梯形中常见的辅助线(古柏教学)
梯形中常见的辅助线
![梯形中常见的辅助线](https://img.taocdn.com/s3/m/97aa7ddc856a561252d36fc6.png)
梯形中的常见辅助线一、平移1、平移一腰:例1.如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17.求CD 的长.例22例3连接EF 3例4、例5例6例7例8.并证明你的结论.三、作对角线即通过作对角线,使梯形转化为三角形。
例9如图6,在直角梯形ABCD 中,AD//BC ,AB ⊥AD ,BC=CD ,BE ⊥CD 于点E ,求证:AD=DE 。
四、作梯形的高1、作一条高BABCD例10如图,在直角梯形ABCD 中,AB//DC ,∠ABC=90°,AB=2DC ,对角线AC ⊥BD ,垂足为F ,过点F 作EF//AB ,交AD 于点E ,求证:四边形ABFE 是等腰梯形。
2、作两条高例11、在等腰梯形ABCD 中,AD//BC ,AB=CD ,∠ABC=60°,AD=3cm ,BC=5cm ,求:(1)腰AB 的长;(2)梯形ABCD 的面积. ,例12如图,在梯形ABCD 中,AD 为上底,AB>CD ,求证:BD>AC 。
1例13。
2例14;(2)(21EF =3例15、∠CBE 。
例16BE 之间有例17,求梯形ABCD课后作业(答题时间:40分钟)1.若等腰梯形的锐角是60°,它的两底分别为11cm ,35cm ,则它的腰长为__________cm .2.如图所示,已知等腰梯形ABCD 中,AD ∥BC ,∠B =60°,AD =2,BC =8,则此等腰梯形的周长为()A.19B.20C.21D.22 **3.如图所示,AB ∥CD ,AE ⊥DC ,AE =12,BD =20,AC =15,则梯形ABCD 的面积为() AB DCEFABC DDEDFDA.130B.140C.150D.160*4.如图所示,在等腰梯形ABCD中,已知AD∥BC,对角线AC与BD互相垂直,且AD=30,BC=70,求BD的长.5.如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm和49cm,求它的腰长.6.如图所示,已知等腰梯形ABCD中,AD∥BC,AC⊥BD,AD+BC=10,DE⊥BC于E,求DE的长.7.如图所示,梯形ABCD中,AB∥CD,∠D=2∠B,AD+DC=8,求AB的长.**8.如图所示,梯形ABCD中,AD∥BC,(1)若E是AB的中点,且AD+BC=CD,则DE与CE有何位置关系?(2)E是∠ADC与∠BCD的角平分线的交点,则DE与CE有何位置关系?。
帮你总结梯形辅助线
![帮你总结梯形辅助线](https://img.taocdn.com/s3/m/3087918dd0d233d4b14e691d.png)
帮你总结梯形中常见的辅助线常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图2,在梯形ABCD中,.求证:.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若 .AD = 7 ,BC = 15 ,求EF .2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: .3.从梯形上底的两端向下底引垂线作高,可以得到一个矩形和两个直角三角形.然后利用构造的直角三角形和矩形解决问题.【例4】.如图,在梯形中,.求证:.4.平移一条对角线一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决.【例5】.如图,等腰梯形中, , ,且 ,是高,是中位线,求证:.【例6】.已知:如图,在梯形中, .求证:梯形是等腰梯形.5.遇到梯形一腰中点的问题可以作出梯形的中位线,中位线与上、下底都平行,且三线段有数量关系. 或利用“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形解决问题.【例7】.已知:如图4,在梯形中,是的中点,且 .求证:.【例8】.已知:梯形 ABCD中AD BC,E为AB中点,且AD+BC=DC , 求证:DE⊥EC,DE平分∠ADC,CE 平分∠BCD.6.当遇到以上的梯形辅助线添加后不能解决问题时,可以特题特解,结合具体问题中的具体条件,寻求特殊的方法解决问题.比如可将对角线绕中点旋转、利用一腰中点旋转、将梯形补成平行四边形或三角形问题.【例9】.已知:如图5,在梯形ABCD 中, M、N分别是BD 、AC 的中点.