湖南邵阳市中考数学真题试卷(解析版)
(中考精品卷)湖南省邵阳市中考数学真题(解析版)
2022年邵阳市初中学业水平考试试题卷数 学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上; (3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. -2022的绝对值是( ) A. 12022 B. 12022- C. -2022 D. 2022【答案】D【解析】【分析】直接利用绝对值定义判断即可.【详解】解:-2022的绝对值是2022,故选:D .【点睛】本题考查了绝对值的定义,明确负数的绝对值等于它的相反数是解题关键. 2. 下列四种图形中,对称轴条数最多的是( )A. 等边三角形B. 圆C. 长方形D. 正方形【答案】B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B .【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.3. 5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是( )A. 0.11B. 1.1C. 11D. 11000 【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:因1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012. 故选:B .【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a 的值以及n 的值.4. 下列四个图形中,圆柱体的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选∶D .【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图. 5. 假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )A. 1B. 34C. 12D. 14【答案】D【解析】【分析】由列举法可得:掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,然后利用概率公式求解即可求得答案.为【详解】∵掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,∴P(正,正)=14.故选∶D.【点睛】此题考查了列举法求概率,解题关键是知道概率=所求情况数与总情况数之比.6. 下列长度的三条线段能首尾相接构成三角形的是()A. 1cm,2cm,3cmB. 3cm,4cm,5cmC. 4cm,5cm,10cmD. 6cm,9cm,2cm【答案】B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故选项错误,不符合题意;B、3+4>5,能够组成三角形,故选项正确,符合题意;C、5+4<10,不能组成三角形,故选项错误,不符合题意;D、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B.【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.7. 如图是反比例函数y=1x的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A. 1B. 12C. 2 D.32的【答案】B【解析】【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是12. 【详解】解:设A (x ,y )则OB =x ,AB =y , ∵A 为反比例函数y =1x 图象上一点, ∴xy =1,∴S △ABO =12AB •OB =12xy =12×1=12, 故选:B .【点睛】本题考查反比例函数的几何意义,即k 的绝对值,等于△AOB 的面积的2倍,数形结合比较直观.8. 在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A. m n <B. m n >C. m n ≥D. m n ≤【答案】A【解析】【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴32> ∴m <n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.9. 如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A. 32 D. 52【答案】C【解析】【分析】作直径AD ,连接CD ,如图,利用等边三角形的性质得到∠B =60°,关键圆周角定理得到∠ACD =90°,∠D =∠B =60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD ,连接CD ,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD ,∴OA =OB =12AD . 故选:C . 【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.10. 关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是( )A. 3B. 4C. 5D. 6 【答案】C【解析】【分析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值. 【详解】解不等式1233x x ->-, 1233x x -+>, ∴2233x >, ∴1x >, 解不等式111(2)22x a -<-, 得11(2)122x a <-+, ∴x a <, ∴1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<, ∵不等式组有且只有三个整数解,∴不等式组的整数解应为:2,3,4,∴a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.二、填空题(本大题有8个小题,每小题3分,共24分)11. 因式分解:224a b -=_____.【答案】()()22a b a b +-【解析】【分析】本题利用平方差公式进行因式分解即可.【详解】解:原式=(a+2b)(a-2b) .12. 有意义,则x的取值范围是_________.【答案】x>2##2<x【解析】【分析】根据二次根式有意义的条件:被开方数是非负数和分式有意义的条件:分母不为0即可求出结论.【详解】解:由题意可得x-2>0,解得:x>2,故答案为:x>2.【点睛】本题考查的是分式及二次根式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0解题的关键.13. 某班50名同学的身高(单位:cm)如下表所示:【答案】160【解析】【分析】根据众数的定义求解.【详解】在这一组数据中160出现了10次,次数最多,故众数是160.故答案为:160.【点睛】此题考查了众数,解题的关键是掌握众数的定义.14. 分式方程532x x-=-的根为_____【答案】x=-3 【解析】【详解】解:532x x-=-,去分母得:5x-3(x-2)=0,解得:x =-3,检验:当x =-3时,x (x -3)≠0,所以,原分式方程的解为x =-3,故答案是:x =-3.15. 已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为_________2cm .【答案】48【解析】【分析】如图,先根据勾股定理求出8cm AB ==,再由ABCD S AB BC=⨯矩形求解即可.【详解】解:在矩形ABCD 中,6cm BC =,10cm AC =,∴Rt ABC △中,8AB ==(cm),∴28648(cm )ABCD S AB BC =⨯=⨯=矩形.故答案为:48.【点睛】此题考查了矩形的性质,勾股定理,解题的关键是熟知上述知识.16. 已知2310x x -+=,则2395x x -+=_________.【答案】2【解析】【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识. 17. 如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.在【答案】110º【解析】【分析】先根据等腰三角形的性质求出∠ABC 的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出∠2+∠ABE =180º,代入求解即可.【详解】解:∵ABC 是等腰三角形,∠A =120º,∴∠ABC =∠C =(180º-∠A )÷2=30º,∵四边形ODEF 是平行四边形,∴OF ∥DE ,∴∠2+∠ABE =180º,即∠2+30º+40º=180º,∴∠2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.18. 如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【答案】∠ADE =∠B (答案不唯一).【解析】【分析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.【详解】解∶∵∠A =∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE =∠B 或∠AED =∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AE AB AC=证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19. 计算:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒. 【答案】【解析】【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法. 【详解】解:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒数幂、负指数幂、锐角三角函数值的计算法则.20. 先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭. 【答案】11x +【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭ 11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦ 的1(1)(1)x x x x x -=⋅+- =11x +, ∵x +1≠0,x -1≠0,x ≠0,∴x ≠±1,x ≠0当x 时,原式==【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.21. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE DF =,OE OA =.求证:四边形AECF 是正方形.【答案】证明过程见解析【解析】【分析】菱形的两条对角线相互垂直且平分,再根据两条对角线相互垂直平分且相等的四边形是正方形即可证明四边形AECF 是正方形.【详解】证明:∵ 四边形ABCD 是菱形∴ OA =OC ,OB =OD 且AC ⊥BD ,又∵ BE =DF∴ OB -BE =OD -DF即OE =OF∵OE =OA∴OA =OC =OE =OF 且AC =EF又∵AC ⊥EF∴ 四边形DEBF 是正方形.【点睛】此题考查了菱形的性质和正方形的判定,解题的关键是掌握上述知识.22. 2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图(1)、图(2)所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.【答案】(1)抽取参加调查的学生人数为40人(2)统计图见解析(3)估计该校报兴趣类社团的学生人数有200人【解析】【分析】(1)从两个统计图中可知,报兴趣类社团有5人,占调查人数的12.5%,可求出抽取参加调查的学生人数;(2)求出报体育类社团的人数即可补全条形统计图,求出文艺类和阅读类所占百分比可补全扇形统计图;(3)用1600去乘报兴趣类社团的学生所占的比例即可.【小问1详解】解:5÷12.5%=40(人)答:抽取参加调查的学生人数为40人.【小问2详解】解:40×25%=10(人),补全条形统计图如图所示:15100%40⨯=37.5%,10100%25%40⨯=,补全扇形统计图如图所示: 【小问3详解】解:1600×12.5%=200(人)答:估计该校报兴趣类社团的学生人数有200人.【点睛】此题考查了条形统计图、扇形统计图的意义和制作方法以及用样本估计总体,解题的关键是从两个统计图中获取数量和数量关系式.23. 2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?【答案】(1)购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)购进的“冰墩墩”挂件不能超过70个.【解析】【分析】(1)设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,利用总价=单价×数量,结合购买“冰墩墩”摆件和“冰墩墩”挂件共180个且共花费11400元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,利用总价=单价×数量,结合至少盈利2900元,即可得出关于m 不等式,解之即可得出结论.【小问1详解】解:设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,依题意得:180805011400x y x y +=⎧⎨+=⎩, 解得:80100x y =⎧⎨=⎩, 答:购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;【小问2详解】解:设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,依题意得:(100-80)(180-m )+(60-50)m ≥2900,解得:m ≤70,答:购进的“冰墩墩”挂件不能超过70个.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24. 如图,已知DC 是O 的直径,点B 为CD 延长线上一点,AB 是O 的切线,点A 为切点,且AB AC =.(1)求ACB ∠的度数;(2)若O 的半径为3,求圆弧 AC 的长.【答案】(1)30︒(2)2π【解析】【分析】(1)证明ADO ∆是等边三角形,得到60ADO ︒∠=,从而计算出ACB ∠的度数;(2)计算出圆弧 AC 的圆心角,根据圆弧弧长公式计算出最终的答案.【小问1详解】如下图,连接AO的∵AB 是O 的切线∴OA AB ⊥∴90OAB ︒∠=∵90DAC ︒∠=∴DAC OAB ∠=∠∵AB AC =∴B C ∠=∠∴ABO ACD ∆∆≌∴AD AO DO ==∴ADO ∆是等边三角形∴60ADO ︒∠=∵90DAC ︒∠=∴30ACB ︒∠=【小问2详解】∵60AOD ︒∠=∴120AOC ︒∠=圆弧 AC 的长为:12032180ππ︒︒⨯⨯= ∴圆弧 AC 的长为2π.【点睛】本题考查全等三角形、等腰三角形、等边三角形和圆的性质,解题的关键是熟练掌握全等三角形、等腰三角形、等边三角形和圆的相关知识.25. 如图,一艘轮船从点A 处以30km/h 的速度向正东方向航行,在A 处测得灯塔C 在北偏东60︒方向上,继续航行1h 到达B 处,这时测得灯塔C 在北偏东45︒方向上,已知在灯塔C 的四周40km 内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由. 1.414≈ 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【解析】【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可.【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°,tan ∠DBC =CD BD ,即CD BD =1 ∴CD =BD设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x ,∵40.98km>40km∴这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义. 26. 如图,已知直线y =2x +2与抛物线y =ax 2+bx +c 相交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,点C (3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ 所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【答案】(1)该抛物线的表达式为y=23-x2+43x+2;(2)点P的坐标为(1,0)或(2,0);(3)线段CD'长度的最小值为1.【解析】【分析】(1)先求得点A(-1,0),点B(0,2),利用待定系数法即可求解;(2)分两种情况讨论:△AOB≌△DPC和△AOB≌△CPD,利用全等三角形的性质求解即可;(3)按照(2)的结论,分两种情况讨论,当P、D'、C三点共线时,线段CD'长度取得最小值,据此求解即可.【小问1详解】解:令x=0,则y=2x+2=2,令y=0,则0=2x+2,解得x=-1,点A(-1,0),点B(0,2),把A(-1,0),B(0,2),C(3,0)代入y=ax2+bx+c,得9302a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得23432abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴该抛物线的表达式为y=23-x2+43x+2;【小问2详解】解:若△AOB和△DPC全等,且∠AOB=∠DPC=90°,分两种情况:①△AOB≌△DPC,则AO=PD=1,OB=PC=2,∵OC=3,∴OP=3-2=1,∴点P的坐标为(1,0);②△AOB≌△CPD,则OB=PD=2,∴正方形OPDE的边长为2,∴点P的坐标为(2,0);综上,点P的坐标为(1,0)或(2,0);【小问3详解】解:①点P的坐标为(1,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,1为半径的圆上运动,当P、D'、C三点共线时,线段CD'长度取得最小值,最小值为2-1=1;②点P的坐标为(2,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,2为半径的圆上运动,当P、C、D'三点共线时,线段CD'长度取得最小值,最小值为2-1=1;综上,线段CD'长度的最小值为1.【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,点和圆的位置关系,解题的关键是正确进行分类讨论。
2020年湖南省邵阳市中考数学试卷(含解析)
2020年湖南省邵阳市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题有10个小题,每小题3分,共30分)1.2020的倒数是()A.﹣2020 B.2020 C.D.﹣2.下列四个立体图形中,它们各自的三视图都相同的是()A.B.C.D.3.2020年6月23日,中国第55颗北斗导航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面建成.据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%.其中,3450亿元用科学记数法表示为()A.3.45×1010元B.3.45×109元C.3.45×108元D.3.45×1011元4.设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3 B.﹣C.D.﹣25.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.6.下列计算正确的是()A.5+=8B.(﹣2a2b)3=﹣6a2b3C.(a﹣b)2=a2﹣b2D.=a﹣27.如图,四边形ABCD是平行四边形,点E,B,D,F在同一条直线上,请添加一个条件使得△ABE≌△CDF,下列不正确的是()A.AE=CF B.∠AEB=∠CFD C.∠EAB=∠FCD D.BE=DF8.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)9.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m210.将一张矩形纸片ABCD按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于点M.若P1M⊥AB,则∠DP1M的大小是()A.135°B.120°C.112.5°D.115°二、填空题(本大题有8个小题,每小题3分,共24分)11.因式分解:2x2﹣18=.12.如图,已知点A在反比例函数y=(k≠0)的图象上,过点A作AB⊥y轴于点B,△OAB的面积是2.则k的值是.13.据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲,乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时):甲:7,8,8,9,7,8,8,9,7,9;乙:6,8,7,7,8,9,10,7,9,9.从接受“送教上门”的时间波动大小来看,学生每周接受送教的时间更稳定.(填“甲”或“乙”)14.如图,线段AB=10cm,用尺规作图法按如下步骤作图.(1)过点B作AB的垂线,并在垂线上取BC=AB;(2)连接AC,以点C为圆心,CB为半径画弧,交AC于点E;(3)以点A为圆心,AE为半径画弧,交AB于点D.即点D为线段AB的黄金分割点.则线段AD的长度约为cm.(结果保留两位小数,参考数据:=1.414,=1.732,=2.236)15.在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.3 21 6316.中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为.17.(3分)如图①是山东舰航徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母橫空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为10π的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长AB为.18.如图,在Rt△ABC中,∠ACB=90°,斜边AB=,过点C作CF∥AB,以AB为边作菱形ABEF,若∠F =30°,则Rt△ABC的面积为.三、解答题(本大题有8个小题,第19~25题每题8分,第26是10分,共66分)19.(8分)计算:(﹣1)2020+()﹣1+|﹣1+|﹣2sin60°.20.(8分)已知:|m﹣1|+=0,(1)求m,n的值;(2)先化简,再求值:m(m﹣3n)+(m+2n)2﹣4n2.21.(8分)如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD =∠C.(1)求证:AC是⊙O的切线;(2)若AC=4,求⊙O的半径.22.(8分)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程﹣﹣邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB,BC表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔AA1,BB1,CC1分别为62m,100m,200m.若管道AB与水平线AA2的夹角为30°,管道BC与水平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).23.(8分)“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,为了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:xx学校“停课不停学”网络学习时间调查表亲爱的同学,你好!为了了解和更好地指导你进行“停课不停学”网络学习,请在表格中选择一项符合你学习时间的选项,在其后的空格内打“√”.平均每天利用网络学习时间问卷调查表选项学习时间(小时)A 0<t≤1B 1<t≤3C 3<t≤5D t>5(1)本次接受问卷调查的学生共有人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?24.(8分)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?25.(8分)已知:如图①,将一块45°角的直角三角板DEF与正方形ABCD的一角重合,连接AF,CE,点M是CE的中点,连接DM.(1)请你猜想AF与DM的数量关系是.(2)如图②,把正方形ABCD绕着点D顺时针旋转α角(0°<α<90°).①AF与DM的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM到点N,使MN=DM,连接CN)②求证:AF⊥DM;③若旋转角α=45°,且∠EDM=2∠MDC,求的值.(可不写过程,直接写出结果)26.(10分)如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2﹣x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.(1)求抛物线的解析式;(2)求点D的坐标;(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值;(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.参考答案与试题解析一、选择题1.【解答】解:∵2020×=1∴2020的倒数是,故选:C.2.【解答】解:A、球的三视图都是圆,故本选项符合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不符合题意;C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不符合题意;D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项不符合题意;故选:A.3.【解答】解:根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,则3450亿=345000000000=3.45×1011.故选:D.4.【解答】解:由x2﹣3x+2=0可知,其二次项系数a=1,一次项系数b=﹣3,由根与系数的关系:x1+x2=,故选:A.5.【解答】解:把点(2,3)代入y=kx(k≠0)得2k=3,解得,∴正比例函数解析式为,设正比例函数平移后函数解析式为,把点(1,﹣1)代入得,∴,∴平移后函数解析式为,故函数图象大致为:.故选:D.6.【解答】解:A.,故A选项错误;B.(﹣2a2b)3=(﹣2)3(a2)3b3=﹣8a6b3,故B选项错误;C.(a﹣b)2=a2﹣2ab+b2,故C选项错误;D.,故D选项正确.故选:D.7.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠BDC,∵∠ABE+∠ABD=∠BDC+∠CDF,∴∠ABE=∠CDF,A.若添加AE=CF,则无法证明△ABE≌△CDF,故选项A符合题意;B.若添加∠AEB=∠CFD,运用AAS可以证明△ABE≌△CDF,故选项B不符合题意;C.若添加∠EAB=∠FCD,运用ASA可以证明△ABE≌△CDF,故选项C不符合题意;D.若添加BE=DF,运用SAS可以证明△ABE≌△CDF,故选项D不符合题意.故选:A.8.【解答】解:∵a+b>0,ab>0,∴a>0,b>0.A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;B、(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;C、(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;D、(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;故选:B.9.【解答】解:假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得x=7.故选:B.10.【解答】解:∵折叠,且∠P1MA=90°,∴∠DMP1=∠DMA=45°,即∠ADM=45°,∵折叠,∴∠MDP1=∠ADP=∠PDM=∠ADM=22.5°,∴在△DP1M中,∠DP1M=180°﹣45°﹣22.5°=112.5°,故选:C.二、填空11.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).12.【解答】解:设点A的坐标为(x A,y A),AB⊥y,由题意可知:,∴y A•x A=4,又点A在反比例函数图象上,故有k=x A•y A=4.故答案为:4.13.【解答】解:甲的“送教上门”时间的平均数为:,乙的“送教上门”时间的平均数为:,甲的方差:,乙的方差:,因为,所以甲的方差小,故甲学生每周接受送教的时间更稳定.故答案为:甲.14.【解答】解:由作图得△ABC为直角三角形,CE=BC=AB=5cm,AE=AD,∴AC=cm,∴AE=AC﹣CE=5cm,∴cm.故答案为:6.18.15.【解答】解:由题意可知,第一行三个数的乘积为:,设第二行中间数为x,则,解得,设第三行第一个数为y,则,解得,∴2个空格的实数之积为.故答案为:.16.【解答】解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.17.【解答】解:∵圆锥底面周长=侧面展开后扇形的弧长=10π,∴OB=,在Rt△AOB中,AB=,所以该圆锥的母线长AB为13.故答案为:13.18.【解答】解:如图,分别过点E、C作EH、CG垂直AB,垂足为点H、G,∵根据题意四边形ABEF为菱形,∴AB=BE=,又∵∠ABE=30°∴在RT△BHE中,EH=,根据题意,AB∥CF,根据平行线间的距离处处相等,∴HE=CG=,∴Rt△ABC的面积为.故答案为:.三、解答题19.【解答】解:原式=1+2+(﹣1)﹣2×=1+2+﹣1﹣=2.20.【解答】解:(1)根据非负数得:m﹣1=0且n+2=0,解得:m=1,n=﹣2,(2)原式=m2﹣3mn+m2+4mn+4n2﹣4n2=2m2+mn,当m=1,n=﹣2,原式=2×1+1×(﹣2)=0.21.【解答】(1)证明:如图:连接OA,∵OA=OB,∴∠OBA=∠OAB,∵AB=AC,∴∠OBA=∠C,∴∠OAB=∠C,∵∠CAD=∠C,∴∠OAB=∠CAD,∵BD是直径,∴∠BAD=90°,∵∠OAC=∠BAD﹣∠OAB+∠CAD=90°,∴AC是⊙O的切线;(2)解:由(1)可知AC是⊙O的切线,∴∠OAC=90°,∠AOD=2∠B,∵AB=AC,∴∠B=∠C,∴∠AOC+∠C=2∠B+∠C=3∠C=90°,∴∠B=∠C=30°,在Rt△ABD中,BD===,∴OB=,∴⊙O的半径为.22.【解答】解:根据题意知,四边形AA1B1O和四边形BB1C1B2均为矩形,∴OB1=AA1=62m,B2C1=BB1=100m,∴BO=BB1﹣OB1=100﹣62=38m,CB2=CC1﹣B2C1=200﹣100=100m,在Rt△AOB中,∠AOB=90°,∠BAO=30°,BO=38m,∴AB=2BO=2×38=76m;在Rt△CBB2中,∠CB2B=90°,∠CBB2=45°,CB2=100m,∴,∴,即管道AB和BC的总长度为:.23.【解答】解:(1)15÷15%=100(人).故答案为:100;(2)如图,选B的人数:100﹣40﹣15﹣5=40(人).条形图补充如下:(3)图②中,D选项所对应的扇形圆心角为:360o×=18o.故答案为:18;(4)1500×=600(人).故估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有600人.24.【解答】解:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,依题意,得:,解得:.答:A型风扇进货的单价是10元,B型风扇进货的单价是16元;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,依题意,得:,解得:71≤m≤75,又∵m为正整数,∴m可以取72、73、74、75,∴小丹共有4种进货方案,方案1:购进A型风扇72台,B型风扇28台;方案2:购进A型风扇73台,B 型风扇27台;方案3:购进A型风扇74台,B型风扇26台;方案4:购进A型风扇75台,B型风扇25台.25.【解答】解:(1)猜想AF与DM的数量关系是AF=2DM,理由:∵四边形ABCD是正方形,∴CD=AD,∠ADC=90°,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴AF=CE,∵M是CE的中点,∴CE=2DM,∴AF=2DM,故答案为:AF=2DM;(2)①AF=2DM仍然成立,理由如下:延长DM到点N,使MN=DM,连接CN,∵M是CE中点,∴CM=EM,又∠CMN=∠EMD,∴△MNC≌△MDE(SAS),∴CN=DE=DF,∠MNC=∠MDE,∴CN∥DE,又AD∥BC∴∠NCB=∠EDA,∵四边形ABCD是正方形,∴AD=DC,∠BCD=90°=∠EDF,∴∠ADF=∠DCN,∴△ADF≌△DCN(SAS),∴AF=DN,∴AF=2DM;②∵△ADF≌△DCN,∴∠NDC=∠FAD,∵∠CDA=90°,∴∠NDC+∠NDA=90°,∴∠FAD+∠NDA=90°,∴AF⊥DM;③∵α=45°,∴∠EDC=90°﹣45°=45°∵∠EDM=2∠MDC,∴∠EDM=∠EDC=30°,∴∠AFD=30°,过A点作AG⊥FD的延长线于G点,∴∠ADG=90°﹣45°=45°,∴△ADG是等腰直角三角形,设AG=k,则DG=k,AD=AG÷sin45°=k,FG=AG÷tan30°=k,∴FD=ED=k﹣k,故=.26.【解答】解:(1)将C(8,0),B(0,6)代入,得,解得,∴抛物线的解析式为:;(2)如答图1,作DE⊥x轴于点E,∵C(8,0),B(0,6),∴OC=8,OB=6.∴BC=10.∵∠BOC=∠BCD=∠DEC,∴△BOC~△CED.∴.∴CE=3,DE=4.∴OE=OC+CE=11.∴D(11,4).(3)若点M在DA上运动时,DM=5t,ON=4t,当△BON~△CDM,则,即不成立,舍去;当△BON~△MDC,则,即,解得:;若点M在BC上运动时,CM=25﹣5t.当△BON~△MCD,则,即,∴.当3<t≤4时,ON=16﹣4t.∴,解得(舍去).当4<t≤5时,ON=4t﹣16∴,无解;当△BON~△DCM,则,即,∴ON=30﹣6t;当3<t≤4时,ON=16﹣4t,∴30﹣6t=16﹣4t,解得t=7(舍去);当4<t≤5时,ON=4t﹣16,∴30﹣6t=4t﹣16,解得.综上所示:当时,△BON~△MDC;时,△BON~△DCM;(4)如答图2,作点D关于x轴的对称点F,连接QF交x轴于点N,∵点D(11,4),∴点F(11,﹣4).由得对称轴为x=5,∴点Q(5,4).∴,.∴.故A'Q+QN+DN的最小值为。
