数有什么特点呢?最难把握的在于这个六位数能被7整除,我们应该怎样安排数字才能使得它的前三位与后三位的差能被7整除呢?题目只要求我们写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.用数字6,7,8各两个,要组成能同时被6,7,8整除的六位数.请写出一个满足要求的六位数.已知51位数255259555999个个能被13整除,中间方格内的数字是多少?一个五位数,它的末三位为999.如果这个数能被23整除,那么这个五位数最小是多少?【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑.我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积.接下来,大家想到该怎么办了吗?课堂内外自古成功在尝试枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946~1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”.这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业1. 在7315,58674,325702,96723,360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33能同时被9和11整除,这个四位数是多少?3. 四位数278能被7整除,那么这个四位数是多少?4. 已知多位数201225881258258258□个(2012个258)能同时被7和13整除,方格内的数字是多少?5. 已知多位数2011120113111333个个能被7整除,那么中间方格内的数字是多少?。
高斯小学奥数五年级上册含答案_列方程解应用题
第二十四讲 列方程解应用题章 童童s 章章章足e 章 田米分广功输不程股 方粟裒少商均盈方勾 **■■¥«■♦■-12 34 5 6 7 89T5L T R1]^^W45«扎HJfJmSE 帀有带野学口u 播寸为n 大 H , ^jfis方三氐覃工皐.負井氐少广韋-貝期章.更*章、屋宀足瓠丹匹“.爼应星.吾:J1s W 11*厅□■!1F咅WIDW!"申祁T TV・0t£n 11■理.J1■昭时■求A 晰歼皈于"而•方*曲事• i . 4::刊"-31 .. e ■w UWBM 干中氏于 (S1 -#■ I ffi K3JB. ■方■"在古话中炉 冬曲星H 力艸母.中6:I Taf l■■1+#o m— K u<JCW M—+A o IWtO NII W頁O B1I中打c w o n£_n D£f f w11 so w —«■生产中的很多实际问题•其思想如图所示:列方程解应用题的方法和步骤步骤要求要注意的问题审题读懂题目、弄清题意、找出能够表示应用题全部含义的相等关系,分清已知数和未知数审题是分析解题的过程,解题程序中不用体现出来设元①设未知数②把所求的量用未知数表示③把各个量用含未知数的式子表示出来①设未知数一般是冋什么,就直接设什么,即直接设元②直接设兀有困难,可以间接设兀③设未知数时,必须写清未知数的单位列方程根据等量关系列出方程方程两边所用的单位需一致解方程解出这个方程的解,求出未知数的值如果是间接设元,求出的未知数还需要利用其他算式得到所求的量检验把方程的解代入方程检验,或根据实际问题进行检验检验的步骤在解题程序中不用写出来方程的解要符合实际情况,否则无解作答写出答案,作出结论这一步在列方程解应用题中必不可少,是一种规范要求方程是分析和解决问题的一种很有用的数学工具, 利用方程我们可以解决生活、学习和练一练F来我们就来看看如何用一元一次方程解应用题.例题1.一次考试,小高比萱萱高6分,但是比卡莉娅低3分,他们3人的平均分为91分.请问: 小高考了多少分?「分析」列方程的第一步是设未知数,本题中应该设什么为x?练习1.甲数比乙数的3倍还少6,两数的平均数是43.那么乙数是多少?例题2.阿范和阿统吃饺子,阿范一共要吃90个,而阿统一共要吃100个.如果阿范每分钟吃3个饺子,阿统每分钟吃5 个饺子,经过若干分钟后,阿范剩下的饺子数比阿统剩下的饺子数的2 倍少5 个.请问:这时阿范和阿统各吃了多少个饺子?「分析」如果设吃的饺子数为x,方程就会很不好列.不妨换个角度,设经过的时间为x分钟.练习2.箱子里有红、白两种玻璃球,红球数比白球数的3 倍多2 只.每次从箱子里取出7 只白球和1 5只红球.经过若干次以后,箱子里剩下3只白球和53只红球.那么箱子里原有红、白球各多少个?例题3.给某班分苹果,第一组每人3 个,第二组每人4 个,第三组每人5个,第四组每人6 个.已知第二组和第三组共有22 人,第一组人数是第二组的2 倍,第三组和第四组人数相等,总共分出去230个苹果.问该班一共有多少人?「分析」刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂. 题目中虽然有四个组,但这四组人数之间有很多联系. 如果某一组的人数知道了,其他各组的人数也就知道了. 根据这一点,我们可以设出其中一组的人数,列方程求解.练习3.司机小王身上带有1 元、2 元、5 元、10 元四种面值的纸币共82 元,其中1 元与2 元纸币共22张,5 元和10元纸币共7张,2元纸币的张数是5元纸币张数的2.5倍.问:小王身上有多少张10元纸币?看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会: 原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少. 只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.有些应用题中,如果只设一个未知数,有些未知量要表示出来就会比较困难. 这时就需要设两个未知数,列二元一次方程组来解题.例题4.墨莫去超市里买了一些士力架和德芙,共重266克,共花了30元•已知士力架每块3元,德芙每块2元.每块士力架35克,每块德芙14克.那么墨莫各买了多少块士力架和德芙?「分析」假设买了x块士力架,y块德芙,那么这两个未知数满足哪些等量关系?练习4.王老师抓了一群外星人,其中火星人有2个头3个脚,金星人有3个头5个脚,王老师数了数,发现总共有34个头、54个脚.那么请问王老师分别抓了多少个火星人和金星人?例题5.一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是1,那5么原分数是多少?「分析」设原来的分子是x,那原来的分母就是122 x •再由另外一个已知条件,不难列出方程求解.例题6.如下图的短除式所示,一个自然数被8除余1,所得的商被8除也余1,第二次所得的商被8除后余7,最后得到的商是a.同时这个自然数被17除余4,所得的商被17除余15,最后得到的商是a的2倍.求这个自然数.「分析」所求的自然数8 .. 、山-•、、/ 第一次商这是一个带余除法的问题,蕴含着等量关系:所求的自然数……余417 入第次商——……余152a被除数=除数商+余数.利用这一等量关系以及图中的两个短除式, 式). 不难用字母a表示出原来的自然数(有两种不同表示方多送几份牛奶最近,动物们流行喝鲜奶,都在鲜奶公司定了份牛奶,鲜奶公司每天派小狗早早和巧巧送鲜奶到东西大街,早早负责送东边的住户,巧巧负责送西边的住户,两边住户数目一样多。
高斯小学奥数五年级下册含答案第03讲_行程问题综合提高
第三讲行程问题综合提高漫画第一幅图,一个主席台,上面有横幅,写着“高思运动会”左图,100米跑比赛的现场,直线跑道,小高和墨莫在比赛;右图,3000米跑比赛的现场,环形跑道,萱萱和卡莉娅在比赛赛艇比赛的现场,阿呆和阿瓜在比赛在小学数学中,行程问题占了很大的分量.行程问题主要考查学生对于运动三要素:速度、时间和路程的认识.学习行程问题对于学生认识世界,以及以后理科课程的学习都有很大的帮助.行程问题中最基本的内容是相遇和追及.在与相遇追及相关的行程问题中,找出“路程和”与“路程差”是解题的关键.练一练1.东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,那么甲、乙两人的速度分别是多少/千米时?2.甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地.2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地.那么两车相遇的时刻是多少?例题1.甲、乙两人从A、B两地同时出发相向而行,相遇地点距离AB的中点10千米.已知甲每小时走4千米,乙每小时走6千米.则AB两地相距多少千米?练习1.甲、乙两人从A、B两地同时出发相向而行,相遇地点距离AB的中点2千米.已知甲每小时走5千米,乙每小时走4千米.则AB两地相距多少千米?例题2.一列火车于中午12时离开A地驶往B地,另一列火车则于40分钟后离开B地驶往A地.若两列火车以相同的均速在同一路线上行驶,全程各需要3.5小时.则这两列火车在几点几分相遇?练习2.一列火车于下午4点离开A地驶往B地,1个小时后另一列火车离开B地驶往A 地.已知两车速度相同,且下午6点20分时两车相遇.那么火车走完全程需要多长时间?大部分行程问题中,人或车都是在笔直的平路上运动.不过在有些问题中,运动的场所会比较特殊,有时候会在水上,有时候运动的路线会是环形的.练一练1.甲、乙两地相距160千米,一只小船在静水中的速度为每小时24千米.它从乙地逆水航行到甲地用了8小时,在从甲地返回到乙地时,由于涨水,水速变为原来的2倍,则返回时需用多少小时?2.有一个周长是80米的圆形水池.甲沿着水池散步,速度为1/米秒;乙沿着水池跑步,速度为2.2/米秒,并且与甲的方向相反.如果他俩从同一点同时出发,那么当乙第8次遇到甲时,还要跑多少米才能回到出发点?例题3.甲、乙两船分别从距离120千米的A、B两码头同时出发,在A、B之间往返,A 在B的上游.两船在静水中的速度为每小时25千米,水流速度为每小时5千米.那么甲、乙两船第二次相遇的地点距离A多少千米?练习3.甲、乙两船分别从距离120千米的A、B两码头同时出发,在A、B之间往返,A 在B的上游.两船在静水中的速度为每小时16千米,水流速度为每小时4千米.那么甲、乙两船第二次相遇的地点距离A多少千米?例题4.甲乙二人在一个环形跑道的起点同时开始跑步.结果发现:若甲沿顺时针方向,乙沿逆时针方向,从出发到第一次迎面相遇需要2分钟;若甲乙都沿逆时针方向,则从出发到甲第一次追上乙要用9分钟.已知相遇地点与追及地点相距130米,那么整条环形跑道的长度是多少?练习4.甲乙二人在一个环形跑道的起点同时开始跑步.结果发现:若甲沿顺时针方向,乙沿逆时针方向,从出发到第一次迎面相遇需要3分钟;若甲乙都沿逆时针方向,则从出发到甲第一次追上乙要用5分钟.已知相遇地点与追及地点相距100米,那么整条环形跑道的长度是多少?多次往返问题是一类很重要的行程问题.多次往返问题有很强的周期性,解决这类问题时一定要注意.例题5.小明和小刚的速度分别为每分钟90米和每分钟70米.早上8:00他们分别从A、B 两站同时出发,相向而行,第一次迎面相遇后两人继续前进,分别到达B、A后返回并在途中第二次迎面相遇.第二次迎面相遇地点距离A、B两站的中点450米.从两人同时出发到第二次迎面相遇总共经历了多少分钟?A、B两站的距离为多少米?他们第一次迎面相遇是在几点几分?例题6.甲、乙二人同时从A、B两地相向出发,在AB之间折返而行,甲的速度比乙快.已知两人第一次迎面相遇点距AB中点2千米,第二次迎面相遇点距A地4千米.那么AB之间的距离是多少?长征长征,指中国工农红军主力从长江以南各革命根据地向陕甘革命根据地会合的战略转移.1934年10月,中央红军主力开始长征.同年11月和次年4月,在鄂豫皖革命根据地的红二十五军和川陕革命根据地的红四方面军分别开始长征.1935年11月,在湘鄂西革命根据地的红二、六军团也离开根据地开始长征.1936年6月,第二、六军团组成第二方面军.同年10月,红军第一、二、四方面军在甘肃会宁胜利会合,结束了长征.参加长征的红军有以下四支:第一支是中央红军(后改称红一方面军),于1934年10月10日由江西的瑞金等地出发,1935年10月19日到达陕西的吴起镇(今吴旗县),行程达二万五千里;第二支是红二十五军(后编入红一方面军),于1934年11月16日由河南罗山何家冲出发,1935年9月15日到达陕西延川永坪镇,同陕甘红军会师,合编为红十五军团,行程近万里;第三支是红四方面军,于1935年5月初放弃川陕苏区,由彰明、中坝、青川、平武等地出发,向岷江地区西进,1936年10月9日到达甘肃会宁,与红一方面军会师,行程一万余里;第四支是红二、红六军团(后同红一方面军第三十二军合编为红二方面军),于1935年11月19日由湖南桑植刘家坪等地出发,1936年10月22日到达会宁以东的将台堡,同红一方面军会师,行程两万余里.长征粉碎了国民党反动派扼杀中国工农红军的罪恶计划,它的胜利表明中国共产党和中国工农红军是一支不可战胜的力量.作业1.甲、乙两船分别从A、B两港口出发相向而行,在AB的中点相遇.已知甲船的静水速度是乙船静水速度的2倍,那么甲船静水速度与水速之比是多少?作业2.上午10:20,甲、乙两辆汽车同时分别从A、B两地相对开出,在AB之间折返前进,甲车每小时行42千米,乙车每小时行45千米.下午1:20时两车第二次迎面相遇,那么AB之间的距离是多少千米?作业3.东西两镇相距240千米,一辆客车在上午8点从东镇开往西镇,一辆货车在上午9点从西镇开往东镇.到正午12点,两车正好在两镇间的中点相遇.如果两车上午8点同时分别由两镇出发相向而行,那么上午10点时两车相距多少千米?作业4.甲车的速度是40千米/时,乙车的速度是60千米/时.甲车从A地、乙车从B地同时出发相向而行.两车相遇4.5小时后,甲车到达B地.A、B两地相距多少千米?作业5.甲、乙两人从400米的环形跑道上的同一点同时出发相背而行,8分钟后两人第三次相遇.已知甲每秒钟比乙每秒钟多行0.1米,那么两人第三次相遇的地点与出发点之间的距离是多少?第三讲 行程问题综合提高例题1. 答案:100详解:由“相遇地点距离AB 的中点10千米”可知,乙比甲多走了20千米.两人共走了206410÷-=()小时.A 、B 两地相距4610100+⨯=()千米.例题2. 答案:14点05分详解:3.5小时是210分钟.第一列火车出发40分钟后,即12点40分时,第二列火车出发.可知这时两车间的路程需要走170分钟.因为两车速度相同,可知两车相遇需要85分钟,那么相遇的时刻是14点05分.例题3. 答案:48详解:如图,甲、乙在到达码头后各自返回第二次相遇.乙从B 到A 逆流而行,共用120255)6÷-=(小时.在这6小时中,甲顺流而行120255)4÷+=(小时,逆流而行2小时,行了2(255)40⨯-=千米,甲、乙还相距80千米,880(3020)5÷+=小时后第二次相遇.此时距离A 地830485⨯=千米.例题4. 答案:360详解:可知跑道的周长既是2的倍数,也是9的倍数.那么设周长为36米,两人速度和为18米/分,速度差为4米/分.甲的速度为11米/分,乙的速度是7米/分.相遇时乙沿逆时针方向跑了14米,追及时沿逆时针方向跑了63米,即跑了1圈后又跑了27米.可知相遇地点与追及地点相距13米.所以跑道的长度应该是1301336360÷⨯=米.例题5. 答案:45分钟,2400米,8点15分 详解:第二次相遇时甲共比乙多行了4502900⨯=米,可求出两人共用时()900907045÷-=分钟.又知两人共走了3个全程,A 、B 两站距离为()90704532400+⨯÷=米.第一次相遇用时()2400907015÷+=分钟.因此第一次相遇时是8点15分.例题6. 答案:20千米详解:这道题目分两种情况.第一种,第二次相遇时乙尚未到达A 点.第二次相遇所用时间是第一次相遇所用时间的3倍.第一次相遇时甲比乙多行4千米,那么第二次相遇时甲应比乙多行12千米.对照线段图,发现如果这样的话,第一次相遇时甲走4千米,乙走0千米.甲的速度是无穷大!! 第二种情况,第二次相遇时乙已经到达A 点.同样第二次相遇时甲比乙多行12千米.对照线段图可知全程为20千米.练习1. 答案:36简答:相遇点距离中点2千米,说明相遇时甲比乙多走了4千米.()4544÷-=,()45436⨯+=千米.练习2.答案:200分 简答:5点钟第二列火车出发,到相遇需要80分钟,那么第一列火车走完全程需要60802200+⨯=分钟.练习3. 答案:45简答:甲、乙在到达码头后各自返回第二次相遇.乙从B 到A 逆流而行,共用120164)10÷-=(小时.在这10小时中,甲顺流而行120164)6÷+=(小时,逆流而行4小时,行了4(164)48⨯-=千米,甲、乙还相距72千米,972(20+12)=4÷小时后第二次相遇.此时距离A 地920454⨯=千米.练习4.答案:750 简答:设跑道周长为15米,然后计算出两人的速度即可.作业1. 答案:4:1 简答:可知甲船逆水,乙船顺水.甲逆:乙顺=1:1,甲静:乙静=2:1.因为甲逆与乙顺的和等于甲静与乙静的和,这就是一个比例中的“和不变”问题.甲逆:乙顺=3:3,甲静:乙静=4:2,可求出水速是1份,所以甲静和水速的比是4:1.作业2. 答案:87简答:从出发到两车第二次迎面相遇,两车共行驶了()42453261+⨯=千米,正好是3个全长.所以AB 之间的距离是87千米.作业3. 答案:100简答:客车的速度是30千米/时,货车的速度是40千米/时.如果两车同时出发,到10点时共行140千米,相距100千米.作业4. 答案:300简答:因为两车的速度比是2:3,那么相遇点距A 、B 两地的距离之比也是2:3.那么甲车在这两段路程上所用的时间之比也是2:3.而甲车在后一段路程行驶了 4.5小时,所以甲车一共行驶了234.5=7.53+⨯小时.AB 两地相距300千米. 作业5. 答案:176米简答:8分钟后两人一共走了3圈即1200米,则两人的速度之和是2.5米/秒.又因为甲比乙每秒多行0.1米,可求出甲的速度是1.3米/秒,乙的速度是1.2米/秒.到第三次相遇时,甲走了480 1.3624⨯=米,与出发点的距离是400224176-=米.。
高斯小学奥数五年级上册含答案_整除问题初步