求证: .【例10】.如图,梯形中, ,、分别平分和 ,为中点, 求证:.【例11】.已知:如图,在梯形中,是CD的中点.求证:.【例12】.如图,梯形中, ,为腰的中点,求证:.通过解决以上问题可以看出,添加辅助线有助于把复杂的梯形问题转化为简单的平行四边形或三角形的知识解决.虽然解决梯形问题时, 辅助线千变万化, 形状各异,使人眼花缭乱,不容易掌握,但正是这些地形形色色的梯形辅助线给同学们解决梯形问题提供了快捷和方便.相信通过以上对梯形辅助线的介绍和归纳,你已经掌握了分析思考梯形辅助线的方法.“梯形问题”既是一个神奇的世界,也是一个创造者的乐园.通过思考、解题、探索,你一定会领略到数学大花园的千姿百态,体味到数学思想的灵巧和美妙!。
梯形中常见辅助线的作法有哪些_
![梯形中常见辅助线的作法有哪些_](https://img.taocdn.com/s3/m/1ef0176aa45177232f60a2db.png)
在解答或证明梯形的有关问题时,常常需要添加辅助线,从而把梯形问题转化为平行四边形或三角形问题,再借助所学的平行四边形知识和三角形知识加以解决.下面把梯形问题中添加辅助线的几种常用方法进行归纳,供大家参考.一、连接对角线例1如图1所示,在等腰梯形ABCD 中,E 、F 、G 、H 分别是四条边的中点.求证:四边形EFGH 是菱形.证明:连接AC 、BD.∵E 、H 分别是AB 、AD 的中点,∴EH 是△ABD 的中位线,即EH 1BD ;同理FG 12BD .∴EH FG ,即四边形EFGH 是平行四边形.又∵FG 12BD ,EF 12AC ,BD =AC ,∴FG =EF ,∴平行四边形EFGH 为菱形.点评:对于与对角线有关的问题,可连接对角线把梯形分成三角形.二、平移对角线例2如图2所示,在梯形ABCD 中,AB ∥CD ,AC ⊥BD .求证:AC 2+BD 2=(AB +DC )2.∶ON =12BC .延长一边.数海泛舟⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥梯形中常见辅助线的作法有哪些?山东省枣庄市第二中学谢高峰图1=∥=∥=∥=∥=∥28于A形中AD2 BC△BC可作一腰.ABCD中,AD∥是等腰梯形.E点.∠C(两直线平,两腰相等的梯使之交于一点,从而利用特.形ABCD中,(1)若CM为=CD;(2)若数海泛舟29则GH 点,EF 交DB 、AC AD ).=HC .连接DH 并AHD ≌△CHM .CM )=1(BC -AD )..ABCD 中,AD ∥MN ∥BC ,MN =BC 的延长线于点E ,EN ,AD =CE ,CE )=12(BC +AD ).使从而得到一组全等数海泛舟30。
梯形常见辅助线作法(教案)
![梯形常见辅助线作法(教案)](https://img.taocdn.com/s3/m/c01f3c58a7c30c22590102020740be1e650ecc0d.png)
梯形常见辅助线作法(教案)第一章:梯形的概念与性质1.1 梯形的定义解释梯形的概念,让学生理解梯形的基本含义。
通过图形示例,让学生观察和描述梯形的特征。
1.2 梯形的性质介绍梯形的性质,如对边平行、对角相等等。
通过几何证明,让学生理解和掌握梯形的性质。
第二章:梯形的画法2.1 直角梯形的画法讲解如何画出一个直角梯形,包括确定上底、下底和高。
提供实际操作练习,让学生亲自动手画出直角梯形。
2.2 任意梯形的画法讲解如何画出一个任意梯形,包括确定四条边的长度和角度。
提供实际操作练习,让学生亲自动手画出任意梯形。
第三章:梯形的面积计算3.1 直角梯形的面积计算讲解直角梯形面积的计算方法,利用上底、下底和高。
提供例题和练习题,让学生应用直角梯形的面积计算方法。
3.2 任意梯形的面积计算讲解任意梯形面积的计算方法,利用对角线分割成的三角形和矩形。
提供例题和练习题,让学生应用任意梯形的面积计算方法。
第四章:梯形的应用题4.1 实际问题中的应用题提供一些与实际生活相关的问题,让学生运用梯形的知识解决。
引导学生通过画图、列式解答问题,培养学生的解决问题的能力。
4.2 综合问题中的应用题提供一些综合性的问题,让学生运用梯形的知识和其他几何知识解决。
引导学生通过画图、列式解答问题,培养学生的解决问题的能力。
第五章:梯形的辅助线作法5.1 梯形的高线作法讲解如何作一个梯形的高线,包括利用直角三角形的性质。
提供实际操作练习,让学生亲自动手作出梯形的高线。
5.2 梯形的角平分线作法讲解如何作一个梯形的角平分线,包括利用圆和直尺。
提供实际操作练习,让学生亲自动手作出梯形的角平分线。
5.3 梯形的对称轴作法讲解如何作一个梯形的对称轴,包括利用中点和直尺。
