可靠性设计的主要内容
第5章—可靠性设计2
![第5章—可靠性设计2](https://img.taocdn.com/s3/m/330f9e25bcd126fff7050b82.png)
第三节
可靠性设计的原理
应力—强度分布的平面干涉模型
这个观点在常规设计的安全系数法中是不明确的。
因为根据安全系数进行的设计不存在失效的可能性。
因此,可靠性设计比常规设计要客观的多,因而应用也要广泛的多。
干涉区放大图
可靠度的确定方法
从平面干涉模型可以看出,要确定可靠度或失效概率必须研究一个随机变量超过另一个随机变量的概率。
假设失效控制应力为σ1(任意的),那么当强度δ大于时σ1就不会发生破坏,可靠度就是强度大于失效控制应力的概率,即
]
0)[()(11>−=>=σδσδp p R
现代设计方法毛志伟
系统的可靠性设计
串联系统的可靠度计算
要有一个元件失效该系统就失效,那么这个系统就
是由齿轮、轴、键、轴承和箱体等组成,从功能关系上看,他们中任何一部分失效
并联系统逻
辑图
从而维持系统的正常运行。
储备系统逻辑图
在机械系统中,通常只用三中取二
个,因此有四种成功的工作情况:
2/3表决系统逻辑图根据概率乘法定理和加法定理,2/3系统的可靠度为。
自动化系统的可靠性设计
![自动化系统的可靠性设计](https://img.taocdn.com/s3/m/102fba7366ec102de2bd960590c69ec3d5bbdbeb.png)
自动化系统的可靠性设计在现代社会,自动化系统被广泛应用于各个领域,如工业生产、交通运输、能源管理等。
随着自动化技术的不断发展,对系统的可靠性设计也提出了更高的要求。
本文将探讨自动化系统的可靠性设计方面的重要概念和方法。
一、可靠性设计的概念可靠性是指一个系统在规定的时间内,按照既定的要求正常运行的能力。
自动化系统的可靠性设计旨在降低系统故障和失效的概率,确保系统的正常运行。
可靠性设计包括可靠性需求分析、可靠性指标的制定、故障模式与效应分析等内容。
二、可靠性需求分析在进行可靠性设计之前,首先需要明确系统的可靠性需求。
可靠性需求分析是根据系统的使用环境、工作条件、安全要求等因素,确定系统的可靠性目标和性能指标。
通过充分了解系统的运行要求和限制条件,可以制定出合理、可行的可靠性设计方案。
三、故障模式与效应分析(FMEA)故障模式与效应分析(Failure Mode and Effect Analysis,简称FMEA)是一种常用的可靠性设计方法。
通过识别系统的可能故障模式及其对系统性能的影响,可以制定相应的防控措施,提高系统的可靠性。
FMEA方法主要包括以下步骤:1. 确定故障模式:对系统进行全面的故障分析,识别可能的故障模式。
2. 评估故障影响:对每个故障模式,评估其对系统性能、安全性和可靠性的影响程度。
3. 制定防控措施:针对每个故障模式,制定相应的预防和纠正措施,减少故障的发生和影响。
四、备份与冗余设计备份与冗余设计是提高自动化系统可靠性的重要策略之一。
通过在系统中引入备份设备或冗余单元,可以提供系统故障时的备用工作方式,从而降低系统的故障率和停机时间。
常见的备份与冗余设计包括:1. 冗余备份:在系统中设置冗余设备,当主设备发生故障时,备份设备可以立即接管工作,保证系统的连续运行。
2. 数据备份:定期对系统的数据进行备份,以防止数据丢失或损坏。
3. 供电备份:通过备用电源或UPS设备来保证系统在电力故障时的继续供电。
可靠性设计的一些内容
![可靠性设计的一些内容](https://img.taocdn.com/s3/m/66ea2a46168884868662d637.png)
可靠性设计的一些内容一、可靠性评价分析技术的应用由于设计阶段对产品的可靠性将起到奠基作用,故在设计过程中,应不断对产品的可靠性进行定性和定量的评价分析)以便及时了解产品的可靠性指标是否有了保证,所采取的各种可靠性设计措施是否有效,有效程度如何,设计中是否还存在薄弱环节和潜在缺陷,产品在今后使用中可能会发生什么样的故障,以及故障一旦发生时,其影响和危害程度如何等等。
弄清以上问题将有助于及时发现缺陷,及时改进设计,防止“带病”投产,保证预定的可靠性指标得到满足。
下面介绍几种主要的评价分析技术的应用:1 .可靠性预计与分配可靠性预计是在设计阶段,根据设计中所选用的电路程式、元器件、可靠性结构模型、工作环境、工作应力以及过去积累的统计数据,推测产品可能达到的可靠性水平。
预计的目的不是在于了解在什么时候将发生什么样的失效,而是在于从设计开始就采取措施以防止失效的发生,并用定量的方法评价可靠性设计的效果。
可靠性分配是将可靠性指标或预计所能达到的目标值加以分解,用科学的方法,合理分配给分系统、设备、部件直至各元器件和每一个连接点、焊接点,以保证可靠性既定目标得以实现。
通过分配,不仅可以层层落实设计指标,还可发现设计的薄弱环节和尚能挖掘的潜力。
可靠性预计的方法一般有相似设备法、相似电路法。
有源器件法、元器件计数法及元器件应力分析法等,它们分别适用于不同的设计阶段:当产品处于方论证阶段时,可用相似设备法、相似电路法、有源器件法等快速预计法进行可行性预计,以评价设计方案的可行性;当产品处于旱期的详细设计阶段时,可用元器件计数法进行初步设计预计,以了解元器件的初步选择是否恰当,并为可靠性分配打下预计的基础,而当产品处于详细设计阶段的中期和后期,可用元器件应力分析法进行详细的设计预计,以便及时发现设计的薄弱环节或潜在能力,及时改进设计,以期达到优化设计的目的。
下面就三种预计方法作一些简略的介绍:(1)有源器件法所谓有源器件法,即按设备为完成规定功能所需的串联有源器件的数目预计设备失效的方法。
可靠性设计的十个重点
![可靠性设计的十个重点](https://img.taocdn.com/s3/m/c5bb42f9ba1aa8114531d961.png)
可靠性设计的十个重点规定定性定量的可靠性要求规定定性定量的可靠性要求。
有了可靠性指标,开展可靠性设计才有目标,才能对开发的产品可靠性进行考核,避免产品在顾客使用中因故障频繁而使开发商和顾客利益受到损失。
最常用的可靠性指标有平均故障间隔时间(MTBF)和使用寿命。
