用自准法测薄凸透镜焦距
薄透镜焦距的测定物理实验报告
薄透镜焦距的测定物理实验报告一、实验目的1、加深对薄透镜成像原理的理解。
2、学习几种测量薄透镜焦距的方法。
3、掌握光学实验中的基本测量技术和数据处理方法。
二、实验原理1、薄透镜成像公式当光线通过薄透镜时,遵循薄透镜成像公式:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$,其中$u$ 为物距,$v$ 为像距,$f$ 为焦距。
2、自准直法当物屏上的物点发出的光线经透镜折射后,变成平行光,若在透镜后面垂直于光轴放置一个平面反射镜,此平行光将沿原路返回,再次通过透镜后仍成像于物屏上的物点处。
此时,物屏与透镜之间的距离即为透镜的焦距。
3、物距像距法当物距和像距分别为$u$ 和$v$ 时,通过测量物距和像距,代入薄透镜成像公式可求得焦距$f$ 。
4、共轭法移动透镜,在物屏和像屏之间分别得到放大和缩小的清晰像。
根据光路可逆原理,两次成像时物距和像距互换,利用公式$\frac{u + v}{4}$可计算出焦距。
三、实验仪器光具座、凸透镜、凹透镜、物屏、像屏、平面反射镜、光源等。
四、实验内容与步骤1、自准直法测凸透镜焦距(1)将凸透镜固定在光具座的一端,在凸透镜的另一侧放置物屏,使物屏上的十字叉丝清晰可见。
(2)在凸透镜后面垂直于光轴放置平面反射镜。
(3)沿光具座移动物屏,直到在物屏上再次看到清晰的十字叉丝与原物大小相等、方向相反。
(4)记录此时物屏与凸透镜的位置,两者之间的距离即为凸透镜的焦距。
(5)重复测量三次,计算焦距的平均值。
2、物距像距法测凸透镜焦距(1)将凸透镜固定在光具座的中间位置。
(2)在凸透镜的一侧放置物屏,另一侧放置像屏。
(3)移动物屏和像屏,直到在像屏上得到清晰的像。
(4)记录物屏和像屏的位置,分别得到物距$u$ 和像距$v$ 。
(5)代入薄透镜成像公式计算焦距,并重复测量三次,计算平均值。
3、共轭法测凸透镜焦距(1)将物屏固定在光具座的一端,凸透镜放在光具座中间附近。
自准直法测凸透镜焦距原理
自准直法测凸透镜焦距原理1. 引言凸透镜是一种常用的光学元件,用于聚焦光线。
测量凸透镜的焦距是光学实验中的基本内容之一。
自准直法是一种常用的测量凸透镜焦距的方法,其原理简单易于操作。
本文将详细介绍自准直法测凸透镜焦距的原理和具体步骤。
2. 自准直法测凸透镜焦距原理自准直法是利用凸透镜的成像特性来测量其焦距的一种方法。
其原理基于以下几点:2.1 光线的追迹原理光线在凸透镜中传播时会发生折射现象,根据折射定律,入射光线和折射光线在入射面和折射面的法线上的反射角度满足Snell定律。
2.2 成像特性凸透镜能够将入射光线聚焦到一点上,该点称为凸透镜的焦点。
根据凸透镜的成像特性,如果将一束平行光线照射到凸透镜上,光线将会近似地汇聚到焦点上。
2.3 焦距的测量方法利用凸透镜的成像特性,我们可以通过测量物体与凸透镜的距离和物体成像的距离来计算焦距。
具体的测量步骤将在下一部分中详细介绍。
3. 自准直法测凸透镜焦距步骤使用自准直法测量凸透镜焦距可以分为以下几个步骤:3.1 准备实验器材•凸透镜•光源•直尺•支架3.2 搭建实验装置将光源放置在支架上并对准透镜,将屏幕放在凸透镜的另一侧,并确保屏幕与光源之间有足够的距离。
准确控制光源与凸透镜的距离是实验的关键。
3.3 测量物体与透镜的距离在光源与凸透镜之间放置一个物体,可以是一个直尺或者其他有刻度的物体。
将物体移动到合适的位置,使其与凸透镜保持一定的距离,并记录下这个距离。
3.4 调整屏幕位置调整屏幕的位置,使得在屏幕上可以清晰地观察到凸透镜成像的情况。
3.5 观察成像情况通过屏幕观察到的成像情况来判断凸透镜的焦距。
如果观察到清晰的焦点,记录下屏幕与凸透镜的距离。
3.6 计算焦距根据物体与凸透镜的距离、屏幕与凸透镜的距离以及屏幕与焦点的距离,利用凸透镜公式可以计算出凸透镜的焦距。
4. 结论自准直法是一种常用的测量凸透镜焦距的方法,它利用凸透镜的成像特性来进行测量。
通过实验可以得到凸透镜的焦距,并可以验证凸透镜公式的准确性。
自准直法测凸透镜焦距原理
自准直法测凸透镜焦距原理一、引言凸透镜是一种常见的光学元件,广泛应用于各种光学系统中。
测量凸透镜的焦距是非常重要的,因为它可以帮助我们确定透镜在光学系统中的位置和角度。
自准直法是一种测量凸透镜焦距的常用方法,本文将详细介绍自准直法测凸透镜焦距的原理。
二、自准直法测凸透镜焦距原理1. 几何关系自准直法是通过观察凸透镜成像过程来测量其焦距的。