第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论.什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中,探索出很多奇妙的数学规律,正是这些富有魅力的规律,吸引了古往今来的许多数学家,于是就出现了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质一一整除开始,一起在数论的海洋中遨游吧.X:: 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过:“数学是科学的皇后,数;论是数学的皇冠” ?整除的定义如果整数a 除以整数 b ( b 0 ),除得的商是整数且没有余数,我们就说a 能被b 整除,也可以说b 能整除a,记作b | a .「丁M 丄[EfiAI邑九牛城帀,琴百捨吧円样的方式冉境OOOKH3C01B.以G 、乩出卞城布可胯号毀離00001 'oooowjja 序谏次脫锂A- B- C,懵快.軒iHflt 反应境闻瞭面丈旳埠茶逾稲伸只记聲车壇忙¥2.鼻、4. $、隔一亍?貝侔的推列浚记件yrmir =Flf 面丈谥氓功了毡豪酊r.舌方境出了颯珂停!* w<?帀的T/如果除得的结果有余数,我们就说a 不能被b 整除,也可以说b 不能整除 a.整除的一些基本性质:1. 尾数判断法3.奇偶位求差法|能被ii 整除的数的特征:“奇位和”与“偶位和”的差能被ii 整除HI我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位,,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和” 把“偶数位上的数字之和”简称为“偶位和”.F 面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487, 3568, 8875, 6765, 5880, 7538, 198954, 6512, 93625, 864, 407 (1)这些数中,有哪些数能被4整除?哪些数能被8整除?(2)哪些数能被25整除?哪些数能被125整除?(3)哪些数能被3整除?哪些数能被9整除?(4)哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不妨根据整除特性判断一下.练习 1.在数列3124、312、3823、45235、5289、5588、661、7314 中哪些数能被4 整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被3整除;同样的,如果将其中能被11整除的数相加或相减,会发现得到的结果同样能被11整除.从中我们可以总结出如下规律:和整除性与差整除性:两个数如果都能被自然数a 整除,那它们的和与差也都能被a|能被2, 5整除的数的特征:个位数字能被2或5整除.||能被4, 25整除的数的特征:末两位能被4或25整除. 1[能被8, 125整除的数的特征:末三位能被8或125整除.1数字求和法能被3, 9整除的数的特征:各位数字之和能被3或9整除.|(1) (2) (3)2.整除.例题2. 17石是一个四位数?文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在2S 的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题?下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上?但是记账的那张纸破了两个洞,上面只剩下“ 6dd ”,其中方框表示破了的洞. 牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除?我们没有学过被45整除的数的特征.但注意到45 5 9,于是6dd应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数CC 能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是45 5 9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然45 3 15,但是在考虑能否被45整除时,不能只考虑被3和15 整除?你能想明白为什么吗?例题4. 一天,王经理去电信营业厅为公司安装一部电话. 服务人员告诉他,目前只有形如“ 1234 口6口8 ”的号码可以申请?也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动. 王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位Q8是8的倍数?想一下,这样的三位数是唯一的吗?练习4.七位数22 333 能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多. 如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、&….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞一一大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况. 比如要在200 □匚的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1. 下面有9 个自然数:48, 75, 90, 122, 650, 594, 4305, 7836, 4100 .其中能被 4 整除的有哪些?能被25整除的有哪些?2. 有如下5个自然数:12345, 189, 72457821, 333666, 54289?其中能被9整除的有哪些?3. 有如下5个自然数:3124, 3823, 45235, 5289, 5588 ?其中能被11整除的有哪些?4. 是一个四位数?王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除? ”问:王老师在方框中先后填入的3个数字之和是多少?5. 阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:匚111.C 元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1. 答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864 .(2)能被25 整除的有8875、93625 ;能被125 整除的有8875、93625 . ( 3) 能被 3 整除的有23487、6765、5880、198954、864;能被9 整除的有198954、864. (4) 能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7 ?要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8?要想让四位数能被8整除,需要后三位即7C 是8的倍数,空格中要填 6 .三个数字之和是21 .例题3. 答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1 .例题 4. 答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8 .要满足号码能被11整除对应的千位数字只能是5、1、&例题 5. 答案:10395; 98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5 ?先来看最小的数?要让前面数位上的数字尽量小,可以是1CD5 ?要满足它是9的倍数且最小,应该是10395 ?再来看最大,要让前面数位上的数字尽量大,可以是98口口5或9CD0 ?要满足它是9的倍数且最大,应该是98730.例题6. 答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28 , 而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为& 5、1,奇位为7、4、3.练习1. 答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314 ; 能被11整除的数有3124、5588.练习2. 答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被 4 整除,空格中可填 2 或 6.要想被 5 整除,空格中可填0或 5.练习 3. 答案:3132 或3636简答:要想被36整除,这个四位数要既是4的倍数, 也是9的倍数. 要想是 4 的倍数, 个位上的空格中可填 2 或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习 4. 答案:2213332 或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是 4 的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业 1. 答案:48, 7836, 4100;75, 650, 4100简答: 4 和25 看末两位.作业 2. 答案:189, 72457821, 333666简答:被9 整除看数字和.作业 3. 答案:3124, 5588简答:被11 整除看奇位和与偶位和的差.作业4. 答案:11简答:填入的三个数字分别为1, 4, 6,数字和为11.作业 5. 答案:811.44 元简答:72 8 9 ,分别考虑8和9的整除特性.。
高斯小学奥数五年级上册含答案_直线形计算中的比例关系
第十八讲直线形计算中的比例关系- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系,下面我们复习一下其中的基本结论.如图所示,对于三角形ABD 与三角形BDC ,它们有共同的高BH ,可知ABD ADBDC DC=三角形的面积三角形的面积.例题1.如图,AE :EB =3:2,CD :DB =7:5,三角形ABC 的面积是60,求三角形AED 的面积. 「分析」图中是否有等高的三角形?练习1.如图,:2:5CE AE =,:7:5CD DB =三角形ABC 面积为120,求三角形AED 的面积.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的漫画中我们认识了“小黎飞镖”.把“飞镖”立起来(如图),标好字母,会发现两个三角形:三角形ADE 与三角形ABC .这两个三角形有一个公共的角A ,并且角A 的两边AD 、AE 分别在AB 、AC 上.对于符合这种情况的三角形ADE 与三角形ABC ,我们称之为“共角三角形”.AB B对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:在“小黎飞镖”中,有ADE AD AEABC AB AC=⨯三角形的面积三角形的面积.(同学们,可以想一想如何来证明这个结论.提示:连结四边形BDEC 的一条对角线)例如:如果在“小黎飞镖”中,D 点是AB 上靠近B 的3等分点,E 点是AC 上靠近A 的3等分点,那么23AD AB =,13AE AC =,那么三角形ADE 的面积就是三角形ABC 面积的212339⨯=. 有了这个结论,在解决一些问题时,就方便很多了.请看下面的问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题2.如图,在三角形ABC 中,AD 的长度是BD 的3倍,AC 的长度是EC 的3倍.三角形AED 的面积是10,那么三角形ABC 的面积是多少?「分析」△ADE 占△ABC 的几分之几?应该怎么利用鸟头模型来计算?练习2.三角形ABC 中,BD 的长度是AB 的14,AE 的长度是AC 的13.三角形AED 的面积是8,那么三角形ABC 的面积是多少?例题3.如图,已知长方形ADEF 的面积是16,BE =3BD ,CE =CF .请问:三角形BEC 的面积是多少?「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?CCF练习3.如图,长方形ABCD 的面积是48,BE :CE =3:5,DF :CF =1:2.三角形CFE 的面积是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -接着,我们来看一看在任意四边形中三角形之间的面积关系.如图,对于一个任意的四边形ABCD ,连结对角线AC 和BD ,将整个四边形分成4个小三角形,由等高三角形的基本结论,我们可以得到如下关系:- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成4个部分.三角形BOC 的面积是2平方千米,三角形COD 的面积是3平方千米,三角形AOB 的面积是1平方千米.如果公园由大小为6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?「分析」△BOC 、△COD 和△AOB 的面积都知道了,那么△AOC 的面积是多少呢?练习4.四边形ABCD 中,AC 、BD 两条对角线交于O 点,三角形ABO 的面积为6,三角形AOD 的面积为8,三角形BOC 的面积是15,那么四边形ABCD 的面积是多少?ABCDO S 1S 2 S 3S 414142323S S S S BO DO S S S S +===+ 12124343S S S S AO CO S S S S +===+ 1324S S S S ⨯=⨯A B CD E FA例题5.如图,△ABC 的面积是36,并且13AE AC =,14CD BC =,15BF AB =,试求△DEF 的面积.「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?例题6.图中四边形ABCD 的对角线AC 和BD 交于O 点,如果△ABD 的面积是30平方厘米,△ABC 的面积是48平方厘米,△BCD 的面积是50平方厘米.请问:△BOC 的面积是多少? 「分析」题目中给出了3个大三角形的面积,能不能找出四个小三角形之间的面积关系呢?A B CDE F C DAOB三角形中的五心重心:三角形各边上的中线交于一点,称为三角形重心;垂心:三角形各边上的高交于一点,称为三角形垂心;外心:三角形各边上的垂直平分线交于一点,称为三角形外心;内心:三角形三内角平分线交于一点,称为三角形内心;旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.1. 如图,△ABC 中,BD 的长度是AB 的23,如果△ABC 的面积为15,那么△ADC 的面积是多少?2. 如图,:4:3AE EB =,:3:1CD DB =,三角形ABC 的面积是84,三角形AED 的面积是多少?3. 如图,:1:4AD DB =,:1:5AE EC =,如果△ABC 的面积是120,那么△ADE 的面积是多少?4. 如图所示,在长方形ABCD 中,DE CE =,2CF BF =,如果长方形ABCD 的面积为18,那么阴影部分的面积是多少?5. 如图,四边形ABCD 中,AC 、BD 两条对角线交于O 点,△ADO的面积为30,△ABO 的面积为6,△DOC 的面积是20,那么四边形ABCD 的面积是多少?C第十八讲 直线形计算中的比例关系例题1. 答案:15详解:因为三角形ACD 与三角形ADB 同高,所以::7:5ACD ADB S S CD DB ∆∆==,所以三角形ADB 面积为25;同理,三角形AED 与三角形BED 等高,所以::3:2AED BED S S AE EB ∆∆==,所以三角形AED 面积为15.例题2. 答案:20详解:AD 是AB 的34,AE 是AC 的23.根据鸟头模型,有△ADE 面积是△ABC 面积的321432⨯=.那么△ABC 的面积是20.例题3. 答案:3详解:连结DF ,根据鸟头模型,可知△BCE 面积是△DEF 面积的313428⨯=.那么△BCE 的面积是1316328⨯⨯=.例题4. 答案:0.6详解:由题意,:::BOC COD BOA DOA S S BO OD S S ∆∆∆∆==,三角形BOC 面积为2平方千米,三角形COD 面积为3平方千米,三角形BOA 面积为1平方千米,则三角形AOD 面积是1.5平方千米,陆地总面积6.9平方千米,则人工湖面积为231 1.5 6.90.6+++-=平方千米.例题5. 答案:15详解:由鸟头模型可得,414836535AEF S ∆=⨯⨯=,132736545BFD S ∆=⨯⨯=,1236643CDE S ∆=⨯⨯=,48273661555DEF S ∆=---=.例题6. 答案:30详解:::3:5ABD BCD AO CO S S ∆∆==,所以5308BOC ABC S S ∆∆=⨯=平方厘米.练习1. 答案:50简答:△ACD 的面积是()12075770÷+⨯=,△AED 的面积是()7025550÷+⨯=.练习2. 答案:32简答:3183243⎛⎫÷⨯=⎪⎝⎭.练习3.答案:10简答:1524810283⨯⨯⨯=.练习4.答案:49简答:△COD的面积是815620⨯÷=,四边形ABCD的面积为68152049+++=.作业1.答案:5简答:由BD的长度是AB的23得:1:3AD AB=,那么三角形ADC的面积为11553⨯=.作业2.答案:12简答:由于:3:1CD DB=,三角形ABC的面积是84,可知三角形ADB的面积为84(31)21÷+=,又由于:4:3AE EB=,可知三角形AED的面积为21(43)412÷+⨯=.作业3.答案:4简答:由已知条件得:1:5,:1:6AD AB AE AC==,利用“共角三角形”得三角形AED的面积是11 120456⨯⨯=.作业4.答案:6简答:由于长方形ABCD的面积为18,可知三角形BCD的面积为9,三角形CEF为三角形BCD的121233⨯=,那么阴影部分的面积是19163⨯-=().作业5.答案:60简答:利用任意四边形的结论得三角形BOC的面积是:620304⨯÷=,所以四边形ABCD 的面积是62030460+++=.。