建立可靠性模型建立产品系统级、分系统级的可靠性模型,可用于定量分配、估计和评价产品的可靠性。
可靠性模型包括可靠性方框图和可靠性数学模型。
对于复杂产品的一个或多个功能模式,用方框图表示各组成部分的故障或它们的组合。
方框图分为串联模型和并联模型。
做法就是:预计或估计所设计产品可靠性模型的串联模型和并联模型框图,利用数学公式求定量求出该产品的可靠度与故障率,最后推导出可靠性指标。
可靠性分配可靠性分配就是将产品总的可靠性的定量要求分配到规定的产品层次。
通过分配使整体和部分的可靠性定量要求协调一致。
它是一个由整体到局部,由上到下的分解过程。
可靠分配有很多方法,如评分分配法、比例分配法等。
下面我们以评分分配法举例说明:评分分配法是一种常用的分配方法。
在产品可靠性数据缺乏的情况下,可以请熟悉产品、有工程实际经验的专家,按照影响产品可靠性的几种因素既复杂度、技术成熟度、重要度及环境条件,给每一种因素打分(1—10分之间)。
复杂度:根据组成分系统的元部件数量以及它们组装调试的难易程度评定。
最复杂的评10分,最简单的评1分。
技术成熟度:根据分系统的技术水平和成熟程度评定。
技术成熟度低平10分,技术成熟度高的评1分。
重要度:根据分系统的得要性评定。
重要性最低的评10分,重要性最高的评1分。
环境条件:根据分系统所处环境条件评定。
经受恶劣条件的评10分,环境条件最好的评1分。
利用数学公式定量的算出可靠性指标平均故障间隔时间(MTBF),这样就可以利用评分分配法将可靠性指标分配到各部件中去了。
可靠性预计可靠性预计。
可靠性预计是在设计阶段对系统可靠性进行定量的估计,是根据相似产品可靠性数据、系统的构成和结构特点、系统的工作环境等因素估计组成系统的部件及系统的可靠性。
机电一体化系统的现代设计方法
![机电一体化系统的现代设计方法](https://img.taocdn.com/s3/m/5acb86d449649b6648d74757.png)
机电一体化系统的现代设计方法摘要:机电一体化系统的现代设计方法主要有可靠性设计、优化设计、反求设计、绿色设计、虚拟设计等。
本论文主要介绍了可靠性设计方法和优化设计方法。
可靠性设计包括了很广的内容,可以说在满足产品功能,成本等要求的前提下一切使产品可靠运行的设计都称之为可靠性设计。
优化设计是指将优化技术应用于设计过程,最终获得比较合理的设计参数,优化设计的方法目前已比较成熟,各种计算机程序能解决不同特点的工程问题。
关键词:机电一体化;现代设计方法;可靠性设计;优化设计。
一、引言随着社会的发展和科学技术的进步,使人们对设计的要求发展到了一个新的阶段,具体表现为设计对象由单机走向系统、设计要求由单目标走向多目标、设计所涉及的领域由单一领域走向多个领域、承担设计的工作人员从单人走向小组甚至大的群体、产品设计由自由发展走向有计划的开展。
与人们对设计的要求相比现阶段的设计确实是落后的,主要表现为:对客观设计的研究不够,尚未很好的掌握设计中的客观规律;当前设计的优劣主要取决于设计者的经验;设计生产率较低;设计进度与质量不能很好控制;实际手段与设计方法有待改进;尚未形成能被大家接受,能有效指导设计实践的系统设计理论。
面对这种形势,唯一的解决方法就是设计必须科学化。
这就意味着要科学的阐述客观设计过程及本质,分析与设计有关的领域及其地位,在此基础上科学的安排设计进程,使用科学的方法和手段进行设计工作,同时也要求设计人员不仅有丰富的专业知识,而且要掌握先进的设计理论、设计方法及设计手段,科学地进行设计工作,这样才能及时得到符合要求的产品。
二、机电一体化系统的现代设计方法概述机电一体化系统的现代设计方法是以设计产品为目标的一个总的知识群体的总称。
它运用了系统工程,实行人、机、环境系统一体化设计,使设计思想、设计进程、设计组织更合理化、现代化,大力采用许多动态分析方法,使问题分析动态化,实际进程、设计方案和数据的选择更为优化,计算、绘图等计算机化。
半导体集成电路的可靠性设计
![半导体集成电路的可靠性设计](https://img.taocdn.com/s3/m/7adef51beffdc8d376eeaeaad1f34693dbef107b.png)
6.2半导体集成电路的可靠性设计军用半导体集成电路的可靠性设计是在产品研制的全过程中,以预防为主、增强系统治理的思想为指导,从线路设计、幅员设计、工艺设计、封装结构设计、评价试验设计、原材料选用、软件设计等方面,采取各种有效举措,力争消除或限制半导体集成电路在规定的条件下和规定时间内可能出现的各种失效模式,从而在性能、费用、时间〔研制、生产周期〕因素综合平衡的基础上,实现半导体集成电路产品规定的可靠性指标.根据内建可靠性的指导思想,为保证产品的可靠性,应以预防为主,针对产品在研制、生产制造、成品出厂、运输、贮存与使用全过程中可能出现的各种失效模式及其失效机理,采取有效举措加以消除限制.因此,半导体集成电路的可靠性设计必须把要限制的失效模式转化成明确的、定量化的指标.在综合平衡可靠性、性能、费用和时间等因素的根底上,通过采取相应有效的可靠性设计技术使产品在全寿命周期内到达规定的可靠性要求.6.2.1概述1.可靠性设计应遵循的根本原那么〔1〕必须将产品的可靠性要求转化成明确的、定量化的可靠性指标.〔2〕必须将可靠性设计贯穿于产品设计的各个方面和全过程.〔3〕从国情出发尽可能地采用当今国内外成熟的新技术、新结构、新工艺.〔4〕设计所选用的线路、幅员、封装结构,应在满足预定可靠性指标的情况下尽量简化, 预防复杂结构带来的可靠性问题.〔5〕可靠性设计实施过程必须与可靠性治理紧密结合.2.可靠性设计的根本依据〔1〕合同书、研制任务书或技术协议书.〔2〕产品考核所遵从的技术标准.〔3〕产品在全寿命周期内将遇到的应力条件〔环境应力和工作应力〕.〔4〕产品的失效模式分布,其中主要的和关键的失效模式及其机理分析.〔5〕定量化的可靠性设计指标.〔6〕生产〔研制〕线的生产条件、工艺水平、质量保证水平.3.设计前的准备工作〔1〕将用户对产品的可靠性要求,在综合平衡可靠性、性能、费用和研制〔生产〕周期等因素的根底上,转化为明确的、定量化的可靠性设计指标.