西南交大 数值分析题库

合集下载

西南交通大学2018-2019数值分析Matlab上机实习题

西南交通大学2018-2019数值分析Matlab上机实习题

西南交通⼤学2018-2019数值分析Matlab上机实习题数值分析2018-2019第1学期上机实习题f x,隔根第1题.给出⽜顿法求函数零点的程序。

调⽤条件:输⼊函数表达式()a b,输出结果:零点的值x和精度e,试取函数区间[,],⽤⽜顿法计算附近的根,判断相应的收敛速度,并给出数学解释。

1.1程序代码:f=input('输⼊函数表达式:y=','s');a=input('输⼊迭代初始值:a=');delta=input('输⼊截⽌误差:delta=');f=sym(f);f_=diff(f); %求导f=inline(f);f_=inline(f_);c0=a;c=c0-f(c0)/f_(c0);n=1;while abs(c-c0)>deltac0=c;c=c0-f(c0)/f_(c0);n=n+1;enderr=abs(c-c0);yc=f(c);disp(strcat('⽤⽜顿法求得零点为',num2str(c)));disp(strcat('迭代次数为',num2str(n)));disp(strcat('精度为',num2str(err)));1.2运⾏结果:run('H:\Adocument\matlab\1⽜顿迭代法求零点\newtondiedai.m')输⼊函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512输⼊迭代初始值:a=1输⼊截⽌误差:delta=0.0005⽤⽜顿法求得零点为0.80072迭代次数为14精度为0.00036062⽜顿迭代法通过⼀系列的迭代操作使得到的结果不断逼近⽅程的实根,给定⼀个初值,每经过⼀次⽜顿迭代,曲线上⼀点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。

上述例⼦中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

西南交通大学研究生数值分析总复习

西南交通大学研究生数值分析总复习

记x*表示x的近似值,若x* 0.a1a2 an 10m , (ai 是0,1,,9中的一个数字,a1 0),
*
1 mn 如果 x x 10 , 则称x *近似x时具有n位有效数字。 2
返回
前进
3. 记近似值x*=0.a1a2…an×10m,若要保留五位有效数 字(这是 以后常会用到的),即要求误差限ε<0.5×10m-n, 则n=5;
1 这即要求出满足: 10( n 1) 0.01%的n 2a1
例3(续)
1 由a1 5 10( n 1) 0.01% 0.0001 25 10( n 1) 0.001 n 1 lg 0.001 3 n 4 1 因此,只要对 0.052631578 的近似值取四位 19 1 有效数字为 0.05263 ,则其相对误差限就不 超过0.01% 19
返回
前进
§2 绝对误差、相对误差和有效数字
2.1 绝对误差与相对误差 设 x *为准确值的近似值,记
e xx
*
e x x* er x x
分别称e为近似值x *的绝对误差或误差, er为x*的相对误差。
一般情况下,准确值是不知道的,从而也不能算出绝 对误差e的准确值,但往往可以根据测量工具或计算的情 况估计出e 的取值范围,即估计出绝对误差的一个上界ε :
返回
前进
迭代法是一种重要的逐次逼近法,其基本思想是: 设方程f (x) = 0在区间[a, b]内有一根x*,将方程化为等价 方程x = (x),并在[a, b]内任取一点x0作为初始近似值, 然后按迭代公式计第二章 非线性方程求解算: x ( x ), (k 0,1,2,) (2 - 3)
返回

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

西南交大数值分析题库积分微分方程

西南交大数值分析题库积分微分方程

用复化梯形公式计算积分1()f x dx ⎰,要把区间[0,1]一般要等分 41 份才能保证满足误差小于0.00005的要求(这里(2)()1f x ∞≤);如果知道(2)()0f x >,则 用复化梯形公式计算积分1()f x dx ⎰此实际值 大 (大,小)。