高斯小学奥数五年级上册含答案_直线形计算中的倍数关系
第六讲直线型计算中的倍数关系迄今为止,同学们已经学会了很多图形计算面积的方法.在计算这些面积的时候,只要知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形的长和宽即可利用长方形的面积=⨯长宽进行计算.但很多时候,题目中并不给出长和宽,那怎么来求面积呢?我们来看下面这个例题.例题1. 如图,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗?对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于它们宽(长)之比.例如:如图所示的长方形ABCD 与长方形BEFC 宽BC 相同,那么ABCD BEFC AB BE =长方形的面积:长方形的面积:.如图,有7个小长方形,其中的5个小长方形的面积分别为20,4,6,8,10平方厘米.求阴影长方形的面积是多少平方厘米?从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异.我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.过三角形一个顶点的直线将三角形分为两个小三角形,则这两个小三角形面积之比等于84620 10A B CDE481216 20该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍.那么三角形ABE 的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC 中,D 为AB 的中点,E 为BC 的中点,F 为BE 中点,如果三角形ABC 的面积是120平方厘米,那么三角形DEF 的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分.比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3. 如图,把三角形DEF 的各边分别向外延长1倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系.但是我们所求的是三角形DEF 的面积,而已知的是三角形ABC 的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?ACBF ED::ABD ADC BD DC 三角形的面积三角形的面积ABDE A DEA B CED F如图,把三角形DEF 的各边分别向外延长1倍、2倍、3倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4. 如图,E 是AB 上靠近A 点的三等分点,梯形ABCD 的面积是三角形AEC 面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC 的面积是“1”份,那么梯形ABCD 的面积就是“5”份.接着可以看看“E 是AB 上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?DEFA BCBCDEA如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系.例题5. 把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、③三个长方形.其中,③的长和宽分别为4、2,可以求出它的面积.那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6. 如图,直角三角形ABC 套住了一个正方形CDEF ,E 点恰好在AB 边上.又已知直角边AC 长20厘米,BC 长12厘米,那么正方形的边长为多少厘米? 「分析」注意到EF 垂直于AC ,ED 垂直于BC .我们可以连接CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而它们的高相等.我们的目标就是求这个高.A BCDE2ACBEF D欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。
高斯小学奥数五年级上册含答案_工程问题
第二十三讲工程问题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -我们这一讲要学习的问题叫做工程问题.先来看下面的这个例子,假设一条地铁线有15千米长,工程队每个月可以修3千米,同学们肯定马上就能看出,共需要5个月的时间修好整条地铁.在这个例子中,总长度15千米叫做这个工程问题的工作总量,5个月即为工作时间,而工程队每个月修3千米就叫做工作效率.同学们,你们能看出来这和我们以前学过的哪一类应用题很类似吗?没错,就是行程问题!上面的例子很容易转化成这样一个行程问题:两地相距15千米,某人行走的速度为每小时3千米,那么从一地走到另一地需要5小时.虽然工程问题看起来和行程问题很类似,但工程问题有它自己独特的解法.在工程问题中,经常无法从题目中找到工作总量,此时可以把工作总量设为单位“1”.例如:一个工程队5天修完一段公路,我们就可以把修这段公路的工作总量设为单位“1”,那么工程队每天就能修完公路的15,那么每天完成的工作量就是“15”,而“15”就是这个工程队的工作效率.如同速度在行程问题中的核心地位,工程问题中工作效率、工作时间和工作总量这三个量中最为关键的量也是工作效率.因此,如何求出每一个工作者的工作效率,是同学们分析问题时的重点.练一练:1.李师傅要完成一批零件,他预计用6个小时完成了整个工作.则以这批零件的总量为单位“1”,李师傅的工作效率是_______,如果李师傅工作了2个小时,那么他完成了全部工作的_____分之_____.2.明明用了10个小时完成了写大字的作业,那么明明3个小时能完成作业的_____分之_____,如果这时他写好了30个大字,那么他总共要写_______个大字.在完成一项工作时,很多时候依靠个人的力量是无法完成的,或者不能完成得很快、很好,这时就需要多个人合作来完成.俗话说:“众人拾柴火焰高”,团队的智慧是远远超过个人的.当多人合作的时候,完成的工作总量就是这些人工作量的总和,“总工效”就是他们每个人的工作效率之和.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1.一条公路,甲队单独去修需要20天完成,乙队单独去修需要30天完成.那么:(1)甲、乙两队一起修,共需要多少天完成?(2)如果甲、乙两队合修若干天之后,乙队停工休息,而甲队继续修了5天才修完,那么乙队一共修了多少天?「分析」题目中已知甲、乙的工作时间,如果我们把工作总量设为单位“1”,那么利用工程问题的基本关系式:工作总量工作时间=工作效率,马上可以求出甲、乙两队的工作效率,那么两人合作的效率是多少?第(2)问中,甲队独修了5天,那么甲队独修的工作量是多少?其余的工作由两人合作完成,那两人还需要合作几天?练习1.有一堆排骨,老虎单独吃需要10分钟,狮子单独吃需要15分钟.那么:(1)老虎和狮子一起互不影响地吃这堆排骨,需要多少分钟吃完?(2)如果老虎和狮子一起吃了3分钟后,老虎就把狮子赶走了,剩下的排骨可以让老虎单独吃几分钟?在例题1中,单独与合作划分得很清楚,单独做的时候只要找那个人对应的工效和工作量,就能算出那个人单独的工作时间,而合作的时候,只要找到工效和与对应的工作量就能求出合作时间.然而有些时候,单独与合作的界线并不是那么清楚,需要我们自己找到.例2.现在要修筑一条公路,如果甲、乙两个工程队同时施工,20天可以完成.如果两队合作15天之后,剩下的全都由乙来完成,则还需要15天才能完成.那么如果这条路全部都由甲队来修,需要多少天才能完成?「分析」实际工作的30天中,前15天是两队合作,后15天是乙队独做,每天的工作效率不一样.那我们可以分别计算前15天与后15天的工作总量,进而计算出甲和乙的工作效率.练2.现在要修筑一条公路,如果乙工程队单独修,需要18天完成.如果两队合作10天之后,剩下的全都由乙来完成,则还需要6天才能完成.那么如果这条路全部都由甲队来修,需要多少天才能完成?例题3.有一条公路,甲队独修需12天,乙队独修需15天.现在让2个队合修,但中间甲队有别的任务离开了,结果从头到尾用了10天才把这条公路修完.请问:甲队参与修路多少天?「分析」我们可以把两队分开来计算.甲队最“懒”,干了几天就走了;乙队最听话,完完整整地做了10天,由此我们可以求出乙队的工作总量,进而求出甲的工作总量和工作时间.练习3.有一堆煤,甲车单独运需要10天运完,乙车单独运需要40天运完.乙车先开始运,若干天后甲车加入,到运完时乙车一共运了12天.那么乙车开始后几天甲车才加入?例题4.有一批待加工的零件,甲单独做需要4天完成,乙单独做需要5天完成,如果两人合作,那么完成任务时甲比乙多做20个零件.这批零件共有多少个?「分析」到完成时甲乙各完成了这批零件的几分之几?20个零件占了这批零件的几分之几?练习4.甲、乙两工程队修一条路,如果让甲队单独修,需要8天完成;如果让乙队单独修,需要6天完成.现在两队合修,修完后,甲队比乙队少修了50米.这条路有多长?在生活当中,有时候会出现“倒班”,也就是几个人轮流工作,而不是同时工作.这种类型的工程问题应该怎么解决呢?例题5.(1)单独完成一项工程,甲需要15天,乙需要10天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?(2)单独完成一项工程,甲需要15天,乙需要6天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?(3)单独完成一项工程,甲需要15天,乙需要12天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?「分析」甲乙轮流工作,以2天为一周期,每个周期完成的工作量都是相同的.到最后完成工作需要几个周期呢?很多大型的工程中,都包含着多个小型的工程.比如中国的南水北调工程就分为东线工程、中线工程和西线工程.在工程问题中,这种整体与部分之间的关系是值得注意的.例题6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.现有两个相同的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙先帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完,那么丙帮助甲搬了多少小时?「分析」我们可以把这两个仓库看成一个大的仓库,那么甲乙丙三人在合作搬运这个大仓库的货物,而且是同时开始,同时结束.那么搬运的时间能不能算出来?曼哈顿工程曼哈顿工程是第二次世界大战期间美国陆军自1942年起开发核武器计划的代号。
高思奥数导引小学五年级含详解答案第03讲:质数与合数
第3讲质数与合数内容概述:掌握质数与合数的概念;熟悉常用的质数,并掌握质数的判定方法;能够利用分解质因数的方法解决相关的整数问题;学会计算末尾零的个数。
典型问题:兴趣篇1.(1)如果两个质数相加等于16,这两个质数有可能等于多少?(2)如果两个质数相加等于25,这两个质数有可能等于多少?(3)如果两个质数相加等于29,这样的两个质数存在吗?(第1届华罗庚金杯数学邀请赛决赛二试试题)2.有个人说:“任何7个连续数中一定有质数”。
请你举一个例子,说明这句话是错的。
3.请写出5个质数,使得它们正好构成一个公差为12的等差数列。
4.请把下面的数分解质因数:(1)160;(2)598;(3)211。
5..三个自然数的乘积为84,其中两个数的和正好等于第三个数。
请求出这三个数。
6.用一个两位数除330,结果正好能整除。
请写出所有可能的两位数。
7.三个连续自然数的乘积等于39270。
这三个连续自然数的和等于多少?⨯⨯⨯⨯⨯⨯的计算结果的末尾有几个连续的0?8.请问:算式12345159.请问:连续两个两位数乘积的末尾最多有几个连续的0?拓展篇1.一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数。
2.9个连续的自然数中,最多有多少个质数?3.两个质数的和是39,这两个质数的差是多少?(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?4.请把下面的数分解质因数:(1)360;(2)539;(3)373;(4)12660。
5.有一些最简真分数,它们的分子与分母的乘积都等于140。
把所有这样的分数从小到大排列,其中第三个分数是多少?6.冬冬在做一道计算两位数乘以两位数的乘法题时,把一个乘数中的数字5看成了8,由此得乘积为1104。
正确的乘积是多少?7.甲、乙、丙三人打靶,每人打三枪。
三人各自中靶的环数之积都是60,且环数是不超过10的自然数。
把三个人按个人总环数由高到低排列,依次是甲、乙、丙。
【高斯数学思维训练】第20讲:直线型计算三.韩涛.初稿
第20讲 直线形计算三内容概述学习直线形中的各类比例关系,重点是与三角形相关的、与平行线相关的比例关系;学习勾股定理并能简单运用。
典型问题兴趣篇1.如图20-1,在三角形ABC 中,AD 的长度是AB 的34,AE 的长度是AC 的23。
请问:三角形AED 的面积是三角形ABC 面积的几分之几?【分析】3344AD AD AB AB =⇒= 2233AE AE AC AC =⇒=由“鸟头”:321432ADE ABC S S ⨯==⨯V V2.如图20-2,AC 的长度是AD 的45,且三角形AED 的面积是三角形ABC 面积的一半。
请问:AE 是AB 的几分之几?【分析】45ABC ABD S S =V V ∴1225AED ABC ABD S S S ==V V V∴2=5AED ABD S AE AB S =V V3.如图20-3,深20厘米的长方形水箱装满水放在平台上。
(1)当水箱像图20-4这样倾斜,水箱中水流出15,这时AB 长多少厘米?(2)如图20-5,当水箱这样倾斜到AB 的长度为8厘米后,再把水箱放平,如图20-6,这图20-1BD CE A图20-2BEDCABD CE ABEDCA时水箱中水的深度是多少厘米?【分析】(1)12=2=1552ACD ACD BCD S S S S =⨯V V V 矩形 ∴2202125205AD AB AB BD -=⇒=⇒= (2)1120832222010ACD ACD BCD S S AD S S BD -==⨯=⨯=V V V 矩形∴132062061410h h =⨯=⇒=-=4.如图20-7,某公园的外轮廓是四边形ABCD ,被对角线AC BD 、分成4个部分。
三角形AOB 的面积是2平方千米,三角形BOC 的面积是3平方千米,三角形COD 的面积是1平方千米。
如果公园由大小为6.9万平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?【分析】12233AOB COD AOD BOC S S S S ⨯===V V V V g ,人工湖面积为(无)BA B A~~~~~~~~~~~~~~~~~~~~图20-6图20-5图20-4图20-3C图20-7ODABCBA~~~~~注:原题有误5.如图20-8,在梯形ABCD 中,三角形ABO 的面积是6平方厘米,且BC 的长是AD 的2倍。
高斯小学奥数五年级上册含答案_直线形计算中的倍数关系
第六讲直线型计算中的倍数关系迄今为止,同学们已经学会了很多图形计算面积的方法.在计算这些面积的时候,只要知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形的长和宽即可利用长方形的面积=⨯长宽进行计算.但很多时候,题目中并不给出长和宽,那怎么来求面积呢?我们来看下面这个例题.例题1. 如图,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗?对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于它们宽(长)之比.例如:如图所示的长方形ABCD 与长方形BEFC 宽BC 相同,那么ABCD BEFC AB BE =长方形的面积:长方形的面积:.如图,有7个小长方形,其中的5个小长方形的面积分别为20,4,6,8,10平方厘米.求阴影长方形的面积是多少平方厘米?从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异.我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.过三角形一个顶点的直线将三角形分为两个小三角形,则这两个小三角形面积之比等于84620 10A B CDE481216 20该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍.那么三角形ABE 的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC 中,D 为AB 的中点,E 为BC 的中点,F 为BE 中点,如果三角形ABC 的面积是120平方厘米,那么三角形DEF 的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分.比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3. 如图,把三角形DEF 的各边分别向外延长1倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系.但是我们所求的是三角形DEF 的面积,而已知的是三角形ABC 的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?ACBF ED::ABD ADC BD DC 三角形的面积三角形的面积ABDE A DEA B CED F如图,把三角形DEF 的各边分别向外延长1倍、2倍、3倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4. 如图,E 是AB 上靠近A 点的三等分点,梯形ABCD 的面积是三角形AEC 面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC 的面积是“1”份,那么梯形ABCD 的面积就是“5”份.接着可以看看“E 是AB 上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?DEFA BCBCDEA如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系.例题5. 把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、③三个长方形.其中,③的长和宽分别为4、2,可以求出它的面积.那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6. 如图,直角三角形ABC 套住了一个正方形CDEF ,E 点恰好在AB 边上.又已知直角边AC 长20厘米,BC 长12厘米,那么正方形的边长为多少厘米? 「分析」注意到EF 垂直于AC ,ED 垂直于BC .我们可以连接CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而它们的高相等.我们的目标就是求这个高.A BCDE2ACBEF D欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。