〔2〕对国内外相似的产品进行调研,了解其生产研制水平、可靠性水平〔包括产品的主要失效模式、失效机理、已采取的技术举措、已到达的质量等级和失效率等〕以及该产品的技术发展方向.〔3〕对现有生产〔研制〕线的生产水平、工艺水平、质量保证水平进行调研,可通过通用和特定的评价电路,所遵从的认证标准或统计工艺限制〔SPC〕技术,获得在线的定量化数据.精品文档4.可靠性设计程序〔1〕分析、确定可靠性设计指标,并对该指标的必要性和科学性等进行论证.〔2〕制定可靠性设计方案.设计方案应包括对国内外同类产品〔相似产品〕的可靠性分析、可靠性目标与要求、根底材料选择、关键部件与关键技术分析、应限制的主要失效模式以及应采取的可靠性设计举措、可靠性设计结果的预计和可靠性评价试验设计等.〔3〕可靠性设计方案论证〔可与产品总体方案论证同时进行〕.〔4〕设计方案的实施与评估,主要包括线路、幅员、工艺、封装结构、评价电路等的可靠性设计以及对设计结果的评估.〔5〕样品试制及可靠性评价试验.〔6〕样品制造阶段的可靠性设计评审.〔7〕通过试验与失效分析来改良设计,并进行“设计一试验一分析一改良〞循环,实现产品的可靠性增长,直到到达预期的可靠性指标.〔8〕最终可靠性设计评审.〔9〕设计定型.设计定型时,不仅产品性能应满足合同要求,可靠性指标是否满足合同要求也应作为设计定型的必要条件.6.2.2集成电路的可靠性设计指标1.稳定性设计指标半导体集成电路经过贮存、使用一段时间后,在各种环境因素和工作应力的作用下,某些电性能参数将逐渐发生变化.如果这些参数值经过一定的时间超过了所规定的极限值即判为失效,这类失效通常称为参数漂移失效,如温漂、时漂等.因此,在确定稳定性设计指标时,必须明确规定半导体集成电路在规定的条件下和规定的时间内,其参数的漂移变化率应不超过其规定值. 如某CMOS集成电路的两项主要性能参数功耗电流I OD和输出电流I OL、10H变化量规定值为:在125℃环境下工作24小时,△ I0D小于500mA;在125℃环境下工作24小时,I0L、I0H变化范围为±20%.2.极限性设计指标半导体集成电路承受各种工作应力、环境应力的极限水平是保证半导体集成电路可靠性的主要条件.半导体集成电路的电性能参数和热性能参数都有极限值的要求,如双极器件的最高击穿电压、最大输出电流、最高工作频率、最高结温等.极限性设计指标确实定应根据用户提出的工作环境要求.除了遵循标准中必须考核的工程之外,对影响产品可靠性性能的关键极限参量也应制定出明确的量值,以便在设计中采取举措加以保证.3.可靠性定量指标表征产品的可靠性有产品寿命、失效率或质量等级.假设半导体集成电路产品的失效规律符合指数分布时,寿命与失效率互为倒数关系.通常半导体集成电路的可靠性指标也可根据所遵循技术标准的质量等级分为S级、B级、B1 级.4. 应限制的主要失效模式精品文档半导体集成电路新品的研制应根据电路的具体要求和相似产品的生产、使用数据,通过可靠性水平分析,找到可能出现的主要失效模式,在可靠性设计中有针对性地采取相应的纠正举措, 以到达限制或消除这些失效模式的目的.一般半导体集成电路产品应限制的主要失效模式有短路、开路、参数漂移、漏气等,其主要失效机理为电迁移、金属腐蚀、静电放电、过电损伤、热载流子效应、闩锁效应、介质击穿、a辐射软误差效应、管壳及引出端锈蚀等.6.2.3集成电路可靠性设计的根本内容1.线路可靠性设计线路可靠性设计是在完成功能设计的同时,着重考虑所设计的集成电路对环境的适应性和功能的稳定性.半导体集成电路的线路可靠性设计是根据电路可能存在的主要失效模式,尽可能在线路设计阶段对原功能设计的集成电路网络进行修改、补充、完善,以提升其可靠性.如半导体芯片本身对温度有一定的敏感性,而晶体管在线路到达不同位置所受的应力也各不相同,对应力的敏感程度也有所不同.因此,在进行可靠性设计时,必须对线路中的元器件进行应力强度分析和灵敏度分析〔一般可通过SPICE和有关模拟软件来完成〕,有针对性地调整其中央值,并对其性能参数值的容差范围进行优化设计,以保证在规定的工作环境条件下,半导体集成电路整体的输出功能参数稳定在规定的数值范围,处于正常的工作状态.线路可靠性设计的一般原那么是:〔1〕线路设计应在满足性能要求的前提下尽量简化;〔2〕尽量运用标准元器件,选用元器件的种类尽可能减少,使用的元器件应留有一定的余量, 预防满负荷工作;〔3〕在同样的参数指标下,尽量降低电流密度和功耗,减少电热效应的影响;〔4〕对于可能出现的瞬态过电应力,应采取必要的保护举措.如在有关端口采用箝位二极管进行瞬态电压保护,采用串联限流电阻限制瞬态脉冲过电流值.2.幅员可靠性设计幅员可靠性设计是根据设计好的幅员结构由平面图转化成全部芯片工艺完成后的三维图像, 根据工艺流程根据不同结构的晶体管〔双极型或MOS型等〕可能出现的主要失效模式来审查版图结构的合理性.如电迁移失效与各部位的电流密度有关,一般规定有极限值,应根据幅员考察金属连线的总长度,要经过多少爬坡,预计工艺的误差范围,计算出金属涂层最薄位置的电流密度值以及出现电迁移的概率.此外,根据工作频率在超高频情况下平行线之间的影响以及对性能参数的保证程度,考虑有无出现纵向或横向寄生晶体管构成潜在通路的可能性.对于功率集成电路中发热量较大的晶体管和单元,应尽量分散安排,并尽可能远离对温度敏感的电路单元.3.工艺可靠性设计为了使幅员能准确无误地转移到半导体芯片上并实现其规定的功能,工艺设计非常关键.一般可通过工艺模拟软件〔如SUPREM等〕来预测出工艺流程完成后实现功能的情况,在工艺生产过程中的可靠性设计主要应考虑:〔1〕原工艺设计对工艺误差、工艺限制水平是否给予足够的考虑〔裕度设计〕,有无监测、监控举措〔利用PCM测试图形〕;精品文档〔2〕各类原材料纯度的保证程度;〔3〕工艺环境洁净度的保证程度;〔4〕特定的保证工艺,如钝化工艺、钝化层的保证,从材料、工艺到介质层质量〔结构致密度、外表介面性质、与衬底的介面应力等〕的保证.4.封装结构可靠性设计封装质量直接影响到半导体集成电路的可靠性.封装结构可靠性设计应着重考虑:〔1〕键合的可靠性,包括键合连接线、键合焊点的牢固程度,特别是经过高温老化后性能变脆对键合拉力的影响;〔2〕芯片在管壳底座上的粘合强度,特别是工作温度升高后,对芯片的剪切力有无影响.