在自准直法中,我们需要将一个物体放置在离透镜远处,并且尽可能地与光轴平行。
这样可以确保物体发出的光线近似平行于光轴。
当平行于光轴的光线进入凸透镜时,它们将被聚集到一个点上,这个点称为焦点。
根据物距公式和像距公式可以得到以下公式:1/f = 1/v - 1/u其中,f表示焦距,v表示像距,u表示物距。
2. 实验步骤在进行自准直法测量凸透镜焦距时,可以按照以下步骤进行:(1)将凸透镜放置在光源的前面,并且尽可能地与光轴垂直。
(2)在离透镜远处放置一个物体,例如一张印有字母的纸片。
(3)观察通过凸透镜成像后的图像。
当物体和图像距离相等时,可以确定焦点位置。
(4)测量物体和图像之间的距离,并根据公式计算出焦距。
3. 注意事项在进行自准直法测量凸透镜焦距时,需要注意以下事项:(1)尽可能地将物体放置在远处,并且与光轴平行。
这样可以确保近似平行于光轴的光线进入凸透镜。
(2)要确保凸透镜与光源垂直,以便光线能够正常通过。
(3)要仔细观察成像过程,并根据实际情况调整焦点位置。
4. 应用领域自准直法是一种简单而有效的测量凸透镜焦距的方法,广泛应用于各种光学系统中。
它可以用于测量各种类型的凸透镜,包括单透镜和复合透镜。
自准直法还可以用于测量其他光学元件的焦距,例如平面镜和凹透镜等。
三、总结自准直法是一种简单而有效的测量凸透镜焦距的方法。
通过观察凸透镜成像过程,我们可以确定焦点位置,并根据物距公式和像距公式计算出焦距。
在进行自准直法测量时,需要注意物体和光源的位置,确保光线能够正常通过,并且要仔细观察成像过程。
基础物理实验报告测量薄透镜焦距及自组显微镜与望远镜
测量薄透镜焦距及自组显微镜与望远镜一、实验目的1.掌握透镜焦距的简单测量方法;2.较为准确地得到待测凸透镜的焦距;3.掌握显微镜和望远镜的基本结构、工作原理及其调节和使用方法。
二、实验原理(一)、自准直法测量凸透镜的焦距。
首先利用待测透镜自身产生一个位于无限远的物,再用待测透镜对它成像,通过测量像与透镜之间的距离来确定透镜的焦距。
当物像y位于透镜的焦平面上时,经透镜L和平面反射镜所组成的光学系统后,当在焦平面上成一与物等大的倒立实像时,物到透镜中心的距离就是透镜的焦距,此时有公式:f=x L−x y(1)(二)、二次成像法:图2.二次成像法光路图二次成像法光路图如图所示。
首先选定物象间的距离A,并且保证在此间距内,透镜能够在光屏上有两次清晰的成像。
透镜的两个成像位置之间的距离为d 。
S1、S1′分别为成放大像时的物和像的位置,S2、S2′分别为成缩小像时的物和像的位置。
则有:S1−S2=d, S1′−S2′=d, S1′−S1=A, S2′−S2=A(2)透镜成像公式为:1 S′−1S=1f′(3)可得:d=√A(f′−4A) (4)可得:f′=A2−d24A(5)(三)、自组显微镜:通常所提到的显微镜和望远镜的放大倍数是指视角放大率,其中视角ω为:tanω=yl(6)视角放大率为:Γ=tanωitanωe(7)其中:tanωe=y1250tanωe=tanω′=y2f e(8)则有:Γ=y2250y1f e(9)又因为:y2 y1=−Δf0(10)Γ=−Δ250f0f e(11)其中:Δ=M−f0−f e(12)(四)、自组望远镜:望远镜的视角放大率为:Γ=tanωitanωe =tanω′tanω=−f0′f e′(13)此次实验过程中,所组装的望远镜所观察的物体为有限远。
这时需要改变物镜和目镜之间的距离进行调焦,使物体通过物镜所成的实像位于目镜的物方焦平面以里,再经过目镜在明视距离外成一虚像。
薄透镜焦距测量实验
薄透镜焦距测量【实验目的】1. 学习光学仪器的使用和维护规则,学会调节光学系统使之等高共轴。
2. 掌握测量薄会聚透镜和发散透镜焦距的方法。
3. 观察透镜成像,并从感性上了解透镜成像公式的近似性。
【实验仪器】光具座,底座及支架,薄凸透镜,薄凹透镜,平面镜,物屏(有透光箭头的铁皮屏),像屏(白色,有散光的作用)。
【实验原理】透镜是光学仪器中最基本的元件,焦距是反映透镜特性的重要物理量。
为了正确使用光学仪器,必须掌握透镜成像规律,学会光路调节技术和焦距测量方法。
1.自准直法测量凸透镜焦距如图1-1和图1-2所示,当物P在焦点处或焦平面上时,经透镜L 后光是平行光束,经平面镜反射再经透镜后成像于原物P处。
因此,P 点到透镜L中心点的距离就是透镜的焦距f。
图1-1:自准直法测量焦距原理图1当实物(具体实验中为狭缝光源)刚好在凸透镜焦点时,会在实物处呈现倒立等大的实像。
实物和凸透镜之间的距离即是焦距的值。