2020年湖南省邵阳市中考数学试题(解析版)
2020年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2020的倒数是()A.﹣2020B.2020C.D.﹣2.(3分)下列四个立体图形中,它们各自的三视图都相同的是()A.B.C.D.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面建成.据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%.其中,3450亿元用科学记数法表示为()A.3.45×1010元B.3.45×109元C.3.45×108元D.3.45×1011元4.(3分)设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3B.﹣C.D.﹣25.(3分)已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.6.(3分)下列计算正确的是()A.5+=8B.(﹣2a2b)3=﹣6a2b3C.(a﹣b)2=a2﹣b2D.=a﹣27.(3分)如图,四边形ABCD是平行四边形,点E,B,D,F在同一条直线上,请添加一个条件使得△ABE≌△CDF,下列不正确的是()A.AE=CF B.∠AEB=∠CFD C.∠EAB=∠FCD D.BE=DF8.(3分)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)9.(3分)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m210.(3分)将一张矩形纸片ABCD按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于点M.若P1M⊥AB,则∠DP1M的大小是()A.135°B.120°C.112.5°D.115°二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)因式分解:2x2﹣18=.12.(3分)如图,已知点A在反比例函数y=(k≠0)的图象上,过点A作AB⊥y轴于点B,△OAB的面积是2.则k的值是.13.(3分)据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲,乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时):甲:7,8,8,9,7,8,8,9,7,9;乙:6,8,7,7,8,9,10,7,9,9.从接受“送教上门”的时间波动大小来看,学生每周接受送教的时间更稳定.(填“甲”或“乙”)14.(3分)如图,线段AB=10cm,用尺规作图法按如下步骤作图.(1)过点B作AB的垂线,并在垂线上取BC=AB;(2)连接AC,以点C为圆心,CB为半径画弧,交AC于点E;(3)以点A为圆心,AE为半径画弧,交AB于点D.即点D为线段AB的黄金分割点.则线段AD的长度约为cm.(结果保留两位小数,参考数据:=1.414,=1.732,=2.236)15.(3分)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.3216316.(3分)中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为.17.(3分)如图①是山东舰徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母橫空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为10π的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长AB为.18.(3分)如图,在Rt△ABC中,∠ACB=90°,斜边AB=,过点C作CF∥AB,以AB为边作菱形ABEF,若∠F=30°,则Rt△ABC的面积为.三、解答题(本大题有8个小题,第19~25题每题8分,第26是10分,共66分.解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计算:(﹣1)2020+()﹣1+|﹣1+|﹣2sin60°.20.(8分)已知:|m﹣1|+=0,(1)求m,n的值;(2)先化简,再求值:m(m﹣3n)+(m+2n)2﹣4n2.21.(8分)如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD=∠C.(1)求证:AC是⊙O的切线;(2)若AC=4,求⊙O的半径.22.(8分)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程﹣﹣邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB,BC表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔AA1,BB1,CC1分别为62m,100m,200m.若管道AB与水平线AA2的夹角为30°,管道BC与水平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).23.(8分)“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,为了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:xx学校“停课不停学”网络学习时间调查表亲爱的同学,你好!为了了解和更好地指导你进行“停课不停学”网络学习,请在表格中选择一项符合你学习时间的选项,在其后的空格内打“√”.平均每天利用网络学习时间问卷调查表选项学习时间(小时)A0<t≤1B1<t≤3C3<t≤5D t>5(1)本次接受问卷调查的学生共有人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?24.(8分)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?25.(8分)已知:如图①,将一块45°角的直角三角板DEF与正方形ABCD的一角重合,连接AF,CE,点M是CE的中点,连接DM.(1)请你猜想AF与DM的数量关系是.(2)如图②,把正方形ABCD绕着点D顺时针旋转α角(0°<α<90°).①AF与DM的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM到点N,使MN=DM,连接CN)②求证:AF⊥DM;③若旋转角α=45°,且∠EDM=2∠MDC,求的值.(可不写过程,直接写出结果)26.(10分)如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2﹣x+c(a≠0)过B,C两点,动点M 从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.(1)求抛物线的解析式;(2)求点D的坐标;(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N 为顶点的三角形相似,求t的值;(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.2020年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2020的倒数是()A.﹣2020B.2020C.D.﹣【分析】根据倒数的定义求解即可【解答】解:∵2020×=1∴2020的倒数是,故选:C.2.(3分)下列四个立体图形中,它们各自的三视图都相同的是()A.B.C.D.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.【解答】解:A、球的三视图都是圆,故本选项符合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不符合题意;C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不符合题意;D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项不符合题意;故选:A.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面建成.据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%.其中,3450亿元用科学记数法表示为()A.3.45×1010元B.3.45×109元C.3.45×108元D.3.45×1011元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,则3450亿=345000000000=3.45×1011.故选:D.4.(3分)设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3B.﹣C.D.﹣2【分析】本题可利用根与系数的关系,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可.【解答】解:由x2﹣3x+2=0可知,其二次项系数a=1,一次项系数b=﹣3,由根与系数的关系:x1+x2=﹣=﹣=3.故选:A.5.(3分)已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.【分析】先求出正比例函数解析式,再根据平移和经过点(1,﹣1)求出一次函数解析式,即可求解.【解答】解:把点(2,3)代入y=kx(k≠0)得2k=3,解得,∴正比例函数解析式为,设正比例函数平移后函数解析式为,把点(1,﹣1)代入得,∴,∴平移后函数解析式为,故函数图象大致为:.故选:D.6.(3分)下列计算正确的是()A.5+=8B.(﹣2a2b)3=﹣6a2b3C.(a﹣b)2=a2﹣b2D.=a﹣2【分析】分别运用二次根式、整式和分式的运算法则逐项排除即可.【解答】解:A.,故A选项错误;B.(﹣2a2b)3=(﹣2)3(a2)3b3=﹣8a6b3,故B选项错误;C.(a﹣b)2=a2﹣2ab+b2,故C选项错误;D.,故D选项正确.故选:D.7.(3分)如图,四边形ABCD是平行四边形,点E,B,D,F在同一条直线上,请添加一个条件使得△ABE≌△CDF,下列不正确的是()A.AE=CF B.∠AEB=∠CFD C.∠EAB=∠FCD D.BE=DF【分析】根据平行四边形的性质结合全等三角形的判定,逐项进行判断即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠BDC,∵∠ABE+∠ABD=∠BDC+∠CDF,∴∠ABE=∠CDF,A.若添加AE=CF,则无法证明△ABE≌△CDF,故选项A符合题意;B.若添加∠AEB=∠CFD,运用AAS可以证明△ABE≌△CDF,故选项B不符合题意;C.若添加∠EAB=∠FCD,运用ASA可以证明△ABE≌△CDF,故选项C不符合题意;D.若添加BE=DF,运用SAS可以证明△ABE≌△CDF,故选项D不符合题意.故选:A.8.(3分)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)【分析】因为ab>0,所以a、b同号,又a+b>0,所以a>0,b>0,观察图形判断出小手盖住的点在第二象限,然后解答即可.【解答】解:∵a+b>0,ab>0,∴a>0,b>0.A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;B、(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;C、(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;D、(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;故选:B.9.(3分)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.【解答】解:假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得x=7.故选:B.10.(3分)将一张矩形纸片ABCD按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于点M.若P1M⊥AB,则∠DP1M的大小是()A.135°B.120°C.112.5°D.115°【分析】由折叠前后对应角相等且∠P1MA=90°可先求出∠DMP1=∠DMA=45°,进一步求出∠ADM=45°,再由折叠可求出∠MDP1=∠ADP=∠PDM=22.5°,最后在△DP1M中由三角形内角和定理即可求解.【解答】解:∵折叠,且∠P1MA=90°,∴∠DMP1=∠DMA=45°,即∠ADM=45°,∵折叠,∴∠MDP1=∠ADP=∠PDM=∠ADM=22.5°,∴在△DP1M中,∠DP1M=180°﹣45°﹣22.5°=112.5°,故选:C.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)因式分解:2x2﹣18=2(x+3)(x﹣3).【分析】提公因式2,再运用平方差公式分解.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).12.(3分)如图,已知点A在反比例函数y=(k≠0)的图象上,过点A作AB⊥y轴于点B,△OAB的面积是2.则k的值是4.【分析】根据△OAB的面积等于2,即可得到线段OB与线段AB的乘积,进而得到A点横坐标与纵坐标的乘积,进而求出k值.【解答】解:设点A的坐标为(x A,y A),AB⊥y,由题意可知:,∴y A•x A=4,又点A在反比例函数图象上,故有k=x A•y A=4.故答案为:4.13.(3分)据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲,乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时):甲:7,8,8,9,7,8,8,9,7,9;乙:6,8,7,7,8,9,10,7,9,9.从接受“送教上门”的时间波动大小来看,甲学生每周接受送教的时间更稳定.(填“甲”或“乙”)【分析】先算出甲、乙送教上门时间的平均数,进而求出方差,方差越小,则接受送教的时间更稳定.【解答】解:甲的“送教上门”时间的平均数为:,乙的“送教上门”时间的平均数为:,甲的方差:,乙的方差:,因为,所以甲的方差小,故甲学生每周接受送教的时间更稳定.故答案为:甲.14.(3分)如图,线段AB=10cm,用尺规作图法按如下步骤作图.(1)过点B作AB的垂线,并在垂线上取BC=AB;(2)连接AC,以点C为圆心,CB为半径画弧,交AC于点E;(3)以点A为圆心,AE为半径画弧,交AB于点D.即点D为线段AB的黄金分割点.则线段AD的长度约为 6.18cm.(结果保留两位小数,参考数据:=1.414,=1.732,=2.236)【分析】根据作图得△ABC为直角三角形,CE=BC=AB=5cm,AE=AD,根据勾股定理求出AC,再求出AE,即可求出AD.【解答】解:由作图得△ABC为直角三角形,CE=BC=AB=5cm,AE=AD,∴AC=cm,∴AE=AC﹣CE=5cm,∴cm.故答案为:6.18.15.(3分)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.32163【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是,即可求解.【解答】解:由题意可知,第一行三个数的乘积为:,设第二行中间数为x,则,解得,设第三行第一个数为y,则,解得,∴2个空格的实数之积为.故答案为:.16.(3分)中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为x(x+12)=864.【分析】由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.【解答】解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.17.(3分)如图①是山东舰徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母橫空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为10π的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长AB为13.【分析】由扇形弧长求出底面半径,由勾股定理即可求出母线AB的长.【解答】解:∵圆锥底面周长=侧面展开后扇形的弧长=10π,∴OB=,在Rt△AOB中,AB=,所以该圆锥的母线长AB为13.故答案为:13.18.(3分)如图,在Rt△ABC中,∠ACB=90°,斜边AB=,过点C作CF∥AB,以AB为边作菱形ABEF,若∠F=30°,则Rt△ABC的面积为.【分析】先利用直角三角形中30°角的性质求出HE的长度,然后利用平行线间的距离处处相等,可得CG的长度,即可求出直角三角形ABC面积.【解答】解:如图,分别过点E、C作EH、CG垂直AB,垂足为点H、G,∵根据题意四边形ABEF为菱形,∴AB=BE=,又∵∠ABE=30°∴在RT△BHE中,EH=,根据题意,AB∥CF,根据平行线间的距离处处相等,∴HE=CG=,∴Rt△ABC的面积为.故答案为:.三、解答题(本大题有8个小题,第19~25题每题8分,第26是10分,共66分.解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计算:(﹣1)2020+()﹣1+|﹣1+|﹣2sin60°.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1+2+(﹣1)﹣2×=1+2+﹣1﹣=2.20.(8分)已知:|m﹣1|+=0,(1)求m,n的值;(2)先化简,再求值:m(m﹣3n)+(m+2n)2﹣4n2.【分析】(1)根据非负数的和为0的性质进行解答便可;(2)根据整式乘法法则,完全平方公式计算,再合并同类项后,最后再代值计算.【解答】解:(1)根据非负数得:m﹣1=0且n+2=0,解得:m=1,n=﹣2,(2)原式=m2﹣3mn+m2+4mn+4n2﹣4n2=2m2+mn,当m=1,n=﹣2,原式=2×1+1×(﹣2)=0.21.(8分)如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD=∠C.(1)求证:AC是⊙O的切线;(2)若AC=4,求⊙O的半径.【分析】(1)连接OA,由圆的性质可得OA=OB,即∠OBA=∠OAB;再由AB=AC,即∠OBA=∠C,再结合∠CAD=∠C,可得∠OAB=∠CAD,然后由∠BAD=90°说明∠OAC=90°即可完成证明;(2)根据等腰三角形的性质和圆的性质即可得到结论.【解答】(1)证明:如图:连接OA,∵OA=OB,∴∠OBA=∠OAB,∵AB=AC,∴∠OBA=∠C,∴∠OAB=∠C,∵∠CAD=∠C,∴∠OAB=∠CAD,∵BD是直径,∴∠BAD=90°,∵∠OAC=∠BAD﹣∠OAB+∠CAD=90°,∴AC是⊙O的切线;(2)解:由(1)可知AC是⊙O的切线,∴∠OAC=90°,∠AOD=2∠B,∵AB=AC,∴∠B=∠C,∴∠AOC+∠C=2∠B+∠C=3∠C=90°,∴∠B=∠C=30°,在Rt△ABD中,BD===,∴OB=,∴⊙O的半径为.22.(8分)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程﹣﹣邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB,BC表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔AA1,BB1,CC1分别为62m,100m,200m.若管道AB与水平线AA2的夹角为30°,管道BC与水平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).【分析】先根据题意得到BO,CB2的长,在Rt△ABO中,由三角函数可得AB的长度,在Rt△BCB2中,由三角函数可得BC的长度,再相加即可得到答案.【解答】解:根据题意知,四边形AA1B1O和四边形BB1C1B2均为矩形,∴OB1=AA1=62m,B2C1=BB1=100m,∴BO=BB1﹣OB1=100﹣62=38m,CB2=CC1﹣B2C1=200﹣100=100m,在Rt△AOB中,∠AOB=90°,∠BAO=30°,BO=38m,∴AB=2BO=2×38=76m;在Rt△CBB2中,∠CB2B=90°,∠CBB2=45°,CB2=100m,∴,∴,即管道AB和BC的总长度为:.23.(8分)“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,为了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:xx学校“停课不停学”网络学习时间调查表亲爱的同学,你好!为了了解和更好地指导你进行“停课不停学”网络学习,请在表格中选择一项符合你学习时间的选项,在其后的空格内打“√”.平均每天利用网络学习时间问卷调查表选项学习时间(小时)A0<t≤1B1<t≤3C3<t≤5D t>5(1)本次接受问卷调查的学生共有100人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为18度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?【分析】(1)根据选A的有50人,占15%,从而求得本次接受问卷调查的学生总数;(2)根据各组人数之和等于数据总数求得选B的人数,从而可以将条形统计图补充完整;(3)用360°乘以D选项所占百分比可得所对应扇形圆心角的度数;(4)利用样本估计总体,用1500乘以样本中学习时间在C选项的人数所占的百分比即可.【解答】解:(1)15÷15%=100(人).故答案为:100;(2)如图,选B的人数:100﹣40﹣15﹣5=40(人).条形图补充如下:(3)图②中,D选项所对应的扇形圆心角为:360o×=18o.故答案为:18;(4)1500×=600(人).故估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有600人.24.(8分)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?【分析】(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,根据“2台A 型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,根据“购进A型风扇不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元”,即可得出关于m 的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各进货方案.【解答】解:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,依题意,得:,解得:.答:A型风扇进货的单价是10元,B型风扇进货的单价是16元;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,依题意,得:,解得:71≤m≤75,又∵m为正整数,∴m可以取72、73、74、75,∴小丹共有4种进货方案,方案1:购进A型风扇72台,B型风扇28台;方案2:购进A型风扇73台,B型风扇27台;方案3:购进A型风扇74台,B型风扇26台;方案4:购进A型风扇75台,B型风扇25台.25.(8分)已知:如图①,将一块45°角的直角三角板DEF与正方形ABCD的一角重合,连接AF,CE,点M是CE的中点,连接DM.(1)请你猜想AF与DM的数量关系是AF=2DM.(2)如图②,把正方形ABCD绕着点D顺时针旋转α角(0°<α<90°).①AF与DM的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM到点N,使MN=DM,连接CN)②求证:AF⊥DM;③若旋转角α=45°,且∠EDM=2∠MDC,求的值.(可不写过程,直接写出结果)【分析】(1)根据题意合理猜想即可;(2)①延长DM到点N,使MN=DM,连接CN,先证明△MNC≌△MDE,再证明△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;②根据全等三角形的性质和直角的换算即可求解;③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.【解答】解:(1)猜想AF与DM的数量关系是AF=2DM,理由:∵四边形ABCD是正方形,∴CD=AD,∠ADC=90°,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴AF=CE,∵M是CE的中点,∴CE=2DM,∴AF=2DM,故答案为:AF=2DM;(2)①AF=2DM仍然成立,理由如下:延长DM到点N,使MN=DM,连接CN,∵M是CE中点,∴CM=EM,又∠CMN=∠EMD,∴△MNC≌△MDE(SAS),∴CN=DE=DF,∠MNC=∠MDE,∴CN∥DE,又AD∥BC∴∠NCB=∠EDA,∵四边形ABCD是正方形,∴AD=DC,∠BCD=90°=∠EDF,∴∠ADF=∠DCN,∴△ADF≌△DCN(SAS),∴AF=DN,∴AF=2DM;②∵△ADF≌△DCN,∴∠NDC=∠F AD,∵∠CDA=90°,∴∠NDC+∠NDA=90°,∴∠F AD+∠NDA=90°,∴AF⊥DM;③∵α=45°,∴∠EDC=90°﹣45°=45°∵∠EDM=2∠MDC,∴∠EDM=∠EDC=30°,∴∠AFD=30°,过A点作AG⊥FD的延长线于G点,∴∠ADG=90°﹣45°=45°,∴△ADG是等腰直角三角形,设AG=k,则DG=k,AD=AG÷sin45°=k,FG=AG÷tan30°=k,∴FD=ED=k﹣k,故=.26.(10分)如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2﹣x+c(a≠0)过B,C两点,动点M 从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.(1)求抛物线的解析式;(2)求点D的坐标;(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N 为顶点的三角形相似,求t的值;(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.【分析】(1)将C(8,0),B(0,6)代入计算即可;(2)作DE⊥x轴于点E,证明△BOC~△CED,可得CE,DE长度,进而得到点D的坐标;(3)分为点M在AD,BC上两种情况讨论,当点M在AD上时,分为△BON~△CDM 和△BON~△MDC两种情况讨论;当点M在BC上时,分为△BON~△MCD和△BON~△DCM两种情况讨论;(4)作点D关于x轴的对称F,连接QF,可得QN+DN的最小值;连接BQ减去BA'可得A'Q的最小值,综上可得A'Q+QN+DN的最小值.【解答】解:(1)将C(8,0),B(0,6)代入,得,解得,∴抛物线的解析式为:;(2)如答图1,作DE⊥x轴于点E,∵C(8,0),B(0,6),∴OC=8,OB=6.∴BC=10.∵∠BOC=∠BCD=∠DEC,∴△BOC~△CED.∴.∴CE=3,DE=4.∴OE=OC+CE=11.∴D(11,4).(3)若点M在DA上运动时,DM=5t,ON=4t,当△BON~△CDM,则,即不成立,舍去;当△BON~△MDC,则,即,解得:;若点M在BC上运动时,CM=25﹣5t.当△BON~△MCD,则,即,∴.当3<t≤4时,ON=16﹣4t.∴,解得t1=(舍去),t2=.当4<t≤5时,ON=4t﹣16∴,无解;当△BON~△DCM,则,即,∴ON=30﹣6t;当3<t≤4时,ON=16﹣4t,∴30﹣6t=16﹣4t,解得t=7(舍去);当4<t≤5时,ON=4t﹣16,。
2023年湖南省邵阳市中考数学试卷(含答案)145113