此外,还应注意粘合剂的润湿性,以限制粘合后的孔隙率;〔3〕管壳密封后气密性的保证;〔4〕封装气体质量与管壳内水汽含量,有无有害气体存在腔内;〔5〕功率半导体集成电路管壳的散热情况;〔6〕管壳外管脚的锈蚀及易焊性问题.5.可靠性评价电路设计为了验证可靠性设计的效果或能尽快提取对工艺生产线、工艺水平有效的工艺参数,必须通过相应的微电子测试结构和测试技术来采集.所以,评价电路的设计也应是半导体集成电路可靠性设计的主要内容.一般有以下三种评价电路:〔1〕工艺评价用电路设计主要针对工艺过程中误差范围的测定,一般采用方块电阻、接触电阻构成的微电子测试结构来测试线宽、膜厚、工艺误差等.〔2〕可靠性参数提取用评估电路设计针对双极性和CMOS电路的主要失效模式与机理,借助一些单管、电阻、电容,尽可能全面地研究出一些能评价其主要失效机理的评估电路.〔3〕宏单元评估电路设计针对双极型和CMOS型电路主要失效模式与机理的特点,设计一些能代表复杂电路中根本宏单元和关键单元电路的微电子测试结构,以便通过工艺流程研究其失效的规律性.6.2.4可靠性设计技术可靠性设计技术分类方法很多,这里以半导体集成电路所受应力不同造成的失效模式与机理为线索来分类,将半导体集成电路可靠性设计技术分为:〔1〕耐电应力设计技术:包括抗电迁移设计、抗闩锁效应设计、防静电放电设计和防热载流子效应设计;〔2〕.耐环境应力设计技术:包括耐热应力、耐机械应力、耐化学应力和生物应力、耐辐射应力设计;〔3〕稳定性设计技术:包括线路、幅员和工艺方面的稳定性设计.在下面几节将对这些技术进行详细阐述.精品文档6.2.5耐电应力设计技术半导体集成电路所承受过高电应力的来源是多方面的,有来自于整机电源系统的瞬时浪涌电流、外界的静电和干扰的电噪声,也有来自于自身电场的增强.此外,雷击或人为使用不当(如系统接地不良,在接通、切断电源的瞬间会引起输入端和电源端的电压逆转)也会产生过电应力. 过电流应力的冲击会造成半导体集成电路的电迁移失效、CMOS器件的闩锁效应失效、功率集成电路中功率晶体管的二次击穿失效和电热效应失效等;过电压应力那么造成绝缘介质击穿和热载流子效应等.1.抗电迁移设计电迁移失效是在一定温度下,当半导体器件的金属互连线上流过足够大的电流密度时,被激发的金属离子受电场的作用形成离子流朝向阴极方向移动,同时在电场作用下的电子通过对金属离子的碰撞给离子的动量形成朝着金属模阳极方向运动的离子流.在良好的导体中,动量交换力比静电力占优势,造成了金属离子向阳极端的净移动,最终在金属膜中留下金属离子的局部堆积(引起短路)和空隙(引起开路).MOS和双极器件对这一失效模式都很敏感,但由于MOS器件属于高阻抗器件,电流密度不大,相对而言,电迁移失效对MOS器件的影响比双极器件小. 在各种电迁移失效模型中引用较多的为下式MTF=AW P L qJ^n exp ((6.1) 式中,MTF是平均失效时间,A、p、q均为常数,W是金属条线宽,L是金属条厚度,J是电流密度,n 一般为2, E a为激活能,k是玻尔兹曼常数,T是金属条的绝对温度.为预防电迁移失效,一般采取以下设计举措:(1)在铝材料中参加少量铜(一般含2〜4%重量比),或参加少量硅(含0.3%重量比),或在铝条上覆盖Al-Cu合金.含铜的铝膜电迁移寿命是纯铝膜的40倍,但在高温下铜原子在电场作用下会迁移到PN结附近引起PN结劣化.(2)在铝膜上覆盖完整的钝化膜.(3)降低互连线中的电流密度.对于互连线厚度大于0.8 u m、宽度大于6u m的电流密度设计容限一般规定如下:有钝化层的纯铝合金条,电流密度J W5X105A/cm2;无钝化层的纯铝或铝合金条,JW2X105A/cm2;金膜,JW6X105A/cm2;其它各种导电材料膜条,JW2X105A/cm2. 对于VLSI中金属互连线的电流密度设计容限的要求应更加严格,应取JW2X105A/cm2.实际上, 这一设计容限值是导体电流、温度和温度梯度的函数.(4)增强工艺限制精度,减少铝互连线的工艺缺陷.(5)金(Au)互连线系统有很好的抗电迁移水平.为了预防形成Au-Si低熔点共晶体,需在金一硅之间引入衬垫金属,如Pt-Ti-Pt-Au结构.(6)可考虑用钼、钨、氮化钛氮化钨等高熔点金属替代铝作电极材料.2.抗闩锁设计CMOS集成电路含有n沟MOS和p沟MOS晶体管,不可预防地存在npnp寄生可控硅结构,在一定条件下,该结构一旦触发,电源到地之间便会流过较大的电流,并在npnp寄生可控硅结构中精品文档同时形成正反应过程,此时寄生可控硅结构处于导通状态.只要电源不切断,即使触发信号已经消失,业已形成的导通电流也不会随之消失,此现象即为闩锁效应,简称闩锁(Latch-up).(1)CMOS半导体集成电路产生闩锁的三项根本条件是:•外加干扰噪声进入寄生可控硅,使某个寄生晶体管触发导通.•满足寄生可控硅导通条件:上 + — 2 1(6.2)R J匚4+勺其中:a n和a p分别为npn管和pnp管的共基极电流增益;,和,分别为npn管和pnp管发射极串联电阻;R W和R S分别为npn管pnp管EB结的并联电阻.除了&「a「与外加噪声引起的初始导通电流有关外,所有以上各参数均由CMOS半导体集成电路的幅员和工艺条件决定.•导通状态的维持.当外加噪声消失后,只有当电源供应的电流大于寄生可控硅的维持电流或电路的工作电压大于维持电压时,导通状态才能维持,否那么电路退出导通状态.(2)抗闩锁的设计原那么抗闩锁可靠性设计总的原那么是:根据寄生可控硅导通条件,设法降低纵、横向寄生晶体管的电流放大系数,减少阱和衬底的寄生电阻,以提升造成闩锁的触发电流阈值,破坏形成正反应的条件.(3)幅员抗闩锁设计•尽可能增加寄生晶体管的基区宽度,以降低其8.对于横向寄生晶体管,应增加沟道MOS 管与P沟道MOS管的间距;对纵向寄生晶体管,应增加阱深,尽可能缩短寄生晶体管基极与发射极的n+区与p+区的距离,以降低寄生电阻.尽可能多开设电源孔和接地孔,以便增长周界;电源孔尽量设置在P沟道MOS管与P阱之间,接地孔开设在靠近P沟道MOS管的P阱内,尽量减少P 阱面积,以减少寄生电流.•采用阻断环结构,如图6.1所示.•采用保护环结构,如图6.2所示.•采用伪集电极结构,如图6.3所示.