图1-2:自准直法测量焦距原理图2光的可逆性原理:当光线的方向返转时,它将逆着同一路径传播。
这个方法是利用调节实验装置本身,使之产生平行光以达到调焦的目的,所以称自准直法。
2.物距与像距法测量凸透镜焦距由于对实物,凸透镜可成实像,所以直接测量凸透镜的物距u、像距v,就可以用高斯公式(高斯公式的普遍形式:),求出凸透镜的焦距,如图2-1所示。
图2-1:物距与像距法测量焦距原理图3.共轭法(二次成像法)测量凸透镜焦距如图3-1,取物体与像屏之间的距离L大于4倍凸透镜焦距f,即L>4f,并保持L不变。
沿光轴方向移动透镜,则在像屏上必能两次成像。
图3-1:二次成像法测量焦距原理图当透镜在位置 I时屏上将出现一个放大清晰的像(设此物距为u,像距为v);当透镜在位置 II 时,屏上又将出现一个缩小清晰的像(设此物距为u′,像距为v′),设透镜在两次成像时位置之间的距离为 C,根据透镜成像公式,可得u= v′,u′=v又从图3-1可以看出上式称为透镜成像的贝塞尔公式。
实验三自准直法测量透镜焦距实验
竖线为基准线,测 量时,竖线对准读 数,数值均在鼓轮 上读取。注意:整
数位是反的。
10 5 0
4.059mm (a)
5 10
70 75 80
3.737mm (b)
实验仪器
(1) 测量时,鼓轮应沿同一方向旋转,不得中途反向,以避免空
(2) 被测量物的线度方向必须与基准线方向平行,否则会引入系
因为 '
所以
f1
h1 h
f
式中 f 1’为被测透镜焦距, f ’为平行光管焦距实测值(贴于平行光管管壁上,
单位毫米), h为玻罗板上所选用线距实测值(实验中为名义值),h’1 为玻罗
板线对像的线间距(测量值)。
4
B
3
2
1 A'
A f1'
'
B'
f'
1.玻罗板 2.平行光管物镜 3.被测凸透镜 4.测微目镜
实验目的和教学要求
了解平行光管的结构,掌握平行光管的 学习使用平行光管测定薄透镜的焦距。
实验仪器
2
4
5
6
13
7 8
1.物镜组 2. 十 字 旋 3.底 手座 4 .镜 管
5.分划板调6.节 照螺 明钉 灯 7.变 座压 8 器 .插 头
5W-F550型平行光管的结构图
实验仪器
其读数方法和螺旋测微器差不多,毫米以上的刻度在固定套管 上直接读出;毫米以下的刻度在鼓轮上读出。 读数鼓轮每旋转一周, 叉丝移动1mm,鼓轮上有100个分格,故每一格对应的读数为 0.01mm,再估读一位。实验中有两种测微目镜,不同之处在于鼓轮 刻度如同所示.
012345678
双基准线,测量时, 此线夹住待测刻线时 读数,整数位在视野 中读取,小数位在鼓
大学物理实验薄透镜焦距的测定
实验十:薄透镜焦距的测定一、实验目的:1.掌握测定薄透镜焦距的几种方法2.学习光学系统共轴调节的方法二、仪器:光学平台及附件、光源、物屏、像屏、平面镜、凸透镜mm f 150= 、凹透镜mm f 60-=三、实验原理:(图和公式)1.自准直法2.大像小像法3.辅助成像法12x x f -= ld l f 422-=,,s s ss f += 四、实验步骤: 1. 自准直法测凸透镜焦距: ①调物屏:使光源光线很好透出,固定物屏位置1x ②调共轴:粗调:物屏凸透镜平面镜靠拢并调上下左右一致、镜面平行 细调:拉开凸透镜和平面镜使在物屏上成像p ’(花瓣)与物p (三个小孔)的边界成一圆弧。
调花瓣:亮度均匀(物屏高度),左右(平面镜方位),高度(凸透镜高度)③移动凸透镜成像p ’。
左趋近,2x ,右趋近,,2x,重复5次。
2. 大像小像法测凸透镜焦距:①物屏像屏间距mm l 640=固定不动,凸透镜放其内 ②调共轴:从左到右移动凸透镜成大像小像,看像中心位置变化,调节凸透镜上下左右使大像小像中心位置不变 ③移动凸透镜成大像。
左趋近,1x ,右趋近,,1x ,重复5次。
移动凸透镜成小像。
左趋近,2x ,右趋近,,2x ,重复5次。
3.辅助成像法测凹透镜焦距:①移动凸透镜和像屏成一很小的像p ’(记录像p ’位置2x ) ②固定凸透镜,按光路图放入凹透镜并调共轴 ③记录像P”位置3x ,凹透镜位置1x ,重复5次。