2023年湖南省邵阳市中考数学试卷试卷考试总分:118 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 的倒数是( )A.B.C.D.2. 下列图形是中心对称图形的是( )A.B.C.D.3. 太阳与地球的平均距离大约是千米,其中数用科学记数法表示为( )A.B.C.D.4. 下列计算正确的是( )A.=B.C.D.=5. 如图,已知,直角三角板的直角顶点在直线上,若,则下列结论错误的是( )2021−112021−120212021−20211500000001500000001.5×10815×1071.5×1070.15×109+a 3a 2a 5×=2–√3–√6–√5−=53–√3–√a 00a//b b ∠1=60∘A.B.C.D.6. 不等式组的解集在数轴上表示正确的是( ) A. B. C. D.7. 三角形三边长,,都是整数,且,,(注:表示,,的最小公倍数,表示,的最大公约数),则的最小值( )A.B.C.D.8. 一个正方形的边长若减小了,那么面积相应减小了,则原来这个正方形的边长为( )A.B.C.D.9. 在四边形中:①;②;③;④.从以上选择两个条件使四边形为平行四边形的选法共有( )A.种B.种C.种D.种∠2=60∘∠3=60∘∠4=120∘∠5=40∘{x−1≤0,x+1>0a b c [a,b,c]=60(a,b)=4(b,c)=3[a,b,c]a b c (a,b)a b a +b +c 303132333cm 45cm 26cm7cm8cm9cmABCD AB//CD AD//BC AB =CD AD =BC ABCD 345610. 函数的图象过,,,则,,的大小关系是( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 的算术平方根是________.12. 把因式分解是________.13. ________(填“是”或“不是”)方程的解.14. 李老师依次按照期中、期末的考试得分以及同学评价得分的比例确定学生期末综合素质分数,若小强同学的期中、期末的考试得分为分、分,同学对小强同学的评价得分分,则小强同学该学期末的综合素质得分是________.15. 如图,是的直径,与相切于点,交于点,若,则________.16. 圆锥的底面半径是,母线长是,则圆锥的侧面展开图的圆心角是________.17. 如图,在一块长,宽的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为,设道路的宽为,则根据题意,可列方程为________.18. 如图,矩形纸片,,,如果点在边上,将纸片沿折叠,使点落在点处,连结,当是直角三角形时,的长为________.y =−6x−c x 2A(−1,)y 1B(3,)y 2C(5,)y 3y 1y 2y 3>>y 1y 3y 2>>y 1y 2y 3>>y 2y 1y 3>>y 3y 1y 2164−−−√312y−3y x 4x 2x =1+1=x x−11x−13:5:2958690AB ⊙O BC ⊙O B AC ⊙O D ∠ACB =50∘∠BOD =40cm 100cm ∘12m 8m 77m 2xm ABCD AD =4AB =3E BC AE B F FC △EFC BE三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19. 计算题:(1)().(2).20. 化简求值.,其中.21. 已知中为边上高,为上一点,,的延长线与延长线交于点,求证:.22. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,本文学名著和本动漫书共需元,本文学名著比本动漫书多元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).求每本文学名著和动漫书各多少元?若学校要求购买动漫书比文学名著多本,而且文学名著不低于本,总费用不超过元,请求出所有符合条件的购书方案. 23. 月日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生参与某网络教育机构推出的“在线阅读”.该校文学社为了解学生在线阅读情况,校园小记者随机调查了本校部分同学,并统计他们平均每天的线上阅读时间(单位:),然后利用所得数据绘制成如图不完整的统计图表和在线阅读时间频数分布表.根据以上图表,解答下列问题:,;扇形统计图中扇形的圆心角的度数为________;若该校有名学生,则可以估计平均每天的在线阅读时间不少于的学生有________人;校园小记者想在每天在线阅读时间小于分钟的名同学中随机采访名同学以调查他们阅读时间少的原因,已知这名同学中只有名女生,请用列举法求小记者采访到女生的概率.24. 如图,某景区前竖立一块矩形鸟瞰图,米,为测量其高度,某同学在处测得点−+22−2cos +60∘−12cos −tan −30∘45∘[(x+2y −(x−2y −(x+2y)(x−2y)−4]÷2x)2)2y 2x =−2,y =12△ABC CE AB D AC DG ⊥BC GD BA H GF ⋅GH =GB ⋅GC 204016002020400(1)(2)20252000423t min (1)a =_______m=________(2)D (3)120050min (4)304241ACGE AE =3B A仰角,该同学沿方向后退米到处,此时测得矩形鸟瞰图上部灯杆顶端点仰角为.若该同学眼睛离地面的垂直距离为米,灯杆的高为米,求矩形鸟瞰图的高度(或的长).(结果精确到米,参考数据: ,)试判断四边形的形状,并说明理由.26. 将抛物线向左平移个单位,再向上平移个单位得到一个新的抛物线.(1)求新的抛物线的解析式.(2)过作直线,使得直线与新的抛物线仅有一个公共点,求直线的解析式及相应公共点的坐标.(3)请猜想在新的抛物线上是否有且仅有四个点、、、使得、、、分别与(2)中的所有公共点所围成的图形的面积均为?若有,请求出并直接写出、、、的坐标,若不存在,请说明理由.45∘GB 7F P 37∘1.7PE 2.5AC EG 1sin ≈0.637∘tan ≈0.7537∘(2)ABED y =−x 14x 224M(2,0)l l l P 1P 2P 3P 4P 1P 2P 3P 4S S P 1P 2P 3P 4参考答案与试题解析2023年湖南省邵阳市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【考点】倒数【解析】首先求出的倒数,再求其绝对值即可.【解答】解:根据倒数的定义,,所以它的倒数是.故选.2.【答案】D【考点】中心对称图形【解析】根据中心对称图形的概念和各图的性质求解.【解答】解:,不是中心对称图形,故此选项不合题意;,不是中心对称图形,故此选项不合题意;,不是中心对称图形,故此选项不合题意;,是中心对称图形,故此选项符合题意.故选.3.【答案】A【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】−12021=2021−1120212021C A B C D D此题暂无解答4.【答案】B【考点】合并同类项零指数幂二次根式的混合运算【解析】利用合并同类项对进行判断;根据二次根式的乘法法则对进行判断;根据二次根式的加减法对进行判断;根据零指数幂的意义对进行判断.【解答】、与不能合并,所以选项错误;、原式,所以选项正确;、原式=,所以选项错误;、当时,=,所以选项错误.5.【答案】D【考点】邻补角平行线的性质对顶角【解析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出,,,的度数,然后选出错误的选项.【解答】解:∵,,∴,,,∵三角板为直角三角板,∴.故选6.【答案】D【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】A B C D A a 3a 2A B ==2×3−−−−√6–√B C 43–√C D a ≠0a 01D ∠2∠3∠4∠5a//b ∠1=60∘∠3=∠1=60∘∠2=∠1=60∘∠4=−∠3=180∘−=180∘60∘120∘∠5=−∠3=90∘−=90∘60∘30∘D.先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:解不等式,得:;解不等式,得: ,所以不等式组的解集为:,在数轴上表示为:.故选.7.【答案】B【考点】约数与倍数三角形三边关系【解析】首先分解,得出,,中含的因数有,,,由,得出的最小值是,的最小值是,进而得出的最小值是,从得出的最小值.【解答】解:∵,∵,,∴与是的倍数,,是的倍数,∵,即,,的最小公倍数是,∴,,中含的因数有,,,∴当,,时,的最小值是:.故选:.8.【答案】D【考点】完全平方公式与平方差公式的综合正方形的性质【解析】本题主要考查了平方差公式,正方形的性质.【解答】解:设原来的边长为,则,,,,解得.故选.9.x−1≤0x ≤1x+1>0x >−1−1<x ≤1D 60=3×4×5a b c 435(a,b)=4(b,c)=3a 4b 3×4c 3×5a +b +c 60=2×2×3×5(a,b)=4(b,c)=3a b 4b c 3[a,b,c]=60a b c 60a b c 435a =4b =4×3=12c =3×5=15a +b +c 4+4×3+3×5=31B xcm −=45x 2(x−3)2∴(x+x−3)(x−x+3)=45(2x−3)×3=45∴2x−3=15x =9D【答案】B【考点】平行四边形的判定【解析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有种,分别是:①②、②④、①③、③④.故选.10.【答案】A【考点】二次函数的性质二次函数图象上点的坐标特征【解析】二次函数抛物线向下,且对称轴为.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:∵二次函数,∴该二次函数的抛物线开口向上,且对称轴为.∵点,,都在二次函数的图象上,且点在对称轴上,而三点横坐标离对称轴的距离按由远到近为:,,,∴.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】【考点】算术平方根立方根【解析】【解答】4B x =−=3b 2ay =−6x−c x 2x =3(−1,)y 1(3,)y 2(5,)y 3y =−6x−c x 2(3,)y 2x =3(−1,)y 1(5,)y 3(3,)y 2>>y 1y 3y 2A 12−−−解:,的算术平方根是.故答案为:.12.【答案】【考点】提公因式法与公式法的综合运用【解析】先提公因式,得到继续用平方差公式分解因式.【解答】==13.【答案】不是【考点】解分式方程【解析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:分式方程去分母得:,解得:,检验:当时,,不是原方程的解,原方程无解.故答案为:不是.14.【答案】分【考点】加权平均数【解析】暂无【解答】解:由题意,得(分),故小强同学该学期末的综合素质得分是分.故答案为:分.15.【答案】=164−−−√3141412123y(2x+1)(2x−1)x 23y x 24−1x 212y−3y x 4x 23y(4−1)x 2x 23y(2x+1)(2x−1)x 2x x+x−1=1x =1x =1x−1=0∴x =189.5=89.595×3+86×5+90×23+5+289.589.5【考点】圆周角定理切线的性质【解析】根据是圆的切线,可得,再求得,由圆周角定理可得,即可求得答案.【解答】解:是圆的切线,,∵,,由圆周角定理可得:.故答案为:.16.【答案】【考点】圆锥的计算扇形面积的计算【解析】根据圆锥的底面半径径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面半径是,∴圆锥的侧面展开扇形的弧长为:,∵母线长,∴圆锥的侧面展开扇形的面积为:,∴,解得:.故答案为:.17.【答案】【考点】由实际问题抽象出一元二次方程【解析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的部分是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽为米,80∘BC ∠ABC =90∘∠A ∠BOD =2∠A ∵BC ∴∠ABC =90∘∠ACB =50∘∴∠A =−∠ACB 90∘=−90∘50∘=40∘∠BOD =2∠A=2×40∘=80∘80∘14440cm 2πr =80π100cm lr =×80π×100=4000π1212=4000πnπ×1002360n =144144(12−x)(8−x)=77x由题意得,.故答案为:.18.【答案】或【考点】矩形的性质翻折变换(折叠问题)【解析】分两种情况:①当=时,先判断出点在对角线上,利用勾股定理列式求出,设=,表示出,根据翻折变换的性质可得=,=,然后在中,利用勾股定理列出方程求解即可;②当=时,判断出四边形是正方形,根据正方形的四条边都相等可得=.【解答】解:分两种情况:①当时,如图:∵,,∴点、、共线,∵矩形的边,∴,在中,,设,则,由翻折的性质得,,,∴,在中,,即,解得,即;②当时,如图:由翻折的性质得,,∴四边形是正方形,∴,综上所述,的长为或.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19.【答案】()(12−x)(8−x)=77(12−x)(8−x)=771.53∠EFC 90∘F AC AC BE x CE AF AB EF BE Rt △CEF ∠CEF 90∘ABEF BE AB ∠EFC =90∘∠AFE =∠B =90∘∠EFC =90∘A F C ABCD AD =4BC =AD =4Rt △ABC AC ===5A +B B 2C 2−−−−−−−−−−√+3242−−−−−−√BE =x CE =BC −BE =4−x AF =AB =3EF =BE =x CF =AC −AF =5−3=2Rt △CEF E +C =F 2F 2CE 2+=x 222(4−x)2x =1.5BE =1.5∠CEF =90∘∠AEB =∠AEF =×=1290∘45∘ABEF BE =AB =3BE 1.53−+22−2cos +60∘−1===;=(==.【考点】特殊角的三角函数值负整数指数幂实数的运算【解析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值分别化简得出答案.【解答】()===;=(==.20.【答案】解:原式,当 时,原式 .【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式,当 时,原式 .21.−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+10−+22−2cos +60∘−1−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+10=(8xy−)÷2x x 2=4y−x 12x =−2,y =12=4×12−×(−2)=4912=(8xy−)÷2x x 2=4y−x 12x =−2,y =12=4×12−×(−2)=4912证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【考点】相似三角形的判定与性质【解析】∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【解答】证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .22.【答案】解:设每本文学名著元,每本动漫书元,根据题意可得:解得:答:每本文学名著元,每本动漫书元;设学校要求购买文学名著本,则购买动漫书本,根据题意可得:解得:.因为为整数,所以可取,.方案一:文学名著本,动漫书本;方案二:文学名著本,动漫书本.【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设每本文学名著元,每本动漫书元,列出方程组即可解决问题;(2)设学校要求购买文学名著本,动漫书为本,构建不等式组,求整数解即可;CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC CF ∶GB =GC ∶CH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC (1)x y {20x+40y =1600,20x−20y =400,{x =40,y =20.4020(2)x (x+20){x ≥25,40x+20(x+20)≤2000,25≤x ≤2623x x 252625452646x y x (x+20)解:设每本文学名著元,每本动漫书元,根据题意可得:解得:答:每本文学名著元,每本动漫书元;设学校要求购买文学名著本,则购买动漫书本,根据题意可得:解得:.因为为整数,所以可取,.方案一:文学名著本,动漫书本;方案二:文学名著本,动漫书本.23.【答案】,设三个男生分别为,,,则从人中随机抽取人的情况有:,,女,,女,女共种情况,其中采访到女生的情况有种,则采访的女生的概率.【考点】频数(率)分布表扇形统计图用样本估计总体概率公式【解析】结合条形统计图和扇形统计图,先求出样本总数,再根据人数求占比或根据占比求人数.根据组人数,求出组占比,进而可求圆心角度数.根据样本中在线阅读时间不少于的人数占比估计全校阅读时间不少于的人数即可.将所有情况列举出来共种,包含女生的共种,根据概率公式即可求得.【解答】解:由题意可知,组的人数为人,占比为,则样本容量为(人),则组的人数为(人),即.组的占比为,即.故答案为:;.因为组人数为人,则占比为,则扇形的圆心角的度数为.故答案为:.该校学生在线阅读时间不少于的人数为:(人).故答案为:.设三个男生分别为,,,则从人中随机抽取人的情况有:,,女,,女,女共种情况,其中采访到女生的情况有种,则采访的女生的概率.24.(1)x y {20x+40y =1600,20x−20y =400,{x =40,y =20.4020(2)x (x+20){x ≥25,40x+20(x+20)≤2000,25≤x ≤2623x x 252625452646208115.2∘912(4)A B C 42AB AC A BC B C 63P ==3612(1)(2)D D (3)50min 50min (4)63(1)B 816%8÷16%=50C 50×40%=20a =20A ×100%=8%450m=8208(2)D 16×100%=32%1650D ×32%=360∘115.2∘115.2∘(3)50min 1200×=91220+16+250912(4)A B C 42AB AC A BC B C 63P ==3612解:由题意米,米, 米,如图,设直线交于,交于,则,设,则,在中,∵,∴.∵,则,在中,∵ ,∴,解得 ,∴(米),故矩形鸟瞰图的高度为米.【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】解:由题意米,米, 米,如图,设直线交于,交于,则,设,则,在中,∵,∴.∵,则,在中,∵ ,∴,解得 ,∴(米),故矩形鸟瞰图的高度为米.25.【答案】证明:∵是由在平面内绕点旋转而得,∴,,,∵,∴,∴,在和中,DH =BF =7DB =HF =1.7PE =2.5DH EG M AC N EM =AN AN =x PM =x+2.5Rt △AND ∠ADN =45∘AN =ND =x AE =MN =3MH =7+x+3=10+xRt △PHM tan =37∘PM MH ≈0.75x+2.5x+10x ≈20AC =AN +NC =20+1.7≈2222DH =BF =7DB =HF =1.7PE =2.5DH EG M AC N EM =AN AN =x PM =x+2.5Rt △AND ∠ADN =45∘AN =ND =x AE =MN =3MH =7+x+3=10+xRt △PHM tan =37∘PM MH ≈0.75x+2.5x+10x ≈20AC =AN +NC =20+1.7≈2222(1)△BAD △BEC B 60∘DB =CB ∠ABD =∠EBC ∠ABE =60∘AB ⊥BC ∠ABC =90∘∠DBE =∠ABD =∠CBE =30∘△BDE △BCE DB =CB,∵∴,∴.解:四边形为菱形,理由如下:由得,∵是由旋转而得,∴,∴,,又∵,∴四边形为菱形.【考点】全等三角形的性质与判定旋转的性质菱形的判定【解析】无无【解答】证明:∵是由在平面内绕点旋转而得,∴,,,∵,∴,∴,在和中,∵∴,∴.解:四边形为菱形,理由如下:由得,∵是由旋转而得,∴,∴,,又∵,∴四边形为菱形.26.【答案】中的所有公共点、、所围成的四边形面积均为.、、将抛物线分为三个部分,对于任意在上方的抛物线上必存在两个点.①当在下方的抛物线上时,∵轴,∴当为,时,.②当在下方的抛物线上时设为由待定系数法得直线解析式为:=作轴交于,则为,∴.∴ DB =CB,∠DBE =∠CBE,BE =BE,△BDE ≅△BCE(SAS)DE =CE (2)ABED (1)△BDE ≅△BCE △BAD △BEC △BAD ≅△BEC BA =BE AD =EC =ED BE =CE ABED (1)△BAD △BEC B 60∘DB =CB ∠ABD =∠EBC ∠ABE =60∘AB ⊥BC ∠ABC =90∘∠DBE =∠ABD =∠CBE =30∘△BDE △BCE DB =CB,∠DBE =∠CBE,BE =BE,△BDE ≅△BCE(SAS)DE =CE (2)ABED (1)△BDE ≅△BCE △BAD △BEC △BAD ≅△BEC BA =BE AD =EC =ED BE =CE ABED A B C S AB BC AC S AB P P AC AC//x P (0=×4×1=2S △PAC 12P BC P (t,+3)14t 2BC y 2xPD//y BC D D (t,2t)DP =−+2t−314t 2=×4(−+2t−3)=−+4t−6(2<t <6)S △PBC 1214t 212t 2∵它是一个开口向下,顶点为,的抛物线,∴当为,(1)时,=.∴=.∴此时,,(2),,(3);∵为=,、两点的横坐标之差的绝对值为,、两点的横坐标之差的绝对值为,到的距离为.∴将直线向上平移个单位得交抛物线于和两点,由,得,,此时,;综上所述,=,,(4),,(5),,.【考点】二次函数综合题【解析】(1)根据平移规律得到平移后抛物线的顶点坐标,根据该顶点坐标写出新抛物线解析式即可.(2)设.则,解得:=,=.利用的值,求得两条直线,由直线与抛物线解析式联立方程组求得交点坐标;另外过点且平行于轴的直线也与抛物线有一个交点;(3)在新的抛物线上有且仅有四个点、、、使其分别与(2)中的所有公共点、、所围成的四边形面积均为.需要分类讨论:①当在下方的抛物线上时,由于轴,则当为时,.②当在下方的抛物线上时,设,由待定系数法得直线解析式为:=.根据,所以根据二次 函数最值的求法知=.此时,故此时,,;由于直线为=,、两点的横坐标之差的绝对值为,、两点的横坐标之差的绝对值为,到的距离为.所以将直线向上平移个单位得交抛物线于和两点,由直线与抛物线交点的求法求得于和两点坐标.【解答】由,向左平移个单位,向上平移个单位后抛物线的顶点为,(4P (4S △PBC 最大值2S △PAC 最大值S △PBC 最大值S =×4×8+2=1812(0P 1(4P 2AB y x+6A B 8A C 4P AC 1AB 12l:y =x+l 132P 3P 4 y =x+132y =+314x 2 =2+3x 12–√=+3y 11722–√ =2−3x 22–√=−3y 21722–√(2+3,+3)P 32–√1722–√(2−3,−3)P 42–√1722–√S 18(0P 1(4P 2(2+3,+3)P 32–√1722–√(2−3,−3)P 42–√1722–√l:y =−x+b b 2−x+b =+3b 214x 2b 12b 2−6b l M y P 1P 2P 3P 4A B C S P AC AC//x P (0,3)=×4×1=2S △PAC 12P BC P(t,+3)14t 2BC y 2x =×4(−+2t−3)=−+4t−6(2<t <6)S △PBC 1214t 212t 2S △PAC 最大值S △PBC 最大值S =×4×8+2=1812(0,3)P 1(4,7)P 2AB y x+6A B 8A C 4P AC 1AB 12l:y =x+l 132P 3P 4P 3P 4y =−x(2,−1)14x 224(0,3)y =+31∴;设直线的解析式为:=,将代入得:∴=,∴.∴.∴,即=中==解得:=,=.当=时,直线为=,由得,即点的坐标是,当=时,直线为=,由得,即点的坐标是,如图,过点作直线轴,交抛物线于点,则直线为:=,公共点为综上所述:直线=与抛物线有唯一公共点直线=与抛物线有唯一公共点直线= 与抛物线有唯一公共点;答:在新的抛物线上有且仅有四个点、、、使其分别与(2)中的所有公共点、、所围成的四边形面积均为.、、将抛物线分为三个部分,对于任意在上方的抛物线上必存在两个点.①当在下方的抛物线上时,∵轴,∴当为时,.②当在下方的抛物线上时设为由待定系数法得直线解析式为:=作轴交于,则为,∴.∴∵它是一个开口向下,顶点为的抛物线,∴当为时,=.∴=.∴此时,,;∵为=,、两点的横坐标之差的绝对值为,、两点的横坐标之差的绝对值为,到的距离为.∴将直线向上平移个单位得交抛物线于和两点,由,得,,此时,;综上所述,=,,,,.:y =+314x 2l y kx+b M(2,0)2k +b 0k =−b 2l:y =−x+b b 2\becausey =−x+b b 2−x+b =+3b 214x 2+2bx+12−4b x 20△(2b −4×(12−4b))20b 12b 2−6b 2l y −x+2 y =−x+2y =+314x 2{ x =−2y =4A (−2,4)b 6l y 3x−6 y =3x−6y =+314x 2{ x =6y =12B (6,12)1M(2,0)l ⊥x C l x 2C (2,4)y −x+2A(−2,4)y 3x−6B(6,12)x 2C(2,4)P 1P 2P 3P 4A B C S AB BC AC S AB P P AC AC//x P (0,3)=×4×1=2S △PAC 12P BC P (t,+3)14t 2BC y 2x PD//y BC D D (t,2t)DP =−+2t−314t 2=×4(−+2t−3)=−+4t−6(2<t <6)S △PBC 1214t 212t 2(4,2)P (4,7)S △PBC 最大值2S △PAC 最大值S △PBC 最大值S =×4×8+2=1812(0,3)P 1(4,7)P 2AB y x+6A B 8A C 4P AC 1AB 12l:y =x+l 132P 3P 4 y =x+132y =+314x 2 =2+3x 12–√=+3y 11722–√ =2−3x 22–√=−3y 21722–√(2+3,+3)P 32–√1722–√(2−3,−3)P 42–√1722–√S 18(0,3)P 1(4,7)P 2(2+3,+3)P 32–√1722–√(2−3,−3)P 42–√1722–√。
2020年湖南省邵阳市中考数学试卷和答案解析
2020年湖南省邵阳市中考数学试卷和答案解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2020的倒数是()A.﹣2020B.2020C.D.﹣解析:根据倒数的定义求解即可参考答案:解:∵2020×=1∴2020的倒数是,故选:C.点拨:本题考查倒数的定义,熟记倒数的定义是解题的关键.2.(3分)下列四个立体图形中,它们各自的三视图都相同的是()A.B.C.D.解析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.参考答案:解:A、球的三视图都是圆,故本选项符合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不符合题意;C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不符合题意;D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项不符合题意;故选:A.点拨:本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面建成.据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%.其中,3450亿元用科学记数法表示为()A.3.45×1010元B.3.45×109元C.3.45×108元D.3.45×1011元解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,则3450亿=345000000000=3.45×1011.故选:D.点拨:本题主要考查利用科学记数法表示较大的数的方法,掌握科学记数法的表示方法是解答本题的关键,这里还需要注意n的取值.4.(3分)设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3B.﹣C.D.﹣2解析:本题可利用根与系数的关系,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可.参考答案:解:由x2﹣3x+2=0可知,其二次项系数a=1,一次项系数b=﹣3,由根与系数的关系:x1+x2=,故选:A.点拨:本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率5.(3分)已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.解析:先求出正比例函数解析式,再根据平移和经过点(1,﹣1)求出一次函数解析式,即可求解.参考答案:解:把点(2,3)代入y=kx(k≠0)得2k=3,解得,∴正比例函数解析式为,设正比例函数平移后函数解析式为,把点(1,﹣1)代入得,∴,∴平移后函数解析式为,故函数图象大致为:.故选:D.点拨:本题考查了求正比例函数,一次函数解析式,一次函数图象与性质,根据正比例函数求出平移后一次函数解析式是解题关键.6.(3分)下列计算正确的是()A.5+=8B.(﹣2a2b)3=﹣6a2b3 C.(a﹣b)2=a2﹣b2D.=a﹣2解析:分别运用二次根式、整式和分式的运算法则逐项排除即可.参考答案:解:A.,故A选项错误;B.(﹣2a2b)3=(﹣2)3(a2)3b3=﹣8a6b3,故B选项错误;C.(a﹣b)2=a2﹣2ab+b2,故C选项错误;D.,故D选项正确.故选:D.点拨:本题考查了二次根式、整式和分式的运算,熟练掌握相关运算法则是解题的关键.7.(3分)如图,四边形ABCD是平行四边形,点E,B,D,F在同一条直线上,请添加一个条件使得△ABE≌△CDF,下列不正确的是()A.AE=CF B.∠AEB=∠CFD C.∠EAB=∠FCD D.BE=DF解析:根据平行四边形的性质结合全等三角形的判定,逐项进行判断即可.参考答案:解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠BDC,∵∠ABE+∠ABD=∠BDC+∠CDF,∴∠ABE=∠CDF,A.若添加AE=CF,则无法证明△ABE≌△CDF,故选项A符合题意;B.若添加∠AEB=∠CFD,运用AAS可以证明△ABE≌△CDF,故选项B不符合题意;C.若添加∠EAB=∠FCD,运用ASA可以证明△ABE≌△CDF,故选项C不符合题意;D.若添加BE=DF,运用SAS可以证明△ABE≌△CDF,故选项D 不符合题意.故选:A.点拨:本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.8.(3分)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)解析:因为ab>0,所以a、b同号,又a+b>0,所以a>0,b>0,观察图形判断出小手盖住的点在第二象限,然后解答即可.参考答案:解:∵a+b>0,ab>0,∴a>0,b>0.A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;B、(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;C、(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;D、(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;故选:B.点拨:本题考查了点的象限的判断,熟练判断a,b的正负是解题的关键.9.(3分)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2解析:本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.参考答案:解:假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A 发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得x=7.故选:B.点拨:本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.10.(3分)将一张矩形纸片ABCD按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于点M.