图6.1 CMOS电路防闩锁的阻断环结构精品文档P MQS的保沪讣nMQS的保炉图6.2 CMOS电路防闩锁的保护结构PMOS r图6.3体硅CMOS电路伪集电极结构及等效电路(4)工艺抗闩锁设计•采用掺金、本征吸杂、中子或电子辐照等方法,以降低寄生晶体管的电流放大系数;•在低阻的n+衬底上生长n-外延层,再作p阱和n+、p+源接触,形成低阻衬底来降低衬底寄生电阻;•用肖特基势垒代替扩散结制作MOS管的源区和漏区.由于肖特基势垒结发射效率比pn结低得多,可大大削弱闩锁效应;•采用在绝缘衬底上生长硅外延层的CMOS/SOI工艺技术.3.防静电放电设计静电放电(ESD)失效可以是热效应,也可以是电效应,这取决于半导体集成电路承受外界过电应力的瞬间以及器件对地的绝缘程度.假设器件的某一引出端对地短路,那么放电瞬间产生电流脉冲形成焦耳热,使器件局部金属互连线熔化或芯片出现热斑,以致诱发二次击穿,这就属于热效应. 假设器件与地不接触,没有直接电流通路,那么静电源不是通过器件到地直接放电,而是将存贮电荷传到器件,放电瞬间表现为产生过电压导致介质击穿或外表击穿,这就属于静电效应.预防半导体集成电路静电放电失效的设计举措主要有:(1)MOS器件防静电放电效应设计.图6.4为场效应管静电保护电路,图6.5为二极管防静电保护电路.精品文档〔2〕双极型器件防静电放电失效设计.图6.6为双极型器件防静电保护电路.〔3〕 CMOS器件防静电放电失效设计.图6.7是CMOS器件防静电保护电路.以上防静电保护电路中选用的元件一般要求具有高耐压、大功耗和小动态电阻,使之具有较强的抗静电水平.同时,还要求具有较快的导通速度和小的等效电容,以减少保护电路对电路性能的影响.图6.5 MOS器件二极管防静电保护电路〔a〕保护电路;〔b〕结构剖面图;〔c〕等效电路精品文档图6.6双极型器件静电保护电路〔a〕限流电阻;〔b〕钳位二极管“IL吐\L多X电阻叫书^i।不・1 ' .一■I保护电路〔a〕图6.7 CMOS器件防静电保护电路〔a〕采用多晶硅电阻;〔b〕采用扩散电阻4.防热载流子效应设计防热载流子效应设计主要是采取减弱MOS场效应晶体管漏极附近电场强度的结构,一般通过工艺来形成轻掺杂漏极〔LDD〕结构.首先对产品硅栅极进行掩膜形成n+区,再用化学气相淀积〔CVD〕技术把氧化膜淀积在整个芯片上,再利用各向异性刻蚀在多晶硅栅极侧面形成CVD氧化膜侧壁.对这个侧壁进行掩膜,便形成高浓度区n+.由于在LDD结构中n-、n+区是分别形成的,便于各区选取最正确浓度.这种工艺易于形成,重复性也好,是行之有效的方法.图6.8为LDD结构和普通结构电场强度的比拟.图6.9和图6.10分别为改良的LDD结构,即埋层LDD结构〔BLDD〕和双注入100结构〔DI-LDD〕.精品文档图6.8 LDD 结构和普通结构电场强度的比拟6.2.6耐环境应力设计技术1 .耐热应力设计(1)热应力引起半导体集成电路的失效热应力引起的失效可以分为两种情况:•由于高温而引起的失效.高温可能来自四周环境温度升高,也可能来自电流密度提升造 成的电热效应.温度的升高不仅可以使器件的电参数发生漂移变化,如双极器件的反向漏电流 和电流增益上升,MOS 器件的跨导下降,甚至可以使器件内部的物理化学变化加速劣化,缩短器件 寿命或使器件烧毁,如加速铝的电迁移、引起开路或短路失效等.•温度剧烈变化引起的失效.温度变化可以在具有不同的热膨胀系数的材料内形成不匹配应 力,造成芯片与管脚间的键合失效、管壳密封性失效和器件某些材料的热疲劳劣化.半导体集成电路集成度、功率密度的不断提升和封装管壳的不断减少,使热应力引起的可靠 性问题变得更加突出.(2)反映半导体集成电路热性能的主要参数反映半导体集成电路热性能的主要参数有两个,即器件的最高允许结温T m 和热阻R T .它们 精品文档■ 一圮重打辕tH J a r离界口一£/封蚂也留S2帏a 10 图6.9埋层LDD 结构图6.10双注入LDD 结构用来表征半导体集成电路的耐热极限和散热水平.半导体集成电路工作所消耗的功率会转换成热量,使电路的结温上升.当结温高于环境温度7;时,热量靠温差形成的扩散电流由芯片通过管壳向外散发,散发出的热量随温差的增大而增加,当结温上升到耗散功率能全部变成散发热量时, 结温不再上升,这时电路处于动态热平衡状态.平衡时结温的大小取决于耗散功率和电路的散热水平,耗散功率越大或电路的散热水平越差,结温就高;热阻越大那么表示散热水平越差.(3)耐热应力设计的方法半导体集成电路的热设计就是尽力预防器件出现过热或温度交变诱生失效,主要包括:•管芯热设计.主要通过幅员的合理布局使芯片外表温度尽可能均匀分布,预防出现局部的过热点.•封装键合热设计.主要通过合理选择封装、键合和烧结材料,尽可能降低材料之间的热不匹配性,预防出现过大的热应力.半导体集成电路常用材料的典型热特性值见表6.1.•管壳热设计.应着重考虑功率器件应具有足够大的散热水平.对于耗散功率较大的集成电路,为了改善芯片与底座接触良好,多采用芯片反面金属化和选用绝缘性与导热性好的氧化镀陶瓷,以增加散热水平.采用不同标准外壳封装的半导体集成电路热阻的典型值见表6.2.•为了使半导体集成电路能正常地、长期可靠地工作,必须规定一个最高允许结温T.m.综合各种因素,微电子器件的最大允许结温为:塑料封装硅器件一般为125〜150℃,金属封装硅器件一般为150〜175℃,锗器件一般为70〜90℃.112.耐机械应力设计半导体集成电路在运输和使用现场中将受到各种形式机械环境因素的作用,其中最常见、影 响最大的是振动和冲击.此外,离心、碰撞、跌落、失重、声振等机械作用也会对半导体集成电 路施加不同程度的机械应力.(1)振动和冲击对半导体集成电路性能的影响•振动的影响.振动是周期性的施加大小交替的力.根据力的作用频率不同,振动可分为固 定频率、周期变频和随机性振动等三种情况.通常遇到的振动是在一定范围内的随机振动,随机 振动实际可能到达0〜10000Hz ,电子产品受振动影响的频率范围通常为20〜2000Hz .一般认为, 低于20Hz 或高于2000Hz 频率是平安的.半导体集成电路在机械振动的反复作用下,机械构件会 产生疲劳损伤,使其结构松动,特别容易发生引线断裂、开焊、局部气密封接处出现裂缝等,轻 那么引起参数变化,重那么造成失效.特别是,当半导体集成电路本身的固有频率在设备的振动频率 谱范围内时,会出现共振现象.共振将使半导体集成电路的引线疲劳,使参数发生不可逆的变化而失效.此外,过大的振幅可能使脆性材料断裂,热性材料变形,造成产品结构严重损坏.•冲击的影响.冲击是对产品施加突发性的力,其加速度很大,致使半导体集成电路在瞬间 受到强烈的机械冲击,可造成电路的机械结构损坏,也可造成内引线的键合点脱开或内引线折断 而引起开路失效.此外,还会使芯片产生裂纹或与管座脱离.在各种环境条件下的冲击加速度如 表6.3所示.精品文档12。