在以10((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C =∈⎰为内积的空间C[0,1]中,与非零常数正交的最高项系数为1的一次多项式是 23x -3. (15分)导出用Euler 法求解 (0)1y yy λ'=⎧⎨=⎩的公式, 并证明它收敛于初值问题的精确解解 Euler 公式 11,1,,,k k k xy y h y k n h nλ--=+==L -----------(5分) ()()1011kk k y h y h y λλ-=+==+L ------------------- (10分)若用复化梯形求积公式计算积分1x I e dx =⎰区间[0,1]应分 2129 等分,即要计算个 2130 点的函数值才能使截断误差不超过71102-⨯;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分12 等分,即要计算个 25 点的函数值1.用Romberg 法计算积分 232x e dx -⎰解 []02()()2b aT f a f b -=+= 9.6410430E-003 10221()222b a a bT T f -+=+= 5.1319070E-00310022243T T S -== 4.6288616E-00322T = 4.4998E-003 21122243T T S -== 4.E-0031002221615S S C -== 4.6588636E-00332T = 4.7817699E-00332222243T T S -== 4.1067038E-0032112221615S S C -== 4.5783515E-0031002226463C C R -== 4.7358037E-0032.用复合Simpson 公式计算积分232x e dx -⎰(n=5)解 44501()4()2()(),625k k h h b aS f a f a kh f a kh f b h ==⎡⎤-=++++++=⎢⎥⎣⎦∑∑5S =4.3630653 E-0033、 对于n+1个节点的插值求积公式()()bnk k k af x dx A f x =≈∑⎰ 至少具有 n 次代数精度. 4、 插值型求积公式()()bnk k k af x dx A f x =≈∑⎰的求积系数之和0nk k A =∑=b-a 5、 证明定积分近似计算的抛物线公式()()4()()22bab a a b f x dx f a f f b -+⎡⎤≈++⎢⎥⎣⎦⎰具有三次代数精度 证明 如果具有4阶导数,则()()4()()22bab a a b f x dx f a f f b -+⎡⎤-++⎢⎥⎣⎦⎰=)(f 2880)a b ()4(5η--(η∈[a,b])因此对不超过3次的多项式f(x)有()()4()()022bab a a b f x dx f a f f b -+⎡⎤-++=⎢⎥⎣⎦⎰即()()4()()22bab a a b f x dx f a f f b -+⎡⎤=++⎢⎥⎣⎦⎰精确成立,对任一4次的多项式f(x)有 因此定积分近似计算的抛物线公式具有三次代数精度 或直接用定义证.6、 试确定常数A ,B ,C 和a ,使得数值积分公式有尽可能高的代数精度。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

西南交通大学数值分析上机实习

西南交通大学数值分析上机实习

目录解题: (1)题目一: (1)1.1计算结果 (1)1.2结果分析 (1)题目二: (2)2.1计算结果 (2)2.2结果分析 (3)题目三: (4)3.1计算结果 (4)3.2结果分析 (5)总结 (5)附录 (6)Matlab程序: (6)题目一: (6)第一问Newton法: (6)第二问Newton法: (6)第一问Steffensen加速法: (7)第二问Steffensen加速法: (7)题目二 (8)1、Jacobi迭代法 (8)2、Causs-Seidel迭代法 (8)题目三: (9)题目一:分别用牛顿法,及基于牛顿算法下的Steffensen 加速法(1)求ln(x +sin x )=0的根。

初值x0分别取0.1, 1,1.5, 2, 4进行计算。

(2)求sin x =0的根。

初值x0分别取1,1.4,1.6, 1.8,3进行计算。

分析其中遇到的现象与问题。

1.1计算结果求ln(x +sin x )=0的根,可变行为求解x-sinx-1=0的根。

1.2结果分析从结果对比我们可发现牛顿—Steffensen 加速法比牛顿法要收敛的快,牛顿法对于初值的选取特别重要,比如第(1)问中的初值为4的情况,100次内没有迭代出来收敛解,而用Steffensen 加速法,7次迭代可得;在第(2)问中的初值为1.6的情况,收敛解得31.4159,分析其原因应该是x x f cos )('=,x0=1.62π≈,0)('≈x f ;迭代式在迭代过程中会出现分母趋近于0,程序自动停止迭代的情况,此时得到的x 往往非常大,而在第一问中我们如果转化为用x+sinx=1,则可以收敛到结果。