若P1M⊥AB,则∠DP1M的大小是()A.135°B.120°C.112.5°D.115°解析:由折叠前后对应角相等且∠P1MA=90°可先求出∠DMP1=∠DMA=45°,进一步求出∠ADM=45°,再由折叠可求出∠MDP1=∠ADP=∠PDM=22.5°,最后在△DP1M中由三角形内角和定理即可求解.参考答案:解:∵折叠,且∠P1MA=90°,∴∠DMP1=∠DMA=45°,即∠ADM=45°,∵折叠,∴∠MDP1=∠ADP=∠PDM=∠ADM=22.5°,∴在△DP1M中,∠DP1M=180°﹣45°﹣22.5°=112.5°,故选:C.点拨:此题主要考查了平行线的性质,本题借助矩形的性质考查了折叠问题、三角形内角和定理等,记牢折叠问题的特点:折叠前后对应边相等,对应角相等即可解题.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)因式分解:2x2﹣18=2(x+3)(x﹣3).解析:提公因式2,再运用平方差公式分解.参考答案:解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).点拨:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)如图,已知点A在反比例函数y=(k≠0)的图象上,过点A作AB⊥y轴于点B,△OAB的面积是2.则k的值是4.解析:根据△OAB的面积等于2,即可得到线段OB与线段AB的乘积,进而得到A点横坐标与纵坐标的乘积,进而求出k值.参考答案:解:设点A的坐标为(x A,y A),AB⊥y,由题意可知:,∴y A•x A=4,又点A在反比例函数图象上,故有k=x A•y A=4.故答案为:4.点拨:本题考查了反比例函数系数k的几何意义,三角形的面积公式等,熟练掌握反比例函数的图形和性质是解决此类题的关键.13.(3分)据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲,乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时):甲:7,8,8,9,7,8,8,9,7,9;乙:6,8,7,7,8,9,10,7,9,9.从接受“送教上门”的时间波动大小来看,甲学生每周接受送教的时间更稳定.(填“甲”或“乙”)解析:先算出甲、乙送教上门时间的平均数,进而求出方差,方差越小,则接受送教的时间更稳定.参考答案:解:甲的“送教上门”时间的平均数为:,乙的“送教上门”时间的平均数为:,甲的方差:,乙的方差:,因为,所以甲的方差小,故甲学生每周接受送教的时间更稳定.故答案为:甲.点拨:本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键.14.(3分)如图,线段AB=10cm,用尺规作图法按如下步骤作图.(1)过点B作AB的垂线,并在垂线上取BC=AB;(2)连接AC,以点C为圆心,CB为半径画弧,交AC于点E;(3)以点A为圆心,AE为半径画弧,交AB于点D.即点D为线段AB的黄金分割点.则线段AD的长度约为 6.18cm.(结果保留两位小数,参考数据:=1.414,=1.732,=2.236)解析:根据作图得△ABC为直角三角形,CE=BC=AB=5cm,AE=AD,根据勾股定理求出AC,再求出AE,即可求出AD.参考答案:解:由作图得△ABC为直角三角形,CE=BC=AB=5cm,AE=AD,∴AC=cm,∴AE=AC﹣CE=5cm,∴cm.故答案为:6.18.点拨:本题考查了尺规作图,勾股定理等知识,根据作图步骤得到相关已知条件是解题关键.15.(3分)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.32163解析:先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是,即可求解.参考答案:解:由题意可知,第一行三个数的乘积为:,设第二行中间数为x,则,解得,设第三行第一个数为y,则,解得,∴2个空格的实数之积为.故答案为:.点拨:本题考查了二次根式的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.16.(3分)中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为x(x+12)=864.解析:由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.参考答案:解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.点拨:本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.17.(3分)如图①是山东舰航徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母橫空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为10π的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长AB为13.解析:由扇形弧长求出底面半径,由勾股定理即可求出母线AB的长.参考答案:解:∵圆锥底面周长=侧面展开后扇形的弧长=10π,∴OB=,在Rt△AOB中,AB=,所以该圆锥的母线长AB为13.故答案为:13.点拨:本题考查圆锥弧长公式的应用,解题的关键是牢记有关的公式.18.(3分)如图,在Rt△ABC中,∠ACB=90°,斜边AB=,过点C作CF∥AB,以AB为边作菱形ABEF,若∠F=30°,则Rt△ABC的面积为.解析:先利用直角三角形中30°角的性质求出HE的长度,然后利用平行线间的距离处处相等,可得CG的长度,即可求出直角三角形ABC面积.参考答案:解:如图,分别过点E、C作EH、CG垂直AB,垂足为点H、G,∵根据题意四边形ABEF为菱形,∴AB=BE=,又∵∠ABE=30°∴在RT△BHE中,EH=,根据题意,AB∥CF,根据平行线间的距离处处相等,∴HE=CG=,∴Rt△ABC的面积为.故答案为:.点拨:本题的辅助线是解答本题的关键,通过辅助线,利用直角三角形中的30°角所对直角边是斜边一半的性质,求出HE,再利用平行线间的距离处处相等这一知识点得到HE=CG,最终求出直角三角形面积.三、解答题(本大题有8个小题,第19~25题每题8分,第26是10分,共66分.解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计算:(﹣1)2020+()﹣1+|﹣1+|﹣2sin60°.解析:原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.参考答案:解:原式=1+2+(﹣1)﹣2×=1+2+﹣1﹣=2.点拨:此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.20.(8分)已知:|m﹣1|+=0,(1)求m,n的值;(2)先化简,再求值:m(m﹣3n)+(m+2n)2﹣4n2.解析:(1)根据非负数的和为0的性质进行解答便可;(2)根据整式乘法法则,完全平方公式计算,再合并同类项后,最后再代值计算.参考答案:解:(1)根据非负数得:m﹣1=0且n+2=0,解得:m=1,n=﹣2,(2)原式=m2﹣3mn+m2+4mn+4n2﹣4n2=2m2+mn,当m=1,n=﹣2,原式=2×1+1×(﹣2)=0.点拨:本题考查了绝对值与二次根式的非负性、整式的化简求值,还涉及去括号法则、完全平方公式、合并同类项法则等知识,熟练掌握非负数的性质以及运算法则是解答的关键.21.(8分)如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD=∠C.(1)求证:AC是⊙O的切线;(2)若AC=4,求⊙O的半径.解析:(1)连接OA,由圆的性质可得OA=OB,即∠OBA=∠OAB;再由AB=AC,即∠OBA=∠C,再结合∠CAD=∠C,可得∠OAB =∠CAD,然后由∠BAD=90°说明∠OAC=90°即可完成证明;(2)根据等腰三角形的性质和圆的性质即可得到结论.参考答案:(1)证明:如图:连接OA,∵OA=OB,∴∠OBA=∠OAB,∵AB=AC,∴∠OBA=∠C,∴∠OAB=∠C,∵∠CAD=∠C,∴∠OAB=∠CAD,∵BD是直径,∴∠BAD=90°,∵∠OAC=∠BAD﹣∠OAB+∠CAD=90°,∴AC是⊙O的切线;(2)解:由(1)可知AC是⊙O的切线,∴∠OAC=90°,∠AOD=2∠B,∵AB=AC,∴∠B=∠C,∴∠AOC+∠C=2∠B+∠C=3∠C=90°,∴∠B=∠C=30°,在Rt△ABD中,BD===,∴OB=,∴⊙O的半径为.点拨:本题考查了圆的切线的判定,相似三角形的判定和性质,证得∠OAC=90°是解答本题的关键.22.(8分)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程﹣﹣邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB,BC表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔AA1,BB1,CC1分别为62m,100m,200m.若管道AB与水平线AA2的夹角为30°,管道BC与水平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).解析:先根据题意得到BO,CB2的长,在Rt△ABO中,由三角函数可得AB的长度,在Rt△BCB2中,由三角函数可得BC的长度,再相加即可得到答案.参考答案:解:根据题意知,四边形AA1B1O和四边形BB1C1B2均为矩形,∴OB1=AA1=62m,B2C1=BB1=100m,∴BO=BB1﹣OB1=100﹣62=38m,CB2=CC1﹣B2C1=200﹣100=100m,在Rt△AOB中,∠AOB=90°,∠BAO=30°,BO=38m,∴AB=2BO=2×38=76m;在Rt△CBB2中,∠CB2B=90°,∠CBB2=45°,CB2=100m,∴,∴,即管道AB和BC的总长度为:.点拨:考查了解直角三角形的应用,关键是根据三角函数得到AB 和BC的长度.23.(8分)“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,为了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:xx学校“停课不停学”网络学习时间调查表亲爱的同学,你好!为了了解和更好地指导你进行“停课不停学”网络学习,请在表格中选择一项符合你学习时间的选项,在其后的空格内打“√”.平均每天利用网络学习时间问卷调查表选项学习时间(小时)A0<t≤1B1<t≤3C3<t≤5D t>5(1)本次接受问卷调查的学生共有100人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为18度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?解析:(1)根据选A的有50人,占15%,从而求得本次接受问卷调查的学生总数;(2)根据各组人数之和等于数据总数求得选B的人数,从而可以将条形统计图补充完整;(3)用360°乘以D选项所占百分比可得所对应扇形圆心角的度数;(4)利用样本估计总体,用1500乘以样本中学习时间在C选项的人数所占的百分比即可.参考答案:解:(1)15÷15%=100(人).故答案为:100;(2)如图,选B的人数:100﹣40﹣15﹣5=40(人).条形图补充如下:(3)图②中,D选项所对应的扇形圆心角为:360o×=18o.故答案为:18;(4)1500×=600(人).故估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有600人.点拨:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.24.(8分)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A 型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?解析:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,根据“2台A型风扇和5台B型风扇进价共100元,3台A 型风扇和2台B型风扇进价共62元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,根据“购进A型风扇不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各进货方案.参考答案:解:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,依题意,得:,解得:.答:A型风扇进货的单价是10元,B型风扇进货的单价是16元;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,依题意,得:,解得:71≤m≤75,又∵m为正整数,∴m可以取72、73、74、75,∴小丹共有4种进货方案,方案1:购进A型风扇72台,B型风扇28台;方案2:购进A型风扇73台,B型风扇27台;方案3:购进A型风扇74台,B型风扇26台;方案4:购进A型风扇75台,B型风扇25台.点拨:本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.25.(8分)已知:如图①,将一块45°角的直角三角板DEF与正方形ABCD的一角重合,连接AF,CE,点M是CE的中点,连接DM.(1)请你猜想AF与DM的数量关系是AF=2DM.(2)如图②,把正方形ABCD绕着点D顺时针旋转α角(0°<α<90°).①AF与DM的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM到点N,使MN=DM,连接CN)②求证:AF⊥DM;③若旋转角α=45°,且∠EDM=2∠MDC,求的值.(可不写过程,直接写出结果)解析:(1)根据题意合理猜想即可;(2)①延长DM到点N,使MN=DM,连接CN,先证明△MNC ≌△MDE,再证明△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;②根据全等三角形的性质和直角的换算即可求解;③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.参考答案:解:(1)猜想AF与DM的数量关系是AF=2DM,理由:∵四边形ABCD是正方形,∴CD=AD,∠ADC=90°,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴AF=CE,∵M是CE的中点,∴CE=2DM,∴AF=2DM,故答案为:AF=2DM;(2)①AF=2DM仍然成立,理由如下:延长DM到点N,使MN=DM,连接CN,∵M是CE中点,∴CM=EM,又∠CMN=∠EMD,∴△MNC≌△MDE(SAS),∴CN=DE=DF,∠MNC=∠MDE,∴CN∥DE,又AD∥BC∴∠NCB=∠EDA,∵四边形ABCD是正方形,∴AD=DC,∠BCD=90°=∠EDF,∴∠ADF=∠DCN,∴△ADF≌△DCN(SAS),∴AF=DN,∴AF=2DM;②∵△ADF≌△DCN,∴∠NDC=∠FAD,∵∠CDA=90°,∴∠NDC+∠NDA=90°,∴∠FAD+∠NDA=90°,∴AF⊥DM;③∵α=45°,∴∠EDC=90°﹣45°=45°∵∠EDM=2∠MDC,∴∠EDM=∠EDC=30°,∴∠AFD=30°,过A点作AG⊥FD的延长线于G点,∴∠ADG=90°﹣45°=45°,∴△ADG是等腰直角三角形,设AG=k,则DG=k,AD=AG÷sin45°=k,FG=AG÷tan30°=k,∴FD=ED=k﹣k,故=.点拨:此题主要考查四边形综合,解题的关键是熟知正方形的性质、旋转的特点、全等三角形的判定与性质及三角函数的运用.26.(10分)如图,在平面直角坐标系中,矩形ABCD的边BC与x 轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y =ax2﹣x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.(1)求抛物线的解析式;(2)求点D的坐标;(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值;(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN 的最小值.解析:(1)将C(8,0),B(0,6)代入计算即可;(2)作DE⊥x轴于点E,证明△BOC~△CED,可得CE,DE长度,进而得到点D的坐标;(3)分为点M在AD,BC上两种情况讨论,当点M在AD上时,分为△BON~△CDM和△BON~△MDC两种情况讨论;当点M在BC上时,分为△BON~△MCD和△BON~△DCM两种情况讨论;(4)作点D关于x轴的对称F,连接QF,可得QN+DN的最小值;连接BQ减去BA'可得A'Q的最小值,综上可得A'Q+QN+DN 的最小值.参考答案:解:(1)将C(8,0),B(0,6)代入,得,解得,∴抛物线的解析式为:;(2)如答图1,作DE⊥x轴于点E,∵C(8,0),B(0,6),∴OC=8,OB=6.∴BC=10.∵∠BOC=∠BCD=∠DEC,∴△BOC~△CED.∴.∴CE=3,DE=4.∴OE=OC+CE=11.∴D(11,4).(3)若点M在DA上运动时,DM=5t,ON=4t,当△BON~△CDM,则,即不成立,舍去;当△BON~△MDC,则,即,解得:;若点M在BC上运动时,CM=25﹣5t.当△BON~△MCD,则,即,∴.当3<t≤4时,ON=16﹣4t.∴,解得t1=(舍去),t2=.当4<t≤5时,ON=4t﹣16∴,无解;当△BON~△DCM,则,即,∴ON=30﹣6t;当3<t≤4时,ON=16﹣4t,∴30﹣6t=16﹣4t,解得t=7(舍去);当4<t≤5时,ON=4t﹣16,∴30﹣6t=4t﹣16,解得.综上所示:当时,△BON~△MDC;t=时,△BON~△MCD;时,△BON~△DCM;(4)如答图2,作点D关于x轴的对称点F,连接QF交x轴于点N,∵点D(11,4),∴点F(11,﹣4).由得对称轴为x=5,∴点Q(5,4).∴,.∴.故A'Q+QN+DN的最小值为.点拨:本题考查了二次函数与几何图形的综合,涉及相似三角形的性质与判定,最短路径问题的计算,熟知以上知识的应用是解题的关键.。
湖南省邵阳市中考数学试卷含解析版
---2021 年湖南省邵阳市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕25的算术平方根是〔〕A.5B.±5C.﹣5D.252.〔3分〕如下图,AB∥CD,以下结论正确的选项是〔〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠43.〔3分〕3﹣π的绝对值是〔〕A.3﹣πB.π﹣3C.3D.π4.〔3分〕以下立体图形中,主视图是圆的是〔〕A.B.C.D.5.〔3分〕函数y=√x-5中,自变量x的取值范围在数轴上表示正确的选项是〔〕A.B.C.D.6.〔3分〕如下图,要在一条公路的两侧铺设平行管道,一侧铺设的角度为120°,为使管道对接,另一侧铺设-------的角度大小应为〔〕A.120°B.100° C.80°D.60°7.〔3分〕如下图,边长为a的正方形中阴影局部的面积为〔〕A.a2﹣π〔a〕2B.a2﹣πa2C.a2﹣πaD.a2﹣2πa28.〔3分〕“救死扶伤〞是我国的传统美德,某媒体就“老人摔倒该不该扶〞进行了调查,将得到的数据经统计分析后绘制成如下图的扇形统计图,根据统计图判断以下说法,其中错误的一项为哪一项〔〕A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%-------D.认为该扶的占92%9.〔3分〕如下图的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,表示小徐离他家的距离.读图可知菜地离小徐家的距离为〔〕A.1.1千米B.2千米C.15千米D.37千米10.〔3分〕如下图,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为〔﹣1,1〕,〔﹣3,1〕,〔﹣1,﹣1〕,30秒后,飞机P飞到P′〔4,3〕位置,那么飞机Q,R的位置Q′,R′分别为〔〕A.Q′〔2,3〕,R′〔4,1〕B.Q′〔2,3〕,R′〔2,1〕C.Q′〔2,2〕,R′〔4,1〕D.Q′〔3,3〕,R′-------3,1〕二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3 分〕将多项式mn2+2mn+m 因式分解的结果是.12.〔3分〕2021年,我国又有1240 万人辞别贫困,为世界脱贫工作作出了卓越奉献,将1240 万用科学记数法表示为a×10n的形式,那么a的值为.13.〔3分〕假设抛物线 y=ax2+bx+c的开口向下,那么a的值可能是.〔写一个即可〕14.〔3分〕我国南宋著名数学家秦九韶在他的著作?数书九章?一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角1[a2b2-( a2+b2-c2)2],现△ABC形的面积为S=√4 2 的三边长分别为1,2,√5,那么△ABC的面积为.-------15.〔3分〕如下图的正六边形ABCDEF ,连结FD ,那么∠FDC 的大小为.16.〔3分〕如下图,∠ AOB=40°,现按照以下步骤作图:①在OA ,OB 上分别截取线段OD ,OE ,使OD=OE ;②分别以D ,E 为圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ;③作射线OC .那么∠AOC 的大小为.17.〔3分〕掷一枚硬币两次,可能出现的结果有四种,我-------们可以利用如下图的树状图来分析有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.18.〔3分〕如下图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面 R处的雷达测得AR的距离是40km,仰角是 30°,n秒后,火箭到达B点,此时仰角是45°,那么火箭在这n秒中上升的高度是km.三、解答题〔本大题共8小题,共66 分〕1〕﹣1﹣√12.19 .〔8分〕计算:4sin60°﹣〔220 .〔8分〕如下图,平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.1〕求证:平行四边形ABCD是矩形;(2〕请添加一个条件使矩形ABCD为正方形.-------21 .〔8 分〕先化简,再在﹣ 3,﹣1,0,√2,2 中选择一个适宜的 x 值代入求值.x2x 2-9xx+3?x 2-2x+x-2.22 .〔8 分〕为提高节水意识,小申随机统计了自己家7天 的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如下图的统计图.〔单位:升〕1〕求这7天内小申家每天用水量的平均数和中位数;2〕求第3天小申家洗衣服的水占这一天总用水量的百分比;3〕请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月〔按30天计算〕的节约用水量.23.〔8分〕某校方案组织师生共300人参加一次大型公益-------活动,如果租用6辆大客车和5辆小客车恰好全部坐满,每辆大客车的乘客座位数比小客车多17个.1〕求每辆大客车和每辆小客车的乘客座位数;2〕由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.24.〔8分〕如下图,直线DP和圆O相切于点C,交直线AE 的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.1〕求证:DA=DC;2〕求∠P及∠AEB的大小.25.〔8分〕如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.-------【问题引入】1〕假设点O 是AC 的中点,AM BM =13,求BN CN的值;温馨提示:过点A 作MN 的平行线交BN 的延长线于点G .【探索研究】2〕假设点O 是AC 上任意一点〔不与A ,C 重合〕,求证:AMBNCOMB ?NC ?OA=1 ;【拓展应用】〔3〕如图2所示,点P 是△ABC 内任意一点,射线 AP , BP ,CP 分别交BC ,AC ,AB 于点D ,E ,F ,假设AF= 1 ,BD = 1 ,BF 3 CD 2求AE CE的值.26.〔10分〕如下图,顶点为〔1,﹣9〕的抛物线y=ax 2+bx+c 24过点M 〔2,0〕.1〕求抛物线的解析式;2〕点A 是抛物线与x 轴的交点〔不与点M 重合〕,点B是抛物线与 y 轴的交点,点C 是直线y=x+1上一点〔处于x-------轴下方〕,点D是反比例函数y=kx〔k>0〕图象上一点,假设以点A,B,C,D为顶点的四边形是菱形,求k的值.-------2021年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕〔2021?邵阳〕25的算术平方根是〔〕A.5B.±5 C.﹣5D.25【考点】22:算术平方根.菁优网版权所有【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,25的算术平方根是5.应选:A.【点评】此题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.〔3分〕〔2021?邵阳〕如下图,AB∥CD,以下结论正确的选项是〔〕A.∠1=∠2 B.∠2=∠3 C.∠1=∠4D.∠3=∠4 -------【考点】JA:平行线的性质.菁优网版权所有【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,应选C.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.〔3分〕〔2021?邵阳〕3﹣π的绝对值是〔〕A.3﹣πB.π﹣3C.3D.π【考点】28:实数的性质;15:绝对值.菁优网版权所有【分析】直接利用绝对值的定义分析得出答案.【解答】解:∵3﹣π<0,|3﹣π|=π﹣3.应选B.【点评】此题主要考查了绝对值,正确把握定义是解题关键.4.〔3分〕〔2021?邵阳〕以下立体图形中,主视图是圆的是〔〕-------A.B.C.D.【考点】U1:简单几何体的三视图.菁优网版权所有【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A符合题意;B、的主视图是矩形,故B不符合题意;C、的主视图是三角形,故C不符合题意;D、的主视图是正方形,故D不符合题意;应选:A.【点评】此题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.5.〔3分〕〔2021?邵阳〕函数y=√x-5中,自变量x的取值范围在数轴上表示正确的选项是〔〕A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.菁优网版权所有【分析】根据被开方数大于等于0列式计算即可得解,然后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,-------解得x≥5.在数轴上表示如下:应选B.【点评】此题考查了函数自变量的范围及在数轴上表示不等式的解集,解题的关键是从三个方面考虑:1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.6.〔3分〕〔2021?邵阳〕如下图,要在一条公路的两侧铺设平行管道,一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为〔〕A.120°B.100° C.80°D.60°【考点】JA:平行线的性质.菁优网版权所有【分析】根据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,∴另一侧的角度为180°﹣120°=60°〔两直线平行,同-------旁内角互补〕.应选D .【点评】此题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.7.〔3分〕〔2021?邵阳〕如下图,边长为a 的正方形中阴影局部的面积为〔〕A .a 2﹣π〔a 〕2B .a 2﹣πa 2C .a 2﹣πaD .a 2﹣2πa2【考点】32:列代数式.菁优网版权所有【分析】根据图形可知阴影局部的面积是正方形的面积减去直径为a 的圆的面积,此题得以解决.【解答】解:由图可得,阴影局部的面积为:a 2﹣π?(a )2,2应选A .【点评】此题考查列代数式,解答此题的关键是明确题意,列出相应的代数式.-------8.〔3分〕〔2021?邵阳〕“救死扶伤〞是我国的传统美德,某媒体就“老人摔倒该不该扶〞进行了调查,将得到的数据经统计分析后绘制成如下图的扇形统计图,根据统计图判断以下说法,其中错误的一项为哪一项〔〕A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【考点】VB:扇形统计图.菁优网版权所有【分析】根据百分比和圆心角的计算方法计算即可.【解答】解:认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1﹣27%﹣65%=8%,故C正确;认为该扶的占65%,故D错误;应选D.-------【点评】此题考查了扇形统计图,掌握百分比和圆心角的计算方法是解题的关键.9〔.3分〕〔2021?邵阳〕如下图的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为〔〕A.千米B.2千米C.15千米D.37千米【考点】E6:函数的图象.菁优网版权所有【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为千米.【解答】解:由图象可以看出菜地离小徐家千米,应选:A.【点评】此题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.-------10.〔3分〕〔2021?邵阳〕如下图,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为〔﹣1,1〕,〔﹣3,1〕,〔﹣1,﹣1〕,30秒后,飞机P飞到P′〔4,3〕位置,那么飞机Q,R的位置Q′,R′分别为〔〕A.Q′〔2,3〕,R′〔4,1〕B.Q′〔2,3〕,R′〔2,1〕C.Q′〔2,2〕,R′〔4,1〕D.Q′〔3,3〕,R′3,1〕【考点】D3:坐标确定位置.菁优网版权所有【分析】由点P〔﹣1,1〕到P′〔4,3〕知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P〔﹣1,1〕到P′〔4,3〕知,编队需向右平移5个单位、向上平移2个单位,∴点Q〔﹣3,1〕的对应点Q′坐标为〔2,3〕,点R〔﹣1,﹣1〕的对应点R′〔4,1〕,应选:A.-------【点评】此题考查了坐标确定位置,熟练掌握在平面直角坐标系确定点的坐标是解题的关键.二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3分〕〔2021?邵阳〕将多项式mn2+2mn+m因式分解的结果是m〔n+1〕2.【考点】55:提公因式法与公式法的综合运用.菁优网版权所有【分析】根据提公因式法、公式法,可得答案.【解答】解:原式=m〔n2+2n+1〕=m〔n+1〕2,故答案为:m〔n+1〕2.【点评】此题考查了因式分解,利用提公因式、完全平方公式是解题关键.12.〔3分〕〔2021?邵阳〕2021年,我国又有1240万人辞别贫困,为世界脱贫工作作出了卓越奉献,将1240万用科学记数法表示为a×10n的形式,那么a的值为.-------【考点】1I:科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1240万有8位,所以可以确定n=8﹣1=7.【解答】解:1240万×107,.故答案为:.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.〔3分〕〔2021?邵阳〕假设抛物线y=ax2+bx+c的开口向下,那么a的值可能是﹣1.〔写一个即可〕【考点】H3:二次函数的性质.菁优网版权所有【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,a的值可能是﹣1,故答案为:﹣1.