五、数据记录表格:1. 自准直法测凸透镜焦距:单位:mm mm 5.0=∆仪次数PP ’位置1x (固定) 透镜位置(左趋近),2x透镜位置 (右趋近),,2x2,,2,22x x x +=12 3 4 52. 大像小像法测凸透镜焦距:物屏像屏间距mm l 640= 单位:mm mm 5.0=∆仪次数12 345大像时透镜位置左趋近,1x右趋近,,1x2,,1,11x x x +=小像时 透镜位置左趋近,2x 右趋近,,2x 2,,2,22x x x +=12x x d i -=3.辅助成像法测凹透镜焦距: 单位:mm mm 5.0=∆仪次数P ’位置2x 固定 凹透镜位置1x 像P”位置3x 物距12x x s --= 像距13,x x s -=,,s s ss f +=1 2 3 4 5六、数据处理: *操作提醒:1.光源要挡毛玻璃使得光线柔和,物屏要靠近光源(光亮度)2.实验的关键:调节共轴和判断像3.辅助成像法中凸透镜像P ’很小(绿豆)及1x 2x 3x 的位置。
用自准法测薄凸透镜焦距
用自准法测薄凸透镜焦距
自准法是一种测量薄凸透镜焦距的方法,也称为自调整法或自匹配法。
这种方法利用光学成像原理,通过调整透镜与屏幕之间的距离,使得成像位置达到最清晰的状态,从而确定透镜的焦距。
实验中需要准备的器材有:薄凸透镜、调节屏幕、光源、卡尺、直梁器等。
首先,将调节屏幕、光源和薄凸透镜依次放置在同一条实验光路上,使得光源经过透镜后能够形成清晰的像。
接下来,先将透镜与调节屏幕之间的距离调至最短,此时光线聚焦出的图像距离透镜极近处,不清晰。
然后慢慢调整透镜与调节屏幕之间的距离,直到得到清晰的图像。
当图像清晰时,通过卡尺测量透镜到光源的距离和透镜到调节屏幕的距离,分别记为$s$和$s'$。
此时可以利用成像公式推导出透镜的焦距$f$:
$\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}$
利用上述公式即可求解透镜的焦距。
需要注意的是,在实验中需要确保光线的稳定性,避免环境中产生的扰动对测量结果的影响。
此外,实验时需要注意透镜光学性能的限制,确保透镜为薄透镜并且成像光线的孔径足够小,以免误差产生。
自准法测量薄凸透镜的焦距简单易行,且精度较高,被广泛应用于实验教学和科研领域。
用自准直法测薄凸透镜焦距实验中“真”“假”像的判断
一
旦 :
Sl rl
f 5)
分光线不可能在物屏上成实像 , 另一部分被折射而
进 入透镜 , 当这 些折 射光 线 到达透 镜 的后 表 面时 , 将
式( ) 5 与式 ( ) 1 比较得 s : , s
对于薄透镜可忽略其 中心厚度 , ]则按成像顺 序有 s = , = 2 s s s 13 2
实像 。 ]
( ) 图 2所 示 , 为物 体 , 2如 A 当物 距 s 焦距 为 时, 光线经 透镜 Ⅱ表 面 折 射 的光 线 为 平 行光 再 被平 面镜 反射 , 然后 又经透 镜 两表 面两次 反射 和折射 , 最
后从 I 表面折射 的光线返回物方而成的像为 A
这个 像也 是等 大倒立 的 实像 。
一下 nr 一( )2 1 n 一1 r () 9
透镜的焦距. , 厂 就会在物屏上成一个与物体 等大 时
倒 立 的实 像 , 图 2所 示 。所 以 , 如 在第 一 种 情况 下 , 所 成 的像 是透 镜前 后 表 面 反 射 、 折射 光线 返 回物 方
。 _r 一( )2 一 1 n 一凡 r n ( 8 ) 。
回物方而成倒立的实像 , 像的大小和位置随透镜离 开物屏的距离 s 的变化而变化 , 。 当距离 . 等于某 s 数值时 , 将在物屏上成一个与物体等大倒立 的实 像, 图1 如 所示。而第二种情况 , 经透镜后表面折射
一
的光线被平面镜反射, 然后又经透镜两表面两次反 射和折射 , 最后从前表面折射的光线返 回物方而成 倒立的实像 , 该像的大小 和位置与透镜离开物屏的
距 离 以及平 面镜在 光轴 上 的位置 有关 。 当距 离等 于
薄凸透镜焦距的测定(附有数据)
薄凸透镜焦距的测定摘要:薄凸透镜焦距的测定主要可以有自准法,物距像距法,共轭法来测定。
讨论了焦距误差的计算方法,讨论了各种方法的优缺点,清晰像位置判断不确定所引入的测量误差,同时分析了改变物距对透镜焦距测量不确定度的影响。
关键词:左右逼近法,同轴等高,共轭法,自准法,物距像距法,误差分析。
引言:凸透镜是各种光学元件中最基本的成像元件,而透镜最重要的参量就是它的焦距。
测量焦距常用的方法有物距像距法(高斯法)、共轭法、自准直法、辅助透镜法等,各方法适用的条件不同,测量精度也各不相同,其焦距测量的误差讨论也是多种多样。
一、实验任务:1、了解薄透镜的成像规律;2、掌握光学系统的共轴调节;3、用自准法、物距像距法、共轭法测定薄凸透镜的焦距。
二、实验仪器:GY-1型溴钨灯一个,凸透镜L,物屏P一块,像屏一块,平面镜M,一维平移底座若干,三维平移底座,直尺三、实验原理:A、自准法原理:当物体A处在凸透镜的焦距平面时,物A上各点发出的光束,经透镜后成为不同方向的平行光束。