用雅格比法与高斯-赛德尔迭代法解下列方程组Ax=b,研究其收敛性,上机验证理论分析是否正确,比较它们的收敛速度,观察右端项对迭代收敛有无影响。

(1)A行分别为A1=[6,2,-1],A2=[1,4,-2],A3=[-3,1,4];b1=[-3,2,4]T,b2=[100,-200,345]T,(2) A行分别为A1=[1,0,8,0.8],A2=[0.8,1,0.8],A3=[0.8,0.8,1];b1=[3,2,1]T,b2=[5,0,-10]T,(3)A行分别为A1=[1,3],A2=[-7,1];b=[4,6]T2.1计算结果初值均为0矩阵带入(1)A行分别为A1=[6,2,-1],A2=[1,4,-2],A3=[-3,1,4];b1=[-3,2,4]T,b2=[100,-200,345]T2) A行分别为A1=[1,0,8,0.8],A2=[0.8,1,0.8],A3=[0.8,0.8,1];b1=[3,2,1]T,b2=[5,0,-10]TT2.2结果分析ρ小于1,故方程组雅可比迭代收第一小题的经计算谱半径为5427B(=).0敛。

西南交大数值分析题库插值逼近题库

西南交大数值分析题库插值逼近题库
n k 0
xkj lk (0)
1, 0, ( 1) n x0 x1...xn
n k 0 n 1 xk lk ( x) n k 0
j 0 j 1,2,...,n j n 1
n f ( n 1) () wn 1 ( x) 其中,wn+1(x)= ( x (n 1)! j 0
n k 0
证明: f ( x)
f (3) () 2 (x 3! k 0 xk )
(3). 三次样条插值与一般分段 3 次多项式插值的区别是_____ (三次样条连续且光 滑,一般分段 3 次连续不一定光滑。) §2. 计算题 (1). (a10 分)依据下列函数值表,建立不超过 3 次的 lagrange 插值多项式 L3(x). x 0 1 2 3 f(x) 1 9 23 3 解:基函数分别为
xn
1
(x
j 0
xj )
n 1 xk lk ( x)
wn 1 ( x) 可见其为 n 次多项式,并且可得其最高次系数为
(x0+…+ xn) (5). 设函数 f(x)是 k 次多项式,对于互异节点 x1,…, xn,, 证明当 n>k 时,差商 f [x, x1,…,xn]0,当 nk 时,该差商是 k-n 次多项式。 证明:因 f [ x0 , x1 , , xn ]
多项式 P1(x)在子区间[a,b]上的余项估计式,再估计最值即可。
f ( x) P 1 ( x) f () ( x a)( x b) 2!
x3 , c( x 1)
2 3
hi2 max f // ( x) a 8 x b
0 x x 1 2
x [a, b]
(12). s(x)=
2
已知 s(x)是[0,2]上的已知自然边界条件的三次样条函数,试确定

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。

1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。

(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。

"(1)计算01)1(<-=f ,故有根区间为[1,2]。

(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。

(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。

(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。

西南交大研究生数值分析期末考试作业答案

西南交大研究生数值分析期末考试作业答案

序言随着科技的进步和经济的迅猛发展,计算机这一工具在人们的生活和工作中越来越重要,数值分析作为工程计算和科学计算连接计算机的一门基础课程日益受到人们的重视,数值分析这门课在我们整个研究生课程的学习中具有很重要的意义,对我们以后的工作学习有很重要的作用。

Matlab是与一个非常优秀的的计算机语言,集数学计算,仿真和函数绘图等于一体,是一款功能强大的数学软件,是科研机构进行数学建模分析、研究必要的工具。

本上机实习的所有内容都是采用Matlab7.0这个软件开发平台。

使用Matlab7.0语言所编写的程序,与Visual C++、Basic和Pascal程序相比,具有速度快、操作简单、修改方便、界面友好、功能强大等优势。

用C++自编程序解决问题针对性好,可以得到想要的各种结论,而用数学软件计算则有一定的局限性,因为数学软件的算法是封装的,甚至我们不知道命令的具体算法,另外数学软件的命令只能解决通用的计算问题,对需要特定结论的计算问题,比如得到迭代次数, 光用数学软件的命令便不能得到,而用C++编程则有很强的适应性,可以精细控制计算细节,得到一些想要的结论,但是对于常规的计算问题,比如拟合和插值以及解方程(组),如果只要结果,那么用软件计算比较有优势,所以对实际问题综合使用计算方法比较好.由于使用能力所限,有一些疏忽,恳请老师指正,在此感谢老师这个学期对我们的悉心教导。