-------【点评】此题考查了二次函数的性质,是根底题,需熟记.14.〔3分〕〔2021?邵阳〕我国南宋著名数学家秦九韶在他的著作?数书九章?一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,1[a2b2-( a2+b2-c2)2],现c,那么该三角形的面积为S=√4 2△ABC的三边长分别为1,2,√5,那么△ABC的面积为1.【考点】7B:二次根式的应用.菁优网版权所有【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,√5的面积,从而可以解答此题.1[a2b2-( a2+b2-c2)2],【解答】解:∵S=√4 2∴△ABC的三边长分别为1,2,√5,那么△ABC的面积为:1[12×22-( 12+22-(√5)2)2]=1,S=√4 2故答案为:1.【点评】此题考查二次根式的应用,解答此题的关键是明确-------题意,利用题目中的面积公式解答.15.〔3分〕〔2021?邵阳〕如下图的正六边形ABCDEF,连结FD,那么∠FDC的大小为90°.【考点】L3:多边形内角与外角.菁优网版权所有【分析】首先求得正六边形的内角的度数,根据等腰三角形的性质即可得到结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°【点评】此题考查了正多边形和圆.等腰三角形的性质,此题难度不大,注意数形结合思想的应用.16.〔3分〕〔2021?邵阳〕如下图,∠AOB=40°,-------现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆1DE的长为半径画弧,在∠心,以大于2AOB内两弧交于点C;③作射线OC.那么∠AOC的大小为20°.【考点】N2:作图—根本作图.菁优网版权所有【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,1∠AOB=20°.∴∠AOC=2故答案为:20°.【点评】此题考查的是作图﹣根本作图,熟知角平分线的作法是解答此题的关键.17.〔3分〕〔2021?邵阳〕掷一枚硬币两次,可能出现的结果有四种,我们可以利用如下图的树状图来分析有可能出-------现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是3.4 【考点】X6:列表法与树状图法.菁优网版权所有【专题】11:计算题.【分析】画树状图展示所有4种等可能的结果数,再找出掷一枚硬币两次,至少有一次出现正面的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中掷一枚硬币两次,至少有一次出现正面的结果数为3,所以掷一枚硬币两次,至少有一次出现正面的概率=3. 4故答案为34.【点评】此题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件 A 或B的结果数目 m ,然后利用概率公式计算事件A 或事件B 的-------概率.18.〔3分〕〔2021?邵阳〕如下图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面 R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,那么火箭在这 n秒中上升的高度是〔20√3﹣20〕km.【考点】TA:解直角三角形的应用﹣仰角俯角问题.菁优网版权所有【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,在LR=AR?cos30°=40×√23=20√3〔km〕,AL=AR?sin30°=20〔km〕,Rt△BLR中,∵∠BRL=45°,∴RL=LB=20√3,-------AB=LB﹣AL=〔20√3﹣20〕km,故答案为〔20√3﹣20〕km.【点评】此题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.三、解答题〔本大题共8小题,共66分〕19.〔8分〕〔2021?邵阳〕计算:4sin60°﹣〔1〕﹣1﹣√12.2【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.菁优网版权所有【分析】依据特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×√23﹣2﹣2√3=2√3﹣2﹣2√3=﹣2.【点评】此题主要考查的是实数的运算,熟练掌握特殊锐角-------三角函数值、负整数指数幂的性质、二次根式的性质是解题的关键.20.〔8分〕〔2021?邵阳〕如下图,平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.1〕求证:平行四边形ABCD是矩形;2〕请添加一个条件使矩形ABCD为正方形.【考点】LF:正方形的判定;L5:平行四边形的性质;LD:矩形的判定与性质.菁优网版权所有【专题】14:证明题.【分析】〔1〕根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;〔2〕根据正方形的判定方法添加即可.【解答】〔1〕证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,-------OB=OC,AC=BD,∴平行四边形ABCD是矩形;2〕解:AB=AD〔或AC⊥BD答案不唯一〕.理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【点评】此题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.21.〔8分〕〔2021?邵阳〕先化简,再在﹣3,﹣1,0,√2,2中选择一个适宜的x值代入求值.-------x 2x2-9 xx+3?x2-2x+x-2 .【考点】6D:分式的化简求值.菁优网版权所有【分析】根据分式的乘法和加法可以化简题目中的式子,然后在﹣3,﹣1,0,√2,2中选择一个使得原分式有意义的的值代入即可解答此题.x 2x2-9 x【解答】解:x+3?x2-2x+x-2x 2(x+3)(x-3) x= x+3?x(x-2)+x-2x(x-3)+xx-2x-2x 2-3x+x=x-2x(x-2)x-2=x,x=﹣1时,原式=﹣1.【点评】此题考查分式的化简求值,解答此题的关键是明确分式的化简求值的方法.22.〔8分〕〔2021?邵阳〕为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如下图的统计图.〔单位:-------升〕1〕求这7天内小申家每天用水量的平均数和中位数;2〕求第3天小申家洗衣服的水占这一天总用水量的百分比;3〕请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月〔按30天计算〕的节约用水量.【考点】VC:条形统计图;V5:用样本估计总体;VD:折线统计图;W2:加权平均数;W4:中位数.菁优网版权所有【分析】〔1〕根据平均数和中位数的定义求解可得;2〕用洗衣服的水量除以第3天的用水总量即可得;3〕根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:〔1〕这7天内小申家每天用水量的平均数为815+780+800+785+790+825+8057=800〔升〕,-------将这7天的用水量从小到大重新排列为:780、785、790、、805、815、825,100×100%=12.5%,(∴用水量的中位数为800升;2〕800答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;3〕小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.23.〔8分〕〔2021?邵阳〕某校方案组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,每辆大客车的乘客座位数比小客车多17个.-------1〕求每辆大客车和每辆小客车的乘客座位数;2〕由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【考点】C9:一元一次不等式的应用; 9A :二元一次方程组的应用.菁优网版权所有【分析】〔1〕根据题意结合每辆大客车的乘客座位数比小客 车多17个以及师生共300 人参加一次大型公益活动, 分别得出等式求出答案;〔2〕根据〔1〕中所求,进而利用总人数为300+30 ,进而得出不等式求出答案.【解答】解:〔1〕设每辆小客车的乘客座位数是 x 个,大客车的乘客座位数是y 个,根据题意可得:{y-x=17 ,6y+5x=300解得:{x y ==1835,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;-------2〕设租用a辆小客车才能将所有参加活动的师生装载完成,那么18a+35〔11﹣a〕≥300+30,解得:a≤34,17符合条件的a最大整数为3,答:租用小客车数量的最大值为3.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.24.〔8分〕〔2021?邵阳〕如下图,直线DP和圆O相切于点C,交直线AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.1〕求证:DA=DC;(2〕求∠P及∠AEB的大小.-------【考点】MC:切线的性质;L5:平行四边形的性质.菁优网版权所有【分析】〔1〕欲证明DA=DC,只要证明Rt△DAO≌△RtDCO即可;〔2〕想方法证明∠P=30°即可解决问题;【解答】〔1〕证明:在平行四边形ABCD中,AD∥BC,CB⊥AE,∴AD⊥AE,∴∠DAO=90°,DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,{DO=DO,AO=CO Rt△DAO≌△Rt△DCO,DA=DC.1BC,∴〔2〕∵CB⊥AE,AE是直径,CF=FB=2----1AD,∴---∵四边形ABCD是平行四边形,AD=BC,CF=2CF∥DA,∴△PCF∽△PDA,PC=CF=1,PDDA2PC=12PD,DC=12PD,DA=DC,1 DA=2PD,Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】此题考查切线的性质、平行四边形的性质、相似三-------角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.25.〔8分〕〔2021?邵阳〕如图1所示,在△ABC 中,点O 是AC 上一点,过点O 的直线与AB ,BC 的延长线分别相交于点M ,N .【问题引入】AM 1CN〔1〕假设点O 是AC 的中点,BM =3,求BN 的值;温馨提示:过点A 作MN 的平行线交 BN 的延长线于点G .【探索研究】〔2 〕假设点O 是AC 上任意一点〔不与 A ,C 重合〕,求证:AM BNCOMB ?NC ?OA =1; 【拓展应用】〔3 〕如图2所示,点P 是△ABC 内任意一点,射线 AP ,BP ,CP 分别交BC ,AC ,AB 于点D ,E ,F ,假设AF= 1,BD = 1,BF 3 CD 2求AECE 的值.-------【考点】SO :相似形综合题.菁优网版权所有【分析】〔1〕作AG ∥MN 交BN 延长线于点G ,证△ABGBG ABNG AM∽△MBN 得BN =MB ,即BN =MB ,同理由△ACG ∽△OCN 得NG CN =AOCO ,结合AO=CO 得NG=CN ,从而由CN BN =NG BN =AMBM 可得答案;( 2〕由NG BN =AM MB 、AO CO =NG CN 知AM MB ?BN NC ?CO OA =NG BN ?BN NC ?CN NG =1;3〕由〔2〕知,在△ABD 中有AF ?BC ?DP=1、在△ACD 中BFCDPAAE CB DPAF BC DP AE CB DPAE AF BC有EC ?BD ?PA =1,从而BF ?CD ?PA =EC ?BD ?PA,据此知EC =BF ?CD ?BD CB =AF FB ?BD CD =16.【解答】解:〔1〕过点A 作AG ∥MN交BN 延长线于点G ,∴∠G=∠BNM ,又∠B=∠B ,∴△ABG ∽△MBN ,BNBG =MB AB, ∴ BNBG ﹣1=MB AB﹣1,-------BG-BNAB-MBNGAM∴BN =MB ,即BN =MB,同理,在△ACG 和△OCN 中,NG CN =AOCO ,CO =CN ,AONG O 为AC 中点,∴AO=CO ,NG=CN ,CN =NG =AM =1;BN BN BM 3〔2〕由〔1〕知,NG =AM 、CO =CN,BNMBAONGAM BN CO NG BN CNMB ?NC ?OA =BN ?NC ?NG=1;〔3〕在△ABD 中,点P 是AD 上的一点,过点P 的直线与AC 、BD 的延长线相交于点C ,AF BCDP由〔2〕得BF ?CD ?PA =1,在△ACD 中,点P 是AD 上一点,过点P 是AD 上一点,过点P 的直线与 AC 、AD 的延长线分别相交于点E 、B ,AE CB DP由〔2〕得EC ?BD ?PA =1,AF ?BC ?DP =AE ?CB ?DP ,BFCDPAECBDPA-------AEAF BC BD AF BD 111EC =BF ?CD ?CB =FB ?CD =3×2=6.【点评】此题主要考查相似三角形的综合问题,熟练掌握相似三角形的判定与性质及比例式的根本性质是解题的关键.26.〔10 分〕〔2021 ?邵阳〕如下图,顶点为〔21,﹣49〕的抛物线 y=ax 2+bx+c 过点M 〔2,0〕.1〕求抛物线的解析式;2〕点A 是抛物线与x 轴的交点〔不与点M 重合〕,点B是抛物线与 y 轴的交点,点C 是直线y=x+1上一点〔处于x轴下方〕,点D 是反比例函数y=kx 〔k >0〕图象上一点,假设以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.【考点】HF :二次函数综合题.菁优网版权所有【分析】〔1〕设抛物线方程为顶点式y=a 〔x ﹣ 1〕2﹣9,将24点M 的坐标代入求 a 的值即可;〔2〕设直线y=x+1与y 轴交于点G ,易求G 〔0,1〕.那么-------直角△AOG是等腰直角三角形∠AGO=45°.点C是直线y=x+1上一点〔处于x轴下方〕,而k>0,所以反比例函数y=k x〔k>0〕图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比例函数图象上点的坐标特征求得k的值即可.【解答】解:〔1〕依题意可设抛物线方程为顶点式y=a〔x﹣1〕2﹣9〔a≠0〕,24将点M〔2,0〕代入可得:a〔2﹣12〕2﹣94=0,解得a=1.故抛物线的解析式为:y=〔x﹣1〕2﹣9;242〕由〔1〕知,抛物线的解析式为:y=〔x﹣12〕2﹣94.那么对称轴为x=12,∴点A与点M〔2,0〕关于直线x=1对称,2∴A〔1,0〕.x=0,那么y=﹣2,∴B〔0,﹣2〕.-------在直角△OAB 中,OA=1,OB=2,那么AB=√5.设直线y=x+1与y 轴交于点G ,易求G 〔0,1〕.∴直角△AOG 是等腰直角三角形,∴∠AGO=45°.∵点C 是直线y=x+1上一点〔处于x 轴下方〕,而k >0,所以反比例函数y=k〔k >0〕图象位于点一、三象限.x 故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN ⊥y 轴于点N ,在直角△BDN 中,∵∠DBN=∠AGO=45°,DN=BN=√52=√210,√∴D 〔﹣√210,﹣√102﹣2〕,∵点D 在反比例函数y=k 〔k >0〕图象上, x k=﹣√210×〔﹣√102﹣2〕=52+√10;②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y=x+1于点C ,交反比例函数y=kx 〔k >0〕的图象于点D .再分别过点 D 、B 作DE ⊥x 轴于点F ,BE ⊥y 轴,DE 与-------BE 相较于点E .在直角△BDE 中,同①可证∠AGO=∠DBO=∠BDE=45°,BE=DE .可设点D 的坐标为〔x ,x ﹣2〕.BE 2+DE 2=BD 2,BD=√2BE=√2x .∵四边形ABCD 是菱形,AD=BD=√2x .∴在直角△ADF 中,AD 2=AF 2+DF 2,即〔√2x 〕=〔x+1〕2+〔x ﹣2〕2,解得x=52,∴点D 的坐标是〔52,12〕.∵点D 在反比例函数 y=k〔k >0〕图象上,x∴k=5 ×1=5,22 45 5综上所述,k 的值是 2+√10或4 .-------【点评】此题考查了二次函数综合题,需要掌握待定系数法求二次函数解析式,勾股定理,菱形的性质,反比例函数图象上点的坐标特征等知识点.解答〔2〕题时要分类讨论,以防漏解.----。
2021年中考数学试题及解析:湖南邵阳-解析版
湖南省邵阳市2021年初中毕业水平考试试题卷数学一、选择题(本大题有8个小题,每小题3分,共24分) 1.-(-2)= A .-2 B .2 C .±2 D .4 【解题思路】:运用相反数定义 【答案】:B【点评】:这里考察了相反数的定义,首先要明确是求哪个数的相反数,一个数前面有负号表示什么意思。
难度较小2.如果□×3ab =3a 2b ,则□内应填的代数式是 A .ab B .3ab C .a D .3a【解题思路】:运用因数因数积之间的关系变形abb a 332约分即可。
【答案】:C【点评】:本题考察了约分(同底数幂的性质);思路2:把四个选项分别代入运用同底数幂的乘法运算验证。
难度较小3.下列图形不是轴对称...图形的是A B C D【解题思路】:轴对称图形是把图形沿某直线折叠,易于中心对称图形相混淆,只注重了对称。
【答案】:C【点评】:本题考察了轴对称图形和中心对称图形的区别。
难度较小4.图(一)是某农户2021年收入情况的扇形统计图,已知他2021年的总收入为5万元,则他的打工收入是 A .0.75万元 B .1.25万元 C .1.75万元 D .2万元 【解题思路】:该项收入所占的百分比总收入=⨯ 【答案】:B【点评】:该项收入所占的百分比总收入=⨯,难度较小5.已知点(1,1)在反比例函数y =kx(k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是【解题思路】:点(1,1)在反比例函数y =k x (k 为常数,k ≠0)的图象上,把点(1,1)代入y =kx可以求出k=1,所以双曲线在一、三象限。
【答案】:C【点评】:本题考察了点在图像上,点的坐标与解析式之间的关系;以及反比例函数的性质。
难度较小 6.地球上水的总储量为1.39×1018m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m 3,因此我们要节约用水.请将0.0107×16218181007.1101007.1100107.0⨯=⨯⨯=⨯-1018m 3用科学记数法表示是A .1.07×1016m 3 .0.107×1017m 3 C .10.7×1015m 3D .1.07×1017m 3 【解题思路】:解题时注意是哪个数据,16218181007.1101007.1100107.0⨯=⨯⨯=⨯-【答案】:A .【点评】:用ma 10⨯表示的数称为科学计数法,这里100<<a .如果所给的数据小于1,10的指数是负数,x yO x yO x yO xyO 粮食作物收入 40%经济作 物收入 35%打工收入 25%图(一)如果所给的数据大于10,10的指数是正数;然后结合幂的性质计算即可。
湖南邵阳中考数学试题解析版.doc
湖南省邵阳市2011年初中毕业水平考试试题卷数学一、选择题(本大题有8个小题,每小题3分,共24分) 1.-(-2)= A .-2 B .2 C .±2 D .4 【解题思路】:运用相反数定义 【答案】:B 【点评】:这里考察了相反数的定义,首先要明确是求哪个数的相反数,一个数前面有负号表示什么意思。
难度较小2.如果□×3ab =3a 2b ,则□内应填的代数式是 A .ab B .3ab C .a D .3a【解题思路】:运用因数因数积之间的关系变形abb a 332约分即可。
【答案】:C 【点评】:本题考察了约分(同底数幂的性质);思路2:把四个选项分别代入运用同底数幂的乘法运算验证。
难度较小3.下列图形不是轴对称...图形的是A B C D【解题思路】:轴对称图形是把图形沿某直线折叠,易于中心对称图形相混淆,只注重了对称。
【答案】:C 【点评】:本题考察了轴对称图形和中心对称图形的区别。
难度较小4.图(一)是某农户2010年收入情况的扇形统计图,已知他2010年的总收入为5万元,则他的打工收入是A .0.75万元B .1.25万元C .1.75万元D .2万元 【解题思路】:该项收入所占的百分比总收入=⨯ 【答案】:B 【点评】:该项收入所占的百分比总收入=⨯,难度较小5.已知点(1,1)在反比例函数y =kx(k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是错误!未指定书签。
A B C D【解题思路】:点(1,1)在反比例函数y =k x (k 为常数,k ≠0)的图象上,把点(1,1)代入y =kx可以求出k=1,所以双曲线在一、三象限。
【答案】:C 【点评】:本题考察了点在图像上,点的坐标与解析式之间的关系;以及反比例函数的性质。
难度较小 6.地球上水的总储量为1.39×1018m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m 3,因此我们要节约用水.请将0.0107×16218181007.1101007.1100107.0⨯=⨯⨯=⨯-1018m 3用科学记数法表示是A .1.07×1016m 3 .0.107×1017m 3 C .10.7×1015m 3D .1.07×1017m 3 【解题思路】:解题时注意是哪个数据,16218181007.1101007.1100107.0⨯=⨯⨯=⨯-【答案】:A .【点评】:用ma 10⨯表示的数称为科学计数法,这里100<<a .如果所给的数据小于1,10的指数是负数,如果所给的数据大于10,10的指数是正数;然后结合幂的性质计算即可。
邵阳市中考数学真题试题(含解析)
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A.B.1.414 C.D.2.(3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10﹣11元D.0.57×1012元4.(3分)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2 B.∠2=∠3 C.∠2+∠4=180°D.∠1+∠4=180°5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m37.(3分)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y28.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′9.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°10.(3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)的相反数是.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.13.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x <0)的图象经过线段OA的中点B,则k=.14.(3分)不等式组的解集是.15.(3分)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)16.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.18.(3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:﹣()﹣1+|﹣2|cos60°20.(8分)先化简,再求值:(1﹣)÷,其中m=﹣2.21.(8分)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE =30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)25.(8分)如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O 于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.26.(10分)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x 轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:=2是有理数;是无理数;故选:C.2.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.3.【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.4.【解答】解:∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.5.【解答】解:A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.6.【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.7.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.8.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.9.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.10.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.二、填空题(本大题有8个小题,每小题3分,共24分)11.【解答】解:的相反数是﹣;故答案为﹣;12.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.13.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣214.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.15.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;16.【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;17.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:418.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;20.【解答】解:原式=(﹣)÷=•=,当m=﹣2时,原式==.21.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.22.【解答】解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.23.【解答】解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.24.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9,∴OB=2x=18.25.【解答】解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=26.【解答】解:(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A、E、F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A、E、F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A、E、F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。
湖南省邵阳市2021年中考[数学]考试真题与答案解析
湖南省邵阳市2021年中考[数学]考试真题与答案解析一、选择题本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.﹣3的相反数是( )A.﹣3B.0C.3D.π答案解析:相反数指的是只有符号不同的两个数,因此﹣3的相反数为3.故选:C.2.下列四个图形中,是中心对称图形的是( )A.B.C.D.答案解析:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项符合题意;D.不是中心对称图形,故本选项不合题意.故选:C.3.2021年我国首次发射探测器对火星进行探测.北京时间2月10日晚,“天问一号”探测器在距离地球约192000000km处成功实施制动捕获,随后进入火星轨道.用科学记数法将192000000表示为a×108的形式,则a的值是( )A.0.192B.1.92C.19.2D.192答案解析:192000000=1.92×108,故a=1.92,故选:B.4.如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是( )A.2B.1C.﹣1D.﹣2【分析】根据在数轴上表示的两个数,右边的总比左边的大,可得:﹣3<m<﹣2<0<n<1,m+n的结果即可求得.答案解析:∵M,N所对应的实数分别为m,n,∴﹣3<m<﹣2<0<n<1,∴m+n的值可能是﹣2.故选:D.5.如图,在△AOB中,AO=1,BO=AB=1.5.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为( )A.1B.√2C.1.5D.1.5√2答案解析:由旋转性质可知,OA=OA'=1,∠AOA'=90°,则△AOA'为等腰直角三角形,∴AA'.故选:B.6.其社区针对5月30日前该社区居民接种新冠疫苗的情况开展了问卷调查,共收回6000份有效问卷.经统计,制成如下数据表格.接种疫苗针数0123人数210022801320300小杰同学选择扇形统计图分析接种不同针数的居民人数所占总人数的百分比.下面是制作扇形统计图的步骤(顺序打乱):①计算各部分扇形的圆心角分别为126°,136.8°,79.2°,18°.②计算出接种不同针数的居民人数占总人数的百分比分别为35%,38%,22%,5%.③在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比.制作扇形统计图的步骤排序正确的是( )A.②①③B.①③②C.①②③D.③①②答案解析:由题意可知,小杰同学制作扇形统计图的步骤为:先计算出接种不同针数的居民人数占总人数的百分比分别为35%,38%,22%,5%;再计算各部分扇形的圆心角分别为126°,136.8°,79.2°,18°;然后在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比.故选:A.7.下列数值不是不等式组的整数解的是( )A.﹣2B.﹣1C.0D.1答案解析:,解不等式①,得:x,解不等式②,得:x≤1,∴不等式组的解集为:x≤1,∴不等式组的整数解为﹣1,0,1,故选:A.8.某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )A.小明修车花了15minB.小明家距离学校1100mC.小明修好车后花了30min到达学校D.小明修好车后骑行到学校的平均速度是3m/s答案解析:A.由横坐标看出,小明修车时间为20﹣5=15(分钟),故本选项符合题意;B.由纵坐标看出,小明家学校离家的距离为2100米,故本选项不合题意;C.由横坐标看出,小明修好车后花了30﹣20=10(min)到达学校,故本选项不合题意;D.小明修好车后骑行到学校的平均速度是:(2100﹣1100)÷10=100(米/分钟)5/3(m/s),故本选项不合题意;故选:A.9.如图,点A,B,C是⊙O上的三点.若∠AOC=90°,∠BAC=30°,则∠AOB的大小为( )A.25°B.30°C.35°D.40°答案解析:∵∠BAC与∠BOC所对弧为,由圆周角定理可知:∠BOC=2∠BAC=60°,又∠AOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°.故选:B.10.在平面直角坐标系中,若直线y=﹣x+m不经过第一象限,则关于x的方程mx2+x+1=0的实数根的个数为( )A.0个B.1个C.2个D.1或2个答案解析:∵直线y=﹣x+m不经过第一象限,∴m≤0,当m=0时,方程mx2+x+1=0是一次方程,有一个根,当m<0时,∵关于x的方程mx2+x+1=0,∴△=12﹣4m>0,∴关于x的方程mx2+x+1=0有两个不相等的实数根,故选:D.二、填空题11.16的算术平方根是 4 .答案解析:∵42=16,∴4.故答案为:4.12.因式分解:xy2﹣x3= x(y+x)(y﹣x) .答案解析:xy2﹣x3=x(y2﹣x2)=x(y+x)(y﹣x).故答案为:x(y+x)(y﹣x).13.如图,点D,E,F分别为△ABC三边的中点.若△ABC的周长为10,则△DEF的周长为 5 .答案解析:∵D、E、F分别是AB、AC、BC的中点,∴FD、FE、DE为△ABC中位线,∴DF AC,FE AB,DE BC;∴DF+FE+DE AC AB BC(AB+AC+CB)10=5,故答案为:5.14.已知点A(1,y1),B(2,y2)为反比例函数y图象上的两点,则y1与y2的大小关系是y1 > y2.(填“>”“=”或“<”)答案解析:∵反比例函数y中,k=3>0,∴函数图象的两个分支分别位于第一、三象限,且在每一象限内y随x的增大而减小.∵A(1,y1),B(2,y2),∴点A、B都在第一象限,又1<2,∴y1>y2,故答案为:>.15.如图,已知线段AB长为4.现按照以下步骤作图:①分别以点A,B为圆心,大于AB长为半径画弧,两弧分别相交于点E,F;②过E,F两点作直线,与线段AB相交于点O.则AO的长为 2 .答案解析:由基本作图方法可得:EF垂直平分AB,∵AB=4,∴AO AB=2.故答案为:2.16.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是 .答案解析:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴它遇到食物的概率是:.故答案为:.17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是 53 钱.【分析】设有x人,物品的价值为y钱,由题意:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.列出方程组,解方程组即可.答案解析:设有x人,物品的价值为y钱,依题意,得:,解得:,即该问题中物品的价值是53钱,故答案为:53.18.如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE,AD=4,则AB的长为 3 .答案解析:∵DE⊥AC,∴∠ADE+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠ACD=∠ADE,∵矩形ABCD的对边AB∥CD,∴∠BAC=∠ACD,∵sin∠ADE,∴,∴AC5,由勾股定理得,AB3,故答案为:3.三、解答题本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程。