可靠性、有效性 、可维护性和安全性(RAMS)
![可靠性、有效性 、可维护性和安全性(RAMS)](https://img.taocdn.com/s3/m/ccb0c000bfd5b9f3f90f76c66137ee06eff94efb.png)
1 目的为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称RAMS),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。
2 适用范围适用于本集团产品的设计、开发、试验、使用全过程RAMS的策划和控制.3 定义RAMS:可靠性、有效性、可维护性和安全性。
R—-Reliability可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。
可靠性的概率度量亦称可靠度。
A——Availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。
M--Maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。
维修性的概率度量亦称维修度。
S—-Safety安全性:是指保证产品能够可靠地完成其规定功能,同时保证操作和维护人员的人身安全。
FME(C)A:Failure Mode and Effect(Criticality)Analysis 故障模式和影响(危险)分析。
MTBF平均故障间隔时间:指可修复产品(部件)的连续发生故障的平均时间。
MTTR平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。
数据库:为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合。
4 职责4。
1 销售公司负责获取顾客RAMS要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后RAMS数据的收集和反馈。
4。
2 技术研究院各技术职能部门负责确定RAMS目标,确定对所用元器件、材料、工艺的可靠性要求,进行可靠性分配和预测,负责建立RAMS数据库。
4。
3 工程技术部负责确定能保证实现设计可靠性的工艺方法。
4.4 采购部负责将相关资料和外包(外协)配件的RAMS要求传递给供方,并督促供方实现这些要求。
4。
5制造部负责严格按产品图样、工艺文件组织生产.4。
第三章可靠性设计
![第三章可靠性设计](https://img.taocdn.com/s3/m/ede417765b8102d276a20029bd64783e09127d99.png)
第三章可靠性设计可靠性设计是指在设计产品或系统时,通过合理的设计方案和技术手段,使其能够在特定的工作条件下保持稳定性和持久性,并保证其在使用寿命内不失效或出现严重故障的能力。
可靠性设计主要包括以下几个方面:1.系统架构设计在进行系统架构设计时,应考虑系统的模块化和可插拔性,以便在部分模块发生故障时可以进行快速更换,而无需对整个系统进行维修或替换。
同时,应合理划分系统的功能模块,降低单个模块故障对整个系统的影响。
2.备份与冗余设计为了保证系统的可靠性,可以通过备份与冗余设计来减少系统故障对正常运行的影响。
备份设计可以将系统的关键组件设置为双份或多份,当其中一个出现故障时,可以自动切换到备份组件继续运行。
冗余设计可以在系统内部增加冗余模块,使系统能够自动检测和修复故障,从而提高系统的稳定性和可用性。
3.异常处理与故障恢复在系统设计中,应考虑到可能出现的异常情况和故障,并制定相应的处理策略和恢复方案。
例如,可以设计自动检测和自动修复机制,当系统发现异常时可以自动进行诊断和修复,减少人工干预的需要。
同时,还应设计相应的告警机制,及时通知相关人员,并采取相应的措施以避免系统不可用或功能丧失。
4.可维护性设计在系统设计过程中应考虑到系统的可维护性,即系统在出现故障或需要更新时能够方便地进行维护和修复。
可维护性设计包括诸如易维修、易升级和易扩展等方面。
例如,可以采用模块化设计,将系统划分为多个独立的模块,以便在维修时只需修复或替换故障模块,而无需对整个系统进行维修。
5.可靠性测试与验证在设计完成后,需要对系统进行可靠性测试和验证,以确保它能够在各种条件下具有稳定和持续工作的能力。
测试内容包括对系统各个模块的功能和性能进行测试,以及对系统整体性能进行评估。
通过测试和验证,可以发现系统设计中存在的缺陷和问题,并加以解决,提高系统的可靠性和稳定性。
总之,可靠性设计是产品或系统设计中非常重要的一个方面,它可以提高产品或系统的稳定性、持久性和可用性,减少故障的发生和对用户造成的影响。
可靠性设计工程师工作职责
![可靠性设计工程师工作职责](https://img.taocdn.com/s3/m/9cabd9c1951ea76e58fafab069dc5022aaea46da.png)
可靠性设计工程师工作职责
可靠性设计工程师是一种专业的职业,该职位的工作职责包括以下内容:
1. 确定可靠性需求:通过与客户进行沟通并评估机器设备的特点和可靠性需求,确定可靠性设计指标和可靠性目标。
2. 设计可靠性方案:根据机器设备的特点和需求,研发合理的方案以提高产品的可靠性。
可靠性方案需要包括设计特征、品质控制、可靠性检测以及后续的维修和保养。
3. 可靠性验证:进行可靠性试验,评估可靠性设计的可行性以及确定需要改进的方面。