高斯小学奥数五年级上册含答案_解方程与解方程组
第七讲解方程与解方程组方程这个词,最早见于我国古代算书《九章算术》.可见人们在很早以前就已经掌握了与方程有关的知识和方法.相信同学们已经会解简单的一元一次方程.下面我们先对相关的概念做一个简要的复习. 我们将用等号“=”连接,表示相等关系的式子,叫做等式.而方程就是含有未知数的等式.等式有两个基本性质:等式性质1:等式两边加上或减去一个数,结果仍相等.如果a b =,那么______a c b ±=.等式性质2:等式两边乘上一个数,或除以一个不为0的数,结果仍相等.如果a b =,那么_______a c b ⨯=.如果a b =,那么()0a b c c c=≠. 利用等式的性质我们可以解一些简单的方程.首先我们来看一下一元一次方程. 所谓一元一次方程就是只含有一种未知数且未知数的最高次数是1的方程.在解一元一次方程的时候,我们需要将含有未知数的项一起算,也就是合并同类项.有的时候,当含有未知数的项不在等式同一侧时,我们还需要将这样的项从等式的一侧移动到另一侧,也就是所谓的移项.注意方程中的每一项都包括数值与符号两部分,移项的时候要改变符号.例题1. 解下列方程:(1)4338x x +=+;(2)153194x x -=-;(3)123718x x -=-.【分析】移项的时候记得要变号哦.(1)65103x x +=+;(2)56179x x -=-;(3)102511x x -=-.有的时候,方程如果含有括号,我们要先去括号.去括号的时候特别要注意的是,如果括号前面是减号,去掉括号后,原有的项要変号.例题2. 解下列方程:(1)531965x x +-=();(2)73222x x --=(). 【分析】去括号的时候也要注意符号.(1)16243x x +-=();(2)1836x x --=().对于更为复杂的一元一次方程,还可能含有分母,这个时候我们要先去分母.例题3.解下列方程: (1)357523x x +-=;(2)1135x x --=. 【分析】以第一个方程为例,等号左边的分母是2,要去掉它需要左右两边都乘2或2的倍数.而要消掉右边的分母需要左右两边都乘3或3的倍数,那只需要都乘多少就可以了?(1)318225x x +-=;(2)3155148x x +-+=.通过前面的练习,相信同学们对于一元一次方程有了进一步认识.下面我们总结一下一元一次方程的一般解法:(1)去分母(如果有分母):等号两边同时乘以各分母的最小公倍数;(2)去括号(如果有括号):由内向外去括号;(3)移项:把含有未知数的项移到等号的一边(通常是左边),已知数移到等号的另一边;(4)合并同类项:把方程两边分别合并,化简成()0ax b a =≠的形式;(5)系数化1:在方程两边同除以未知数系数a ,得到方程的解b x a=; (6)把得到的解代回原方程检验.一元一次方程我们已经会解了,在解决实际问题的过程中我们还会遇到需要设两个未知数的情形.也就是可能要解二元一次方程.所谓二元一次方程就是方程中含有两种未知数,且未知数的次数是1.解决二元一次方程的关键就是将两个未知数变为一个未知数,也就是所谓的消元.加减消元法是比较常用的消元方法.该方法的步骤和要点可总结如下:1. 若有某个未知数,它前面的系数在两个方程中恰好相反或者相同,就可以通过把两个方程相加或者相减的方法消去该未知数;如果没有上述特点,可以通过等式两边同乘以一个数,将其凑出可以加减消元的形式;2. 解消元后得到的一元一次方程;3. 把得到的解带入原方程中,求出另一个未知数;4. 代回原方程检验.注意:最后方程的解要写成x a y b =⎧⎨=⎩的形式.例题4. 解下列方程组:(1)233429x y x y -=⎧⎨+=⎩;(2)272516x y x y +=⎧⎨+=⎩. 【分析】加减消元法掌握好了吗?解下列方程组:(1)352532x y x y -=⎧⎨+=⎩;(2)372715x y x y +=⎧⎨+=⎩.例题5. 解方程:(1)213148y y --=-;(2)21322x x +=+;(3)()2352x x x x +-=+. 【分析】熟练掌握一元一次方程的解法,向更高的难度进发吧!例题6.解下列方程组:(1)9220351x yx y+=⎧⎨-=⎩;(2)52162313x yx y+=⎧⎨+=⎩.【分析】解二元一次方程组最基本的想法就是“消元”,想想看,对于这两个题目是消x还是消y更好做?应用方程和方程组可以解决应用题、几何、数论等各种类型的题目,同学们在后续的学习中就会体会到方程的强大威力.方程的来历方程这个名词,最早见于我国古代算书《九章算术》.《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章.这一章里的所谓“方程”,是指一次方程组.其中有一个问题实际上就是求解三元一次方程组:323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩①②③古代是将它用算筹布置起来解的.如下图所示,图中各列由上而下列出的算筹表示x 、y 、z 的系数与常数项.一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程.上述方程的概念,在世界上要数《九章算术》中的“方程”章最早出现.其中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产.这一成就进一步证明:中华民族是一个充满智慧和才干的伟大民族.作业1. 求下列方程的解:(1)615x -=;(2)3517x +=.作业2. 求下列方程的解:(1)58320x x +=+;(2)65820x x -=-.作业3. 求下列方程的解:(1)321545x x +-=();(2)922219x x --=().作业4. 解方程:376745x x +-=. 作业5. 解下列方程组:(1)40326x y x y -=⎧⎨+=⎩.(2)54335319x y x y +=⎧⎨-=⎩.第七讲解方程与解方程组例题1.答案:(1)5;(2)4;(3)3.例题2.答案:(1)4;(2)5.例题3.答案:(1)5;(2)6.例题4.答案:(1)72xy=⎧⎨=⎩;(2)32xy=⎧⎨=⎩.例题5.答案:(1)73;(2)4;(3)5.例题6.答案:(1)21xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩.练习1.答案:(1)2;(2)4;(3)3.练习2.答案:(1)8;(2)6.练习3.答案:(1)9;(2)1.练习4.答案:(1)112xy=⎧⎨=⎩;(2)41xy=⎧⎨=⎩.作业1.答案:(1)21;(2)4.作业2.答案:(1)6;(2)2简答:提示,注意移项的时候要改变符号.作业3.答案:(1)15;(2)3简答:提示,去括号的时候注意括号前面是减号,去掉括号要变号.作业4.答案:7简答:首先要去分母,方程两边同时乘以20即可.作业5.答案:(1)82xy=⎧⎨=⎩;(2)52xy=⎧⎨=⎩简答:提示,第一个方程组采用代入消元法较为方便,第二个方程组采用加减消元法较为方便.。
高思竞赛数学导引-五年级第八讲-直线型计算二学生版汇编
第8讲直线形计算二内容概述进一步学习直线形面积公式酌运用;学会将线段倍数关系与面积倍数关系进行相互转T 七;初步学习添加辅助线酌分析方法.典型问题兴趣篇1.如图8-1,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图8-2所示(单位:平方米),剩下一块的面积应该是多少平方米?3.如图8-3,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?4.如图8-4,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?5.如图8-5所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?6.如图8-6,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?7.如图8-7,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F 是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?8.如图8-8,将一个长为18的长方形,分成一个三角形和一个梯形,而且梯形的面积是三角形的5倍.三角形ABE的边BE的长是多少?9.如图8-9,把一个正方形的相邻两边分别增加3和5厘米,结果面积增加了71平方厘米(阴影部分).原正方形的面积为多少平方厘米?10.如图8-10,四边形ABCD内有一点D,D点到四条边的垂线都是4厘米,四边形的周长是36厘米,四边形的面积是多少平方厘米?拓展篇1.如图8-11,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?2.图8-12中三角形ABC的面积是180平方厘米,D是BC的中点,AD是AE的3倍,三角形ABE的面积是多少平方厘米?3.如图8-13,在四边形ABCD中,已知CD=3DF,AE=3ED,而且三角形BFC的面积为6平方厘米,四边形BEDF的面积为7平方厘米.大四边形ABCD的面积是多少?4.如图8-14,把三角形DEF的各边向外延长1倍后得到三角形ABC,三角形ABC的面积为1.三角形DEF的面积是多少?5.如图8-15,E是AB边上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的5倍.请问:梯形的下底长是上底长的几倍?6.如图8-16,一个长方形被分成4个不同颜色的三角形,红色三角形的面积是9平方厘米,黄色三角形的面积是21平方厘米,绿色三角形的面积是10平方厘米,那么蓝色三角形的面积是多少平方厘米?7.图8-17中,正方形ABCD的面积为1.把每条边都3等分,然后将这8个等分点与正方形内部的某一点P相连接,形成4个阴影的四边形和4个空白的三角形,阴影部分的总面积是多少?8.如图8-18,在梯形ABCD中,E是AB的中点.已知梯形ABCD的面积为35平方厘米,三角形ABD的面积为13平方厘米.三角形BCE的面积为多少平方厘米?9.在图8-19中,正方形ADEB和正方形ECFG底边对齐,两个正方形边长分别为6和4.三角形ACG和三角形BDF的面积分别是多少?10.图8-20是由边长分别为10厘米、12厘米、8厘米的正方形构成,有一条与AB边平行的直线EF将此图形分成面积相等的两部分,那么BF的长度为多少厘米?11.(1)如8-21中左图所示,把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米(阴影部分).原正方形的面积为多少平方厘米?(2)如8-21中右图所示,把一个正方形的相邻两边分别减少3厘米和5厘米,结果面积减少了65平方厘米(阴影部分).原正方形的面积为多少平方厘米?12.如图8-22,直角三角形ABC套住了一个正方形CDEF,E点恰好在AB边上,直角边AC长20厘米,BC长12厘米.正方形的边长为多少厘米?超越篇1.如图8-23,三角形ABC的每边长都是96厘米,用折线把这个三角形分割成面积相等的四个三角形.请求出CE和CF的长度之和.2.如图8 -24,把四边形ABCD的各边都延长1倍,得到一个新四边形EFGH.如果ABCD 的面积是5平方厘米,则EFGH的面积是多少平方厘米?3.图8-25中ABCD是正方形,图中数字是各线段的长度(单位:厘米).过,点的线段IM 将五边形EFGHI分成面积相等的两部分.线段BM的长度是多少厘米?4.如图8 -26,在钝角三角形ABC中,M为AB边的中点,MD、EC都垂直于BC边.若三角形BDE的面积是3平方厘米,则三角形ABC的面积是多少?5.在图8 -27中,大正方形面积比小正方形面积大40平方厘米,大正方形面积是多少平方厘米?6.如图8-28,直角三角形ABC的三边长分别为AC= 30(分米),AB=18(分米),BC= 24(分米),ED垂直于AC,且ED= 95(厘米).问正方形BFEG的边长是多少厘米?7.菜鸟和大虾在武林大会上相遇,争夺武林盟主的地位,三百回合大战后,两人不分胜负.突然,菜鸟向对手发出一枚飞镖,说时迟,那时快,飞镖已经接近大虾的胸口,只见大虾迅速抽身向左闪开,同时用手中的宝剑向飞镖劈去,只听见“瞠”的一声,飞镖被劈成了两半,如图8-29,菜鸟的飞镖是正六角星的形状,边长为5.被大虾劈开的刀口如虚线所示,那么较小的那部分残片占到整体面积的几分之几?8.如图8-30,将三个边长为l的正方形组合在一起,中间的正方形的两个顶点恰好是另外两个正方形的中心.请问:图中阴影部分的面积是多少?。
小学奥林匹克数学 竞赛数学 五年级 第14讲-直线形计算
基本公式: 长方形的面积=长×宽
正方形的面积=边长×边长=对角线×对角线÷2 三角形的面积=底×高÷2
等高三角形:
【例1】高思教育竞赛数学导引拓展篇
★★如图14-11,有9个小长方形,其中的5个小长方形的面积分别为4,8, 12,16,20平方米.其余4个长方形的面积分别是多少平方米?
★★★如图14-19,在梯形ABCD中,E是AB的中点.已知梯形ABCD的面积为35平方厘 米,三角形ABD的面积为13平方厘米,那么三角形BCE的面积为多少平方厘米?
A
D
E
B
C
图14-19
【例10】高思教育竞赛数学导引拓展篇
★★★已知图14-20中,正方形ADEB和正方形ECFG底边对齐,如果两个正方形边长分 别为6和4,那么△ACG和△BDF的面积分别是多少?
12 2=6cm2
6 10 12 8 =0.2cm
6-0.2=5.8cm
【例12】高思教育竞赛数学导引拓展篇
★★★(1)如14-22中左图所示,把一个正方形的相邻两边分别增加2厘米和4厘米,结果面
积增加了50平方厘米(阴影部分),原正方形的面积为多少平方厘米?
(2)如14-22中右图所示,把一个正方形的相邻两边分别减少3厘米和5厘米,结果面积减少
2
2
EF 7.5cm
本讲知识点汇总
等高三角形的面积的倍数关系等于底边的倍数关系 不规则图形转化为规则图形
A
B
A
B
G
F
G
F
D
E
C
D
E
C
图14-20
【例11】高思教育竞赛数学导引拓展篇
★★★★图14-21是由边长分别为l0厘米、l2厘米、8厘米的正方形构成,有一条与AB 边平行的直线EF将此图形分成面积相等的两部分,那么BF的长度为多少厘米?
第一讲直线形面积的计算-(带完整答案)五年级奥数
第一讲直线型面积的计算内容概述前三讲我们将针对几何部分进一步学习提高!首先,让我们一起来回顾一些基本知识!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。
我们的面积及周长都有相应的公式直接计算。
如下表:对于不规则图形的面积及周长计算,我们大都是由规则图形转化而来的!在实际问题的研究中,我们还会常常用到以下结论:① 等底等高的两个三角形面积相等.②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么BCD ACD S S ∆∆=;反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD 。
这节课我们将通过例题学习到几个很重要的定理结论!同学们注意做好笔记啊!开学了!去奥数网学习数学!CDB例题精讲【例1】你有多少种方法将任意一个三角形分成(1)2个面积相等的三角形;(2)3个面积相等的三角形;(3)4个面积相等的三角形。
分析:(1)如右图,D、E、F分别是对应边上的中点,这样就将三角形分成了2个面积相等的三角形;(2)如右图,D、E是BC的三等分点,F、G分别是对应线段的中点;答案不唯一;(3)如下图,答案不唯一,以下仅供参考;前四种答案学生都容易得到,在这里我们需要特别说明的是第五个答案,请看例2 。
【例2】在学习三角形时,很多同学都听说过中位线,所谓中位线就是三角形两边中点的连线。
如右图所示,D、E、F分别是AB、AC、BC边的中点,根据定义可知DE、DF、EF就是三角形ABC的中线。
那么请你说明:(1)DE与BC平行(2)DE= 1/2 BC(3)S△ADE= 1/4 S△ABC分析:(1)在解答一些几何问题时,我们常常需要添加一些辅助线帮助我们分析解决。
如右图(1),连接DC、BE。
因为D、E分别是AB、AC的中点,所以S△BDC= 1/2S△ABC= S△BEC,又因为△BDC与△BEC同用BC做底,根据“内容概述”部分常用结论③可得:DE与BC平行。
小学奥数题库《几何》-直线型-金字塔和沙漏模型-3星题(含解析)