提供实际操作练习,让学生亲自动手作出梯形的对称轴。
第六章:梯形的角分线与中位线6.1 梯形的角分线作法解释梯形角分线的概念和作法。
通过实际操作练习,让学生亲自动手作出梯形的角分线。
梯形的几种辅助线做法
![梯形的几种辅助线做法](https://img.taocdn.com/s3/m/6079a66d58fafab069dc026f.png)
龙文学校个性化辅导讲义梯形问题常见辅助线的作法梯形是在学习了三角形和平行四边形后学习的又一种特殊的四边形,因此,利用化归的思想方法,我们可利用平移、旋转等作出辅助线,通过割补、拼接,把梯形的问题转化为我们已经熟悉和解决了的三角形和平行四边形问题,从而用三角形和平行四边形的有关知识解决梯形问题。
下面通过例题具体说明梯形问题常见的辅助线的做法及其应用。
一、平移梯形一腰 ,将梯形转化成平行四边形。
即过梯形上底或下底的一个端点作一腰的平行线,将梯形分割成三角形和平行四边形,并出现上下底的差,利用这些条件解决所给的问题。
例1、如图1,在梯形ABCD 中, AD ∥BC ,AB=DC ,BD ⊥DC ,且BD 平分∠ABC ,若梯形的周长为20cm ,求此梯形的中位线长。
二、平移梯形的一条对角线,将梯形转化成平行四边形的直角三角形。
即过梯形上底或下底的一个端点作一条对角线的平行线,将梯形割补成与之等积的三角形,并出现上下底的和,利用这些条件解决所给的问题。
例2、如图2,在梯形ABCD 中, AD ∥BC ,对角线AC ⊥BD ,且AC=5cm ,BD=12cm ,则该梯形中位线的长等于 cm 。
思考:分别过A 、B 、C 三点作对角线的平行线,是否可以解出此题呢?(提示:可以,解法同上。
)三、过上底的两个端点作梯形的高线,将梯形分成两个直角梯形和一个矩形。
例3、如图3,在梯形ABCD 中,已知AD ∥BC ,BC=BD ,AD=AB=4cm ,∠A=1200,求梯形ABCD 的面积。
图3ADBCEF图1A DBCE 图2ADBC E四、延长梯形两腰交于一点,构成两个相似三角形。
例4、如图4,梯形ABCD 中,AB ∥CD ,∠A+∠B=900,AB=a ,CD=b ,E 、F 分别是AB 、CD 中点,求EF 的长。
(说明:此题也可以通过过点E 平移两腰来求得,请同学们自己练习。
)五、连结上底的一端点与一腰的中点,延长交下底的延长线于一点,将梯形割补成与之等积的三角形。
梯形中常见的辅助线
![梯形中常见的辅助线](https://img.taocdn.com/s3/m/b74abe4efab069dc502201dd.png)
梯形中的常见辅助线一、平移1、平移一腰:例1.如图所示,在直角梯形ABCD中,/ A = 90° AB // DC, AD = 15, AB = 16, BC = 17.求CD的长.例2如图,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:例3 如图,在梯形ABCD 中,AD//BC,/ B + Z C=90° , AD=1 , BC=3 , E、F 分别是AD、BC 的中点,连接EF,求EF的长。
3、平移对角线:例4、已知:梯形ABCD 中,AD//BC , AD=1 , BC=4 , BD=3 , AC=4,求梯形ABCD 的面积.例5 如图,在等腰梯形ABCD 中,AD//BC , AD=3 , BC=7 , BD= 5 - 2,求证:AC 丄BD。
例6如图,在梯形ABCD 中,AD//BC , AC=15cm , BD=20cm,高DH=12cm,求梯形ABCD 的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
例7如图,在梯形ABCD 中,AD//BC,/ B=50 °,/ C=80 ° , AD=2 , BC=5,求CD 的长。
例8.如图所示,四边形ABCD中,AD不平行于BC, AC = BD , AD = BC.判断四边形ABCD的形状,并证明你的结论三、作对角线即通过作对角线,使梯形转化为三角形。
例9如图6,在直角梯形ABCD中,AD//BC ,AB 丄AD , BC=CD , BE 丄CD 于点E,求证:四、作梯形的高1、作一条高例10如图,在直角梯形ABCD中,AB//DC,/ ABC=90 ° , AB=2DC,对角线AC丄BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。
2、作两条高例11、在等腰梯形ABCD 中,AD//BC , AB=CD,/ ABC=60 ° , AD=3cm , BC=5cm ,AD=DE 。
梯形的常用辅助线