第一题写出对一般的线性方程组通用的Gauss消元, Gauss-Seidel迭代程序。

并以下面的线性方程组为例进行计算,讨论所得到的计算结果是否与理论一致。

(1)6213100 1422200 3144345x--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭或(2)10.80.835 0.810.820 0.80.81110x⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭或(3)134 716x⎛⎫⎛⎫=⎪ ⎪-⎝⎭⎝⎭本题的思路为编写Gauss-Seidel迭带的函数,在matlab中运行,查看其收敛与否与收敛速度,然后验证迭代收敛的条件。

西南交大数值分析题库填空

西南交大数值分析题库填空

西南交大数值分析题库填空一. 填空2.Gauss型求积公式不是插值型求积公式。

(限填“是”或“不是”)3. 设l k(x)是关于互异节点x0, x1,…, x n, 的Lagrange 插值基函数,则 0m=1,2,…,n5.用个不同节点作不超过次的多项式插值,分别采用Lagrange 插值方法与Newton插值方法所得多项式相等(相等, 不相等)。

7. n个不同节点的插值型求积公式的代数精度一定会超过n-1次8.f(x)=ax7+x4+3x+1,f[20, 21,…,27]= a,f [20, 21,…,28]= 010设(i=0,1,…,n),则= _x_ , 这里(x i x j,ij, n2)11.设称为柯特斯系数则=______1____12采用正交多项式拟合可避免最小二乘或最佳平方逼近中常见的_法方程组病态___问题。

13辛卜生(Simpson)公式具有___3____次代数精度。

14 牛顿插商与导数之间的关系式为:15试确定[0,1]区间上2x3的不超过二次的最佳一致逼近多项式p(x), 该多项式唯一否?答:p(x)=(3/2)x, ; 唯一。

17.给定方程组记此方程组的Jacobi迭代矩阵为B J=(a ij)33,则a23= -1; ,且相应的Jacobi迭代序列是__发散_____的。

18.欧拉预报--校正公式求解初值问题的迭代格式(步长为h) ,此方法是阶方法。

,此方法是 2阶方法。

19. 2n阶Newton-Cotes公式至少具有2n+1次代数精度。

20.设,则关于的 ||f|| =121矩阵的LU分解中L是一个_为单位下三角阵,而U是一个上三角阵____。

22.设y=f (x1,x2) 若x1,x2,的近似值分别为x1*, x2*,令y*=f(x1*,x2*)作为y的近似值,其绝对误差限的估计式为: ||f(x1*,x2*)|x1-x*1|+ |f(x1*,x2*)|x2-x*2|23设迭代函数(x)在x*邻近有r(1)阶连续导数,且x* = (x*),并且有(k) (x*)=0 (k=1,…,r-1),但(r) (x*)0,则x n+1=(x n)产生的序列{ x n }的收敛阶数为___r___24设公式为插值型求积公式,则, 且=b-a25称微分方程的某种数值解法为p阶方法指的是其局部截断误差为O(h p+1)。

西南交大 数值分析题库

西南交大 数值分析题库

考试目标及考试大纲本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。

通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。

本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。

考试内容包括以下部分:绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。

非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。

解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。

解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。

插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。

数值分析考试题

数值分析考试题

数值分析考试题一、选择题1. 以下哪个方法不是数值分析中常用的数值积分方法?A. 梯形法则B. 辛普森法则C. 牛顿法D. 龙格-库塔法2. 在求解线性方程组的直接方法中,高斯消元法属于以下哪种类型?A. 列主元消去法B. 行主元消去法C. 完全主元消去法D. 选主元消去法3. 非线性方程求根的二分法属于以下哪种类型的数值方法?A. 迭代法B. 直接法C. 优化算法D. 插值法4. 在数值分析中,用于度量舍入误差的常用指标是:A. 截断误差B. 舍入误差C. 估计误差D. 计算误差5. 插值多项式的最高次数与插值节点的数量关系是:A. 次数多于节点数量B. 次数少于节点数量C. 次数等于节点数量D. 与节点数量无关二、填空题1. 在数值分析中,__________是用来描述一个算法在实际运算中所需步数的度量。