几何-直线型几何-金字塔和沙漏模型-3星题课程目标知识提要金字塔和沙漏模型• 金字塔模型CDCA =CECB =DEAB • 沙漏模型ABCD =AODO =BOCO精选例题金字塔和沙漏模型1. ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,那么图中阴影局部的面积为平方厘米.【答案】48【分析】方法一:设G 、H 分别为AD 、DC 的中点,连接GH 、EF 、BD . 可得S △AED =14S 平行四边形ABCD ,对角线BD 被EF 、AC 、GH 平均分成四段,又OM ∥ EF ,所以DO:ED =24BD:34BD =2:3,OE:ED =(ED −OD ):ED =(3−2):3=1:3,所以S △AEO =13×14S 平行四边形ABCD =13×14×72=6(平方厘米),S △ADO =2×S △AEO =12(平方厘米).同理可得S △CFM =6(平方厘米),S △CDM =12(平方厘米).所以S△ABC−S△AEO−S△CFM=36−6−6=24(平方厘米),于是,阴影局部的面积为24+12+12=48(平方厘米).方法二:寻找图中的沙漏,AE:CD=AO:OC=1:2,FC:AD=CM:AM=1:2,因此O,M为AC的三等分点,S△ODM=16S平行四边形ABCD=16×72=12(平方厘米),S△AEO=14S△OCD=14×12×2=6(平方厘米),同理S△FMC=6(平方厘米),所以S阴影=72−12−6−6=48(平方厘米).2. 如下列图所示,将边长8厘米和12厘米的两个正方形并放在一起,那么图中阴影三角形的面积是平方厘米.【答案】43.2【分析】给图中标上字母,如下列图.根据沙漏模型OCOF =BCEF=812=23.所以OF=12×32+3=7.2(厘米).S△EFO=7.2×12÷2=43.2(平方厘米).3. 如图,△ABC中,DE,FG,BC互相平行,AD=DF=FB,那么S△ADE:S四边形DEGF :S四边形FGCB=.【答案】1:3:5【分析】设S△ADE=1份,根据面积比等于相似比的平方,所以S△ADE:S△AFG=AD2:AF2=1:4,S△ADE:S△ABC=AD2:AB2=1:9,因此S△AFG=4份,S△ABC=9份,进而有S四边形DEGF =3份,S四边形FGCB=5份,所以S△ADE:S四边形DEGF :S四边形FGCB=1:3:5.4. 在下列图中,线段AE、FG将长方形ABCD分成了四块;其中两块的面积分别是2平方厘米、11平方厘米,且E是BC的中点,O是AE的中点.请问长方形ABCD的面积是平方厘米.【答案】28【分析】如下列图所示,延长AE、DC交于点H.由于E是BC的中点,由AB∥CH,有AE:EH=BE:EC=1:1,由于O是AE中点,那么AO:OH=1:3.由AF∥GH,有S△AOF:S△GOH=12:32=1:9.所以,S△GOH=2×9=18(平方厘米),那么S△CEH=18−11=7(平方厘米).所以,S平行四边形ABCD=4S△ABE=4S△CEH=4×7=28(平方厘米).5. 如下列图所示,三角形田地中有两条小路AE和CF,交叉处为D.张大伯常走这两条小路,他知道DF=DC,且AD=2DE.那么两块田地ACF和CFB的面积比是.【答案】1:2【分析】方法一:如下列图所示,ACF 和CFB 为同高三角形,所以面积比等于底边比AF:FB . 过F 作BC 的平行线,交AE 于G ,那么因为DF =DC ,所以三角形CED 和FGD 全等,GD =DE .又因为AD =2DE ,所以D 和G 是AE 的三等分点,所以AF:FB =AG:GE =1:2. 方法二:如下列图所示,连接BD ,设S △CED =1(份),那么S △ACD =S △ADF =2(份).设S △BED =x,S △BFD =y ,那么有{x +1=y 2x =y +2,解得{x =3y =4.所以S △ACF :S △CFB =(2+2):(4+3+1)=1:2.6. 图中的大小正方形的边长均为整数〔厘米〕,它们的面积之和等于52平方厘米,那么阴影局部的面积是平方厘米.【答案】10.8【分析】设大、小正方形的边长分别为m 厘米、n 厘米〔m >n 〕,那么m 2+n 2=52,所以m <8.假设m ⩽5,那么m 2+n 2<52×2=50<52,不合题意,所以m 只能为6或7.检验可知只有m =6、n =4满足题意,所以大、小正方形的边长分别为6厘米和4厘米.根据相似三角形性质,BG:GF =AB:FE =6:4=3:2,而BG +GF =6,得BG =3.6(厘米),所以阴影局部的面积为:12×6×3.6=10.8(平方厘米). 7. 如图,△ABC 中,DE ,FG ,MN ,PQ ,BC 互相平行,AD =DF =FM =MP =PB ,那么S △ADE :S 四边形DEGF :S 四边形FGNM :S 四边形MNQP :S 四边形PQCB =.【答案】1:3:5:7:9【分析】设S △ADE =1份,S △ADE :S △AFG =AD 2:AF 2=1:4,因此S △AFG =4份,进而有S 四边形DEGF =3份,同理有S 四边形FGNM =5份,S 四边形MNQP =7份,S 四边形PQCB =9份. 所以有S △ADE :S 四边形DEGF :S 四边形FGNM :S 四边形MNQP :S 四边形PQCB =1:3:5:7:9. 8. 如图,DE 平行BC ,假设AD:DB =2:3,那么S △ADE :S △ECB =.【答案】4:15【分析】根据金字塔模型AD:AB =AE:AC =DE:BC =2:(2+3)=2:5,S △ADE :S △ABC =22:52=4:25,设S △ADE =4份,那么S △ABC =25份,S △BEC =25÷5×3=15份,所以S △ADE :S △ECB =4:15. 9. 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,BG:GC =3:1,那么四边形EFGH 的面积=.【答案】3【分析】因为FGHE 为平行四边形,所以EC ∥AG ,所以AGCE 为平行四边形.BG:GC =3:1,那么GC:BC =1:4,所以S 平行四边形AGCE =14×S 平行四边形ABCD =14×16=4.又AE=GC,所以AE:BG=GC:BG=1:3,根据沙漏模型,FG:AF=BG:AE=3:1,所以S平行四边形FGHE =34S平行四边形AGCE=34×4=3.10. 如图,三角形ABC的面积为60平方厘米,D、E、F分别为各边的中点,那么阴影局部的面积是平方厘米.【答案】12.5【分析】阴影局部是一个不规那么的四边形,不方便直接求面积,可以将其转化为两个三角形的面积之差.而从图中来看,既可以转化为△BEF与△EMN的面积之差,又可以转化为△BCM 与△CFN的面积之差.〔法一〕如图,连接DE.由于D、E、F分别为各边的中点,那么BDEF为平行四边形,且面积为三角形ABC面积的一半,即30平方厘米;那么△BEF的面积为平行四边形BDEF面积的一半,为15平方厘米.根据几何五大模型中的相似模型,由于DE为三角形ABC的中位线,长度为BC的一半,那么EM:BM=DE:BC=1:2,所以EM=13 EB;EN:FN=DE:FC=1:1,所以EN=12 EF.那么△EMN的面积占△BEF面积的12×13=16,所以阴影局部面积为15×(1−16)=12.5(平方厘米).〔法二〕如图,连接AM.根据燕尾定理,S△ABM:S△BCM=AE:EC=1:1,S△ACM:S△BCM=AD:DB=1:1,所以S△BCO=13S△ABC=13×60=20(平方厘米),而S△BDC=12S△ABC=12×60=30(平方厘米),所以S△FCN=14S△BDC=7.5(平方厘米),那么阴影局部面积为20−7.5=12.5(平方厘米).【总结】求三角形的面积,一般有三种方法:〔1〕利用面积公式:底×高÷2;〔2〕利用整体减去局部;〔3〕利用比例和模型.11. 梯形ABCD的面积为12,AB=2CD,E为AC的中点,BE的延长线与AD交于F,四边形CDFE的面积是.【答案】83【分析】延长BF、CD相交于G.由于E 为AC 的中点,根据相似三角形性质,CG =AB =2CD,GD =12GC =12AB,再根据相似三角形性质,AF:FD =AB:DG =2:1,GF:GB =1:3,而S △ABD :S △BCD =AB:CD =2:1,所以S △BCD =13S ABCD =13×12=4,S △GBC =2S △BCD =8.又S △GDF S △GBC =12×13=16, S △EBC =12S △GBC ,所以S CDFE =(1−12−16)S △GBC =13S △GBC =83.12. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,且图中两个阴影局部〔甲和乙〕的面积差是5.04,那么S △ABC =.【答案】20.16【分析】由于D ,E 都是中点,那么BC =2DE ,设DE 为1份,那么BC 为2份,根根据梯形中的蝴蝶模型,得到甲是1份,乙是4份,两个翅膀都是2份,由此可推出△ADE 为3份,且每份为5.04÷(4−1)=1.68,所以S △ABC =1.68×(3+1+4+2+2)=20.16 13. 如图,△ABC 中,AE =14AB ,AD =14AC ,ED 与BC 平行,△EOD 的面积是1平方厘米.那么△AED 的面积是平方厘米. 【答案】53【分析】因为AE =14AB ,AD =14AC ,ED 与BC 平行,根据相似模型可知ED:BC =1:4,EO:OC =1:4,S △COD =4S △EOD =4平方厘米,那么S △CDE =4+1=5平方厘米,又因为S △AED :S △CDE =AD:DC =1:3,所以S △AED =5×13=53(平方厘米). 14. 如图,EF 与BC 平行,AF:FB =1:2.AE =2,EF =3,那么CE 的长度是多少?AC 的长度是多少?BC 的长度是多少?【答案】4,6,9.【分析】AF FB =AE EC =12,可求出CE =4,AC =6,EF BC =AF AB =13,可求出BC =9.15. 如下图,DE 与BC 平行,AD =4,BD =5,△ADE 的面积为32,那么四边形DECB 面积是多少? 【答案】130.【分析】AD:AB =4:9,那么AE:AC =4:9,△ADE 是△ABC 面积的1681,那么△ABC 的面积是162,四边形DEBC 的面积为130.16. 如图,平行四边形ABCD的面积是12,DE=13AD,AC与BE的交点为F,那么图中阴影局部面积是多少?【答案】4.4.【分析】AE:BC=2:3,设份数可知ABCD为30份,△AEF为4份,阴影局部占11份,面积为4.4.17. 如下图,图中的两个正方形的边长分别是10和6,那么阴影局部的面积是多少?【答案】40013.【分析】AHHG =ADBG=58,那么△ABH与△BGH的面积是10×16÷2×513=40013.18. 三角形ADE的面积为3平方厘米,D是AB边的三等分点〔靠近A点〕,且DE与BC平行.请求出三角形OBC的面积为多少平方厘米?【答案】13.5平方厘米.【分析】由金字塔模型知,AD:AB=DE:BC=1:3,设△ODE的面积为1份,那么△ODB的面积为3份,△OEC的面积为3份,△OBC的面积为9份,又因为△ADE与△DEC等高,可知△ADE的面积为2份,由此可知△OBC的面积为3÷2×9=13.5平方厘米.19. 如下图,梯形ABCD的面积是50,下底长是上底长的1.5倍,阴影三角形的面积是多少?【答案】18.【分析】上底与下底的长度比为2:3,设△OCD面积是4份,那么△AOD与△BOC的面积均为6份,△ABO的面积为9份,总面积为50,故一份所对应的面积为2,那么△ABO的面积为18.20. 如图,平行四边形ABCD的面积是90.E点是AB上靠近A点的三等分点,求阴影局部的面积.【答案】33.【分析】由沙漏模型知,BE:CD=BO:OD=EO:OC=2:3,设△OBE的面积为4份,那么△OBC的面积为6份,△OCD的面积为9份,△OBC的面积与△OCD的面积之和为整个四边形面积的一半,因此四边形的面积为30份,总面积为90,那么一份对应面积为3,阴影局部占了11份,面积为33.21. 如下图,在三角形ABC中,IF和BC平行,GD和AB平行,HE和AC平行.AG:GF:FC=4:3:2,那么AH:HI:IB和BD:DE:EC分别是多少?【答案】AH:HI:IB=3:4:2,BD:DE:EC=4:2:3.【分析】〔1〕因为AG:GF:FC=4:3:2,所以AF:FC=7:2.又因为IF∥BC,所以AI:IB=AF:FC=7:2.因为GD∥AB,所以GF:AG=OF:IO=3:4.由上可得AH:HI:IB=3:4:2.〔2〕因为AG:GF:FC=4:3:2,所以AG:GC=4:5.又因为GD∥AB,所以BD:DC=AG:GC=4:5.因为GF:FC=3:2,IF∥BC,所以OD:GO=FC:GF=2:3.又因为HE∥AC,所以DE:EC=OD:GO=2:3.由上可得BD:DE:EC=4:2:3.22. 如下列图,D、E、F、G均为各边的三等分点,线段EG和DF把三角形ABC分成四局部,如果四边形FOGC的面积是24平方厘米,求三角形ABC的面积.【答案】40.5【分析】设三角形以AB为底的高为ℎ,由于FG:AB=2:3,所以ED:FG=1:2;所以三角形OGF以GF为底的高是1 3ℎ×23=29ℎ;又因为三角形CFG以FG为底的高是23ℎ,所以三角形OGF的面积与三角形CGF的面积之比为29ℎ:23ℎ=1:3,所以三角形CFG的面积为24×33+1=18(平方厘米),而三角形CFG的面积占三角形ABC的23×23=49,所以三角形ABC的面积是18÷49=40.5(平方厘米).23. 如图,直角三角形ABC中,AB=4,BC=6,又知BE:EC=1:3,求∠CDE的面积.【答案】6.75.【分析】由金字塔模型知DE:AB=CE:CB=3:4那么DE=4×34=3又知道CE=6×34=4.5可求出△CDE的面积为3×4.5÷2=6.7524. 如下图,DE与BC平行,AD=4,BD=5,DE=16,那么BC的长度是多少?【答案】36.【分析】由金字塔模型,AD:AB=DE:BC=4:9,DE=16,那么BC=36.25. 如下图,正方形ABCD面积为1,E、F分别是BC和DC的中点,DE与BF交于M点,DE与AF 交于N点,那么阴影三角形MFN的面积是多少?【答案】130【分析】如下列图,延长AF、BC交于点G,在沙漏ADNEG中,AD:EG=2:3,所以DN:NE= 2:3,故DN=25DE.如下列图,延长BF、AD交于点H,在沙漏DHMBE中,DH:BE=2:1,所以DM:ME=2:1,故ME=13DE.所以NM=(1−25−13)DE=415DE,故S△MFN=415S△DFE=415×12×S△DCE=415×12×14=130.26. 长方形ABCD的面积为70厘米,E是AD的中点,F、G是BC边上的三等分点,求阴影△EHO 的面积是多少平方厘米?【答案】3【分析】因为E 是AD 的中点,F 、G 是BC 边上的三等分点,由此可以说明如果把长方形的长分成6份的话,那么ED =AD =3(份)、BF =FG =GC =2(份),在图形中找到沙漏EDOBG :有ED:BG =3:4,所以OD:BO =3:4,相当于把BD 分成7份〔3+4〕,同理也可以在图中再次找到沙漏EDHBF ,ED:BF =3:2,由此可以推出:HD:BH =3:2,相当于把BD 分成5份〔3+2〕,那么我们就可以把BD 分成35份〔5和7的最小公倍数〕其中OD 占15份,BH 占14份,HO 占6份,连接EB 那么可知△BED 的面积为70÷4=352,在BD 为底的三角形中HO 占6份,那么面积为:352×635=3(平方厘米). 27. △ABC 中,DE 平行BC ,假设AD:DB =2:3,且S 梯形DBCE 比S △ADE 大8.5 cm 2,求S △ABC . 【答案】12.5cm 2【分析】根据金字塔模型AD:AB =DE:BC =2:(2+3)=2:5,S △ADE :S △ABC =22:52=4:25,设S △ADE =4份,那么S △ABC=25份,S 梯形DBCE =25−4=21份,S 梯形DBCE 比S △ADE 大17份,恰好是8.5 cm 2,所以S △ABC =12.5cm 2.28. 如图,三角形ABC 是一块锐角三角形余料,边BC =120毫米,高AD =80毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?【答案】48【分析】观察图中有金字塔模型5个,用与边有关系的两个金字塔模型,所以有PN BC =AP AB ,PH AD =BPAB, 设正方形的边长为x 毫米,PN BC +PH AD =AP AB +BPAB=1, 即x 120+x 80=1, 解得x =48即正方形的边长为48毫米.29. 如右图,长方形ABCD 中,EF =16,FG =9,求AG 的长.【答案】15【分析】因为DG GB =AG GE =AG 25,且DG GB =FG GA =9AG ,所以AG 25=9AG 即AG 2=25×9=225,所以AG =15.30. 如下列图所示,点M是平行四边形ABCD的边CD上的一点,且DM:MC=1:2,四边形EBFC为平行四边形,FM与BC交于点G.假设三角形FCG的面积与三角形MED的面积之差为13cm2,求平行四边形ABCD的面积.【答案】60【分析】连接BD,因为DE∥BC,所以DE BC =EMMB=DMMC=12,所以S△DEM S△CEM =S△CEMS△CBM=S△DEMS△BDM=12.令S△DEM=a,那么S△CEM=S△BDM=2a,S△CBM=4a,所以S△BCF=S△BCE=2+4=6a.因为MB∥CF,所以CG GB =CFMB=EBMB=32.所以S△GCF S△BGF =CGGB=32.所以S△GCF=33+2×S△BCF=35×6=185a.因为S△GCF−S△DEM=13,所以18 5a−a=13;a=5.因为S△BCD=S△BDM+S△BCM=2a+4a=6a,所以S平行四边形ABCD=2×S BCD=2×6a=12a=12×5=60cm2.31. 图中ABCD是边长为12cm的正方形,从G到正方形顶点C、D连成一个三角形,这个三角形在AB上截得的EF长度为4cm,那么三角形GDC的面积是多少?【答案】108cm2【分析】做GM垂直DC于M,交AB于N.