![梯形的常用辅助线](https://img.taocdn.com/s3/m/a16cdf44cf84b9d528ea7a86.png)
梯形的常用辅助线一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1],梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2],在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。
3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。
[例3]如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=25,求证:AC⊥BD。
变式训练1.已知等腰梯形ABCD的两条对角线AC ,BD互相垂直,上底AD=11,下底BC=19,求梯形ABCD的面积2.在梯形ABCD中,AD//BC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
[例3]在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。
三、作梯形的高作一条高,从底边的一个端点作另一条底边的垂线,把梯形转化为直角三角形或矩形。
[例4]在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE 是等腰梯形。
C第9题图跟踪练习1等腰梯形的上底、下底、高之比为1∶3∶1,则下底角的度数是( ) A 30° B 45° C 60° D 75°2.在梯形ABCD 中,AD ∥BC ,∠B =90°,∠C =45°,CD =10 cm ,BC =2AD ,则梯形的面积为_______.3.梯形的上底长为5 cm ,将一腰平移到上底的另一端点位置后与另一腰和下底所构成的三角形的周长为20 cm ,那么梯形的周长为_______.4直角梯形的斜腰长为12cm ,这条腰和一底所成的角为30°,则另一腰是________5如图4-84,ABCD 是一梯形,DC AB //,AB =5,23=BC ,︒=∠45BCD ,︒=∠60CDA ,DC 的长度是()A .338+B .8C .219 D .38+6 如图,梯形ABCD 中,AD ∥BC ,AB=CD ,AC ⊥BD 于点O ,∠BAC=60°,若,则此梯形的面积为( )A .2 B.1C.27.梯形ABCD中,AD ∥BC ,AB=CD=AD=1,∠B=60°,直线MN 为梯形ABCD 的对称轴,P 为MN上一点,那么PC+PD 的最小值为8 如图2,等腰等形ABCD 中,AD ∥BC ,AD=5, ∠B=60°,BC=8, 且AB ∥DE ,(1)求ΔDEC 的周长和面积 (2)求梯形的面积9已知:如图,在梯形ABCD 中,AD ∥BC ,AD=2,BD=6,AC=BC=8。
梯形中常见的辅助线
![梯形中常见的辅助线](https://img.taocdn.com/s3/m/397d9848b9f3f90f77c61b1f.png)
梯形中的常见辅助线ABCD 中,/ A = 90°, AB// DC , At > 15, AB= 16, BC = 17.求 CD 的长.例2如图,梯形ABCD 的上底AB=3,下底CD=8腰AD=4,求另一腰BC 的取值范围。
2、平移两腰:例3如图,在梯形 ABCD 中, AD//BC ,/ B +Z C=90°, AD=1, BC=3 E 、F 分别是 AD BC 的中点,连接EF,求EF 的长。
一、平移1、平移一腰:B例1.如图所示,在直角梯形B G F ft C3、平移对角线:例4、已知:梯形ABCD中, AD//BC, AD=1, BC=4 BD=3 AC=4,求梯形ABCD的面积.例5 女口图,在等腰梯形ABCD中, AD//BC, AD=3 BC=7 BD=5.2 ,求证:AC丄BD。
例6 如图,在梯形ABCD中, AD//BC, AC=15cm BD=20cm 高DH=12cm 求梯形ABCD的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
例7 如图,在梯形ABCD中, AD//BC ,Z B=50°,Z C=80°, AD=2 BC=5 求CD的长。
£I例8.如图所示,四边形 ABCD 中,AD 不平行于BC, AC= BD, AD= BC.判断四边形 ABCD 的形状,并证明 你的结论.2、作两条高例 11、在等腰梯形 ABCD 中, AD//BC , AB=CD Z ABC=60 , AD=3cm BC=5cm 求:(1)腰AB 的长;⑵ 梯形ABCD 的面积.三、作对角线即通过作对角线,使梯形转化为三角形。