2. 线性方程组的雅可比方法是一种__________消去法。

3. 牛顿法在求解非线性方程时,每次迭代都需要计算__________。

4. 龙格现象是指在数值积分中,由于__________而引起的误差。

5. 在多项式插值中,拉格朗日插值法是通过__________来构建插值多项式的。

三、简答题1. 请简述数值分析中的截断误差和舍入误差的区别。

2. 描述高斯-赛德尔迭代法的基本思想,并与雅可比迭代法进行比较。

3. 解释在数值积分中为什么需要使用自适应方法。

4. 讨论在求解非线性方程时,二分法与牛顿法的适用条件和优缺点。

5. 分析多项式插值与样条插值的主要区别及其各自的应用场景。

四、计算题1. 给定函数f(x) = sin(x),在区间[0, π]上使用梯形法则计算积分的近似值,取4个等分点。

2. 设线性方程组如下:\[\begin{cases}2x + y + z = 6 \\x + 2y + 4z = 14 \\3x + y + 2z = 10\end{cases}\]使用高斯消元法求解该方程组的解。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。

A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。

A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。

A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。

A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。

A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。

A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。

A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。

A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。

A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。

A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。

答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。

答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。

答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。

西南交大数值分析题库分析题库1(方程,迭代)

西南交大数值分析题库分析题库1(方程,迭代)
x (2) x 4 2 。 sin x) / 4 ; 分析 判断方程 x ( x) 能否用迭代法求根,最关键的是 ( x) 在根的附近能否满足 ( x) I 1 。因此可用该条件来判断。
(1) x
(cos x
解答
(1) ( x)
(cos x
( x)
故能用迭代法求根。 (2)方程为 x
( sin x
x
简单迭代法的充分条件来出本题方法的收敛性条件。
x
f ( x) / f ( x0 ) ,则 ( x)
L 1 (在 x*的邻域内)是
xn
1
xn
即 解得
f ( xn ) / f ( x0 ) 收敛的一个充分条件,
1
f ( x) / f ( x0 )
L 1
1 1 L 1 ,使对任何 x [a, b] 上式都能成立的话,单调
xk
1.368869419 1.368808109 1.368808108
x5
1.368808108 。
注记 由上两题知,要达到同样的精度,牛顿法的迭代次数不一定比弦割法少,尽管牛 顿法是平方收敛的。究竟二者谁的迭代次数少,要视问题而定。另外就整体计算时间而言, 当牛顿法中 f ( xk ) 的计算量超过 f ( xk ) 的计算量的 44%时,双点弦割法的总计算时间较牛 顿法的少,见参考文献 7. 例 4-10 能不能用迭代法求解下列方程,如果不能时,试将方程改写成能用迭代法求解的 形式。
1 ,使
5
4.8x 0.51 1.141213562
2
0
1.2 1.397989899 1.414120505 1.414213559 1.414213562
曲线 y
2.4 x2 1.89 在点(1.6,1)附近相切,试用牛顿

西南交通大学数值分析题库

西南交通大学数值分析题库

考试目标及考试大纲本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。

通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。

本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。

考试内容包括以下部分:绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。

非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。

解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。

解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。

插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。

(西南交大)数值分析题库-方程组

(西南交大)数值分析题库-方程组

例5-10 求矩阵Q 的||Q ||1,||Q ||2,||Q ||∞与Cond 2(Q),其中⎪⎪⎪⎪⎪⎭⎫⎝⎛------=1111111111111111Q 分析 这实际上是基本概念题,只要熟悉有关范数与条件数的定义即可。

解答 (1)由定义,显然||Q ||1=4 (2)因Q T Q=4I ,故24)(||||max 2===Q Q Q T λ(3)由定义显知4||||=∞Q (4)因Q T Q=4I ,故T Q Q 411=-,从而T T QQ Q Q 161)()(11=--==---)]()[(||||11max 21Q Q Q T λ21)41()161(max max ==I QQ T λλ 所以1212||||||||)(Cond 2122=⋅=⋅=-Q Q Q 例5-12 设有方程组AX=b ,其中⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=3231 21 ,220122101b A已知它有解⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0 3121 X . 如果右端有小扰动61021||||-∞⨯=b δ,试估计由此引起的解的相对误差。