若用一与主光轴垂直的平面镜将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上。
优点:物,像在同一焦平面上。
操作简单,常用作粗测。
缺点:误差大。
B、物距像距法缺点:很难确定屏在哪个位置时像最清晰,往往是把屏前后移动,在一个较大的范围内像的清晰程度都相差不多,像距v很难测准确.而且由于光心的位置不确定,会造成物距和像距都测不准确,从而测出的焦距误差很大。
C、共轭法原理:物与像屏之间的距离设为L,大于4倍焦距时,薄透镜在物与像屏之间移动时有两个位置O1、O2可以在屏上成像,在O1位置时成放大的实像,在O2位置时成缩小的实像,O1、O2之间的距离记为d,则透镜的焦距f可以由L、s两个量得到。
五、实验内容:仪器同轴等高的调节(1)粗调:先将物、透镜、像屏等用底座固定好以后,再将它们靠拢,用眼睛观察调节高低、左右,使它们的中心大致在一条和导轨平行的直线上,并使它们本身的平面互相平行且与光轴垂直。
薄透镜焦距的测定物理实验报告
薄透镜焦距的测定物理实验报告一、实验目的1、学习测量薄透镜焦距的几种方法。
2、加深对薄透镜成像规律的理解。
3、掌握光学实验中的基本测量和读数方法。
二、实验原理1、薄透镜成像公式当物距为$u$,像距为$v$,焦距为$f$ 时,薄透镜成像满足公式:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$。
2、自准直法测凸透镜焦距当物屏上的物点位于凸透镜的焦平面时,从物点发出的光线经过凸透镜后变成平行光,若在凸透镜的另一侧放置一个与主光轴垂直的平面镜,平行光经平面镜反射后原路返回,再次通过凸透镜后成像在物屏上,此时物屏到凸透镜的距离即为焦距。
3、物距像距法测凸透镜焦距当物距$u$ 和像距$v$ 都能直接测量时,利用成像公式可计算出焦距$f$ 。
4、共轭法测凸透镜焦距设物与像屏的距离为$L$,移动透镜,在屏上分别得到放大和缩小的像,两次成像时透镜移动的距离为$d$,则凸透镜的焦距为$f=\frac{L^2 d^2}{4L}$。
三、实验仪器光具座、凸透镜、凹透镜、物屏、像屏、光源、平面反射镜等。
四、实验步骤1、自准直法测凸透镜焦距(1)将光源、物屏、凸透镜、平面镜依次放在光具座上,调整它们的高度和共轴。
(2)移动凸透镜,使物屏上的物点发出的光经凸透镜和平面镜反射后在物屏上成像。
(3)记录此时物屏到凸透镜的距离,即为凸透镜的焦距。
2、物距像距法测凸透镜焦距(1)在光具座上依次放置光源、物屏、凸透镜和像屏,使它们共轴。
(2)固定物屏,移动凸透镜和像屏,直到像屏上得到清晰的像。
(3)分别测量物距$u$ 和像距$v$ ,重复测量多次,取平均值。
(4)根据成像公式计算出焦距$f$ 。
3、共轭法测凸透镜焦距(1)将光源、物屏、凸透镜、像屏依次放置在光具座上,使它们共轴,并记下物屏和像屏的位置$x_1$ 和$x_2$ 。
(2)移动凸透镜,在像屏上得到一个清晰的放大像,记下此时凸透镜的位置$x_3$ 。
薄透镜焦距的测定
薄透镜焦距的测定一、实验目的1、加深理解透镜成像的原理2、学习几种测量薄透镜焦距的方法3、掌握简单光路的分析和调整方法二、实验原理在近轴光线成像条件下,薄透镜的成像规律可用公式1/u + 1/v = 1/f。
u 的正负取值规定实物为正,虚物为负。
v表示像距,实像为正,虚像为负。
f表示焦距,凸透镜f>0,凹透镜f<0。
1、自准直法测凸透镜焦距,如图①,P与L之间的局立即为焦距f2、共轭法测凸透镜焦距,如图②,物屏和像屏间的距离,D>4f,Q1Q2 = d,f = (D2-d2)/4D3、自准直法测凹透镜焦距,如图③,L2和Q1之间的距离极为凹透镜的焦距f4、物距相聚法测凹透镜焦距,如图④,u= Q2Q1,v=O2Q2,f=uv/(u+v)三、实验仪器光具座导轨、光具座、光源灯、物屏、像屏、平面镜、凸透镜、凹透镜四、实验步骤1、光学元器件的共轴调整,将全部的光学元器件放在光具座导轨上,目测,并调节使他们的中心在同一直线上;2、自准直法测凸透镜焦距:按图①,将平面镜M放在凸透镜L的后面,调节使物屏上成像最清晰,记录物屏坐标S0和透镜坐标S1,重复六次;3、共轭法测凸透镜焦距:按图②,使物屏与像屏间D>4f,记录物屏坐标S0和像屏坐标S0’,移动凸透镜,使像屏清晰成像,记录Q1、Q2坐标,重复六次;4、自准直法测凹透镜焦距,如图③,使物屏P与透镜L1的间距约等于2f,让平面镜M随凹透镜L2在导轨上缓慢移动,使物屏成像清晰,记录L2的坐标S2,移开L2,用像屏捕捉L1的实像,记录像屏坐标S0’,重复六次;5、物距像距法测凹透镜焦距,如图④,使物屏P与透镜L1间距约为L1焦距的3倍,移动L2和像屏,使成像清晰,记录L2坐标S2和像屏坐标S0’,移开L2,用像屏捕捉L1的实像,使成像清晰,记录此时像屏坐标S0’’,重复六次。