在试验过程中需要综合考虑环境、设备使用时间、日常生产等因素。
4. 整机可靠性:评估整机可靠性,并且制定可靠性维修计划、故障排除计划和预防性维护计划,以确保机器设备正常工作并延长使用寿命。
5. 个人技能提升:不断学习和了解最新的研发趋势和技术,持续提升自己的专业知识和技能,为公司和客户提供更好的服务。
总体来说,可靠性设计工程师的工作职责是确保机器设备能够正常工作并具有足够的稳定性和可靠性,以满足客户的需要。
要做好这项工作需要对工程技术有不错的掌握,不断提高自己的专业技能。
第3章可靠性
![第3章可靠性](https://img.taocdn.com/s3/m/ac8d8ca158f5f61fb73666c8.png)
4. 失效率λ(t)
失效率又称为故障率。 其定义为:产品工作 t 时刻时尚未失效(或故障)的产品,在该 时刻 t 以后的下一个单位时间内发生失效(或故障)的概率。由于它 是时间 t 的函数,又称为失效率函数,用 (t) 表示。
(t) N lit m 0 n(N tnt()t)n(tt)
(3-8)
N ——测试产品的总数。
当 N 值较大时,可用下式计算:
MTTF0 tf(t)dt
(3-13)
当产品失效属于恒定型失效时,即可靠度 R(t) et 时,有
MTTF 1
(3-14 )
这说明失效规律服从指数分布的产品,其平均寿命是失效率的倒数。
MTBF是指可修复产品两次相邻故障间工作时间(寿命)的平均值, 或称为平均无故障工作时间。
解: 由已知条件可知: N 1 0 0 0 ,n ( 5 0 0 ) 1 0 0 ,n ( 1 0 0 0 ) 5 0 0 。
由式(3-1)得:
R(t) N n(t) N
则
R(500) 1000100 0.9
1000
R(1000) 1000500 0.5 1000
2. 不可靠度或失效概率F(t)
解:时间以年为单位,则 t 1a。
有
( 5 ) n ( N t n t( ) t ) n ( t t) N n ( 6 ) n ( 5 n ) ( 5 ) 1 ( 1 0 0 6 3 3 ) 1 0 .0 3 0 9 /a
当时间以 1 0 3 h 为单位,则 t1 a8 .6 7 1 0 3h,因此
(4Байду номын сангаас 把规定的可靠度直接设计到零件中去。
可靠性设计具有以下特点:
(1) 传统设计方法是将安全系数作为衡量安全与否的指标,但 安全系数的大小并没有同可靠度直接挂钩,这就有很大的盲目性。
可靠性设计
![可靠性设计](https://img.taocdn.com/s3/m/ce156326ccbff121dd3683b3.png)
可靠性设计(Reliability Design)设计是人类改造自然的一种基本活动,也是一种复杂的创造思维过程。
所谓的设计技术,也就是在设计过程中解决具体设计问题的各种方法和手段。
它的核心内容包括三个方面:1.计划,构思的形成;2.视觉传达方式;3.计划通过传达后的具体应用。
而因为影响计划和构思因数的不同,因此有传统设计和现代设计的区分。
两者最根本的区别在与现代设计与工业化大生产和现代文明密切联系,这是传统设计所不具有的。
因此现代设计是工业化大批量生产技术条件下的必然之物。
因此,可以说现代技术技术是在传统设计方法基础上继承和发展起来的,是一门多专业和多学科交叉,其综合性很强的基础技术科学。
一、可靠性设计概述可靠性设计的定义:定义1:对系统和结构进行可靠性分析和预测,采用简化系统和结构、余度设计和可维修设计等措施以提高系统和结构可靠度的设计。
定义2:为了满足产品的可靠性要求而进行的设计。
可靠性设计即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。
设计水平是保证产品可靠性的基础。
可靠性设计是产品的一个重要的性能特征,产品质量的主要指标之一,是随产品所使用时间的延续而在不断变化的。
可靠性设计的任务就是确定产品质量指标的变化规律,并在其基础上确定如何以最少的费用以保证产品应有的工作寿命和可靠度,建立最优的设计方案,实现所要求的产品可靠性水平。
可靠性问题的研究是因处理电子产品不可靠问题于第二次世界大战期间发展起来的。
可靠性设计用在机械方面的研究始于20世纪60年代,首先应用于军事和航天等工业部门,随后逐渐扩展到民用工业。
可靠性设计的一个重要内容是可靠性预测,即利用所得的资料预报一个零件、部件或系统实际可能达到的可性,预报这些零部件或系统在规定的条件下和在规定时间内完成规定功能的概率。
在产品设计的初期阶段,及时完成可靠性预测工作,可以了解产品各零部件之间可靠性的相互关系,找出提高产品可靠性的有效途径。
网络可靠性设计
![网络可靠性设计](https://img.taocdn.com/s3/m/ec6e80e4284ac850ad0242eb.png)
网络可靠性设计目录1.1 网络可靠性设计 (2)1.1.1 网络解决方案可靠性的设计原则 (3)1.1.2 网络可靠性的设计方法实例 (3)1.1.3 网络可靠性设计总结 (7)1.1 网络可靠性设计可靠性是指:设备在规定的条件下、在规定的时间内完成规定的功能的能力。
对于网络系统的可靠性,除了耐久性外,还有容错性和可维护性方面的内容。
1)耐久性。
是指设备运行的无故障性或寿命,专业名称叫MTBF(Mean Time Between Failure),即平均无故障时间,它是描述整个系统可靠性的重要指标。
对于一个网络系统来说,MTBF是指整个网络的各组件(链路、节点)不间断无故障连续运行的平均时间。
2)容错性。
专业名称叫MTTR(Mean Time to Repair),即系统平均恢复时间,是描述整个系统容错能力的指标。
对于一个网络系统来说,MTTR是指当网络中的组件出现故障时,网络从故障状态恢复到正常状态所需的平均时间。
3)可维护性。
在系统发生故障后,能够很快地定位问题并通过维护排除故障,这属于事后维护;根据系统告警提前发现问题(如CPU使用率过高,端口流量异常等),通过更换设备或调整网络结构来规避可能出现的故障,这属于预防维护。
可维护性需要管理人员来实施,体现了管理的水平,也反映了系统可靠性的高低。