例 9 女口图 6,在直角梯形 ABCD 中, AD//BC , AB1 AD, BC=CD BE ± CD 于点 E ,求证:AD=DE四、作梯形的高1、作一条高例10如图,在直角梯形ABCD 中, AB//DC ,/ ABC=90 , AB=2DC 对角线 AC 丄 BD 垂足为 F ,过点 F 作EF//AB ,交AD 于点E ,求证:四边形 ABFE 是等腰梯形。
梯形辅助线的常见作法
![梯形辅助线的常见作法](https://img.taocdn.com/s3/m/06237e225e0e7cd184254b35eefdc8d376ee1436.png)
梯形辅助线的常见作法梯形辅助线的常见作法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
例1(如图1)已知在梯形ABCD中,AD//BC,BA=DC。
求证:B=C证明:过点D作DM//AB交BC于点M。
因为 AD//BC DM//AB 所以AB=DM因为 BA=DC 所以 DM=DCDMC=CDMC=BB=C(2)梯形外平移一腰例2 (如图2)在梯形ABCD中,AB∥DC,作□ACED延长DC交BE于F求证:EF=FB证明:过点B作BG∥AD,交DC的延长线于G∴四边形ABGD是平行四边形∴AD=BG∵□ACED中,AD∥CE AD=CE∴CE∥BG且CE=BG ∴∠1=∠2又∵∠3=∠4 ∴⊿ECF≌⊿BGF ∴:EF=FB(3)梯形内平移两腰例3 (如图3)在梯形ABCD中,AD∥BC,AD﹤BC,E、F分别为AD、BC的中点,且EF⊥BC,试说明∠B=∠C解:过E作EM∥AB,EN∥CD,分别交BC于M,N得□ABME ,□NCDE ∴AE=BM DE=CN, ∵AE=DE ∴BM=CN又∵BF=CF ∴FM=FN ∵EF⊥BC ∴EM=EN ∴∠1=∠2∵EM∥AB,EN∥CD, ∴∠1=∠B , ∠2=∠C∴∠B=∠C(4)延长两腰例4(如图4)在梯形ABCD中, ∠B=∠C ,AD∥BC。
求证:梯形ABCD是等腰梯形。
证明:延长BA,CD交于点E∵∠B=∠C ∴BE=CE∵AD∥BC ∴∠EAD=∠B ∠EDA=∠C∵∠B=∠C ∴∠EAD=∠EDA∴AB=CD结论得证(5)过梯形上底的两端点向下底作高例5(如图5)在梯形ABCD中,DC∥AB,AD=BC,若AD=5,CD=2 ,AB=8,求梯形ABCD的面积。
解:过点D、C分别作DE⊥AB于E,CF⊥AB于F.根据等腰梯形的轴对称性可知,AE=BF.∵DC∥AB, DE⊥AB,CF⊥AB∴四边形CDEF是矩形∴DC=EF∴AE=(AB-EF)=(AB-CD)=3 ∴ DE===4 ∴=(2+8)x4=20(6)平移对角线例6求证:对角线相等的梯形是等腰梯形。
梯形中常见的辅助线(含答案)
![梯形中常见的辅助线(含答案)](https://img.taocdn.com/s3/m/d02b0cca59eef8c75ebfb31b.png)
梯形中常见的辅助线内容基本要求略高要求较高要求梯形会识别梯形、等腰梯形:了解等腰梯形的性质和判定.掌握梯形的槪念,会用等腰梯形的性质和判定解决简单问题.例我们可以看到,梯形本身的性质并不多,所以实际解梯形的问题时,往往通过添加辅助线将梯形分成三角形或平行四边形,三角形是最简单的直线形,而平行四边形具有很好的对称性质•下而给出几个常见的添加辅助线的方法.1.作梯形的高:一般是过梯形的一个顶点作高,英好处是将梯形分成一个直角三角形和一个直角梯形,从而可以用勾股;4^理,如果过梯形的两个顶点分别作高•则会出现矩形•2.过梯形的一个顶点作另一腰的平行线:这样便将梯形分成了一个平行四边形和一个三角形,这样做的好处是可以将两条腰拉到同一个三角形中,并且三角形的另一条边恰好是梯形的两底之差,从而将问题集中到三角形中•3.延长梯形的两腰交于一点:这样做可以同样地使问题转化为三角形的问题.4.过梯形一腰的中点作另一腰的平行线:可以将梯形等积变换成一个平行四边形.5.连接梯形一个顶点和另一腰上的中点并延长交另一底边:可以将梯形等积变换成一个三角形.常见的辅助线添加方式如下:梯形中的辅助线较多,其实质是采用割补法将梯形问题划归为三角形、平行四边形问题处理.解题时要根据题目的条件和结论来确总作哪种辅助线.常见辅助线1.梯形问题通常是通过分割和拼接转化为三角形或平行四边形,英分割拼接的方法有如下几种(如图):1,把梯形分成一个平行四边形和一个三角形(图1所示):【答案】(1)作一腰的平行线; (2)作另一底边的垂线: (3)作对角线的平行线:(4)交于一点:(5)对称中心: (6)对称轴.