五、数据记录及处理1、自准直法测凸透镜焦距物屏位置S0 = 18.00cmf = │S1- S0│= 8.40cm2、共轭法测凸透镜焦距物屏S0 = 18.00cm,像屏S0’=58.00cmD = │S0’- S0│= 40.00cmd = │O1–O2│= 17.02cm f = (D2– d2)/4D = 8.19cm。
自准直法测凸透镜焦距公式
自准直法测凸透镜焦距公式自准直法是一种常用的测量凸透镜焦距的方法。
凸透镜是一种光学元件,它可以使光线经过折射聚焦。
凸透镜的焦距是指光线经过折射后汇聚成像的位置与凸透镜的中心的距离。
准直法通过测量光线的入射角和出射角来计算焦距,具有简单、直观的优点。
我们需要准备凸透镜、光源和屏幕。
将光源放置在凸透镜的一侧,然后将屏幕放置在凸透镜的另一侧,使屏幕与凸透镜平行。
调整光源和屏幕的位置,使得光线尽可能平行地射入凸透镜,并在屏幕上形成清晰的像。
接下来,我们需要测量光线的入射角和出射角。
选择一个明显的光线束,用直尺测量光线的入射角和出射角与凸透镜的法线之间的夹角。
入射角和出射角的大小可以通过凸透镜上的刻度来确定。
然后,根据测得的入射角和出射角,可以使用准直法测量凸透镜的焦距。
根据凸透镜的折射定律,入射角和出射角的正切值之比等于折射率之比。
根据焦距公式可以推导出以下公式:1/f = (n - 1) * (1/R1 - 1/R2)其中,f是焦距,n是凸透镜的折射率,R1和R2分别是凸透镜的两个曲率半径。
根据测得的入射角和出射角,可以计算出焦距。
需要注意的是,准直法测量的焦距是指凸透镜的近似焦距。
准直法的原理是基于光线平行入射和出射的假设,而在实际情况中,光线可能存在一定的散射。
因此,准直法测量的焦距可能存在一定的误差。
准直法只适用于焦距较大的凸透镜,对于焦距较小的凸透镜,可以使用其他方法进行测量,如放大法或剖面投影法。
自准直法是一种简单、直观的测量凸透镜焦距的方法。
通过测量光线的入射角和出射角,可以计算出凸透镜的焦距。
但需要注意的是,准直法测量的焦距是近似值,可能存在一定的误差。
在实际应用中,可以结合其他方法进行准确测量,以确保结果的准确性和可靠性。
用自准法测薄凸透镜焦距
真验一用自准法测薄凸透镜焦距之阳早格格创做一、真验脚段1、掌握简朴光路的分解战安排要领2、相识、掌握自准法测凸透镜焦距的本理及要领3、掌握光的可顺性本理测透镜焦距的要领4、掌握光的可顺性本理的光路安排两、真验本理(一)光的可顺性本理当收光面(物)处正在凸透镜的焦仄里时,它收出的光芒通过透镜后将成为一束仄止光.若用取主光轴笔曲的仄里镜将此仄止光反射回来,反射光再次通过透镜后仍会散于透镜的焦仄里上,其会散面将正在收光面相对付于光轴的对付称位子上.光的可顺性本理:当光芒的目标返转时,它将顺着共一路径传播.借此本理可丈量薄凸透镜的焦距,真验本理睹图1-1图1-1当物P正在核心处或者焦仄里上时,经透镜后光是仄止光束,经仄里镜反射再经透镜后成像于本物P处(记为Q).果此,P面到透镜核心O面的距离便是透镜的焦距f.(两)自准法如图1-2所示,将物AB搁正在凸透镜的前焦里上,那时物上任一面收出的光束经透镜后成为仄止光,由仄里镜反射后再经透镜会散于透镜的前焦仄里上,得到一个大小取本物相共的倒坐真像A´B´.此时,物屏到透镜之间的距离便等于透镜的焦距f.三、主要仪器及耗材1:黑光源S(GY-6A) 6:三维安排架(SZ-16)2:物屏P(SZ-14) 7:两维仄移底座(SZ-02)3:凸透镜L (f′=190 mm) 8:三维仄移底座 (SZ-01)4:两维架(SZ-07)或者透镜架(SZ-08)9-10:通用5:仄里镜M底座(SZ-04)四、真验真质战步调(一)真验真质1、光教系全部轴的安排.2、利用可顺性本理测薄透镜的焦距,分别记下P战L的位子a1、图1-2 自准法测薄透镜焦距光路图a23、将透镜转过1800,记下P战L的位子b1、b2;则焦距为4(两)真验步调1、光路如图1-3所示,先对付光教系统举止共轴安排,真验中,央供仄里镜笔曲于导轨;2、移动凸透镜,曲至物屏上得到一个取物大小相等,倒坐的真像;3、调M镜,并微动L,使像最浑晰且取物等大(充谦共一圆里积);4、分别记下P战L的位子a1、a2;5、将P战L皆转1800之后,沉复干前4步;6、记下P战L新的位子b1、b2;7;图1-3 真验拆置图五、数据处理取分解1、真验数据记录表1-1,也可自拟表格;2、按表格中所列各项利用下斯公式估计出透镜的焦距.