2023年湖南省邵阳市中考数学试卷(含答案解析)045116
2023年湖南省邵阳市中考数学试卷试卷考试总分:118 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. −2的倒数是( )A.2B.−2C.12D.−122. 下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是( )A.B.C.D.3. 1cm 2的电子屏上约有细菌135000个,135000用科学记数法表示为( )A.0.135×106B.1.35×105C.13.5×104D.135×1034. 下列计算正确的是( )−22−212−121cm 21350001350000.135×1061.35×10513.5×104135×103A.(−1)0=1B.(x +2)2=x 2+4C.(ab 3)2=a 2b 5D.2a +3b =5ab 5. 如图,已知a//b ,直角三角板的直角顶点在直线b 上,若∠1=60∘,则下列结论错误的是( )A.∠2=60∘B.∠3=60∘C.∠4=120∘D.∠5=40∘6. 不等式组{2(x +1)<6,0.5x +1≥0.5的解集在数轴上表示正确的是( ) A.B.C.D.7. 用长为45cm ,宽为30cm 的一批砖,铺成一块正方形,至少需要( )块.A.6=1(−1)0=+4(x+2)2x 2=(a )b 32a 2b 52a +3b =5ab a//b b ∠1=60∘∠2=60∘∠3=60∘∠4=120∘∠5=40∘{2(x+1)<6,0.5x+1≥0.545cm 30cm6B.8C.12D.168. 矩形,菱形,正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角9.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A.AB =CD , AD =BCB.AB =CD , AB//CDC.AB =CD ,AD//BCD.AB//CD ,AD//BC 10. 已知抛物线y =2(x −1)2+c 经过(−2,y 1),(0,y 2),(32,y 3)三点,则y1,y2,y3的大小关系是( )A.y 2>y 3>y 1B.y 1>y 2>y 3C.y 2>y 1>y 3D.y 1>y 3>y 2二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 3√164的算术平方根是________.12. 分解因式: x −9x 3= ________.681216ABCD AB =CD AD =BCAB =CD AB//CDAB =CD AD//BCAB//CD AD//BCy =2(x−1+c )2(−2,)y 1(0,)y 2(,)32y 3y 1y 2y 3()>>y 2y 3y 1>>y 1y 2y 3>>y 2y 1y 3>>y1y 3y 2164−−−√3x−9=x 313. 方程x −1x +1=12的根为________. 14. 某校女子排球队队员的年龄分布如下表:年龄131415人数474则该校女子排球队队员的平均年龄是________岁.15. 如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB =50∘,则∠BOD =________.16. 圆锥的母线长为7cm ,侧面积为21πcm 2,则圆锥的底面圆半径r =________cm .17. 在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,则有________家公司出席了这次交易会?18. 如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C′处,BC′交AD 于E ,若AB =4,BC =8,AE =________.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19. 计算:√8+(13)−2−|1−√2|−2cos45∘. 20. 先化简,再求值: (a +2)2−(a +1)(a −1),其中a =−12. 21. 如图,已知在直角梯形ABCD 中,AD//BC ,∠ABC =90∘,AE ⊥BD ,垂足为E ,联结CE ,作EF ⊥CE ,交边AB 于点F .=x−1x+112131415474AB ⊙OBC ⊙O B AC ⊙O D ∠ACB =50∘∠BOD =7cm 21πcm 2r =cm 78ABCD BD C C'BC'ADE AB4BC 8AE+(−|1−|−2cos 8–√13)−22–√45∘−(a +1)(a −1)(a +2)2a =−12ABCD AD//BC ∠ABC =90∘AE ⊥BD E CE EF ⊥CE AB F(1)求证:△AEF ∽△BEC ;(2)若AB =BC ,求证:AF =AD. 22. 某中学开学初到商场购买A ,B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元.(1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A ,B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A ,B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案? 23. 某中学为了解本校九年级女生“一分钟仰卧起坐”项目的成绩情况,从九年级随机抽取部分女生进行该项目测试,并将测试的成绩(x 次)数据,绘制成频数分布表和扇形统计图.部分信息如下,根据提供的信息解答下列问题:(1)m =________,在扇形统计图中第③小组对应的扇形的圆心角度数为________∘;(2)若测试九年级女生“一分钟仰卧起坐”次数不低于44次的成绩为优秀,本校九年级女生共有360人,请估算该校九年级女生“一分钟仰卧起坐”成绩为优秀的人数;(3)把在第①小组内的三个女生分别记为: a 1,a 2,a 3,把在第⑤小组内的两个女生分别记为: b 1,b 2,从第①小组和第⑤小组总共5个女生中随机抽取2个女生进行“你对中考体育考试选项的看法”的问卷调查,求第①小组和第⑤小组都有1个女生被选中的概率. 24. 如图所示,某建筑物楼顶有信号塔EF.为了测量信号塔EF 的高度,从建筑物一层A 点沿直线AD 出发,到达C 点时刚好能看到信号塔的最高点F ,测得仰角∠ACF =60∘,AC 长7米.接着再从C 点出发,继续沿AD 方向走了8米后到达B 点,此时刚好能看到信号塔的最低点E ,测得仰角∠B =30∘.(不计测量工具的高度)求信号塔EF 的高度(结果保留根号).EF ⊥CE AB F(1)△AEF ∽△BEC(2)AB =BC AF =AD A B A 50B 254500B A 30(1)A B(2)A B 50A 4B 9A B 70%B 23x (1)m=∘(2)44360(3),,a 1a 2a 3,b 1b 521EF EF A AD C F ∠ACF =60∘AC7C AD 8B E ∠B =30∘EF25. 在Rt △ABC 中,∠ABC =90∘,∠ACB =30∘,将△ABC 绕点C 顺时针旋转一定的角度α得到△DEC ,点A ,B 的对应点分别是D ,E .(1)如图1,当点E 恰好在AC 上时,求∠ADE 的大小;(2)如图2,若α=60∘时,点F 是边AC 中点,①求证: △CFD ≅△ABC ;②若BC =5√3,则DE =________. 26. 如图,抛物线y =ax 2+c(a ≠0)与直线y =4y +1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)P 是抛物线上的一个动点(不与点A ,B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E .当PE =2ED 时,求点P 的坐标.Rt △ABC ∠ABC =90∘∠ACB=30∘△ABC C α△DEC A B D E(1)1E AC ∠ADE(2)2α=60∘F AC △CFD ≅△ABC BC =53–√DE =y =a +c(a ≠0)x 2y =4y+1A(−1,0),B(4,m)C(5,0)(1)(2)P A ,B P PD ⊥x D AB E PE =2ED P参考答案与试题解析2023年湖南省邵阳市中考数学试卷试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】倒数【解析】此题暂无解析【解答】解:根据倒数的定义可知,−2的倒数为1÷(−2)=−12.故选D.2.【答案】A【考点】中心对称图形【解析】根据中心对称图形的概念求解即可.【解答】解:A、是中心对称图形,本选项正确;B、不是中心对称图形,是轴对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、不是中心对称图形,是轴对称图形,本选项错误.故选A.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】将135000用科学记数法表示为:1.35×105.4.【答案】A【考点】零指数幂、负整数指数幂积的乘方及其应用完全平方公式合并同类项【解析】根据0次幂的法则,单项式乘以多项式、积的乘方幂的乘方以及整式加减的计算法则进行计算即可.【解答】解:A ,(−1)0=1,故正确;B ,(x +2)2=x 2+4x +4,故错误;C ,(ab 3)2=a 2b 6,故错误;D ,2a 和3b 不是同类项,不能合并,故错误.故选A.5.【答案】D【考点】邻补角平行线的性质对顶角【解析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠2,∠3,∠4,∠5的度数,然后选出错误的选项.【解答】解:∵a//b ,∠1=60∘,∴∠3=∠1=60∘,∠2=∠1=60∘,∠4=180∘−∠3=180∘−60∘=120∘,∵三角板为直角三角板,∴∠5=90∘−∠3=90∘−60∘=30∘.故选D.6.【答案】A【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】准确求解不等式组,再进行判断即可.【解答】解:{2(x +1)<6①,0.5x +1≥0.5②,解不等式①得: x <2,解不等式②得: x ≥−1,则不等式组的解集为−1≤x <2.在数轴上表示为:故选A .7.【答案】【答案】A【考点】约数与倍数【解析】45与30的最小公倍数90就是所求正方形的边长,然后用该正方形的面积除以每一块砖的面积即为所求.【解答】解:∵[45,30]=90(cm),∴所求正方形的面积是:90×90=8100(cm)2,∴铺成该正方形所需的砖的块数为:8100÷(45×30)=6(块);故选A .8.【答案】C【考点】正方形的性质矩形的性质菱形的性质【解析】此题暂无解析【解答】解:矩形,菱形,正方形都具有的性质是对角线互相平分.故选C.9.【答案】C【考点】平行四边形的判定【解析】依据平行四边形的判定,依次分析判断即可得出结果.【解答】解:A,根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故A不合题意;B,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故B不合题意;C,不能判定四边形ABCD是平行四边形,故C符合题意;D,根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故D不合题意.故选C.10.【答案】B【考点】二次函数的性质二次函数图象上点的坐标特征【解析】利用图象法解决问题即可.【解答】解:由题意抛物线的对称轴x=1,∵抛物线的开口向上,且点(−2,y1)离对称轴最远,点(32,y3)离对称轴最近,∴y1>y2>y3.故选B.二、填空题(本题共计 8 小题,每题 3 分,共计24分)11.【答案】12【考点】算术平方根立方根【解析】【解答】解:3√164=14,14的算术平方根是12.故答案为:12.12.【答案】x(1+3x)(1−3x)【考点】提公因式法与公式法的综合运用【解析】此题暂无解析【解答】解:x−9x3=x(1−9x2)=x(1+3x)(1−3x).故答案为:x(1+3x)(1−3x).13.【答案】x=3【考点】解分式方程【解析】根据分式方程的解法,方程两边同时乘以2(x+1),将分式方程化为整式方程求解即可.【解答】方程两边同时乘以2(x+1),得2(x−1)=x+1,解得x=3,经检验,x=3是原方程的根,∴原方程的解为x=3,14.【答案】14【考点】加权平均数【解析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】根据题意得:(13×4+14×7+15×4)÷15=14(岁),15.【答案】80∘【考点】圆周角定理切线的性质【解析】根据BC是圆的切线,可得∠ABC=90∘,再求得∠A,由圆周角定理可得∠BOD=2∠A,即可求得答案.【解答】解:∵BC是圆的切线,∴∠ABC=90∘,∵∠ACB=50∘,∴∠A=90∘−∠ACB=90∘−50∘=40∘,由圆周角定理可得:∠BOD=2∠A=2×40∘=80∘.故答案为:80∘.16.【答案】3【考点】扇形面积的计算圆锥的计算【解析】由于圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式得到12×2π×r ×7=21π,然后解方程即可.【解答】解:根据题意得12×2π×r ×7=21π,即得r =3,所以圆锥的底面圆半径r 为3cm .故答案为:3.17.【答案】13【考点】由实际问题抽象出一元二次方程【解析】设参加会议有x 人,每个人都与其他(x −1)人握手,共握手次数为12x(x −1),根据题意列方程.【解答】解:设参加交易会有x 家公司,依题意得:12x(x −1)=78,整理得:x 2−x −156=0,解得x 1=13,x 2=−12,(舍去).故答案为:13.18.【答案】3【考点】矩形的性质翻折变换(折叠问题)【解析】由折叠可知,∠CBD =∠EBD ,再由AD//BC ,得到∠CBD =∠EDB ,即可得到∠EBD =∠EDB ,于是得到BE =DE ,设DE =x ,则BE =x ,AE =8−x ,在Rt △ABE 中,由勾股定理求出x 的值,即可求解;【解答】由折叠可知,∠CBD =∠EBD ,∵AD//BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴BE =DE ,∵AD =BC′,∴AE =EC′.设DE =x ,则BE =x ,AE =8−x ,在Rt △ABE 中,由勾股定理得:AB 2+AE 2=BE 2即42+(8−x)2=x 2,解得:x =5,∴DE =5.∴AE =3,三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19.【答案】原式=2√2+9−(√2−1)−2×√22=2√2+9−√2+1−√2=10.【考点】特殊角的三角函数值负整数指数幂实数的运算【解析】直接利用特殊角的三角函数值以及负整数指数幂的性质、绝对值的性质、二次根式的性质分别化简得出答案.【解答】原式=2√2+9−(√2−1)−2×√22=2√2+9−√2+1−√2=10.20.【答案】2+4a+4−(a2−1)解:原式=a=a2+4a+4−a2+1=4a+5.当a=−12时,原式=4×(−12)+5=3.【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】2+4a+4−(a2−1)解:原式=a=a2+4a+4−a2+1=4a+5.当a=−12时,原式=4×(−12)+5=3.21.【答案】证明:(1)∵AD//BC,∠ABC=90∘,∴∠BAD=90∘,∴∠ABD+∠ADB=90∘.∵AE⊥BD,∴∠AEB=90∘,∴∠ABD+∠BAE=90∘,∴∠ADB=∠BAE.∵∠ADB=∠DBC,∴∠BAE=∠DBC.∵EF⊥CE,∴∠FEC=90∘,∴∠AEF=∠BEC,∴△AEF∽△BEC.(2)∵△AEF∽△BEC,∴AFBC=AEBE,∵∠AEB=∠BAD,∠ABE=∠DBA,∴△ABE∽△DBA,∴AEDA=BEBA,∴AEBE=ADAB,∴AFBC=ADAB.∵AB=BC,∴AF=AD.【考点】相似三角形的判定与性质【解析】此题暂无解析【解答】证明:(1)∵AD//BC,∠ABC=90∘,∴∠BAD=90∘,∴∠ABD+∠ADB=90∘.∵AE⊥BD,∴∠AEB=90∘,∴∠ABD+∠BAE=90∘,∴∠ADB=∠BAE.∵∠ADB=∠DBC,∴∠BAE=∠DBC.∵EF⊥CE,∴∠FEC=90∘,∴∠AEF=∠BEC,∴△AEF∽△BEC.(2)∵△AEF∽△BEC,∴AFBC=AEBE,∵∠AEB=∠BAD,∠ABE=∠DBA,∴△ABE∽△DBA,∴AEDA=BEBA,∴AEBE=ADAB,∴AFBC=ADAB.∵AB=BC,∴AF=AD.22.【答案】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:{50x+25y=4500,y=x+30,解得:{x=50,y=80.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,依题意得:{(50+4)m+80×0.9(50−m)≤4500×70%,50−m≥23,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:{50x+25y=4500,y=x+30,解得:{x=50,y=80.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,依题意得:{(50+4)m+80×0.9(50−m)≤4500×70%,50−m≥23,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.23.【答案】10,90(2)10+240×360=108(人);则该校九年级女生“一分钟仰卧起坐”成绩为优秀的人数约108人.(3)如图:共有20种等可能情况,其中第①小组和第⑤小组都有1个女生被选中的有12种,概率为1220=35.【考点】频数(率)分布表扇形统计图用样本估计总体列表法与树状图法【解析】(1)根据第②组的人数和所占百分比求出总人数,即可求出m的值以及所占圆心角的度数;(2)用百分比乘以总人数,即可解答;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第相关事件的情况,再利用概率公式即可求得答案.【解答】解:(1)总人数为:15÷37.5%=40(人),则m=40−3−15−10−2=10,第③小组对应的扇形的圆心角度数为:1040×360∘=90∘.故答案为:10;90.(2)10+240×360=108(人);则该校九年级女生“一分钟仰卧起坐”成绩为优秀的人数约108人.(3)如图:共有20种等可能情况,其中第①小组和第⑤小组都有1个女生被选中的有12种,概率为1220=35. 24.【答案】解:在Rt△ACF中,∵∠ACF=60∘,AC=7(m),∴AF=AC⋅tan60∘=7√3(m).∵BC=8(m),∴AB=15(m).在Rt△ABE中,∵∠B=30∘,∴AE=AB⋅tan30∘=15×√33=5√3(m),∴EF=AF−AE=7√3−5√3=2√3(m).答:信号塔EF的高度为2√3m.【考点】解直角三角形的应用-仰角俯角问题【解析】在Rt△ACF中,根据三角函数的定义得到AF=AC⋅tan60∘=7√3米,在Rt△ABE中,根据三角函数的√33=5√3米,于是得到结论.定义得到AE=AB⋅tan30∘=15×【解答】解:在Rt△ACF中,∵∠ACF=60∘,AC=7(m),∴AF=AC⋅tan60∘=7√3(m).∵BC=8(m),∴AB=15(m).在Rt△ABE中,∵∠B=30∘,∴AE=AB⋅tan30∘=15×√33=5√3(m),∴EF=AF−AE=7√3−5√3=2√3(m).答:信号塔EF的高度为2√3m.25.【答案】(1)解:△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30∘,∠DEC=∠ABC=90∘,∴∠CAD=∠CDA=12(180∘−30∘)=75∘,∴∠ADE=90∘−∠CAD=15∘.(2)①证明:∵∠ABC=90∘,∠ACB=30∘,∴AB=12AC,且∠A=60∘,∵点F是边AC中点,∴AB=CF.∵△ABC绕点A顺时针旋转60∘得到△DEC,∴∠ACD=60∘=∠A,AC=CD,∴△CFD≅△ABC.②解:∵BC=5√3,∴DE=AB=BCtan∠ACB=5√3×√33=5.故答案为:5.【考点】旋转的性质三角形内角和定理全等三角形的判定锐角三角函数的定义【解析】(1)根据旋转的性质可得CA=CD2ECD=∠BCA=30∘∠DEC=∠ABC=90∘,根据等边对等角即可求出.∠CAD=∠CD4=75∘,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BF=12AC,然后根据30∘所对的直角边是斜边的一半即可求出AB=12AC,从而得出BF=AB,然后证出△ACD和△BCE为等边三角形,再利用HL证出△CFD=△ABC,证出DF=BE,即可证出结论.【解答】(1)解:△ABC 绕点C 顺时针旋转α得到△DEC ,点E 恰好在AC 上,∴CA =CD ,∠ECD =∠BCA =30∘,∠DEC =∠ABC =90∘,∴∠CAD =∠CDA =12(180∘−30∘)=75∘,∴∠ADE =90∘−∠CAD =15∘.(2)①证明:∵∠ABC =90∘,∠ACB =30∘,∴AB =12AC ,且∠A =60∘,∵点F 是边AC 中点,∴AB =CF .∵△ABC 绕点A 顺时针旋转60∘ 得到△DEC ,∴∠ACD =60∘=∠A ,AC =CD ,∴△CFD ≅△ABC.②解:∵BC =5√3,∴DE =AB =BCtan ∠ACB =5√3×√33=5.故答案为:5.26.【答案】解:(1)∵点B(4,m)在直线y =x +1上,∴m =4+1=5.∴B(4,5).把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =525a +5b +c =0 ,解得{a =−1b =4c =5 ,∴抛物线解析式为y =−x 2+4x +5.(2)①设P(x,−x 2+4x +5),则E(x,x +1),D(x,0),则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|,∵PE =2ED ,∴|−x 2+3x +4|=2|x +1|.当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去,∴P(2,9).当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去,∴P(6,−7).综上可知P 点坐标为(2,9)或(6,−7).【考点】二次函数综合题【解析】由直线解析式可求得B 点坐标,由A 、B 、C 三点的坐标,利用待定系数法可求得抛物线解析式.(2)①设P(x,−x 2+4x +5),则E(x,x +1),D(x,0),则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|,∵PE =2ED ,∴|−x 2+3x +4|=2|x +1|.当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去,∴P(2,9).当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去,∴P(6,−7).综上可知P 点坐标为(2,9)或(6,−7).【解答】解:(1)∵点B(4,m)在直线y =x +1上,∴m =4+1=5.∴B(4,5).把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =525a +5b +c =0 ,解得{a =−1b =4c =5 ,∴抛物线解析式为y =−x 2+4x +5.(2)①设P(x,−x 2+4x +5),则E(x,x +1),D(x,0),则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|,∵PE =2ED ,∴|−x 2+3x +4|=2|x +1|.当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去,∴P(2,9).当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去,∴P(6,−7).综上可知P 点坐标为(2,9)或(6,−7).。
初中数学中考邵阳试题解析——数学中考各地数学试题解析(112份)资料文档