分析 本题是讨论方程组的右端项的小误差所引起的解的相对误差的估计问题,这与系数矩阵的条件数有关,只要求出Cond ∞(A),再由有关误差估计式即可算得结果。

解答 容易求得⎪⎪⎪⎭⎫ ⎝⎛-----=-1125.1121111A ,从而Cond ∞(A)=22.5由公式∞∞∞∞∞⋅≤||||||||)(||||||||b b A Cond X X δδ有56106875.13/210215.22|||||||--∞∞⨯=⨯⨯≤bX X δ例5-13 试证明矩阵A 的谱半径与范数有如下关系||||)(A A ≤ρ其中||A||为A 的任何一种算子范数。

分析 由于谱半径是特征值的绝对值的最大者,故由特征值的定义出发论证是自然的。

证明 由特征值定义,对任一特征值λ有 AX=λX (X ≠0,特征向量) 取范数有 ||AX||=|λ| ⋅ ||X||由于范数||A||是一种算子范数,故有相容关系 ||AX||≤||A|| ⋅ ||X|| 从而|λ| ⋅ ||X||≤||A|| ⋅ ||X|| 由于X ≠0,故|λ|≤||A||,从而 ρ(A) ≤ ||A||例5-18 设A,B 为n 阶矩阵,试证Cond(AB) ≤ Cond(A) ⋅ Cond(B)分析 由条件数定义和矩阵范数的性质即可证明。

数值分析考试卷及详细答案解答汇总

数值分析考试卷及详细答案解答汇总

姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。

2. 十进制123.3转换成二进制为1111011.0而1。

3. 二进制110010.1001转换成十进制为 50.5625 。

4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。

6.1112=0.69314718...,精确到 10一’的近似值是 0.693。

* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。

西南交大数值计算

西南交大数值计算

西南交⼤数值计算1.秦九韶算法利⽤秦九韶算法简化求多项式1110n n n n x a x a y x a a --=++++ 的值的运算式,并写程序计算多项式42352x y x x =--+在1x =-点处的值。

1.2秦九韶算法简化多项式计算多项式1110n n n n x a x a y x a a --=++++ 的值:1.直接计算i i x a ,逐项相加,共需要加法和乘法的次数为n 次、2)1(+n n 次; 2.⽤秦九韶算法简化,则y=(…0121)...))(a x a x a x a x a n n n +++++--,从内到外逐步计算⼀次多项式的值,共需要加法和乘法的次数各为n 次。

2.⽜顿法及基于⽜顿算法下的Steffensen 加速法分别⽤⽜顿法,及基于⽜顿算法下的Steffensen 加速法(1) 求ln(x +sin x )=0的根。

初值x0分别取0.1, 1,1.5, 2, 4进⾏计算。

(2) 求sin x =0的根。

初值x0分别取1,1.4,1.6, 1.8,3进⾏计算。

分析其中遇到的现象与问题。

2.1 问题分析⽜顿法是⼀种迭代法,是求⽅程根的重要⽅法之⼀,通过使⽤函数f(x)在近似根0x 附近的⼀阶泰勒多项式近似表⽰来寻找⽅程的根,在⽅程f(x) = 0的单根附近具有平⽅收敛。

其迭代公式为:)()(1k k k k x f x f x x '-=+ Steffensen 加速法公式:)()()(x f x f x x '-=? )(n n x y ?= )(n n y z ?=nn n n n n n x y z x y x x +---=+2)(212.2求ln(x+sinx)=0的根 2.2.1⽜顿法kk k k k k k x x x x x x x sin cos 1)sin ln(1+++-=+2.2.2 Steffensen 加速法 2.2.3 结果及分析初值⽜顿法结果(循环次数) Steffensen 加速法结果(循环次数)0.1 0.5109734294(7) -2.118746196 0.2 0.5109734294(6) 0.5109734294(5) 0.5 0.5109734294(4)0.5109734294(3) 1 0.5109734294(6)0.5109734294(5)1.5 溢出 1.5 2 溢出 2 4溢出4(误差限为20-e )2.3求sinx=0的根 2.3.1 ⽜顿法kkk k x x x x cos sin 1-=+ 2.3.2 Steffensen 加速法 2.3.3 结果及分析初值⽜顿法结果(循环次数) Steffensen 加速法结果(循环次数)1 溢出 01.43.1415926535898(7) -3.141592651(4)1.6 31.4159265358965(8) 25.13274123(6) 1.8 6.28318530141765(4) 6.283185307(3) 33.14159265330048(3) 3.141592654(3)3.数值积分(1)实际验证梯形求积公式、Simpson 求积公式、Newton-Cotes 求积公式的代数精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试目标及考试大纲本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。