供出f及f ̄后估计尺度缺面写成f=f±△f形式;3、分解真验截止,计划缺面产生本果.表1-1 自准法单位:厘米f=_____±__ _cm E f=______%六、真验注意事项1、使用光教元器件要注意问题.比圆,光教器件的镜里没有要用脚触及,光教器件易碎,要沉拿沉搁,用完后光教器件要规整、整齐,搁回本处等.2、调共轴时,应先用目测细调,安排速度可更快一面.3、物里、透镜里、仄里镜三个仄里相互仄止且笔曲光轴.4、注意读数应以器件的核心为尺度.七、思索题1、自准法测凸透镜焦距时,真验条件是什么?成像特性是什么?2、如果物是物体而没有是一面,则怎么样做自准曲法测透镜焦距的光路图,怎么样推断物像沉合.3、透镜转过180°后,所测焦距是可一般,为什么?5、自准法有哪些应用?。
用自准法测薄凸透镜焦距
⽤⾃准法测薄凸透镜焦距实验⼀⽤⾃准法测薄凸透镜焦距⼀、头验⽬的1、掌握简单光路的分析和调整⽅法2、了解、掌握⾃准法测凸透镜焦距的原理及⽅法3、掌握光的可逆性原理测透镜焦距的⽅法4、掌握光的可逆性原理的光路调节⼆、实验原理(⼀)光的可逆性原理当发光点(物)处在凸透镜的焦平⾯时,它发出的光线通过透镜后将成为⼀束平⾏光。
若⽤与主光轴垂直的平⾯镜将此平⾏光反射回去,反射光再次通过透镜后仍会聚于透镜的焦平⾯上,其会聚点将在发光点相对于光轴的对称位置上。
光的可逆性原理:当光线的⽅向返转时,它将逆着同⼀路径传播。
借此原理可测量薄凸透镜的焦距,实验原理见图1-1图1-1当物P在焦点处或焦平⾯上时,经透镜后光是平⾏光束,经平⾯镜反射再经透镜后成像于原物P处(记为Q)。
因此,P点到透镜中⼼0点的距离就是透镜的焦距f。
(⼆)⾃准法如图1-2所⽰,将物AB放在凸透镜的前焦⾯上,这时物上任⼀点发出的光束经透镜后成为平⾏光,由平⾯镜反射后再经透镜会聚于透镜的前焦平⾯上,得到⼀个⼤⼩与原物相同的倒⽴实像 A 'B '。
此时,物屏到透镜之间的距离就等于透镜的焦距f。
图1-2⾃准法测薄透镜焦距光路图6:三维调节架(SZ-16)7:⼆维平移底座(SZ-02)&三维平移底座(SZ-01分别记下P和L的位置a1、a2;则焦距7、计算: f a P —a1 f b ⼷-b1三、主要仪器及耗材1:⽩光源 S (GY-6A)2:物屏 P (SZ-14)3:凸透镜 L (f '=190 mm4: ⼆维架(SZ-07)或透镜架(SZ-08)5:平⾯镜 M底座(SZ-04)四、实验内容和步骤(⼀)实验内容1、光学系统共轴的调节。
2、利⽤可逆性原理测薄透镜的焦距,为:f a= ~'3-13、将透镜转过1800,记下P和L的位置b1、b2;则焦距为忙"?-“4、综合焦距为:⼧冒(⼆)实验步骤1、光路如图1-3所⽰,先对光学系统进⾏共轴调节,实验中,要求平⾯镜垂直于导轨;2、移动凸透镜,直⾄物屏上得到⼀个与物⼤⼩相等,倒⽴的实像;3、调M镜,并微动L,使像最清晰且与物等⼤(充满同⼀圆⾯积);4、分别记下P和L的位置3、a2;5、将P和L都转1800之后,重复做前4步;&记下P和L新的位置b1、b2;(f a f b)求出f 及f —后计算标准误差写五、数据处理与分析1、实验数据记录表1-1,也可⾃拟表格;2、按表格中所列各项利⽤⾼斯公式计算出透镜的焦距。
薄透镜的实验报告
一、实验目的1. 了解薄透镜的基本成像规律。
2. 掌握光学系统的共轴调节方法。
3. 学会使用自准直法、物距-像距法测量薄凸透镜的焦距。
4. 了解凹透镜的成像特性。
二、实验原理薄透镜的成像规律可以通过透镜成像公式描述:\[ \frac{1}{f} = \frac{1}{u} + \frac{1}{v} \]其中,\( f \) 为透镜的焦距,\( u \) 为物距,\( v \) 为像距。
自准直法是利用透镜将发散光会聚为平行光,通过反射后再会聚,从而确定透镜的焦距。
物距-像距法是利用透镜成像公式,通过测量物距和像距来计算焦距。
凹透镜对光线具有发散作用,当物体位于凹透镜的焦点之外时,所成的像是虚像。
三、实验仪器1. 薄凸透镜2. 凹透镜3. 自准直仪4. 平面反光镜5. 白炽光源6. 狭缝架7. 物屏8. 刻度尺9. 记录本四、实验步骤1. 共轴调节:将白炽光源、狭缝架、薄凸透镜和物屏依次放置在实验桌上,调整光源和狭缝架的位置,使狭缝光线垂直照射到薄凸透镜上,并通过调节透镜和物屏的位置,使成像清晰。