湖南省邵阳市20××年中考数学试卷一、选择题(本大题有10个小题,每小题3分,在每小题给出的四个选项中只有一项是符合题目的)1.(3分)(20×ו邵阳)﹣8的相反数是()A.﹣8 B.C.0.8 D.8考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣8的相反数是8.故选D.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(20×ו邵阳)下列四个图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形分析:根据轴对称图形的概念对各选项判断即可.解答:解:A、是轴对称图形,不符合题意,故本选项错误;B、不是轴对称图形,符合题意,故本选项正确;C、是轴对称图形,不符合题意,故本选项错误;D、是轴对称图形,不符合题意,故本选项错误;故选B.点评:本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)(20×ו邵阳)函数中,自变量x的取值范围是()A.x>1 B.x<1 C.x ≥D.x≥﹣考点:函数自变量的取值范围.分根据二次根式的性质被开方数大于或等于0,可以求出x的范围.析:解答:解:根据题意得:5x﹣1≥0,解得:x≥.故选C.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3分)(20×ו邵阳)如图是某班学生参加兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组考点:扇形统计图.专题:图表型.分析:根据扇形统计图各部分所占的百分比,则参加人数最多的课外兴趣小组即为所占百分比最大的部分.解答:解:根据扇形统计图,知参加人数最多的课外兴趣小组是所占百分比最大的,即为演唱.故选B.点评:本题考查了扇形统计图的知识,读懂扇形统计图,扇形统计图反映的是各部分所占总体的百分比.5.(3分)(20×ו邵阳)若⊙O1和⊙O2的半径分别为3cm和4cm,圆心距d=7cm,则这两圆的位置是()A.相交B.内切C.外切D.外离考点:圆与圆的位置关系.分析:本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.解答:解:∵⊙O1和⊙O2的半径分别为3cm和4cm,圆心距O1O2=7cm,∴O1O2=3+4=7,∴两圆外切.故选C.点评:本题主要考查圆与圆的位置关系,外离,则P>R+r;外切,则P=R+r;相交,则R ﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).6.(3分)(20×ו邵阳)据邵阳市住房公积金管理会透露,今年我市新增住房公积金11.2亿元,其中11.2亿元可用科学记数法表示为()A.11.2×108元B.1.12×109元C.11.2×1010元D.11.2×107元考科学记数法—表示较大的数点:分科学记数法的表示形式为a×10n 析:的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11.2亿有10位,所以可以确定n=10﹣1=9.解答:解:11.2亿=1 120 000 000=11.2×109.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.7.(3分)(20×ו邵阳)下列四个点中,在反比例函数的图象上的是()A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)考点:反比例函数图象上点的坐标特征.分析:根据反比例函数中k=xy的特点进行解答即可.解答:解:A、∵3×(﹣2)=﹣6,∴此点在反比例函数的图象上,故本选项正确;B、∵3×2=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;C、∵2×3=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;D、∵(﹣2)×(﹣3)=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数y=中,k=xy为定值是解答此题的关键.8.(3分)(20×ו邵阳)如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(﹣2,﹣1)D.(﹣2,1)考点:坐标确定位置分析:建立平面直角坐标系,然后写城市南山的坐标即可.解答:解:建立平面直角坐标系如图,城市南山的位置为(﹣2,﹣1).故选C.点评:本题考查了利用坐标确定位置,是基础题,建立平面直角坐标系是解题的关键.9.(3分)(20×ו邵阳)在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C的度数是()A.30°B.45°C.60°D.90°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:根据绝对值及完全平方的非负性,可求出sinA、cosB的值,继而得出∠A、∠B的度数,利用三角形的内角和定理,可求出∠C的度数.解答:解:∵|sinA﹣|+(cosB﹣)2=0,∴sinA=,cosB=,∴∠A=30°,∠B=60°,则∠C=180°﹣30°﹣60°=90°.故选D.点评:本题考查了特殊角的三角函数值,三角形的内角和定理,属于基础题,一些特殊角的三角函数值是需要我们熟练记忆的内容.10.(3分)(20×ו邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC考点:全等三角形的判定;矩形的性质.分析:根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.解解:∵AD=DE,DO∥AB,答:∴OD为△ABE的中位线,∴OD=OC,∵在Rt△AOD和Rt△EOD中,,∴△AOD≌△EOD(HL);∵在Rt△AOD和Rt△BOC中,,∴△AOD≌△BOC(HL);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.点评:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)(20×ו邵阳)在计算器上,依次按键2、x2,得到的结果是.考点:计算器—有理数.分析:根据题意得出x2=2,求出结果即可.解答:解:根据题意得:x2=2,x=;故答案为:.点评:本题考查了计算器﹣有理数,关键是考查学生的理解能力,题型较好,但是一道比较容易出错的题目.12.(3分)(20×ו邵阳)因式分解:x2﹣9y2=(x+3y)(x﹣3y).考点:因式分解-运用公式法分析:直接利用平方差公式分解即可.解答:解:x2﹣9y2=(x+3y)(x﹣3y).点评:本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.13.(3分)(20×ו邵阳)今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为0.9a元/千克.考列代数式.点:分析:因为原来鸡肉价格为a元/千克,现在下降了10%,所以现在的价格为(1﹣10%)a,即0.9a元/千克.解答:解:∵原来鸡肉价格为a元/千克,现在下降了10%,∴五月份的价格为a﹣10%a=(1﹣10%)a=0.9a,故答案为:0.9a.点评:本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.注意价格下降了10%就是指原来的价格减去原来价格的10%.14.(3分)(20×ו邵阳)如图所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC=10.考点:三角形中位线定理.分析:由在△ABC中,点D、E分别是AB、AC的中点,可得DE是△ABC的中位线,然后由三角形中位线的性质,即可求得答案.解答:解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE=BC,∵DE=5,∴BC=10.故答案为:10.点评:此题考查了三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.15.(3分)(20×ו邵阳)计算:=1.考点:分式的加减法.专题:计算题.分析:分母不变,直接把分子相减即可.解答:解:原式==1.故答案为:1.点评:本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.16.(3分)(20×ו邵阳)端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是.考点:概率公式.分析:共有8个粽子,火腿粽子有5个,根据概率的公式进行计算即可.解答:解:∵共有8个粽子,火腿粽子有5个,∴从中任取1个,是火腿粽子的概率是,故答案为:点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.17.(3分)(20×ו邵阳)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是∠A与∠C(答案不唯一).考点:圆周角定理.专题:开放型.分析:直接根据圆周角定理解答即可.解答:解:∵∠A与∠C是同弧所对的圆周角,∴∠A=∠C(答案不唯一).故答案为:∠A=∠C(答案不唯一).点评:本题考查的是圆周角定理,此题属开放性题目,答案不唯一.18.(3分)(20×ו邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件∠B=90°,使四边形ABCD为矩形.考点:旋转的性质;矩形的判定.专题:开放型.分析:根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.解答:解:∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.三、解答题(本大题有3个小题,每小题8分,共24分)19.(8分)(20×ו邵阳)先化简,再求值:(a﹣b)2+a(2b﹣a),其中,b=3.考点:整式的混合运算—化简求值分析:原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式=a2﹣2ab+b2+2ab﹣a2=b2,当b=3时,原式=9.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(8分)(20×ו邵阳)解方程组:.考点:解二元一次方程组.专题:计算题.分析:根据y的系数互为相反数,利用加减消元法其解即可.解答:解:,①+②得,3x=18,解得x=6,把x=6代入①得,6+3y=12,解得y=2,所以,方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.21.(8分)(20×ו邵阳)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.四、应用题(本大题有3个小题,每小题8分,共24分)22.(8分)(20×ו邵阳)如图所示,某窗户有矩形和弓形组成,已知弓形的跨度AB=3cm,弓形的高EF=1cm,现计划安装玻璃,请帮工程师求出所在圆O的半径r.考点:垂径定理的应用;勾股定理.分析:根据垂径定理可得AF=AB,再表示出AO、OF,然后利用勾股定理列式进行计算即可得解.解答:解:∵弓形的跨度AB=3cm,EF为弓形的高,∴OE⊥AB,∴AF=AB=cm,∵所在圆O的半径为r,弓形的高EF=1cm,∴AO=r,OF=r﹣1,在Rt△AOF中,AO2=AF2+OF2,即r2=()2+(r﹣1)2,解得r=cm.答:所在圆O的半径为cm.点评:本题考查了垂径定理的应用,勾股定理的应用,此类题目通常采用把半弦,弦心距,半径三者放到同一个直角三角形中,利用勾股定理解答.23.(8分)(20×ו邵阳)如图所示,图①表示的是某教育网站一周内连续7天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这7天的日访问总量一共约为10万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.考点:折线统计图;条形统计图分析:(1)由这7天的日访问总量一共约为10万人次,结合条形统计图可得除星期三以外的其它天的日访问总量分别为:0.5万人次,1万人次,1万人次,1.5万人次,2.5万人次,3万人次,继而求得星期三的日访问总量;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(2)结合图可得某教育网站一周内星期日的日访问总量最大;注意此题答案不唯一,符合题意即可.解答:解:(1)∵这7天的日访问总量一共约为10万人次,除星期三以外的其它天的日访问总量分别为:0.5万人次,1万人次,1万人次,1.5万人次,2.5万人次,3万人次,∴星期三的日访问总量为:10﹣0.5﹣1﹣1﹣1.5﹣2.5﹣3=0.5(万人次);(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,∴星期日学生日访问总量为:3×30%=0.9(万人次);(3)某教育网站一周内星期日的日访问总量最大.点评:本题考查的是条形统计图和扇形统计图的综合运用.注意读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.注意数形结合思想的应用.24.(8分)(20×ו邵阳)雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:板房规格板材数量(m2)铝材数量(m)甲型40 30乙型60 20请你根据以上信息,设计出甲、乙两种板房的搭建方案.考点:一元一次不等式组的应用分析:设甲种板房搭建x间,则乙种板房搭建(100﹣x)间,根据题意列出不等式组,再根据x只能取整数,求出x的值,即可得出答案.解答:解:设甲种板房搭建x间,则乙种板房搭建(100﹣x)间,根据题意得:,解得:20≤x≤21,x只能取整数,则x=20,21,共有2种搭建方案:方案一:甲种板房搭建20间,乙种板房搭建80间,方案二:甲种板房搭建21间,乙种板房搭建79间.点评:此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系列出不等式组,注意x只能取整数.五、综合题(本大题有2个小题,其中25题8分,26题10,共18分)25.(8分)(20×ו邵阳)如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.(1)求图象F所表示的抛物线的解析式:(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.考点:二次函数图象与几何变换;待定系数法求一次函数解析式;二次函数的性质.分析:(1)根据二次函数图象左加右减,上加下减的平移规律进行解答;(2)先根据抛物线F的解析式求出顶点C,和x轴交点B的坐标,再设A点坐标为(0,y),根据点A到x轴的距离等于点C到x轴的距离的2倍,列出关于y的方程,解方程求出y的值,然后利用待定系数法求出AB所在直线的解析式.解答:解:(1)∵抛物线y=﹣2x2﹣4x=﹣2(x+1)2+2的图象E,将其向右平移两个单位后得到图象F,∴图象F所表示的抛物线的解析式为y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;(2)∵y=﹣2(x﹣1)2+2,∴顶点C的坐标为(1,2).当y=0时,﹣2(x﹣1)2+2=0,解得x=0或2,∴点B的坐标为(2,0).设A点坐标为(0,y),则y<0.∵点A到x轴的距离等于点C到x轴的距离的2倍,∴﹣y=2×2,解得y=﹣4,∴A点坐标为(0,﹣4).设AB所在直线的解析式为y=kx+b,由题意,得,解得,∴AB所在直线的解析式为y=2x﹣4.点评:本题考查了二次函数图象与几何变换,二次函数的性质,运用待定系数法求函数的解析式,难度适中,求出图象F所表示的抛物线的解析式是解题的关键.26.(10分)(20×ו邵阳)如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC 的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC 于点M,BP′交AC于D,连结BP、AP′、CP′.(1)若四边形BPCP′为菱形,求BM的长;(2)若△BMP′∽△ABC,求BM的长;(3)若△ABD为等腰三角形,求△ABD的面积.考点:相似形综合题.分析:(1)由菱形的性质可知,点M为BC的中点,所以BM可求;(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,则△BMP′必为等腰直角三角形.证明△BMP′、△BMP、△BPP′均为等腰直角三角形,则BP=BP′;证明△BCP 为等腰三角形,BP=BC,从而BP′=BC=4,进而求出BM的长度;(3)△ABD为等腰三角形,有3种情形,需要分类讨论计算.解答:解:(1)∵四边形BPCP′为菱形,而菱形的对角线互相垂直平分,∴点M为BC的中点,∴BM=BC=×4=2.(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,则△BMP′必为等腰直角三角形,BM=MP′.由对称轴可知,MP=MP′,PP′⊥BC,则△BMP为等腰直角三角形,∴△BPP′为等腰直角三角形,BP′=BP.∵∠CBP=45°,∠BCP=(180°﹣45°)=67.5°,∴∠BPC=180°﹣∠CBP﹣∠BCP=180°﹣45°﹣67.5°=67.5°,∴∠BPC=∠BCP,∴BP=BC=4,∴BP′=4.在等腰直角三角形BMP′中,斜边BP′=4,∴BM=BP′=.(3)△ABD为等腰三角形,有3种情形:①若AD=BD,如题图②所示.此时△ABD为等腰直角三角形,斜边AB=4,∴S△ABD=AD•BD=××=4;②若AD=AB,如下图所示:过点D作DE⊥AB于点E,则△ADE为等腰直角三角形,∴DE=AD=AB=∴S△ABD=AB•DE=×4×=;③若AB=BD,则点D与点C重合,可知此时点P、点P′、点M均与点C重合,∴S△ABD=S△ABC=AB•BC=×4×4=8.点评:本题是几何综合题,考查了相似三角形的性质、等腰直角三角形、等腰三角形、菱形、勾股定理等知识点,难度不大.第(3)问考查了分类讨论的数学思想,是本题的难点.。
最新整理湖南省邵阳市2021届中考数学试卷和答案解析详解完整版
2021年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的相反数是()A.﹣3 B.0 C.3 D.π【分析】根据相反数的概念求解即可.【解答】解:相反数指的是只有符号不同的两个数,因此﹣3的相反数为3.故选:C.2.下列四个图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项符合题意;D.不是中心对称图形,故本选项不合题意.故选:C.3.2021年我国首次发射探测器对火星进行探测.北京时间2月10日晚,“天问一号”探测器在距离地球约192000000km处成功实施制动捕获,随后进入火星轨道.用科学记数法将192000000表示为a×108的形式,则a的值是()A.0.192 B.1.92 C.19.2 D.192【解答】解:192000000=1.92×108,故a=1.92,故选:B.4.如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是()A.2 B.1 C.﹣1 D.﹣2【解答】解:∵M,N所对应的实数分别为m,n,∴﹣3<m<﹣2<0<n<1,∴m+n的值可能是﹣2.故选:D.5.如图,在△AOB中,AO=1,BO=AB.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为()A.1 B.C.D.【解答】解:由旋转性质可知,OA=OA'=1,∠AOA'=90°,则△AOA'为等腰直角三角形,∴AA'.故选:B.6.其社区针对5月30日前该社区居民接种新冠疫苗的情况开展了问卷调查,共收回6000份有效问卷.经统计,制成如下数据表格.接种疫苗针数0 1 2 3 人数2100 2280 1320 300 小杰同学选择扇形统计图分析接种不同针数的居民人数所占总人数的百分比.下面是制作扇形统计图的步骤(顺序打乱):①计算各部分扇形的圆心角分别为126°,136.8°,79.2°,18°.②计算出接种不同针数的居民人数占总人数的百分比分别为35%,38%,22%,5%.③在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比.制作扇形统计图的步骤排序正确的是()A.②①③B.①③②C.①②③D.③①②【解答】解:由题意可知,小杰同学制作扇形统计图的步骤为:先计算出接种不同针数的居民人数占总人数的百分比分别为35%,38%,22%,5%;再计算各部分扇形的圆心角分别为126°,136.8°,79.2°,18°;然后在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比.故选:A.7.下列数值不是不等式组的整数解的是()A.﹣2 B.﹣1 C.0 D.1【分析】先分别求每个不等式的解集,取其解集的公共部分作为不等式组的解集,然后再确定其整数解.【解答】解:,解不等式①,得:x,解不等式②,得:x≤1,∴不等式组的解集为:x≤1,∴不等式组的整数解为﹣1,0,1,故选:A.8.某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是()A.小明修车花了15minB.小明家距离学校1100mC.小明修好车后花了30min到达学校D.小明修好车后骑行到学校的平均速度是3m/s【解答】解:A.由横坐标看出,小明修车时间为20﹣5=15(分钟),故本选项符合题意;B.由纵坐标看出,小明家学校离家的距离为2100米,故本选项不合题意;C.由横坐标看出,小明修好车后花了30﹣20=10(min)到达学校,故本选项不合题意;D.小明修好车后骑行到学校的平均速度是:(2100﹣1100)÷10=100(米/分钟)(m/s),故本选项不合题意;故选:A.9.如图,点A,B,C是⊙O上的三点.若∠AOC=90°,∠BAC=30°,则∠AOB的大小为()A.25°B.30°C.35°D.40°【解答】解:∵∠BAC与∠BOC所对弧为,由圆周角定理可知:∠BOC=2∠BAC=60°,又∠AOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°.故选:B.10.在平面直角坐标系中,若直线y=﹣x+m不经过第一象限,则关于x的方程mx2+x+1=0的实数根的个数为()A.0个B.1个C.2个D.1或2个【解答】解:∵直线y=﹣x+m不经过第一象限,∴m≤0,当m=0时,方程mx2+x+1=0是一次方程,有一个根,当m<0时,∵关于x的方程mx2+x+1=0,∴△=12﹣4m>0,∴关于x的方程mx2+x+1=0有两个不相等的实数根,故选:D.二、填空题(本大题有8个小题,每小题3分,共24分)11.16的算术平方根是 4 .【解答】解:∵42=16,∴4.故答案为:4.12.因式分解:xy2﹣x3=x(y+x)(y﹣x) .【解答】解:xy2﹣x3=x(y2﹣x2)=x(y+x)(y﹣x).故答案为:x(y+x)(y﹣x).13.如图,点D,E,F分别为△ABC三边的中点.若△ABC的周长为10,则△DEF的周长为 5 .【解答】解:∵D、E、F分别是AB、AC、BC的中点,∴FD、FE、DE为△ABC中位线,∴DF AC,FE AB,DE BC;∴DF+FE+DE AC AB BC(AB+AC+CB)10=5,故答案为:5.14.已知点A(1,y1),B(2,y2)为反比例函数y图象上的两点,则y1与y2的大小关系是y1>y2.(填“>”“=”或“<”)【解答】解:∵反比例函数y中,k=3>0,∴函数图象的两个分支分别位于第一、三象限,且在每一象限内y随x的增大而减小.∵A(1,y1),B(2,y2),∴点A、B都在第一象限,又1<2,∴y1>y2,故答案为:>.15.如图,已知线段AB长为4.现按照以下步骤作图:①分别以点A,B为圆心,大于AB长为半径画弧,两弧分别相交于点E,F;②过E,F两点作直线,与线段AB相交于点O.则AO的长为 2 .【解答】解:由基本作图方法可得:EF垂直平分AB,∵AB=4,∴AO AB=2.故答案为:2.16.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是.【解答】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴它遇到食物的概率是:.故答案为:.17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是53 钱.【解答】解:设有x人,物品的价值为y钱,依题意,得:,解得:,即该问题中物品的价值是53钱,故答案为:53.18.如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE,AD=4,则AB的长为 3 .【解答】解:∵DE⊥AC,∴∠ADE+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠ACD=∠ADE,∵矩形ABCD的对边AB∥CD,∴∠BAC=∠ACD,∵sin∠ADE,∴,∴AC5,由勾股定理得,AB3,故答案为:3.三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)计算:(2021﹣π)0﹣|2|﹣tan60°.【解答】解:原式=1﹣(2)=1﹣2=﹣1.20.(8分)先化简,再从﹣1,0,1,2,1中选择一个合适的x的值代入求值.(1).【解答】解:原式,又∵x≠±1,∴x可以取0,此时原式=﹣1;x可以取2,此时原式=1;x可以取,此时原式.21.(8分)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.【解答】解;(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵AB=AD,∴BD8,由正方形对角线相等且互相垂直平分可得:AC=BD=8,DO=BO=4,OA=OC=4,又AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF=4﹣2=2,故四边形BEDF为菱形.∵∠DOE=90°,∴DE2.∴4DE故四边形BEDF的周长为8.22.(8分)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.【解答】解:设钢笔购买了x支,笔记本购买了y本.由题意得:,解得:,∴15×15=225(元),35×5=175(元),答:钢笔购买了15支共225元,笔记本购买了35本共175元.23.(8分)为落实湖南省共青团“青年大学习”的号召,某校团委针对该校学生每周参加“青年大学习”的时间(单位:h)进行了随机抽样调查,并将获得的数据绘制成如下统计表和如图所示的统计图,请根据图表中的信息回答下列问题.周学习时间频数频率0≤t<1 5 0.051≤t<2 20 0.202≤t<3 a0.353≤t<4 25 m4≤t≤5 15 0.15 (1)求统计表中a,m的值.(2)甲同学说“我的周学习时间是此次抽样调查所得数据的中位数”.求甲同学的周学习时间在哪个范围内.(3)已知该校学生约有2000人,试估计该校学生每周参加“青年大学习”的时间不少于3h的人数.【解答】解:(1)∵样本容量为5÷0.05=100,∴a=100×0.35=35,m=25÷100=0.25;(2)∵一共有100个数据,其中位数是第50、51个数据的平均数,而这2个数据均落在2≤t<3范围内,∴甲同学的周学习时间在2≤t<3范围内;(3)估计该校学生每周参加“青年大学习”的时间不少于3h的人数为2000×(0.25+0.15)=800(人).24.(8分)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)【解答】解:(1)设∠BAC=n°.由题意得π•DE,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴•BC•AD﹣S扇形AEF10×20(100﹣25π)cm2.25.(8分)如图,在平面直角坐标系中,抛物线C:y=ax2+bx+c(a≠0)经过点(1,1)和(4,1).(1)求抛物线C的对称轴.(2)当a=﹣1时,将抛物线C向左平移2个单位,再向下平移1个单位,得到抛物线C1.①求抛物线C1的解析式.②设抛物线C1与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,连接BC.点D为第一象限内抛物线C1上一动点,过点D作DE⊥OA于点E.设点D的横坐标为m.是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似,若存在,求出m的值;若不存在,请说明理由.【解答】解:(1)∵点(1,1)和(4,1)的纵坐标相同,故上述两点关于抛物线对称轴对称,故抛物线的对称轴为直线x(1+4);(2)①由题意得:,解得,故原抛物线的表达式为y=﹣x2+5x﹣3;由平移的性质得,平移后的抛物线表达式为y=﹣(x+2)2+5(x+2)﹣3﹣1=﹣x2+x+2;②存在,理由:令y=﹣x2+x+2=0,解得x=﹣1或2,令x=0,则y=2,故点B、A的坐标分别为(﹣1,0)、(2,0),点C(0,2);∵tan∠BCO,同理可得:tan∠CBO=2,当以点O,D,E为顶点的三角形与△BOC相似时,则tan∠DOE=2或,设点D的坐标为(m,﹣m2+m+2),则tan∠DOE2或,解得:m=﹣2(舍去)或1或(舍去)或,故m=1或.26.(10分)如图,在Rt△ABC中,点P为斜边BC上一动点,将△ABP沿直线AP折叠,使得点B的对应点为B′,连接AB′,CB′,BB′,PB′.(1)如图①,若PB′⊥AC,证明:PB′=AB′.(2)如图②,若AB=AC,BP=3PC,求cos∠B′AC的值.(3)如图③,若∠ACB=30°,是否存在点P,使得AB=CB′.若存在,求此时的值;若不存在,请说明理由.【解答】解:(1)证明:∵PB'⊥AC,∠CAB=90°,∴PB'∥AB.∴∠B'PA=∠BAP,又由折叠可知∠BAP=∠B'AP,∴∠B'PA=∠B'AP.故PB′=AB′.(2)设AB=AC=a,AC、PB'交于点D,则△ABC为等腰直角三角形,∴BC,PC,PB,由折叠可知,∠PB'A=∠B=45°,又∠ACB=45°,∴∠PB'A=∠ACB,又∠CDP=∠B'DA,∴△CDP~△B'DA.∴.①设B'D=b,则CD b.∴AD=AC﹣CD=a b,PD=PB'﹣B'D=PB﹣B'D b,由①得:.解得:b.过点D作DE⊥AB'于点E,则△B'DE为等腰直角三角形.∴B'E=sin45°×B'D,∴AE=AB'﹣B'E=AB﹣B'E=a.又AD=AC﹣CD=a b=a.∴cos∠B'AC=cos∠EAD.(3)存在点P,使得CB'=AB=m.∵∠ACB=30°,∠CAB=90°.∴BC=2m.①如答图2所示,由题意可知,点B'的运动轨迹为以A为圆心、AB为半径的半圆A.当P为BC中点时,PC=BP=AP=AB'=m,又∠B=60°,∴△PAB为等边三角形.又由折叠可得四边形ABPB'为菱形.∴PB'∥AB,∴PB'⊥AC.又∵AP=AB',则易知AC为PB'的垂直平分线.故CB'=PC=AB=m,满足题意.此时,.②当点B'落在BC上时,如答图3所示,此时CB'=AB=m,则PB',∴PC=CB'+PB'=a,∴.综上所述,的值为或.。
2020年湖南省邵阳市中考数学试卷(含答案解析)
2020年湖南省邵阳市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.2020的倒数是()A. −2020B. 2020C. 12020D. −120202.下列四个立体图形中,它们各自的三视图都相同的是()A. B. C. D.3.2020年6月23日,中国第55颗北斗导航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面建成.据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%.其中,3450亿元用科学记数法表示为()A. 3.45×1010元B. 3.45×109元C. 3.45×108元D. 3.45×1011元4.设方程x2−3x+2=0的两根分别是x1,x2,则x1+x2的值为()A. 3B. −32C. 32D. −25.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,−1),则平移后的函数图象大致是()A. B.C. D.6.下列计算正确的是()A. 5√3+√18=8√3B. (−2a2b)3=−6a2b3C. (a−b)2=a2−b2D. a2−4a+b ⋅a+ba+2=a−27.如图,四边形ABCD是平行四边形,点E,B,D,F在同一条直线上,请添加一个条件使得△ABE≌△CDF,下列不正确的是()A. AE=CFB. ∠AEB=∠CFDC. ∠EAB=∠FCDD. BE=DF8.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A. (a,b)B. (−a,b)C. (−a,−b)D. (a,−b)9.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A. 6m2B. 7m2C. 8m2D. 9m210.将一张矩形纸片ABCD按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于点M.若P1M⊥AB,则∠DP1M的大小是()A. 135°B. 120°C. 112.5°D. 115°二、填空题(本大题共8小题,共24.0分)11.因式分解:2x2−18=______.(k≠0)的图象上,12.如图,已知点A在反比例函数y=kx过点A作AB⊥y轴于点B,△OAB的面积是2.则k的值是______.13.据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲,乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时):甲:7,8,8,9,7,8,8,9,7,9;乙:6,8,7,7,8,9,10,7,9,9.从接受“送教上门”的时间波动大小来看,______学生每周接受送教的时间更稳定.(填“甲”或“乙”)14.如图,线段AB=10cm,用尺规作图法按如下步骤作图.AB;(1)过点B作AB的垂线,并在垂线上取BC=12(2)连接AC,以点C为圆心,CB为半径画弧,交AC于点E;(3)以点A为圆心,AE为半径画弧,交AB于点D.即点D为线段AB的黄金分割点.则线段AD的长度约为______cm.(结果保留两位小数,参考数据:√2=1.414,√3=1.732,√5=2.236)15.在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为______.3√22√3163√216.中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为______.17.如图①是山东舰航徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母橫空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为10π的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长AB为______.18.如图,在Rt△ABC中,∠ACB=90°,斜边AB=√2,过点C作CF//AB,以AB为边作菱形ABEF,若∠F=30°,则Rt△ABC的面积为______.三、解答题(本大题共8小题,共66.0分))−1+|−1+√3|−2sin60°.19.计算:(−1)2020+(1220.已知:|m−1|+√n+2=0,(1)求m,n的值;(2)先化简,再求值:m(m−3n)+(m+2n)2−4n2.21.如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O过点A,连接AD,∠CAD=∠C.(1)求证:AC是⊙O的切线;(2)若AC=4,求⊙O的半径.22.2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程--邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB,BC表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔AA1,BB1,CC1分别为62m,100m,200m.若管道AB与水平线AA2的夹角为30°,管道BC与水平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).23.