因为EF∥DC,所以三角形GEF与三角形GDC相似,且为EF:DC=4:12=1:3,所以GN:GM=1:3,又因为MN=GM−GN=12,所以GM=18(cm),所以三角形GDC的面积为12×12×18=108(cm2).32. 如下图,在正方形ABCD中,E,F分别是BC,CD的中点,正方形ABCD的面积为60平方厘米,求阴影局部的面积.【答案】10平方厘米.【分析】由条件知,BE=AD=1:2,那么BG:GD=1:2,BG=13BD,同理,DF:AB=1:2,那么DH:HB=1:2,DH=13BD,由此可得,GH=13BD,阴影局部面积为60÷2÷3=10平方厘米.33. 如图,长方形ABCD中,E为AD的中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,AH=5cm,HF=3cm,求AG.【答案】4013cm【分析】由于AB∥DF,利用相似三角形性质可以得到AB:DF=AH:HF=5:3,又因为E为AD中点,那么有OE:FD=1:2,所以AB:OE=5:32=10:3,利用相似三角形性质可以得到AG:GO=AB:OE=10:3,而AO=12AF=12×(5+3)=4(cm),所以AG=4×1013=4013(cm).34. 如下图,边长为8厘米和12厘米的两个正方形并排放在一起,求图中阴影局部的面积.【答案】45平方厘米.【分析】由条件知,GF:BE=12:20=3:5,由沙漏模型知GO:OE=3:5,那么△GOF与△EOF的面积之比也是3:5,△OEF的面积为12×12÷2×58=45平方厘米.35. 下列图中正方形的面积为1,E、F分别为AB、BD的中点,GC=13FC.求阴影局部的面积.【答案】524【分析】题中条件给出的都是比例关系,由此可以初步推断阴影局部的面积要通过比例求解,而图中出现最多的就是三角形,那么首先想到的就是利用相似三角形的性质.阴影局部为三角形,底边为正方形边长的一半,只要求出高,便可求出面积.可以作FH垂直BC于H,GI垂直BC于I.根据相似三角形性质,CI:CH=CG:CF=1:3,又因为CH=HB,所以CI:CB=1:6,即BI:BC=(6−1):6=5:6,所以S △BGE =12×12×56=524. 36. 如下列图,正方形ABCD 的面积为1,M 是CD 边的中点,E,F 是BC 边上的两点,且BE =EF =FC .连接AE,DF 分别交BM 分别于H,G .求四边形EFGH 的面积. 【答案】23210【分析】过M 点做MQ 平行于BC 交FD 于Q ,过E 点做EP 交BM 于P ,那么因为M 为CD 的中点,所以QM:FC =1:2,所以QM:BF =1:4,所以GM:GB =1:4,所以BG:BM =4:5,又因为BF:BC =2:3,所以S △BFG =45×23S △BCM =215,因为E 为BC 边上三等分点,所以EP:CM =1:3,所以EP:AB =1:6,所以BH:HP =6:1,所以BH:HM =6:15=2:5,所以BH:BM =2:7,又因为GM:GB =1:4,所以BH:BG =5:14,所以S △BEH =514×12S △BFG =142,因此,S 阴=215−142=23210.37. 如下图,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.请问:三角形ABC 的面积是多少?【答案】72【分析】当两个平行四边形的高相等时,它们底边的比等于面积比.考虑平行四边形BEPF 和AIPD ,分别以PE 和PD 为底边,它们的高相等,因此它们底边的比等于面积比,即EP PD=S 平行四边形BEPF S 平行四边形AIPD =2012=53.由于IH ∥AC ,所以EH HC=EP PD=53,转化为面积比:得到:S △PEH S 平行四边形PGCH=12×EH HC=12×53=56.而平行四边形PGCH 的面积是15,那么△PEH 的面积是15×56=252.类似的方法可以求出△FPI 和△DPG 的面积分别是8和92,因此这三个小三角形的面积分别是92、8、252,所以大△ABC 的面积就是12+15+20+92+8+252=72.38. 如下图,梯形的面积是48平方厘米,下底是上底的3倍,求阴影局部的面积.【答案】27平方厘米.【分析】上底与下底之比为1:3,由沙漏模型可知四个三角形的面积之比是1:3:3:9,那么阴影局部的面积是48÷(1+3+3+9)×9=27平方厘米.39. 如下图,三角形ABC 的面积为1平方厘米,D 、E 分别是AB 、AC 边的中点.求三角形OBC 的面积.【答案】13平方厘米.【分析】由D 、E 分别是AB 、AC 边的中点,可知DE 与BC 平行,且DE =12BC .如下列图所示,沙漏DEOBC 中,有OD OC =OE OB =DE BC =12. 把线段的比例关系转化为面积的比例关系,得到S △BOD =2S △DOE ,S △COE =2S △DOE ,S △BOC =2S △COE =4S △DOE ,那么梯形DECB 的面积就是(1+2+2+4)×S △DOE =9S △DOE .由于△ABC 的面积为1平方厘米,那么△ADE 的面积是14平方厘米.而梯形DECB 的面积是1−14=34(平方厘米).因此S △DOE =19×S 梯形BCDE =19×34=112(平方厘米),从而S △BOC =4S △DOE =4×112=13(平方厘米).40. 在图中的正方形中,A 、B 、C 分别是ED 、EG 、GF 的中点.请问:三角形CDO 的面积是三角形ABO 面积的几倍?【答案】3倍.【分析】不妨设正方形的边长是2,所以FC =CG =GB =BE =EA =AD =1.又A 、C 分别是所在边的中点,所以AC ∥GE ,即OA ∥BE ,由此可见OA 是△DBE 的中位线,有OA BE =12,所以△OAD 的面积是 12×1÷2=14. △AOB 的面积等于△BAD 的面积减去△AOD 的面积,等于1×1÷2−14=14.△COD 的面积等于△CAD 的面积减去△AOD 的面积,等于2×1÷2−14=34.由此可得,△CDO 的面积是△ABO 面积的3倍.41. 如图,将一个边长为2的正方形两边长分别延长1和3,割出图中的阴影局部,求阴影局部的面积是多少? 【答案】130【分析】根据相似三角形的对应边成比例有:NF 1+2=32+3, EM 2+3=11+2, 那么NF =59,EM =53,所以S 阴=12×(2−95)×(2−53)=130.42. 如图,三角形PDM的面积是8平方厘米,长方形ABCD的长是6厘米,宽是4厘米,M是BC的中点,那么三角形APD的面积是平方厘米.【答案】8【分析】此题在矩形内连接三点构成一个三角形,而且其中一点是矩形某一条边的中点,一般需要通过这一点做垂线.取AD的中点N,连接MN,设MN交PD于K.那么三角形PDM被分成两个三角形,而且这两个三角形有公共的底边MK,可知三角形PDM的面积等于1 2×MK×BC=8(平方厘米),所以MK=83(厘米),那么NK=4−83=43(厘米).因为NK是三角形APD的中位线,所以AP=2×NK=83(厘米),所以三角形APD的面积为1 2×83×6=8(平方厘米).43. 如下图,正方形ABCD的边长是6,E点是BC的三等分点.△AOD的面积是多少?【答案】13.5.【分析】由沙漏模型,BE:AD=BO:OD=1:3,△AOB与△AOD等高,面积比为1:3,因此△AOD的面积为6×6÷2×34=13.5.44. 两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?【答案】6【分析】根据题意画出如下图的图,延长FE与AC交于I,那么△AEI和△EFH以及△CEI和△EFG都能组成沙漏三角.不难看出,EI=4−1.5=2.5(米).而在沙漏AIEFH中,又有AEEH =IEEF=2.51.5=53.在沙漏ACEGH中,有ACGH =AEEH=53.由此可知GH=35AC=35×10=6(米),这就是两个影子的总长度.45. 如下图,梯形ABCD的上底AD长10厘米,下底BC长15厘米.如果EF与上、下底平行,那么EF的长度为多少?【答案】12厘米.【分析】在沙漏ADOBC中,OAOC =ADBC=23,于是AOAC=25〔如下图〕.由于EO∥BC,因此EOBC =AOAC=25,即EO=25×BC=25×15=6(厘米).同理,OF也等于6厘米,所以EF=EO+OF=6+6=12(厘米).46. 如图,长方形ABCD中,E、F分别为CD、AB边上的点,DE=EC,FB=2AF,求PM:MN:NQ.【答案】7:18:10【分析】如图,过E作AD的平行线交PQ于G.由于E是DC的中点,所以G是PQ的中点.由于DE=EC,FB=2AF,所以AF:DE=2:3,BF:CE=4:3.根据相似性,PM:MG=AM:ME=AF:DE=2:3,GN:NQ=EN:NB=EC:BF=3:4,于是PM=25 PG,MN=35PG+37GQ=3635PG,NQ=47GQ=47PG,所以PM:MN:NQ=25:3635:47=7:18:10.47. 如图,正方形ABCD的边长为4,F是BC边的中点,E是DC边上的点,且DE:EC=1:3,AF 与BE相交于点G,求S△ABG.【答案】3211【分析】方法一:连接AE,延长AF,DC两条线交于点M,构造出两个沙漏,所以有AB:CM=BF:FC=1:1,因此CM=4,根据题意有CE=3,再根据另一个沙漏有GB:GE=AB:EM=4:7,所以S△ABG=44+7S△ABE=411×(4×4÷2)=3211.方法二:连接AE,EF,分别求S△ABF=4×2÷2=4,S△AEF=4×4−4×1÷2−3×2÷2−4=7,根据蝴蝶定理S△ABF:S△AEF=BG:GE=4:7,所以S△ABG=44+7S△ABE=411×(4×4÷2)=3211.48. 如图,正方形ABCD的边长是6,E点是BC的中点,求△AOD的面积.【答案】12.【分析】连结DE,因为BE与AD之比是1:2,可如下图设份数,可知△AOD的面积是正方形面积的三分之一,是12.49. 如图:MN平行BC,S△MPN:S△BCP=4:9,AM=4cm,求BM的长度.【答案】2cm【分析】在沙漏模型中,因为S△MPN:S△BCP=4:9,所以MN:BC=2:3,在金字塔模型中有:AM:AB=MN:BC=2:3,因为AM=4cm,AB=4÷2×3=6cm,所以BM=6−4=2cm.50. 如图,线段AB与BC垂直,AD=EC=4,BD=BE=6,那么图中阴影局部面积是多少?【答案】15【分析】解法一:这个图是个对称图形,且各边长度已经给出,不妨连接这个图形的对称轴看看.作辅助线BO,那么图形关于BO对称,有S△ADO=S△CEO,S△DBO=S△EBO,且S△ADO:S△DBO=4:6=2:3.设△ADO的面积为2份,那么△DBO的面积为3份,直角三角形ABE的面积为8份.因为S△ABE=6×10÷2=30,而阴影局部的面积为4份,所以阴影局部的面积为30÷8×4=15.解法二:连接DE、AC.由于AD=EC=4,BD=BE=6,所以DE∥AC,可知DE:AC=BD:BA=6:10=3:5,根据梯形蝴蝶定理,S△DOE:S△DOA:S△COE:S△COA=32:(3×5):(3×5):52=9:15:15:25,所以S阴影:S梯形ADEC=(15+15):(9+15+15+25)=15:32,即S阴影=1532S梯形ADEC;又S梯形ADEC =12×10×10−12×6×6=32,所以S阴影=1532S梯形ADEC=15.51. 如图,测量小玻璃管口径的量具ABC,AB的长为15厘米,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处〔DE平行AB〕,那么小玻璃管口径DE是多大?【答案】10厘米.【分析】有一个金字塔模型,所以DE:AB=DC:AC,DE:15=40:60,所以DE=10厘米.52. 在图中的正方形中,A,B,C分别是所在边的中点,△CDO的面积是△ABO面积的几倍?【答案】3【分析】连接BC,易知OA∥EF,可知OB:OD=AE:AD,且OA:BE=DA:DE=1:2,所以△CDO的面积等于△CBO的面积;由OA=12BE=14AC可得CO=3OA,所以S△CDO=S△CBO=3S△ABO,即△CDO的面积是△ABO面积的3倍.53. 如图,S △ABC =14,点D,E,F 分别在AB,BC,CA 上,且AD =2,BD =5,AF =FC ,S 四边形DBEF =S △ABE 那么S △ABE 是多少?【答案】10【分析】△ABC 的面积,假设知道△ABE 的面积占△ABC 的几分之几就可以计算出△ABE 的面积.连接CD . 因为S 四边形DBEF =S △ABE , 所以S △DEF =S △ADE . 所以AC 与DE 平行,所以 S △ADE =S △CDE , 所以S △ABE =S △CDB . 因为AD =2,BD =5,所以 S △ACD :S △CDB =2:5, 所以S △ABB=S △CDB =5S △ABC 7=57×14=10.54. 如图,正方形ABCD 中E 是BC 边的中点,AE 与BD 相交于F 点,三角形DEF 的面积是2,那么正方形ABCD 的面积是_________.【答案】12【分析】左边梯形ABED ,因为E 为BC 的中点,所以BE:AD =1:2所以BF:FD =1:2又因为三角形DEF 的面积是2所以三角形BEF 的面积是1,三角形ABF 的面积为2,三角形AFD 的面积为4而S △BED =S △DEC ,所以S △DEC =3S △ABCD =1+2+2+4+3=1255. 三角形ABC 的面积为a ,AF:FC =2:1,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影局部的面积. 【答案】a18【分析】AF:FC =2:1,且EF ∥BC ,可知EF:BC =AF:AC =2:3,所以EF =23BC ,且S △AEF :S △ABC =4:9.又因为E 是BD 的中点,所以EG 是三角形DBC 的中位线,那么EG =12BC ,EG:EF =12:23=3:4,所以GF:EF =1:4,可得S △CFG :S △AFE =1:8,所以S △CFG :S △ABC =1:18,那么S △CFG =a18. 56. 如下图,平行四边形ABED 与平行四边形AFCD 的面积都是30平方厘米.其中AF 垂直于ED于O ,AO 、OD 、AD 分别长3、4、5厘米.求三角形OEF 的面积和周长. 【答案】面积为13.5平方厘米,周长为18厘米. 【分析】平行四边形ABED 的面积等于AO ×DE =3×DE =30,由此可以求得DE =10,OE =6.平行四边形AFCD 的面积等于DO×AF=4×AF=30,由此可以求得AF=7.5,OF=4.5.那么△OEF的面积等于EO×OF÷2=6×4.5÷2=27÷2=13.5(平方厘米).由沙漏模型得AO:OF=AD:EF=2:3,那么EF=7.5.所以△OEF的周长为4.5+6+7.5=18(厘米).57. 如图,ABCD是直角梯形,AB=4,AD=5,DE=3,那么梯形ABCD的面积是多少?【答案】40【分析】分别计算△AOD,△AOB,△DOC,△BOC的面积,再求和.延长EO交AB于F点,可得DE:BF=DO:OB=3:1,所以S△AOD:S△AOB=3:1;S△DOC:S△BOC=3:1,S△AOD=S△BOC.又因为S△ABD=12×4×5=10,得到S△AOD=34S△ABD=7.5,S△AOB=2.5,S△BOC=7.5,S△DOC=3S△BOC=3×7.5=22.5.所以S梯形ABCD=7.5+2.5+7.5+22.5=40.58. 如下列图所示,三角形AEF、三角形BDF、三角形BCD都是正三角形,其中AE:BD=1:3,三角形AEF的面积是1.求阴影局部的面积.【答案】15【分析】S△AEF:S△BDF=AE2:BD2=1:9,△AEF面积是1,那么S△BDF=S△BDC=9,因为△AEF与△ACE的高之比是1:7,所以S△ACE=7,因为AD与BC平行,所以S△ABC=S△BCD=9,所以S△ABC:S△AEC=BI:IE=9:7.假设BE为16份,那么BI=9,IE=7,又知道BF:FE=3:1,所以BF=12,FE=4,所以IF= 3,S△AEF:S△AIF=FE:FI=4:3,所以S△AIF=0.75,又有S△AIF:S△BCI=AF2:BC2=1:9,所以S△BCI=6.75,于是可求阴影局部面积是(0.75+6.75)×2=15.59. 如下图,O是长方形ABCD一条对角线的中点,图中已经标出两个三角形的面积3和4,那么阴影直角三角形的面积是多少?【答案】318【分析】由S△AOD=4可知S△BCD=12×S长方形ABCD=12×4×S△AOD=8.而△CDF与△CDB从C出发的高相同,那么DFDB =S△CDFS△CDB=58.由于EF ∥CD ,把线段的比例转移到BC 上,那么有CE BC =DF DB =38,从而得到BE BC =1−38=58,所以阴影△BEF 的面积是△BCF 面积的58.于是阴影三角形的面积是58×S △BCF =58×(S △BCD −S △CDF )=58×(8−3)=258. 60. 如下图,在直角三角形ABC 中,AC 的长3厘米,CB 的长4厘米,AB 的长5厘米,有一只小虫从C 点出发,沿CB 以1厘米/秒的速度向B 爬行;另一只小虫从B 点出发,沿BA 以1厘米/秒的速度向A 爬行.请问经过多少秒后,两只小虫所在的位置D 、E 与B 组成的三角形DBE 是等腰三角形?〔请写出所有答案〕【答案】2秒、2013秒或3213秒.【分析】设经过了x 秒,那么BE =x 厘米,CD =x 厘米,两只小虫所在的位置D 、E 与B 组成的三角形DBE 是等腰三角形的情况有三种:〔1〕以B 为等腰三角形顶角所在的顶点,即BD =BE 〔如图1〕.这个最好算,BD =4−x ,BE =x ,故x =4−x ,解得x =2;〔2〕以E 为等腰三角形顶角所在的顶点,即ED =EB ,如图2,从E 向BD 作垂线,垂足为F ,在金字塔BEFAC 种,BE BA =BF BC ,即x 5=BF 4,所以BF =45x .