通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。

本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。

考试内容包括以下部分:绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。

非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。

解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。

解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。

插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。

曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。

最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。

本段加黑斜体内容理论推导可以淡化,但概念需要理解。

数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。

正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。

本段加黑斜体内容理论推导可以淡化,但概念需要理解。

常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

本套题库均采用闭卷考试,卷面总分为100分。

试题形式分为判别正误、多项选择、填空、解答和证明等多种题型。

其中判断题、多项选择题和填空题覆盖整个内容范围,题量多而广,重点集中在基本概念、公式和方法的构建与处理思想等方面,此类题型主要用于考查学生对整体内容的理解与掌握情况;解答题重点放在主要的计算技术和方法的具体实现过程,主要考查学生对主要计算技术、技巧和方法理解与掌握情况;证明题主要集中在主要的计算技术和方法的分析过程,主要考查学生的理论分析能力和知识的综合运用能力。

本课程的考试方法与要求:期末闭卷考试,按时完成上机习题。

学习合格条件:考试卷面成绩 60且上机习题符合要求,二者缺一不可。

综合成绩:原则上=卷面成绩,但可参考上机习题完成情况作微调。

填空题1 绪论(1). 要使20的近似值的相对误差限≤0.1%, 应至少取___4____位有效数字。

20=0.4…⨯10, a 1=4, εr ≤121a ⨯10-(n-1)< 0.1% ,故可取n ≥4, 即4位有效数字。

(2). 要使20的近似值的相对误差限≤0.1%, 应至少取___4___位有效数字,此时的绝对误差限为31102(3). 设y =f (x 1,x 2) 若x 1,x 2,的近似值分别为x 1*, x 2*,令y *=f (x 1*,x 2*)作为y 的近似值,其绝对误差限的估计式为: ε ≤| |f (x 1*,x 2*)|x 1-x*1|+ |f (x 1*,x 2*)|x 2-x*2| (4). 计算 f=(2-1)6 , 取2=1.4 , 利用下列算式,那个得到的结果最好?答:__C_____.(A)6121)(-, (B) (3-22)2, (C)32231)(+, (D) 99-702(5). 要使17的近似值的相对误差限≤0.1%, 应至少取_________位有效数字?17=0.4…⨯10, a 1=4, εr ≤121a ⨯10-(n-1)< 0.1% 故可取n ≥3.097, 即4位有效数字。

(6). 设x =3.214, y =3.213,欲计算u =y x -, 请给出一个精度较高的算式u =.u=yx y x +-(7).设x =3.214, y =3.213,欲计算u =y x -, 请给出一个精度较高的算式u = .u=yx y x +-(8).设y =f (x 1,x 2) 若x 1,x 2,的近似值分别为x 1*, x 2*,令y *=f (x 1*,x 2*)作为y 的近似值,其绝对误差限的估计式为: ε ≤| |f (x 1*,x 2*)|x 1-x*1|+ |f (x 1*,x 2*)|x 2-x*2|;2 方程根(9). 设迭代函数ϕ(x )在x *邻近有r (≥1)阶连续导数,且x * = ϕ(x *),并且有ϕ(k )(x *)=0(k =1,…,r -1),但ϕ(r ) (x *)≠0,则x n +1=ϕ(x n )产生的序列{ x n }的收敛阶数为___r___(10). 称序列{x n }是p 阶收敛的如果c x x x x pn n n =--+∞→**lim1(11). 用牛顿法求 f (x)=0 的n 重根,为了提高收敛速度,通常转化为求另一函数u(x)=0的单根,u(x)=()()f x f x '(12). 用Newton 法求方程f (x )=x 3+10x -20=0 的根,取初值x 0= 1.5, 则x 1= ________ 解x 1=1.5970149 (13). 用牛顿法解方程0123=--x x 的迭代格式为_______________ 解 kk k k k k x x x x x x 2312231----=+ (14). 迭代过程)(1k k x x ϕ=+收敛的充分条件是)(x ϕ' ≤ 1.___(15). 用Newton 法求方程f(x)=x 3+10x-20=0 的根,取初值x 0= 1.5, 则x 1= 1.5970149 (16). 用牛顿法解方程0123=--x x 的迭代格式为(17). 用Newton 法求方程f (x )=x 3+10x -20=0 的根,取初值x 0= 1.5, 则x 1= ________ 解x 1=1.5970149(18). 迭代公式x k +1=x k (x k 2+3a )/(3x k 2+a )是求a 1/2的 (12) 阶方法3方程组(19). 矩阵的 LU 分解中L 是一个 _为单位下三角阵,而U 是一个上三角阵____。