【例1】 等腰梯形ABCD 中,AD//BC,若AD=3, AB=4・ BC=7,则ZB= 【答案】60° 如图,直角梯形ABCD 中,AB//CD. CB 丄AB, △ABD 是等边三角形,若AB=2,则BC=在梯形ABCD 中,AD//BC. AD=5, BC=7.若E 为DC 的中点,対线交BC 的延长线于F 点,则BF= •梯形ABCD 中.AD//BC,若对角线AC 丄BD ■且AC=5cm. BD=12cm,则梯形的而积等于((1)平移一腰,即从梯形的一个顶点(2)从同一底的两端. ,把梯形分成一个矩形和两个宜角三角形(图2所示);(3)平移对角线,即过底的一端图2,可以借助新得的平行四边形或三角形来研究梯形(图3所示):(4)延长梯形的两腰.图3,得到两个三角形,如果梯形是等腰梯形,则得到两个等腰三角形(图4所示):(5)以梯形一腰的中点为.图4,作某图形的中心对称图形(图5、图6所(6)以梯形一腰为.图5 图6,作梯形的轴对称图形(图7所【例2】【答案】 73【例3】【答案】 12 【例4】 A. 30cw- B. 60CW' C- 90cm~2D- } 69 cm-【例10】如图,等腰梯形ABCD 中,AB//CD.对角线AC 平分Z BAD, ZB=60。
梯形中常用的辅助线课件
![梯形中常用的辅助线课件](https://img.taocdn.com/s3/m/30a30502e55c3b3567ec102de2bd960591c6d944.png)
梯形的性质
01
02
03
对角线性质
梯形的对角线互相平分, 且互相垂直。
平行线性质
梯形的两对边平行,且相 等。
面积计算
梯形的面积可以通过上底 、下底和高来计算。
02
梯形中常用的辅助线
延长两腰相交引出新线段
通过延长梯形的两腰,可以引出一条或两条新的线段,这些 线段可以用于构造新的三角形或平行四边形,从而简化问题 。
辅助线作法应有助于 明确题目的解题思路 ,使解题过程更加清 晰明了。
THANKS
在梯形中,延长两腰相交可以形成两个新的三角形。这些三 角形可以用于证明一些重要的几何定理,如塞瓦定理和梅纳 劳斯定理。此外,通过延长两腰,还可以构造出平行四边形 ,进一步简化梯形的问题。
作高
在梯形中作高是一种常见的辅助线方法,通过作高可以将梯形的问题转化为三角 形的问题,从而更容易解决。
作高是梯形问题中常用的辅助线方法之一。通过作高,可以将梯形的问题转化为 三角形的问题。在三角形中,可以利用三角形的性质和定理来解决问题。这种方 法在解决梯形面积、周长等问题时非常有效。
05
梯形中辅助线的注意事项
注意辅助线的作法是否符合题意
辅助线作法应符合题目的原始 条件和要求,不能随意添加或 改变题目的条件。
辅助线作法应与题目的图形和 已知条件相符合,不能出现矛 盾或错误的作法。
辅助线作法应与题目的解题目 标相符合,不能偏离解题的方 向。
注意辅助线的作法是否合理
辅助线作法应符合几何学的基本原理 和规律,不能出现不符合逻辑的作法 。
作中位线
在梯形中作中位线是一种重要的辅助线方法,通过作中位线可以将梯形的问题转化为平行四边形或矩 形的问题,从而更容易解决。
梯形辅助线的常见作法[1](古柏教学)
![梯形辅助线的常见作法[1](古柏教学)](https://img.taocdn.com/s3/m/18ce01b628ea81c758f578ab.png)
例谈梯形中的常用辅助线在解(证)有关梯形的问题时,常常要添作辅助线,把梯形问题转化为三角形或平行四边形问题。
本文举例谈谈梯形中的常用辅助线,以帮助同学们更好地理解和运用。
一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1]如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。
在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是:5-4<BC<5+4,即1<BC<9。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2]如图2,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。
图2析解:过点E分别作AB、CD的平行线,交BC于点G、H,可得∠EGH+∠EHG=∠B+∠C=90°则△EGH是直角三角形因为E、F分别是AD、BC的中点,容易证得F是GH的中点所以)CHBGBC(21GH21EF--==1)13(21)ADBC(21)]DEAE(BC[21)DEAEBC(21=-=-=+-=--=3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。