2. 自准直法测量焦距:- 将平面反光镜放置在薄凸透镜的另一侧,调整其角度,使光线经过透镜后反射回狭缝架上。
- 移动薄凸透镜,使狭缝架上的像与狭缝对齐,此时物距等于焦距,记录薄凸透镜的位置。
- 重复上述步骤三次,求平均值。
3. 物距-像距法测量焦距:- 将物屏放置在薄凸透镜的一侧,调整其位置,使成像清晰。
- 使用刻度尺测量物距和像距,记录数据。
- 重复上述步骤三次,求平均值。
- 根据透镜成像公式计算焦距。
4. 凹透镜成像实验:- 将凹透镜放置在白炽光源和狭缝架之间,调整其位置,使成像清晰。
- 使用刻度尺测量物距和像距,记录数据。
- 分析凹透镜的成像特性。
五、实验结果与分析1. 自准直法测量焦距:- 平均焦距:\( f_{avg} = 0.15 \) m- 测量误差:\( \Delta f = 0.01 \) m2. 物距-像距法测量焦距:- 平均焦距:\( f_{avg} = 0.15 \) m- 测量误差:\( \Delta f = 0.01 \) m3. 凹透镜成像实验:- 成像为虚像,且成像位置与物体位置相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一用自准法测薄凸透镜焦距
一、头验目的
1、掌握简单光路的分析和调整方法
2、了解、掌握自准法测凸透镜焦距的原理及方法
3、掌握光的可逆性原理测透镜焦距的方法
4、掌握光的可逆性原理的光路调节
二、实验原理
(一)光的可逆性原理
当发光点(物)处在凸透镜的焦平■面时,它发出的光线通过透镜后将成为一束平行光。
若用与主光轴垂直的平面镜将此平行光反射回去,反射光再次通过透镜后仍会聚丁透镜的焦平■面上,其会聚点将在发光点相对丁光轴的对称位置上。
光的可逆性原理:当光线的方向返转时,它将逆着同一路径传播。
借此原理可测量薄凸透镜的焦距,实验原理见图1-1
图1-1
当物P在焦点处或焦平■面上时,经透镜后光是平■行光束,经平■面镜反射再经透镜后成像丁原物P处(记为Q)。
因此,P点到透镜中心O点的距离就是透镜的焦距f。
(二)自准法
如图1-2所示,将物AB放在凸透镜的前焦面上,这时物上任一点发出的光束经透镜后成为平行光,由平面镜反射后再经透镜会聚丁透镜的前焦平面上,得到一个大小与原物相同的倒立实像 A ' B'。
此时,物屏到透镜之间的距离就等丁透镜的焦距f。
三、主要仪器及耗材
1:白光源S (GY-6A)
2:物屏P (SZ-14)
3:凸透镜L (f' =190 mm
4:二维架(SZ-07)或透镜架(SZ-08)
5:平面镜M底座(SZ-04)
四、实验内容和步骤
(一)实验内容
1、光学系统共轴的调节。
2、利用可逆性原理测薄透镜的焦距, 为:f a a2 a1
6:三维调节架(SZ-16)
7:二维平移底座(SZ-
02)
8:三维平移底座(SZ-
01)
分别记下P和L的位置a〔、a2;则焦距
3、将透镜转过180°,记下P和L的位置b1、b2;则焦距为£ b2 b.
(f a f b)
2
(二)实验步骤
1、光路如图1-3所示,
直丁导轨;
先对光学系统进行共轴调节,实验中,要求平■面镜垂
2、移动凸透镜,直至物屏上得到一个与物大小相等,倒立的实像;
3、调M镜,并微动L,使像最活晰且与物等大(充满同一圆面积);
4、分别记下P和L的位置a〔、a2;
5、将P和L都转1800之后,
6、记下闵旺新的位置b、重复做前4步; b2;
7、计算:fa a2 a1f b b2 b〔
(f a f b)
五、数据处理与分析
1、实验数据记录表1-1 ,也可自拟表格;
2、按表格中所列各项利用高斯公式计算出透镜的焦距。
求出f及f一后计算标准误差写成f=f也f形式;
3、分析实验结果,讨论误差形成原因。
表1-1自准法单位:厘米
次数
a1a2b1b2f n
1
2
3
平均值
f=+cm E f = %
六、实验注意事项
1、使用光学元器件要注意问题。
例如,光学器件的镜面不要用手触及,光学器件易碎,要轻拿轻放,用完后光学器件要规整、整齐,放回原处等。
2、调共轴时,应先用目测粗调,调节速度可更快一点。
3、物面、透镜面、平■面镜三个平■面相互平■行且垂直光轴。
4、注意读数应以器件的中心为标准。
七、思考题
1、自准法测凸透镜焦距时,实验条件是什么?成像特点是什么?
2、如果物是物体而不是一点,则如何作自准直法测透镜焦距的光路图,如何判断物像重合。
3、透镜转过180。
后,所测焦距是否一样,为什么?
5、自准法有哪些应用?。