(20). 设线性方程组的系数矩阵为A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-6847153131483412,全主元消元法的第一次可选的主元素为 -8,或8___,第二次可选的主元素为 8+7/8或-8-7/8 ____. 列主元消元法的第一次主元素为 _-8_________;第二次主元素为(用小数表示) 7.5_____;(21). 在方阵A 的LU 分解中, 方阵A 的所有顺序主子不为零,是方阵A 能进行LU 分解的充 分 (充分,必要)条件;严格行对角占优阵 能__(能,不能)进行LU 分解;非奇异矩阵___不一定___(一定,不一定)能进行LU 分解。

(22). 设A 是正定矩阵,则A 的cholesky 的分解 唯一 (唯一,不唯一).(23). 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2021012a a A ,为使A 可分解为A=LL T ,其中L 是对角线元素为正的下三角形矩阵,则a 的取值范围是 ,取a=1,则L= 。

(24). 解 )3,3(-∈a ,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡32320023210024迭代(1). ⎥⎦⎤⎢⎣⎡-=3211A ,则=1||||A ,=2||||A ,=∞||||A ; 答:4,3.6180340,5;(2). 已知方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2121132.021b b x x ,则解此方程组的Jacobi 迭代法___是___收敛(填“是”或“不”)。

(3). 给定方程组 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111 211111112321x x x 记此方程组的Jacobi 迭代矩阵为B J =(a ij )3⨯3,则a 23= -1; , 且 相应的Jacobi 迭代序列是__发散_____的。

(4). 设3()1f x x ,则()f x 关于[0,1]C的f 1, 2f(5). ⎥⎦⎤⎢⎣⎡-=1301A ,则)1,)1(|(|1)(,4||||2,121=-=-==λλλρA I A A (6). R n 上的两个范数||x||p , ||x||q 等价指的是_∃C,D ∈R,_C_||x||q _≤||x||p ≤D ||x||q _; R n 上的两个范数_一定____是等价的。

(选填“一定”或“不一定”)。

(7). Tx )12,4,0,3(-=,则=1||||x 19 ,=2||||x 13____,=∞||||x ____12 ; (8). 已知方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2121132.021b b x x ,则解此方程组的Jacobi 迭代法___收敛(填“收敛”或“发散”),12∞解(10). 已知方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2121132.021b b x x ,则解此方程组的Jacobi 迭代法_____________收敛(填“是”或“不”),解 (3)因⎥⎦⎤⎢⎣⎡=132.021A 的Jacobi 迭代矩阵⎥⎦⎤⎢⎣⎡=032.020B ,8.0)(=B ρ,故Jacobi 迭代是收敛的,(11). 已知方程组⎩⎨⎧=-=+26203825y x y x ,其雅可比法的迭代矩阵是______________,高斯-塞德尔法的迭代格式是________________;解 ⎪⎪⎩⎪⎪⎨⎧+=+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+++10132035852,0203520)1()1()()1(k k k k x y y x (12). 已知方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2121132.021b b x x ,则解此方程组的Jacobi 迭代法_____________收敛(填“是”或“不”),解 因⎥⎦⎤⎢⎣⎡=132.021A 的Jacobi 迭代矩阵⎥⎦⎤⎢⎣⎡=032.020B ,8.0)(=B ρ,故Jacobi 迭代是收敛的,(13). 已知方程组⎩⎨⎧=-=+26203825y x y x ,其雅可比法的迭代矩阵是______________,高斯-塞德尔法的迭代格式是________________;解(14). ⎥⎥⎦⎤⎢⎢⎣⎡=21010a A ,要使0lim =∞→k k A ,a 应满足___________; 解 1<a12∞⎥⎦⎤⎢⎣⎡-=1301A ,则=1||||A ,=)(A ρ 。

相关文档
最新文档