[例3]如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=25,求证:AC⊥BD。
图3析解:过点C作BD的平行线交AD的延长线于点E,易得四边形BCED是平行四边形,则DE=BC,CE=BD=25,所以AE=AD+DE=AD+BC=3+7=10。
在等腰梯形ABCD中,AC=BD=25,所以在△ACE中,22222AE100)25()25(CEAC==+=+,从而AC⊥CE,于是AC⊥BD。
梯形常用辅助线的做法(精编文档).doc
![梯形常用辅助线的做法(精编文档).doc](https://img.taocdn.com/s3/m/2b31d300ddccda38376baf76.png)
【最新整理,下载后即可编辑】梯形常用辅助线的做法常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图,在梯形ABCD中,.求证:.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.证明:过D作,交AB于 E.∵AB平行于CD,且,∴四边形是菱形.∴又∴为等边三角形.∴又,∴∴.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .分析:由条件,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵,∴∴是直角三角形,∵,,∴.∵、分别是、的中点,∴为的中点,∴.变式:如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。
在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是:5-4<BC<5+4,即1<BC<9。
2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中,,,梯形的面积与梯形的面积相等.求证:.分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵,∴∴.同理,∵故得∴变式1:如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。
图5析解:延长BA 、CD 交于点E 。
梯形中的常用辅助线总结与对应练习题【范本模板】
![梯形中的常用辅助线总结与对应练习题【范本模板】](https://img.taocdn.com/s3/m/5e2f8c807e21af45b207a854.png)
例谈梯形中的常用辅助线常见的梯形辅助线规律口诀为:梯形问题巧转化,变为△和□;要想尽快解决好,添加辅助线最重要;平移两腰作出高,延长两腰也是关键;记着平移对角线,上下底和差就出现;如果出现腰中点,就把中位线细心连;上述方法不奏效,过中点旋转成全等;灵活添加辅助线,帮你度过梯形难关;想要易解梯形题,还得注意特题特解;注意梯形割与补,巧变成为□和△.基本图形如下:一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1]如图,梯形ABCD 的上底AD=3,下底BC=8,腰CD=4,求另一腰AB 的取值范围.【变式1】已知:如图,在梯形ABCD 中,.求证:。
ABCD E【变式2】已知:如图,在梯形中,。
求证:梯形是等腰梯形。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2]如图,在梯形ABCD中,AB//CD,∠D+∠C=90°,BC=1,AD=3,E、F分别是AB、CD的中点,连接EF,求EF的长。
【变式】如图,在梯形中,,,、为、的中点。
求证:EF=错误!(CD-AB)3、平移对角线:一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决.【例3】。
如图,等腰梯形中,,,且 ,是高,是中位线,求证:.【变式1】在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=25,求证:AC⊥BD.【变式2】(平移对角线)已知梯形ABCD的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,则另一条对角线长为_____________[例4]在梯形ABCD中,AD//BC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。