“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,为了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有______人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为______度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?24.2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?25.已知:如图①,将一块45°角的直角三角板DEF与正方形ABCD的一角重合,连接AF,CE,点M是CE的中点,连接DM.(1)请你猜想AF与DM的数量关系是______.(2)如图②,把正方形ABCD绕着点D顺时针旋转α角(0°<α<90°).①AF与DM的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM到点N,使MN=DM,连接CN)②求证:AF⊥DM;③若旋转角α=45°,且∠EDM=2∠MDC,求AD的值.(可不写过程,直接写出结ED果)26.如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),x+c(a≠0)过B,C两点,动点M从点D B(0,6),CD=5,抛物线y=ax2−154开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.(1)求抛物线的解析式;(2)求点D的坐标;(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值;(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A′,求A′Q+QN+DN的最小值.答案和解析1.【答案】C=1【解析】解:∵2020×12020∴2020的倒数是1,2020故选:C.根据倒数的定义求解即可本题考查倒数的定义,熟记倒数的定义是解题的关键.2.【答案】A【解析】解:A、球的三视图都是圆,故本选项符合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不符合题意;C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不符合题意;D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项不符合题意;故选:A.根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.3.【答案】D【解析】解:根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,则3450亿=345000000000=3.45×1011.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.本题主要考查利用科学记数法表示较大的数的方法,掌握科学记数法的表示方法是解答本题的关键,这里还需要注意n的取值.4.【答案】A【解析】【分析】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.本题可利用根与系数的关系,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可.【解答】解:由x2−3x+2=0可知,其二次项系数a=1,一次项系数b=−3,由根与系数的关系:x1+x2=−ba =−(−3)1=3,故选A.5.【答案】D【解析】解:把点(2,3)代入y=kx(k≠0)得2k=3,解得k=32,∴正比例函数解析式为y=32x,设正比例函数平移后函数解析式为y=32x+b,把点(1,−1)代入y=32x+b得32+b=−1,∴b=−52,∴平移后函数解析式为y=32x−52,故函数图象大致为:.故选:D.先求出正比例函数解析式,再根据平移和经过点(1,−1)求出一次函数解析式,即可求解.本题考查了求正比例函数,一次函数解析式,一次函数图象与性质,根据正比例函数求出平移后一次函数解析式是解题关键.6.【答案】D【解析】解:A.5√3+√18=5√3+3√2,故A选项错误;B.(−2a2b)3=(−2)3(a2)3b3=−8a6b3,故B选项错误;C.(a−b)2=a2−2ab+b2,故C选项错误;D.a2−4a+b ⋅a+ba+2=(a+2)(a−2)a+b⋅a+ba+2=a−2,故D选项正确.故选:D.分别运用二次根式、整式和分式的运算法则逐项排除即可.本题考查了二次根式、整式和分式的运算,熟练掌握相关运算法则是解题的关键.7.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABD=∠BDC,∵∠ABE+∠ABD=∠BDC+∠CDF,∴∠ABE=∠CDF,A.若添加AE=CF,则无法证明△ABE≌△CDF,故选项A符合题意;B.若添加∠AEB=∠CFD,运用AAS可以证明△ABE≌△CDF,故选项B不符合题意;C.若添加∠EAB=∠FCD,运用ASA可以证明△ABE≌△CDF,故选项C不符合题意;D.若添加BE=DF,运用SAS可以证明△ABE≌△CDF,故选项D不符合题意.故选:A.根据平行四边形的性质结合全等三角形的判定,逐项进行判断即可.本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.8.【答案】B【解析】解:∵a+b>0,ab>0,∴a>0,b>0.A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;B、(−a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;C、(−a,−b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;D、(a,−b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;故选:B.因为ab>0,所以a、b同号,又a+b>0,所以a>0,b>0,观察图形判断出小手盖住的点在第二象限,然后解答即可.本题考查了点的象限的判断,熟练判断a,b的正负是解题的关键.9.【答案】B【解析】解:假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:x,20当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,=0.35,解得x=7.综上有:x20故选:B.本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高10.【答案】C【解析】解:∵折叠,且∠P1MA=90°,∴∠DMP1=∠DMA=45°,即∠ADM=45°,∵折叠,∴∠MDP1=∠ADP=∠ADM=22.5°,∠PDM=12∴在△DP1M中,∠DP1M=180°−45°−22.5°=112.5°,故选:C.由折叠前后对应角相等且∠P1MA=90°可先求出∠DMP1=∠DMA=45°,进一步求出∠ADM=45°,再由折叠可求出∠MDP1=∠ADP=∠PDM=22.5°,最后在△DP1M中由三角形内角和定理即可求解.此题主要考查了平行线的性质,本题借助矩形的性质考查了折叠问题、三角形内角和定理等,记牢折叠问题的特点:折叠前后对应边相等,对应角相等即可解题.11.【答案】2(x +3)(x −3)【解析】解:2x 2−18=2(x 2−9)=2(x +3)(x −3), 故答案为:2(x +3)(x −3).提公因式2,再运用平方差公式因式分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【答案】4【解析】解:设点A 的坐标为(x A ,y A ),AB ⊥y , 由题意可知:S △OAB =12OB ⋅AB =12y A ⋅x A =2, ∴y A ⋅x A =4,又点A 在反比例函数图象上, 故有k =x A ⋅y A =4. 故答案为:4.根据△OAB 的面积等于2,即可得到线段OB 与线段AB 的乘积,进而得到A 点横坐标与纵坐标的乘积,进而求出k 值.本题考查了反比例函数系数k 的几何意义,三角形的面积公式等,熟练掌握反比例函数的图形和性质是解决此类题的关键.13.【答案】甲【解析】解:甲的“送教上门”时间的平均数为:7+8+8+9+7+8+8+9+7+910=8,乙的“送教上门”时间的平均数为:6+8+7+7+8+9+10+7+9+910=8,甲的方差:S 甲2=3×(7−8)2+4×(8−8)2+3×(9−8)210=35,乙的方差:S 乙2=(6−8)2+3×(7−8)2+2×(8−8)2+3×(9−8)2+(10−8)210=75, 因为35<75,所以甲的方差小,故甲学生每周接受送教的时间更稳定. 故答案为:甲.先算出甲、乙送教上门时间的平均数,进而求出方差,方差越小,则接受送教的时间更稳定.本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键.14.【答案】6.18AB=5cm,AE=AD,【解析】解:由作图得△ABC为直角三角形,CE=BC=12∴AC=√AB2+BC2=√102+52=5√5cm,∴AE=AC−CE=5√5−5=5(√5−1)cm,∴AD=AE=5(√5−1)≈6.18cm.故答案为:6.18.AB=5cm,AE=AD,根据勾股定理求根据作图得△ABC为直角三角形,CE=BC=12出AC,再求出AE,即可求出AD.本题考查了尺规作图,勾股定理等知识,根据作图步骤得到相关已知条件是解题关键.15.【答案】6√2【解析】解:由题意可知,第一行三个数的乘积为:3√2×2×√3=6√6,设第二行中间数为x,则1×x×6=6√6,解得x=√6,设第三行第一个数为y,则y×3×√2=6√6,解得y=2√3,∴2个空格的实数之积为xy=2√18=6√2.故答案为:6√2.先将表格中最上一行的3个数相乘得到6√6,然后中间一行的三个数相乘以及最后一行的三个数相等都是6√6,即可求解.本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.16.【答案】x(x+12)=864【解析】解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.17.【答案】13【解析】解:∵圆锥底面周长=侧面展开后扇形的弧长=10π,∴OB=10π2π=5,在Rt△AOB中,AB=√AO2+BO2=√122+52=13,所以该圆锥的母线长AB为13.故答案为:13.由扇形弧长求出底面半径,由勾股定理即可求出母线AB的长.本题考查圆锥弧长公式的应用,解题的关键是牢记有关的公式.18.【答案】12【解析】解:如图,分别过点E、C作EH、CG垂直AB,垂足为点H、G,∵根据题意四边形ABEF为菱形,∴AB=BE=√2,又∵∠ABE=30°∴在RT△BHE中,EH=√22,根据题意,AB//CF,根据平行线间的距离处处相等,∴HE=CG=√22,∴Rt△ABC的面积为12×√2×√22=12.故答案为:12.先利用直角三角形中30°角的性质求出HE的长度,然后利用平行线间的距离处处相等,可得CG的长度,即可求出直角三角形ABC面积.本题的辅助线是解答本题的关键,通过辅助线,利用直角三角形中的30°角所对直角边是斜边一半的性质,求出HE,再利用平行线间的距离处处相等这一知识点得到HE=CG,最终求出直角三角形面积.19.【答案】解:原式=1+2+(√3−1)−2×√32=1+2+√3−1−√3=2.【解析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.20.【答案】解:(1)根据非负数得:m−1=0且n+2=0,解得:m=1,n=−2,(2)原式=m2−3mn+m2+4mn+4n2−4n2=2m2+mn,当m=1,n=−2,原式=2×1+1×(−2)=0.【解析】(1)m=1,n=−2;(2)2m2+mn;0.本题考查了绝对值与二次根式的非负性、整式的化简求值,还涉及去括号法则、完全平方公式、合并同类项法则等知识,熟练掌握非负数的性质以及运算法则是解答的关键.21.【答案】(1)证明:如图:连接OA,∵OA=OB,∴∠OBA=∠OAB,∵AB=AC,∴∠OBA=∠C,∴∠OAB=∠C,∵∠CAD=∠C,∴∠OAB=∠CAD,∵BD是直径,∴∠BAD=90°,∵∠OAC=∠BAD−∠OAB+∠CAD=90°,∴AC是⊙O的切线;(2)解:由(1)可知AC是⊙O的切线,∴∠OAC=90°,∠AOD=2∠B,∵AB=AC,∴∠B=∠C,∴∠AOC+∠C=2∠B+∠C=3∠C=90°,∴∠B=∠C=30°,在Rt△ABD中,BD=ABcosB =4cos30∘=8√33,∴OB=4√33,∴⊙O的半径为4√33.【解析】(1)连接OA,由圆的性质可得OA=OB,即∠OBA=∠OAB;再由AB=AC,即∠OBA=∠C,再结合∠CAD=∠C,可得∠OAB=∠CAD,然后由∠BAD=90°说明∠OAC=90°即可完成证明;(2)根据等腰三角形的性质和圆的性质即可得到结论.本题考查了圆的切线的判定,相似三角形的判定和性质,证得∠OAC=90°是解答本题的关键.22.【答案】解:根据题意知,四边形AA1B1O和四边形BB1C1B2均为矩形,∴OB1=AA1=62m,B2C1=BB1=100m,∴BO=BB1−OB1=100−62=38m,CB2=CC1−B2C1=200−100=100m,在Rt△AOB中,∠AOB=90°,∠BAO=30°,BO=38m,∴AB=2BO=2×38=76m;在Rt△CBB2中,∠CB2B=90°,∠CBB2=45°,CB2=100m,∴BC=√2CB2=100√2m,∴AB+BC=(76+100√2)m,即管道AB和BC的总长度为:(76+100√2)m.【解析】先根据题意得到BO,CB2的长,在Rt△ABO中,由三角函数可得AB的长度,在Rt△BCB2中,由三角函数可得BC的长度,再相加即可得到答案.考查了解直角三角形的应用,关键是根据三角函数得到AB和BC的长度.23.【答案】100 18【解析】解:(1)15÷15%=100(人).故答案为:100;(2)如图,选B的人数:100−40−15−5=40(人).条形图补充如下:=18o.(3)图②中,D选项所对应的扇形圆心角为:360o×5100故答案为:18;(4)1500×40=600(人).100故估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有600人.(1)根据选A的有50人,占15%,从而求得本次接受问卷调查的学生总数;(2)根据各组人数之和等于数据总数求得选B的人数,从而可以将条形统计图补充完整;(3)用360°乘以D选项所占百分比可得所对应扇形圆心角的度数;(4)利用样本估计总体,用1500乘以样本中学习时间在C选项的人数所占的百分比即可.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.24.【答案】解:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,依题意,得:{2x +5y =1003x +2y =62,解得:{x =10y =16.答:A 型风扇进货的单价是10元,B 型风扇进货的单价是16元; (2)设购进A 型风扇m 台,则购进B 型风扇(100−m)台, 依题意,得:{m ≤3(100−m)10m +16(100−m)≤1170,解得:7123≤m ≤75, 又∵m 为正整数,∴m 可以取72、73、74、75,∴小丹共有4种进货方案,方案1:购进A 型风扇72台,B 型风扇28台;方案2:购进A 型风扇73台,B 型风扇27台;方案3:购进A 型风扇74台,B 型风扇26台;方案4:购进A 型风扇75台,B 型风扇25台.【解析】(1)设A 型风扇进货的单价是x 元,B 型风扇进货的单价是y 元,根据“2台A 型风扇和5台B 型风扇进价共100元,3台A 型风扇和2台B 型风扇进价共62元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型风扇m 台,则购进B 型风扇(100−m)台,根据“购进A 型风扇不超过B 型风扇数量的3倍,购进A 、B 两种风扇的总金额不超过1170元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各进货方案.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.25.【答案】AF =2DM【解析】解:(1)猜想AF 与DM 的数量关系是AF =2DM , 理由:∵四边形ABCD 是正方形, ∴CD =AD ,∠ADC =90°, 在△ADF 和△CDE 中, {AD =CD∠ADF =∠CDE DF =DE, ∴△ADF≌△CDE(SAS),∴AF=CE,∵M是CE的中点,∴CE=2DM,∴AF=2DM,故答案为:AF=2DM;(2)①AF=2DM仍然成立,理由如下:延长DM到点N,使MN=DM,连接CN,∵M是CE中点,∴CM=EM,又∠CMN=∠EMD,∴△MNC≌△MDE(SAS),∴CN=DE=DF,∠MNC=∠MDE,∴CN//DE,又AD//BC∴∠NCB=∠EDA,∵四边形ABCD是正方形,∴AD=DC,∠BCD=90°=∠EDF,∴∠ADF=∠DCN,∴△ADF≌△DCN(SAS),∴AF=DN,∴AF=2DM;②∵△ADF≌△DCN,∴∠NDC=∠FAD,∵∠CDA=90°,∴∠NDC+∠NDA=90°,∴∠FAD+∠NDA=90°,∴AF⊥DM;③∵α=45°,∴∠EDC=90°−45°=45°∵∠EDM=2∠MDC,∠EDC=30°,∴∠EDM=23∴∠AFD=30°,过A点作AG⊥FD的延长线于G点,∴∠ADG=90°−45°=45°,∴△ADG是等腰直角三角形,设AG=k,则DG=k,AD=AG÷sin45°=√2k,FG=AG÷tan30°=√3k,∴FD=ED=√3k−k,故ADED =√2k√3k−k=√6+√22.(1)根据题意合理猜想即可;(2)①延长DM到点N,使MN=DM,连接CN,先证明△MNC≌△MDE,再证明△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;②根据全等三角形的性质和直角的换算即可求解;③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.此题主要考查四边形综合,解题的关键是熟知正方形的性质、旋转的特点、全等三角形的判定与性质及三角函数的运用.26.【答案】解:(1)将C(8,0),B(0,6)代入y=ax2−154x+c,得{64a−154×8+c=0c=6,解得{a=38c=6,∴抛物线的解析式为:y=38x2−154x+6;(2)如答图1,作DE⊥x于点E,∵C(8,0),B(0,6),∴OC=8,OB=6.∴BC=10.∵∠BOC=∠BCD=∠DEC,∴△BOC~△CED.∴BCCD =BOCE=OCDE.∴CE=3,DE=4.∴OE=OC+CE=11.∴D(11,4).(3)若点M在DA上运动时,DM=5t,ON=4t,当△BON~△CDM,则BOCD =ONDM,即65=4t5t不成立,舍去;当△BON~△MDC,则BOMD =ONDC,即65t=4t5,解得:t=√62;若点M在BC上运动时,CM=25−5t.当△BON~△MCD,则BOMC =ONCD,即625−5t=ON5,∴ON=65−t.当3<t≤4时,ON=16−4t.∴65−t=16−4t,解得t=9±√72(舍去).当4<t≤5时,ON=4t−16∴65−t=4t−16,无解;当△BON~△DCM,则BODC =ONCM,即65=ON25−5t,∴ON =30−6t ;当3<t ≤4时,ON =16−4t ,∴30−6t =16−4t ,解得t =7(舍去);当4<t ≤5时,ON =4t −16,∴30−6t =4t −16,解得t =235.综上所示:当t =√62时,△BON ~△MDC ;t =235时,△BON ~△DCM ;(4)如答图2,作点D 关于x 轴的对称点F ,连接QF 交x 轴于点N ,∵点D(11,4),∴点F(11,−4).由y =38x 2−154x +6得对称轴为x =5, ∴点Q(5,4).∴QF =√(5−11)2+(4+4)2=10BQ =√(0−5)2+(6−4)2=√29.∴A′Q +QN +DN =BQ −BA′+QF =√29−5+10=√29+5.故A ′Q +QN +DN 的最小值为√29+5.【解析】(1)将C(8,0),B(0,6)代入y =ax 2−154x +c 计算即可;(2)作DE ⊥x 于点E ,证明△BOC ~△CED ,可得CE ,DE 长度,进而得到点D 的坐标;(3)分为点M 在AD ,BC 上两种情况讨论,当点M 在AD 上时,分为△BON ~△CDM 和△BON ~△MDC 两种情况讨论;当点M 在BC 上时,分为△BON ~△MCD 和△BON ~△DCM 两种情况讨论;(4)作点D关于x轴的对称F,连接QF,可得QN+DN的最小值;连接BQ减去BA′可得A′Q的最小值,综上可得A′Q+QN+DN的最小值.本题考查了二次函数与几何图形的综合,涉及相似三角形的性质与判定,最短路径问题的计算,熟知以上知识的应用是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邵阳市2011年初中毕业水平考试试题卷数 学一、选择题(本大题有8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的) 1.-(-2)=A .-2B .2C .±2D .4【解题思路】:运用相反数定义 【答案】:B【点评】:这里考察了相反数的定义,首先要明确是求哪个数的相反数,一个数前面有负号表示什么意思。
难度较小2.如果□×3ab =3a 2b ,则□内应填的代数式是A .abB .3abC .aD .3a【解题思路】:运用因数因数积之间的关系变形abba 332约分即可。
【答案】:C【点评】:本题考察了约分(同底数幂的性质);思路2:把四个选项分别代入运用同底数幂的乘法运算验证。
难度较小 3.下列图形不是轴对称...图形的是A B C D【解题思路】:轴对称图形是把图形沿某直线折叠,易于中心对称图形相混淆,只注重了对称。
【答案】:C【点评】:本题考察了轴对称图形和中心对称图形的区别。
难度较小4.图(一)是某农户2010年收入情况的扇形统计图,已知他2010年的总收入为5万元,则他的打工收入是 A .0.75万元 B .1.25万元 C .1.75万元 D .2万元【解题思路】:该项收入所占的百分比总收入=⨯ 【答案】:B【点评】:该项收入所占的百分比总收入=⨯,难度较小5.已知点(1,1)在反比例函数y =k x(k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是AB C D【解题思路】:点(1,1)在反比例函数y =k x(k 为常数,k ≠0)的图象上,把点(1,1)代入y=k x可以求出k=1,所以双曲线在一、三象限。
【答案】:C 【点评】:本题考察了点在图像上,点的坐标与解析式之间的关系;以及反比例函数的性质。
难度较小6.地球上水的总储量为1.39×1018m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m 3,因此我们要节约用水.请将x yO x yO x yO x yO 粮食作物收入40% 经济作 物收入 35%打工收入 25%图(一)0.0107×16218181007.1101007.1100107.0⨯=⨯⨯=⨯-1018m 3用科学记数法表示是A .1.07×1016m3B .0.107×1017m3C .10.7×1015m 3D .1.07×1017m3【解题思路】:解题时注意是哪个数据,16218181007.1101007.1100107.0⨯=⨯⨯=⨯-【答案】:A .【点评】:用ma 10⨯表示的数称为科学计数法,这里100<<a .如果所给的数据小于1,10的指数是负数,如果所给的数据大于10,10的指数是正数;然后结合幂的性质计算即可。
难度较小7.如图(二)所示,在□ABCD 中,对角线AC 、BD 相交于点O ,且AB ≠AD ,则下列式子不.正确..的是 A .AC ⊥BDB .AB =CDC .BO =OD D .∠BAD =∠BCD【解题思路】:运用平行四边形的性质对号入座。
【答案】:A【点评】:本题考察了平行四边形的性质,难度较小8.如图(三)所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC ,则∠2的度数是 A .20° B .25° C .30° D .70°【解题思路】:∵∠1+∠COB=0180 ∠2=∠COD ∴∠2=)40180(2100- 【答案】:D【点评】:本题考察了角的和差,以及角的平分线定义。
难度较小二、填空题(本大题有8小题,每小题3分,共24分)2DCB 图(三)O 1 ADO图(二)9.在平面直角坐标系中,点(1,3)位于第 象限.【解题思路】:做出平面直角坐标系,找的点(1,3) 【答案】:一【点评】:本题考察了平面直角坐标系内点的坐标特点。
难度较小10.因式分解a 2-b 2= .【解题思路】:直接使用公式。
【答案】:a 2-b 2=【点评】:本题考察了平方差公式。
难度较小11.如图(四)所示,在△ABC 中,AB =AC ,∠B =50°,则∠A = .【解题思路】:利用等腰三角形底角相等,以及三角形内角和定理∠A=0502180⨯- 【答案】:080【点评】:本题考察了等腰三角形的性质以及三角形内角和定理。
难度较小12.函数y =x -1中,自变量x 的取值范围是 .【解题思路】:自变量的取值范围就是使代数式有意义的未知数的值。
所以x-1≥0 【答案】:x ≥1【点评】:本题考察了二次根式有意义,被开方数是非负数。
难度较小13.请写出一个解为x =2的一元一次方程: 【解题思路】:答案不唯一:x =2,x-2=0 ,2x-3=1…… 【答案】:x =2,x-2=0 ,2x-3=1……【点评】:本题考察了什么是方程的根。
难度较小 14.已知粉笔盒内共有4支粉笔,其中有3支白色粉笔和1支红色粉笔,每支粉笔除颜色外,其余均相同,先从中任取一支粉笔是红色粉笔的概率是 .【解题思路】:盒内共有粉笔4支,任取一只有4种可能,红色仅有一只,所以 【答案】:4150° AB C图(四)【点评】:本题考察了概率的知识,画出树状图即可。
难度较小15.如图(五)所示,AB ∥CD ,MN 分别交AB 、CD 于点F 、E .已知∠1=35°,∠2= .【解题思路】:两直线平行,同位角相等。
【答案】:35°【点评】:本题考察了平行线的性质,难度较小16.如图(六)所示,在等腰梯形ABCD 中,AB ∥CD ,AD =BC ,AC ⊥BC ,∠B =60°,BC =2cm ,则上底DC 的长是 cm .【解题思路】:∵AB ∥DC ∴∠DCA=∠CAB ∵AC ⊥BC ,∠B =60° ∴∠DAC=∠CAB=030∴∠DCA=030 ∴AD=CD ∵AD =BC =2 ∴CD=2【答案】:CD=2【点评】:本题考察了等腰梯形的性质、三角形内角和的推论、平行线的性质。
难度中等 三、解答题(本大题有3小题,每小题8分,共24分)17.计算:20110-4+︱-3︱.【解题思路】:原式=1-2+3=2【点评】:本题考察了幂的性质、开平方、绝对值的意义。
难度较小18.已知1x -1=1,求2x -1+x -1的值.【解题思路】:∵1x -1=1 ∴x-1=1 ∴2x -1+x -1=2-1=1 【点评】:本题考察了求代数式的值,难度较小DCB A60°图(六)MBFAC DE N1 2图(五)19.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、GH 、HE .(1)请判断四边形EFGH 的形状,并给予证明;(2)试添加一个条件,使四边形EFGH 是菱形.(写出你添加的条件,不要求证明)【解题思路】:连接A 、C ∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点 ∴HG ∥AC EF∥AC , ∴HG ∥EF 又HG= EF=21AC ∴四边形EFGH 是平行四边形。
【答案】:AC=BD【点评】:本题考察了三角形的中位线、平行四边形的判定、菱形的判定。
难度中等 四、应用题(本大题有3小题,第20、21题每小题8分,第22题10分,共26分)20.崀山成功列入世界自然遗产名录后,景区管理部门决定在八角寨架设旅游索道.设计人员为了计算索道AB (索道起点为山脚B 处,终点为山顶A 处)的长度,采取了如图(八)所示的测量方法.在B 处测得山顶A 的仰角为16°,查阅相关资料得山高AC =325米,求索道AB 的长度.(结果精确到1米)【解题思路】:如图:Rt △ABC 中,AC=325 ∠B =016 ∴ABAC =16sin 28.016sin 0≈ ∴0.28=AB325AB ≈1161米 【点评】:本题考察了锐角三角函数,已知量与待求边集中制直角三角形的斜边、直角边所DGCFBEAH图(七)参考数据sin16°≈0.28 cos16°≈0.96 tan16°≈0.29DGCFBEAH图(七)以用弦,由于AC 是直角三角形中已知角的对边,所以用正弦。
难度较小21.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计表及如图(九)所示的统计图. 零花钱数额(元) 5 10 15 20 学生人数(个) a 15 20 5 请根据图表中的信息回答以下问题. (1)求a 的值;(2)求这50名学生每人一周内的零花钱数额的众数和平均数.【解题思路】:(1) 总人数50 所以a=50-15-5-20=10(2)本周内有20人的零花钱是25元,出现次数最多,所以众数是15;5052020151510105⨯+⨯+⨯+⨯=x =12【点评】:本题考察了平均数、众数,平均数是所有数据之和与数据总数目的商;众数是所给数据中出现次数最多的一个,一组数据可以有多个众数。
22.为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛. 规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团宗人数的12,八年级学生占合唱团总人数的14,余下的为七年级学生.请求出该合唱团中七年级学生的人数.【解题思路】:∵九年级学生占合唱团宗人数的12,八年级学生占合唱团总人数的14,由于人数只能是正整数,∴总人数是4的倍数 ∵总人数不得少于50人,且不得超过55人 ∴人数的可能值是:50、51、52、53、54、55.这里52是4的倍数 ∴总人数是52人 ∵七年级学生占总人数的41)41211(=-- ∴七年级学生人数=134152=⨯零花钱数额(元)学生人数(个) 05 10 15 20 图(九)五、探究题(本大题10分)23.数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC 中,M 是BC 边(不含端点B 、C )上任意一点,P 是BC 延长线上一点,N 是∠ACP 的平分线上一点.若∠AMN =60°,求证:AM =MN . (1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整. 证明:在AB 上截取EA =MC ,连结EM ,得△AEM .∵∠1=180°-∠AMB -∠AMN ,∠2=180°-∠AMB -∠B ,∠AMN =∠B =60°,∴∠1=∠2.又CN 平分∠ACP ,∠4=12∠ACP =60°.∴∠MCN=∠3+∠4=120°…………①又∵BA =BC ,EA =MC ,∴BA -EA =BC -MC ,即BE =BM . ∴△BEM 为等边三角形.∴∠6=60°. ∴∠5=180°-∠6=120°.………② ∴由①②得∠MCN =∠5. 在△AEM 和△MCN 中,∵∠1=∠2. AE=MC , ∠MCN =∠5. ∴△AEM ≌△MCN (ASA).∴AM =MN .(2)若将试题中的“正三角形ABC ”改为“正方形A 1B 1C 1D 1”(如图),N 1是∠D 1C 1P 1的平分线上一点,则当∠A 1M 1N 1=90°时,结论A 1M 1=M 1N 1.是否还成立?(直接写出答案,不需要证明)【答案】:成立 在11B A 上截取111C M H A(3) 若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,请你猜想:当∠A n M n N n = °时,结论A n M n =M n N n 仍然成立?(直接写出答案,不需要证明)【解题思路】:∠AMN=60°= (3-2)/3 ×180° ∠A1M1N1=90°=(4-2)/4 ×180°∠AnMnNn= (n -2)/n ×180°【点评】:本题考察了三角形全等的判定,当全等三角形不明确时构建全等三角形是本题的主旨,如何构建就是个人长期学习练习形成的,难度较大的是第三问,这里如果能快速判定该角度数是180的若干倍,且这个倍数与正多边形的边数有内在联系将容易分析。