利用CD +DF +FB =4列出方程x +45x +45x =4,解得x =2013;〔或者利用△BEF 和△BAC 相似,得BE BF =54,即x BF =54,所以BF =45x 〕〔3〕以D 为等腰三角形顶角所在的顶点,即ED =DB ,如图3,从D 向AB 作垂线,垂足为F ,利用△BFD 和△BCA 相似得BF BD =45,即BF 4−x=45,所以BF =45(4−x).利用BE =2BF 列出方程x =45(4−x)×2,解得x =3213.综上,经过2秒或2013秒或3213秒后,两只小虫所在的位置D 、E 与B 组成的三角形DBE 是等腰三角形.61. 如图,在长方形ABCD 中,AB =6厘米,AD =2厘米,AE =EF =FB ,求阴影局部的面积. 【答案】3.5平方厘米【分析】连接DE 、FC ,在梯形CDEF 中,由梯形根本结论知:EF:DC =EO:OC =1:3,S 长ABCD =6×2=12由一半模型得所以S △DEC =6又EO:OC =1:3,S △DEO =6×14=1.5〔平方厘米〕又S △ADE =2×2÷2=2〔平方厘米〕所以S 阴=2+1.5=3.5〔平方厘米〕62. 正方形ABCD ,过C 的直线分别交AB 、AD 的延长线于点E 、F ,且AE =10cm ,AF =15cm ,求正方形ABCD 的边长.【答案】6【分析】方法一:此题有两个金字塔模型,根据这两个模型有BC:AF =CE:EF,DC:AE =CF:EF,设正方形的边长为xcm ,所以有BC AF +DC AE =CE EF +CFEF=1, 即x 15+x 10=1, 解得x =6,所以正方形的边长为6cm .方法二:或根据一个金字塔模型,列方程即x 10=15−x 15, 解得x =6.63. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是________平方厘米.【答案】14【分析】EG:GC =EB:CD =1:2,所以EG =13EC ,S △EBG =12×12AB ×13BC =112×120=10连接BH ,设S △BGH ="1",那么S △AGH ="2",由燕尾模型知S △DHC ="3",所以S △DGC ="5",又因为S △DGC =4S △EBG =40,所以S △BGH =8,S BGHF =S △DBF −S △DGH =14S ▱ABCD −"2"=30−16=1464. 如图,在△ABC 中,有长方形DEFG ,G 、F 在BC 上,D 、E 分别在AB 、AC 上,AH 是△ABC 边BC 的高,交DE 于M ,DG:DE =1:2,BC =12厘米,AH =8厘米,求长方形的长和宽. 【答案】长和宽分别是487厘米,247厘米.【分析】观察图中有金字塔模型5个,用与边有关系的两个金字塔模型,所以DE BC =AD AB ,DG AH =BDAB, 所以有DE BC +DG AH =AD AB +BDAB=1, 设DG =x ,那么DE =2x ,所以有2x 12+x8=1, 解得x =247,2x =487,因此长方形的长和宽分别是487厘米,247厘米.65. 如下图,小高测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?【答案】64【分析】利用平行线中的线段比例关系来计算.把瓷砖右下角的直角三角形标上字母〔如下图〕,同时过B 作BC ⊥AG 于C ,DE ⊥FG 于E . 由于BC 与FG 平行,所以BC FG =AC AG =214=17, 因此BC =17×FG =17×7=1.由于DE 与AG 平行,所以DE AG =FE FG =27, 因此DE =27×AG =27×14=4.由此可得菱形的两条对角线分别为:24−4×2=16(厘米),10−1×2=8(厘米).那么菱形的面积就是16×8÷2=64(平方厘米).66. ABC为等边三角形,面积为400,D、E、F分别为三边的中点,甲、乙、丙面积和为143,求阴影五边形的面积.〔丙是三角形HBC〕【答案】43【分析】因为D、E、F分别为三边的中点,所以DE、DF、EF是三角形ABC的中位线,也就与对应的边平行,根据面积比例模型,三角形ABN和三角形AMC的面积都等于三角形ABC的一半,即为200.根据图形的容斥关系,有S△ABC−S丙=S△ABN+S△AMC−S AMHN,即400−S丙=200+200−S AMHN,所以S丙=S AMHN.又S阴影+S△ADF=S甲+S乙+S AMHN,所以S阴影=S甲+S乙+S丙−S△ADF=143−14×400=43.67. 如下图,正六边形的面积是6,那么阴影局部的面积是多少?【答案】223【分析】方法一:连结阴影局部的对角线,如下图1.这条辅助线平分阴影局部,也正好把正六边形平分成两个等腰梯形.那么每个梯形的面积为6÷2=3.要求出阴影局部的面积,只需求出其中的一半即可.画出其中一个梯形,给它的各个顶点标上字母,如下图2,△BCD和△ABD是一对等高三角形,并且底边BC是AD的2倍,所以△BCD的面积是△ABD面积的2倍,于是△BCD面积为3×23=2.在沙漏ADOBC中,ODOB =12,所以S△BOC=23S△BDC=113.因此正六边形中的阴影局部面积为113×2=223.方法二:利用正六边形中的格点,将其分割,如下图3.观察图形可知,这时正六边形被分割成18个三角形,这些三角形面积全都相等.阴影局部由8个三角形组成,所以阴影局部面积为6÷18×8=22 3 .68. 边长为8厘米和12厘米的两个正方形并放在一起,那么图中阴影三角形的面积是多少平方厘米?【答案】16.2【分析】给图形标注字母,按顺时针方向标注,大正方形为ABCD,小正方形为MNDE,EB分别交AC,AD于O,H两点,AO:OC=AB:EC=12:20=3:5,AH:BC=AO:OC=3:5,所以。
五年级高斯奥数之直线形计算二含答案
第14讲直线形计算二内容概述进一步学习直线形面积公式酌运用;学会将线段倍数关系与面积倍数关系进行相互转T 七;初步学习添加辅助线酌分析方法.典型问题兴趣篇1.如图8-1,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图8-2所示(单位:平方米),剩下一块的面积应该是多少平方米?3.如图8-3,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?4.如图8-4,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?5.如图8-5所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?6.如图8-6,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?7.如图8-7,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F 是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?8.如图8-8,将一个长为18的长方形,分成一个三角形和一个梯形,而且梯形的面积是三角形的5倍.三角形ABE的边BE的长是多少?9.如图8-9,把一个正方形的相邻两边分别增加3和5厘米,结果面积增加了71平方厘米(阴影部分).原正方形的面积为多少平方厘米?10.如图8-10,四边形ABCD内有一点D,D点到四条边的垂线都是4厘米,四边形的周长是36厘米,四边形的面积是多少平方厘米?拓展篇1.如图8-11,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?2.图8-12中三角形ABC的面积是180平方厘米,D是BC的中点,AD是AE的3倍,三角形ABE的面积是多少平方厘米?3.如图8-13,在四边形ABCD中,已知CD=3DF,AE=3ED,而且三角形BFC的面积为6平方厘米,四边形BEDF的面积为7平方厘米.大四边形ABCD的面积是多少?4.如图8-14,把三角形DEF的各边向外延长1倍后得到三角形ABC,三角形ABC的面积为1.三角形DEF的面积是多少?5.如图8-15,E是AB边上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的5倍.请问:梯形的下底长是上底长的几倍?6.如图8-16,一个长方形被分成4个不同颜色的三角形,红色三角形的面积是9平方厘米,黄色三角形的面积是21平方厘米,绿色三角形的面积是10平方厘米,那么蓝色三角形的面积是多少平方厘米?7.图8-17中,正方形ABCD的面积为1.把每条边都3等分,然后将这8个等分点与正方形内部的某一点P相连接,形成4个阴影的四边形和4个空白的三角形,阴影部分的总面积是多少?8.如图8-18,在梯形ABCD中,E是AB的中点.已知梯形ABCD的面积为35平方厘米,三角形ABD的面积为13平方厘米.三角形BCE的面积为多少平方厘米?9.在图8-19中,正方形ADEB和正方形ECFG底边对齐,两个正方形边长分别为6和4.三角形ACG和三角形BDF的面积分别是多少?10.图8-20是由边长分别为10厘米、12厘米、8厘米的正方形构成,有一条与AB边平行的直线EF将此图形分成面积相等的两部分,那么BF的长度为多少厘米?11.(1)如8-21中左图所示,把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米(阴影部分).原正方形的面积为多少平方厘米?(2)如8-21中右图所示,把一个正方形的相邻两边分别减少3厘米和5厘米,结果面积减少了65平方厘米(阴影部分).原正方形的面积为多少平方厘米?12.如图8-22,直角三角形ABC套住了一个正方形CDEF,E点恰好在AB边上,直角边AC长20厘米,BC长12厘米.正方形的边长为多少厘米?超越篇1.如图8-23,三角形ABC的每边长都是96厘米,用折线把这个三角形分割成面积相等的四个三角形.请求出CE和CF的长度之和.2.如图8 -24,把四边形ABCD的各边都延长1倍,得到一个新四边形EFGH.如果ABCD 的面积是5平方厘米,则EFGH的面积是多少平方厘米?3.图8-25中ABCD是正方形,图中数字是各线段的长度(单位:厘米).过,点的线段IM 将五边形EFGHI分成面积相等的两部分.线段BM的长度是多少厘米?4.如图8 -26,在钝角三角形ABC中,M为AB边的中点,MD、EC都垂直于BC边.若三角形BDE的面积是3平方厘米,则三角形ABC的面积是多少?5.在图8 -27中,大正方形面积比小正方形面积大40平方厘米,大正方形面积是多少平方厘米?6.如图8-28,直角三角形ABC的三边长分别为AC= 30(分米),AB=18(分米),BC= 24(分米),ED垂直于AC,且ED= 95(厘米).问正方形BFEG的边长是多少厘米?7.菜鸟和大虾在武林大会上相遇,争夺武林盟主的地位,三百回合大战后,两人不分胜负.突然,菜鸟向对手发出一枚飞镖,说时迟,那时快,飞镖已经接近大虾的胸口,只见大虾迅速抽身向左闪开,同时用手中的宝剑向飞镖劈去,只听见“瞠”的一声,飞镖被劈成了两半,如图8-29,菜鸟的飞镖是正六角星的形状,边长为5.被大虾劈开的刀口如虚线所示,那么较小的那部分残片占到整体面积的几分之几?8.如图8-30,将三个边长为l的正方形组合在一起,中间的正方形的两个顶点恰好是另外两个正方形的中心.请问:图中阴影部分的面积是多少?第8讲 直线形计算二内容概述进一步学习直线形面积公式酌运用;学会将线段倍数关系与面积倍数关系进行相互转T 七;初步学习添加辅助线酌分析方法.典型问题兴趣篇1.如图8-1,四边形ABCD 是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE 、四边形DEBF 、三角形CDF 的面积相等,阴影三角形DEF 的面积是多少平方厘米?解析:四边形ABCD 的面积是(12+15)×8÷2=108(平方厘米),108÷3=36(平方厘米)。
高斯小学奥数五年级上册含答案_直线形计算中的倍数关系
迄今为止,同学们已经学会了很多图形计算面积的方法. 在计算这些面积的时候, 只要 知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形 的长和宽即可利用长方形的面积 长 宽进行计算•但很多时候,题目中并不给出长和宽, 那怎么来求面积呢?我们来看下面这个例题.例题1.如图,有9个小长方形,其中的 5个小长方形的面积分别为 4、 12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗? 对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于 它们宽(长)之比.例如:如图所示的长方形 ABCD 与长方形BEFC 宽BC 相同,那么 长方形ABCD 的面积:长方形BEFC 的面积 AB: BE .如图,有7个小长方形,其中的 5个小长方形的面积分别为 20, 4, 6, 8,10平方厘米.求阴影长方形的面积是多少平方厘米? 2046 810从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利 用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异. 我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.F rz 丄 r D 20n 8、过三角形一个顶点的直线将三角形分为两个小三角形, 则这两个小三角形面积之比等于该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍.那么三角形ABE的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC中,D为AB的中点,E为BC的中点,ABC的面积是120平方厘米,那么三角形DEF的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分. 比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3.如图,把三角形DEF的各边分别向外延长1倍后得到三角形ABC,已知三角形DEF的面积为1,那么三角形ABC的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系•但是我们所求的是三角形DEF的面积,而已知的是三角形ABC的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?三角形ABD的面积:三角形ADC的面积BD : DCF为BE中点,如果三角形如图,把三角形DEF的各边分别向外延长1倍、2倍、3倍后得到三角形ABC,已知三角形DEF 的面积为1,那么三角形ABC的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4.如图,E是AB上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC的面积是“1”份,那么梯形ABCD的面积就是“5”份•接着可以看看“E是AB上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边 BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系. 例题5.把一个正方形的相邻两边分别增加 2厘米和4厘米,结果面积增加了 50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、 ③三个长方形•其中,③的长和宽分别为 4、2,可以求出它的面积•那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6.如图,直角三角形 ABC 套住了一个正方形 CDEF , E 点恰好 在AB 边上.又已知直角边 AC 长20厘米,BC 长12厘米,那么 正方形的边长为多少厘米?「分析」注意到EF 垂直于AC , ED 垂直于BC .我们可以连接 CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而 它们的高相等.我们的目标就是求这个高. ①② ③4欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。
高斯小学奥数五年级上册含答案_列方程解应用题