二、延长:即延长两腰相交于一点,可使梯形转化为三角形。
[例5]在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长.【变式1】.如图,在梯形 中,, ,梯形 的面积与梯形 的面积相等.求证:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm和49cm,求它的腰长.
6.如图所示,已知等腰梯形ABCD中,AD∥BC,AC⊥BD,AD+BC=10,DE⊥BC于E,求DE的长.
3、平移对角Leabharlann :例4、已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面积.
例5如图,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD= ,求证:AC⊥BD。
例6如图,在梯形ABCD中,AD//BC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。
2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线。
例14如图,在梯形ABCD中,AD//BC,E、F分别是BD、AC的中点,求证:(1)EF//AD;(2) 。
3、在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。
例15、在梯形ABCD中,AD∥BC, ∠BAD=900,E是DC上的中点,连接AE和BE,求∠AEB=2∠CBE。
7.如图所示,梯形ABCD中,AB∥CD,∠D=2∠B,AD+DC=8,求AB的长.
**8.如图所示,梯形ABCD中,AD∥BC,(1)若E是AB的中点,且AD+BC=CD,则DE与CE有何位置关系?(2)E是∠ADC与∠BCD的角平分线的交点,则DE与CE有何位置关系?
例16、已知:如图,在梯形ABCD中,AD//BC,AB⊥BC,E是CD中点,试问:线段AE和BE之间有怎样的大小关系?
例17、已知:梯形ABCD中,AD//BC,E为DC中点,EF⊥AB于F点,AB=3cm,EF=5cm,求梯形ABCD的面积.
课后作业(答题时间:40分钟)
1.若等腰梯形的锐角是60°,它的两底分别为11cm,35cm,则它的腰长为__________cm.
例9如图6,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于点E,求证:AD=DE。
四、作梯形的高
1、作一条高
例10如图,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。
2、作两条高
例11、在等腰梯形ABCD中,AD//BC,AB=CD,∠ABC=60°,AD=3cm,BC=5cm,
求:(1)腰AB的长;(2)梯形ABCD的面积.
,
例12如图,在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。
五、作中位线
1、已知梯形一腰中点,作梯形的中位线。
例13如图,在梯形ABCD中,AB//DC,O是BC的中点,∠AOD=90°,求证:AB+CD=AD。
二、延长
即延长两腰相交于一点,可使梯形转化为三角形。
例7如图,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。
例8.如图所示,四边形ABCD中,AD不平行于BC,AC=BD,AD=BC.判断四边形ABCD的形状,并证明你的结论.
三、作对角线
即通过作对角线,使梯形转化为三角形。
梯形中的常见辅助线
一、平移
1、平移一腰:
例1.如图所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的长.
例2如图,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:
例3如图,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。
2.如图所示,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为()
A. 19B. 20C. 21D. 22
**3.如图所示,AB∥CD,AE⊥DC,AE=12,BD=20,AC=15,则梯形ABCD的面积为()
A. 130B. 140C. 150D. 160