第二十四讲列方程解应用题---------------------------------------------------------------------方程是分析和解决问题的一种很有用的数学工具,利用方程我们可以解决生活、学习和生产中的很多实际问题.其思想如图所示:实际问题设未知数列方程数学问题(方程)解方程实际问题的答案检验列方程解应用题的方法和步骤数学问题的解步骤审题设元要求读懂题目、弄清题意、找出能够表示应用题全部含义的相等关系,分清已知数和未知数①设未知数②把所求的量用未知数表示③把各个量用含未知数的式子表示要注意的问题审题是分析解题的过程,解题程序中不用体现出来①设未知数一般是问什么,就直接设什么,即直接设元②直接设元有困难,可以间接设元出来列方程根据等量关系列出方程③设未知数时,必须写清未知数的单位方程两边所用的单位需一致解方程检验作答解出这个方程的解,求出未知数的值把方程的解代入方程检验,或根据实际问题进行检验写出答案,作出结论如果是间接设元,求出的未知数还需要利用其他算式得到所求的量检验的步骤在解题程序中不用写出来方程的解要符合实际情况,否则无解这一步在列方程解应用题中必不可少,是一种规范要求(练一练用含有字母的式子填空:1. (1)x 的 5 倍:_______; 2)x 的 k 倍:_______;2. 一块橡皮的单价是 x 元,笔盒的单价是橡皮的单价的 8 倍,那么笔盒的单价是_______元;3. 一辆摩托车的速度是 v 千米/小时,那么它 t 小时行驶的路程为_______千米;4. 某商店原有 5 袋大米,每袋大米为 x 千克,上午卖出 3 袋,下午又购进同样包装的大米 4 袋,进货后这个商店有大米_______千克.选择合适的量设为未知数,并列出方程:5. 环形跑道一周长 400 米,沿跑道跑多少圈,可以跑 3000 米?6. 一个梯形的下底比上底多 2 厘米,高是 5 厘米,面积是 40 平方厘米.求上底.7. 甲种铅笔每枝 0.3 元,乙种铅笔每枝 0.6 元,用 9 元钱买了两种铅笔共 20 枝,两种铅笔各买了多少枝?下来我们就来看看如何用一元一次方程解应用题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - 例题 1.一次考试,小高比萱萱高 6 分,但是比卡莉娅低 3 分,他们 3 人的平均分为 91 分.请问: 小高考了多少分?「分析」列方程的第一步是设未知数,本题中应该设什么为 x ?练习 1.甲数比乙数的 3 倍还少 6,两数的平均数是 43.那么乙数是多少?例题2.阿范和阿统吃饺子,阿范一共要吃90个,而阿统一共要吃100个.如果阿范每分钟吃3个饺子,阿统每分钟吃5个饺子,经过若干分钟后,阿范剩下的饺子数比阿统剩下的饺子数的2倍少5个.请问:这时阿范和阿统各吃了多少个饺子?「分析」如果设吃的饺子数为x,方程就会很不好列.不妨换个角度,设经过的时间为x分钟.练习2.箱子里有红、白两种玻璃球,红球数比白球数的3倍多2只.每次从箱子里取出7只白球和15只红球.经过若干次以后,箱子里剩下3只白球和53只红球.那么箱子里原有红、白球各多少个?例题3.给某班分苹果,第一组每人3个,第二组每人4个,第三组每人5个,第四组每人6个.已知第二组和第三组共有22人,第一组人数是第二组的2倍,第三组和第四组人数相等,总共分出去230个苹果.问该班一共有多少人?「分析」刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂.题目中虽然有四个组,但这四组人数之间有很多联系.如果某一组的人数知道了,其他各组的人数也就知道了.根据这一点,我们可以设出其中一组的人数,列方程求解.练习3.司机小王身上带有1元、2元、5元、10元四种面值的纸币共82元,其中1元与2元纸币共22张,5元和10元纸币共7张,2元纸币的张数是5元纸币张数的2.5倍.问:小王身上有多少张10元纸币?------------------------------------------------------------------------------------------看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会:原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少.只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.有些应用题中,如果只设一个未知数,有些未知量要表示出来就会比较困难.这时就需一个分数,分子与分母的和是 122,如果分子、分母都减去19,得到的分数约简后是 ,那所求的自然数 ……余 4 第一次商……余 1 17 第一次商 ……余 15 第二次商 ……余 7 2a要设两个未知数,列二元一次方程组来解题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题 4.墨莫去超市里买了一些士力架和德芙,共重 266 克,共花了 30 元.已知士力架每块 3 元, 德芙每块 2 元.每块士力架 35 克,每块德芙 14 克.那么墨莫各买了多少块士力架和德芙? 「分析」假设买了 x 块士力架,y 块德芙,那么这两个未知数满足哪些等量关系?练习 4.王老师抓了一群外星人,其中火星人有 2 个头 3 个脚,金星人有 3 个头 5 个脚,王老师数了 数,发现总共有 34 个头、54 个脚.那么请问王老师分别抓了多少个火星人和金星人?例题 5.15么原分数是多少?「分析」设原来的分子是 x ,那原来的分母就是 122 - x .再由另外一个已知条件,不难列 出方程求解.例题 6.如下图的短除式所示,一个自然数被 8 除余 1,所得的商被 8 除也余 1,第二次所得的商被 8 除后余 7,最后得到的商是 a .同时这个自然数被 17 除余 4,所得的商被 17 除余 15,最 后得到的商是 a 的 2 倍.求这个自然数.8 所求的自然数……余 1 1788a「分析」这是一个带余除法的问题,蕴含着等量关系: 被除数=除数 ⨯ 商+余数 .利用这 一等量关系以及图中的两个短除式,不难用字母 a 表示出原来的自然数(有两种不同表示方 式).“多送几份牛奶最近,动物们流行喝鲜奶,都在鲜奶公司定了份牛奶,鲜奶公司每天派小狗早早和巧巧送鲜奶到东西大街,早早负责送东边的住户,巧巧负责送西边的住户,两边住户数目一样多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19讲 直线形计算三内容概述学习直线形中的各类比例关系,重点是与三角形相关的、与平行线相关的比例关系;学习勾股定理并能简单运用.典型问题兴趣篇1.如图20-1,在三角形ABC 中,AD 的长度是AB 的43,AE 的长度是AC 的32.请问:三角形AED 的面积是三角形ABC 面积的几分之几?2.如图20-2, AC 的长度是AD 的54,且三角形AED 的面积是三角形ABC 面积的一半.请问:AE 是AB 的几分之几?3.如图20—3,深20厘米的长方形水箱装满水放在平台上.(1)当水箱像图20-4这样倾斜,水箱中水流出51,这时AB 长多少厘米? (2)如图20—5,当水箱这样倾斜到AB 的长度为8厘米后,再把水箱放平,如图20-6,这时水箱中水的深度是多少厘米?4.如图20一7,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成4个部分.三角形AOB 的面积是2平方千米,三角BOC 形的面积是3平方千米,三角形COD 的面积是l 平方千米,如果公园由大小为6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?5.如图20.8,在梯形ABCD 中,三角形ABO 的面积是6平方厘米,且BC 的长是AD 的2倍,请问:梯形ABCD 的面积是多少平方厘米?6.如图20—9,已知平行四边形ABCD 的面积为72,E 点是BC 上靠近日点的三等分点,求图中阴影部分的面积.7.图20-10中的两个正方形的边长分别为6分米和8分米,求阴影部分的面积.8.如图20-11,梯形ABCD 的对角线相互垂直.三角形AOB 的面积是12,OD 的长是4,求OC 的长.9.在图20-12中,正方形ABCD 的边长为5厘米,且三角形CEF 的面积比三角形ADF 的面积大5平方厘米,求CE 的长.10.如图20-13,请根据所给的条件,计算出大梯形的面积(单位:厘米).拓展篇1.如图20-14,已知的面积三角形的面积三角形试求ABC DEF ,51,41,31AB BF BC CD AC AE ===的值?2.如图20-15,已知长方形ADEF的面积是16,三角形ADB的面积是2,三角形ACF的面积是4.请问:三角形ABC的面积是多少?3.如图20-16,3个相同的正方形拼在一起,每个正方形的边长为6,求三角形ABC的面积.4.图20-17中的四边形土地的总面积是52公顷,两条对角线把它分成了四个小三角形,其中两个小三角形的面积分别是6公顷和7公顷,求四个三角形中最大的一个的面积.5.图20-18中四边形ABCD的对角线AC和BD交于点D,如果三角形ABD的面积是30平方厘米,三角形ABC的面积是48平方厘米,三角形BCD的面积是50平方厘米.请问:三角形BOC的面积是多少?6.如图20-19,梯形ABCD中,三角形ABE的面积是60平方米,AC的长是AE的4倍,梯形ABCD的面积是多少平方米?7.如图20 -20所示,梯形ABCD的面积是36,下底长是上底长的2倍,阴影三角形的面积是多少?8.如图20-21,边长为8厘米和12厘米的两个正方形并排放在一起,求图中阴影部分的面积.9.如图20 -22,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,已知正方形AB-CD 的面积为60平方厘米,求阴影部分的面积.10.如图20-23所示,平行四边形ABCD 的边BC 长10厘米,直角三角形BCE 的直角边EC 长8厘米,已知两块阴影部分的面积和比三角形EFG 的面积大10平方厘米,求CF 的长.11.如图20 -24,已知D 是BC 的中点,E 是AC 的中点,三角形ABC 由①至⑤这5部分组成,其中①的面积比④多6平方厘米.请问:三角形ABC 的面积是多少平方厘米?12.根据图20 -25中所给的条件,求梯形ABCD 的面积.超越篇1.在图20-26中,,1=====∆∆∆∆∆DEF CDE BCD ABC OAB S S S S S 请问:S △CDF 是多少?2.如图20 -27,ABCDEF 为正六边形.G 、H 、I 、J 、K 、L 分别为AB 、BC 、CD 、DE 、EF 、FA 边上的三等分点,形成了正六边形GHIJKL.请问:小正六边形占大正六边形面积的几分之几?3.如图20-28,等腰直角三角形ABC的面积是8,AE= CF,四边形BEOF的面积比三角形AOC的面积大4,求AE的长.4.如图20 -29,ABCD是正方形,AE= DF =4,已知三角形AEG与三角形DEF的面积比为2:3,求三角形EFG的面积.5.如图20 -30,正方形ABCD的面积为1,BF=2FC,求阴影四边形FHJG的面积.6.如图20-31,四边形BCDE是正方形,三角形ABC是直角三角形.若AB长3厘米,AC 长4厘米,试求j角形ABE的面积.7.如图20-32,一个长方形被分为面积比为5:6:7:8:9的A、B、C、D、E五块,其中A和B是长方形,且A的长等于B的周长的一半.请问:A、B、C、D、E的周长比为多少?8.如图20-33,三角形ABC为等腰直角三角形,C为直角顶点,尸、Q为AB边上的两点,又已知AP长度为3,BQ长度为4,二PCQ= 45 0,那么PQ的长度是多少?第20讲 直线形计算三内容概述学习直线形中的各类比例关系,重点是与三角形相关的、与平行线相关的比例关系;学习勾股定理并能简单运用.教学一对一:1.如图20-1,在三角形ABC 中,AD 的长度是AB 的43,AE 的长度是AC 的32.请问:三角形AED 的面积是三角形ABC 面积的几分之几?分析:根据鸟头定理S △ADE =43AB*32AC= 21 2.如图20-2, AC 的长度是AD 的54,且三角形AED 的面积是三角形ABC 面积的一半.请问:AE 是AB 的几分之几?分析:AC 的长度是AD 的54,S △ABC =54 S △ABD, 又三角形AED 的面积是三角形ABC 面积的一半S △AED =21 S △ABC =21*54 S △ABD =523.如图20—3,深20厘米的长方形水箱装满水放在平台上.(1)当水箱像图20-4这样倾斜,水箱中水流出51,这时AB 长多少厘米?(2)如图20—5,当水箱这样倾斜到AB 的长度为8厘米后,再把水箱放平,如图20-6,这时水箱中水的深度是多少厘米?图二分析:(1)如图二所示AB 为水箱高的1-2*51=53即20*53=12(厘米)(2)同理放平后水箱的高度为8+(20-8)/2=14(厘米)4.如图20一7,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成4个部分.三角形AOB 的面积是1平方千米,三角BOC 形的面积是2平方千米,三角形DOC 的面积是3平方千米,如果公园由大小为6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?分析:由题意可知三角形BOC 的面积是是三角形AOD 面积的2倍,所以三角DOC 形的面积是三角形AOD 面积的2倍为3/2=1.5(平方千米)那么人工湖的面积就是3+2+1+1.5-6.9=0.6(平方千米)5.如图20.8,在梯形ABCD 中,三角形ABO 的面积是6平方厘米,且BC 的长是AD 的2倍,请问:梯形ABCD 的面积是多少平方厘米?分析:根据沙漏定理S △AOB =S △DOC =6(平方厘米) BC 的长是AD 的2倍可知 AO:OC=S △AOB :S △BOC =1:2 所以S △BOC =6*2=12(平方厘米) S △AOD =6/2=3(平方厘米)由此可知梯形ABCD 的面积是6+6+12+3=27(平方厘米)6.如图20—9,已知平行四边形ABCD 的面积为72,E 点是BC 上靠近B 点的三等分点,求图中阴影部分的面积.分析:由题意可知S △AEC =32 S △ABC =21*32 S △ABCD =24 由沙漏定理可知BC:EC=EC:AD=AO:OC=2:3所以S △AEO =233+ S △AEC =5727.图20-10中的两个正方形的边长分别为6分米和8分米,求阴影部分的面积. 分析图中大三角形的面积为(6+8)*8/2=56(平方分米)根据鸟头定理:阴影部分面积占大三角形面积的866+*866+即866+*866+*56=772(平方分米)8.如图20-11,梯形ABCD 的对角线相互垂直.三角形AOB 的面积是12,OD 的长是4,求OC 的长.分析:根据沙漏定理S △AOB = S △DOC =12 12=21OD*OC 可得OC=69.在图20-12中,正方形ABCD 的边长为5厘米,且三角形CEF 的面积比三角形ADF 的面积大5平方厘米,求CE 的长.因为△CEF 的面积比△ADF 的面积大5所以△ABE 的面积比正方形ABCD 的面积大5所以△ABE 的面积=25+5=30因为AB=5所以BE=2×30/5=12所以CE=BE-BC=710.如图20-13,请根据所给的条件,计算出大梯形的面积(单位:厘米).分析:根据勾股定理梯形的上底为10CM设梯形的高为H 10*H=6*8 得H=4.8(CM )S 梯形=21(10+15)*4.8=60(平方厘米)11.如图20-14,已知的面积三角形的面积三角形试求ABC DEF ,51,41,31AB BF BC CD AC AE ===的值?分析:设S △ABC =1根据鸟头定理S △AEF =54*31 S △ABC =154 S △ABC S △BDF =51*43 S △ABC =203 S △ABC S △DCE =41*32 S △ABC =61 S △ABC 可得S △EFD =1-154-203-61=125S △DEF : S △ABC =12512.如图20-15,已知长方形ADEF 的面积是16,三角形ADB 的面积是2,三角形ACF 的面积是4.请问:三角形ABC 的面积是多少?分析:根据题意可知13.如图20-16,3个相同的正方形拼在一起,每个正方形的边长为6,求三角形ABC的面积.分析:跟军题意可知14.图20-17中的四边形土地的总面积是52公顷,两条对角线把它分成了四个小三角形,其中两个小三角形的面积分别是6公顷和7公顷,求四个三角形中最大的一个的面积.分析:根据题意可知OA BCD15.图20-18中四边形ABCD 的对角线AC 和BD 交于点O ,如果三角形ABD 的面积是30平方厘米,三角形ABC 的面积是48平方厘米,三角形BCD 的面积是50平方厘米.请问:三角形BOC 的面积是多少?16.如图20-19,梯形ABCD 中,三角形ABE 的面积是60平方米,AC 的长是AE 的4倍,梯形ABCD 的面积是多少平方米?分析:根据沙漏定理S △ABE =S △DCE =60(平方米) AC 的长是AE 的4倍AE:EC=S △ABE :S △BCE =1:3 所以S △BEC =60*3=180(平方米) S △AOD =60/3=20(平方米) 由此可知梯形ABCD 的面积是60+60+180+20=320(平方米)17.如图20 -20所示,梯形ABCD 的面积是36,下底长是上底长的2倍,阴影三角形 的面积是多少?分析:由题意可知根据沙漏定理 S △DOC :S △AOB :S △AOD :S △BOC =1:4:2:2 S △AOB =36*22414+++=1618.如图20-21,边长为8厘米和12厘米的两个正方形并排放在一起,求图中阴影部分的面积.分析:根据沙漏定理 GF:BE=FO:OB=12:(8+12)=3:5 S △FOE =533 S △FBE =83*21*(8+12)*12=45(平方厘米)19.如图20 -22,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,已知正方形AB-CD 的面积为60平方厘米,求阴影部分的面积.20.如图20-23所示,平行四边形ABCD 的边BC 长10厘米,直角三角形BCE 的直角边EC 长8厘米,已知两块阴影部分的面积和比三角形EFG 的面积大10平方厘米,求CF 的长.分析:由已知平行四边形ABCD 面积 三角形EFG 的面积大10平方厘米21.如图20 -24,已知D 是BC 的中点,E 是AC 的中点,三角形ABC 由①至⑤这5部分组成,其中①的面积比④多6平方厘米.请问:三角形ABC 的面积是多少平方厘米?分析:22.根据图20 -25中所给的条件,求梯形ABCD的面积.分析:根据题意超越篇1.在图20-26中,,1=====∆∆∆∆∆DEF CDE BCD ABC OAB S S S S S 请问:S △CDF 是多少?分析:S △CDF =432.如图20 -27,ABCDEF 为正六边形.G 、H 、I 、J 、K 、L 分别为AB 、BC 、CD 、DE 、EF 、FA 边上的三等分点,形成了正六边形GHIJKL.请问:小正六边形占大正六边形面积的几分之几?3.如图20-28,等腰直角三角形ABC 的面积是8,AE= CF ,四边形BEOF 的面积比三角形AOC 的面积大4,求AE 的长.4.如图20 -29,ABCD 是正方形,AE= DF =4,已知三角形AEG 与三角形DEF 的面积比为2:3,求三角形EFG 的面积.5.如图20 -30,正方形ABCD的面积为1,BF=2FC,求阴影四边形FHJG的面积.6.如图20-31,四边形BCDE是正方形,三角形ABC是直角三角形.若AB长3厘米,AC 长4厘米,试求三角形ABE的面积.7.如图20-32,一个长方形被分为面积比为5:6:7:8:9的A、B、C、D、E五块,其中A和B是长方形,且A的长等于B的周长的一半.请问:A、B、C、D、E的周长比为多少?8.如图20-33,三角形ABC为等腰直角三角形,C为直角顶点,P、Q为AB边上的两点,又已知AP长度为3,BQ长度为4,角PCQ= 45 度,那么PQ的长度是多少?。