表示系统可靠性的公式为:MTBF / ( MTBF + MTTR ) * 100%。
从公式或以看出,提高MTBF或降低MTTR都可以提高网络可靠性。
造成网络不可用的因素包括:设备软硬件故障、设备间链路故障、用户误操作、网络拥塞等。
针对这些因素采取措施,使网络尽量不出故障,提高网络MTBF指标,从而提升整网的可靠性水平。
然而,网络中的故障总是不可避免的,所以设计和部署从故障中快速恢复的技术、缩小MTTR指标,同样是提升网络可靠性水平的手段。
在网络架构的设计中,充分保证整网运行的可靠性是基本原则之一。
网络系统可靠性设计的核心思想则是,通过合理的组网结构设计和可靠性特性应用,保证网络系统具备有效备份、自动检测和快速恢复机制,同时关注不同类型网络的适应成本。
可靠性设计技术工作规范
![可靠性设计技术工作规范](https://img.taocdn.com/s3/m/5894aff8c0c708a1284ac850ad02de80d5d80673.png)
本规范规定了可靠性设计大纲、工作计划编制的相关要求。
本规范规定了可靠性设计准则、原则与方法的相关要求。
GJB450A-2004 GJB841-1990 GJB899A-2022 GB/T7826-20012装备可靠性工作通用要求故障报告、分析和纠正措施系统可靠性鉴定和验收试验系统可靠性分析技术――失效模式和影响分析(FMEA)程序可靠性(Reliability)指产品(包括零件和元器件、整机设备、系统)在规定的条件下和规定的时间内,完成规定功能的能力。
可靠性指标主要反映产品或者设备的可靠性( Reliability),可靠性是部件( Part)、元件 (Component)、产品(Product)或者系统(System)的完整性的最佳数量的度量。
平均故障间隔时间又称平均无故障时间 (Mean Time Between Failure,MTBF) 指可修复产品两次相邻故障之间的平均时间,是衡量一个产品的可靠性指标。
可靠性设计(Reliability Design),即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。
设计水平是保证产品可靠性的基础。
可靠性设计,在产品设计过程中,为消除产品的潜在缺陷和薄弱环节,防止故障发生,以确保满足规定的固有可靠性要求所采取的技术活动。
可靠性设计是可靠性工程的重要组成部份,是实现产品固有可靠性要求的最关键的环节,是在可靠性分析的基础上通过制定和贯彻可靠性设计准则来实现的。
为了保证产品满足规定的可靠性要求而制定的一套文件,包括可靠性设计组织机构及其职责,要求按进度实施的工作项目、工作程序和需要的资源等。
目的和任务目标可靠性指标及定义工作组织及其职责可靠性工作项目及其实施表(见附表 1)可靠性设计的目的是在综合考虑产品的性能、可靠性、费用和设计等因素的基础上,通过采用相应的可靠性设计技术,使产品的寿命周期内符合所规定的可靠性要求。
系统可靠性设计的主要任务是:通过设计,基本实现系统的固有可靠性。
可靠性名词解释与简答
![可靠性名词解释与简答](https://img.taocdn.com/s3/m/3cfa714117fc700abb68a98271fe910ef02dae55.png)
1产品的产生是用以满足人们各种各样的需求,需求主要体现在哪几方面?功能性,安全性,可靠性,经济性,易用性,可回收性2产品设计时要综合考虑,不能只通过一个特性来考量。
因此产生以下设计内容:功能性设计、安全性设计、可靠性设计、经济性设计、易用性设计、可回收性设计同样在使用过程中也要对产品进行评估(功能性、安全性、可靠性、经济性、易用性、可回收性)以决定是否继续使用、维修、改进或处置。
3 失效:系统或部件终止完成规定功能能力这样的事件。
故障:系统或部件不能执行规定功能的状态系统状态:功能状态、故障状态状态转换:缓慢或瞬间4可靠性(R):系统或部件在规定的条件下和规定的时间区间内完成规定功能的能力。
包括:硬件可靠性、软件可靠性和人的可靠性。
常用可靠度R(t)进行度量。
可靠度:系统或部件在一定条件下、一定时间内正常工作的概率。
5维修性(M):系统或部件在规定的条件下按规定的程序和手段实施维修时,保持和恢复其能执行规定功能状态的能力。
用平均修复时间来度量(MTTR)6保障性(S):在规定的条件下按规定的维修方针提供维修系统或部件所需资源的能力。
采用保障时间来度量(TTS)可靠性、维修性、保障性统称为RMS7可用性(A):系统或部件在规定的使用与维修方式下,在给定的时间内完成规定功能的能力。
采用可用度A(t)来度量。
可用度=能工作时间/(能工作时间+不能工作时间)可靠性、可用性、维修性、保障性统称为RAMS8飞机全寿命周期:1)规划和概念设计阶段;2)初步设计与系统集成阶段;3)详细设计与开发阶段;4)制造与采购阶段;5)运营与保障阶段;6)退役与处置阶段。
9飞机全寿命成本(LCC)就是指在飞机的全寿命过程中所产生的各项成本的综总和。
10可运行飞机的设计因素:1)可靠性设计:目的是保障飞机能够持续满足使用者的需求(维持其功能),包括内容:可靠性的测度、可靠性设计与分配、可靠性统计.2)维修性设计:目的是保障飞机在发生故障时,能有效的修复。
混凝土结构的可靠性设计原理
![混凝土结构的可靠性设计原理](https://img.taocdn.com/s3/m/3833bd0442323968011ca300a6c30c225901f0ab.png)
混凝土结构的可靠性设计原理一、前言混凝土结构在现代建筑中扮演着重要的角色,因为其具有耐久性、强度高、抗震性能好等特点,因此具有广泛的应用。
在混凝土结构的设计过程中,可靠性设计是非常重要的一环,它能够保证结构在使用寿命内能够稳定安全地工作。
因此,混凝土结构的可靠性设计原理应该得到充分的重视和研究。
二、可靠性设计的概念可靠性是指在指定的时间内,保持一定的性能水平的能力。
可靠性设计是一种基于概率的设计方法,它将结构的设计要求转化为可靠性指标,通过对结构的各个环节进行分析和评估,确定结构的可靠性指标,从而保证结构能够在使用寿命内稳定安全地工作。
三、混凝土结构的可靠性设计要求混凝土结构的可靠性设计要求主要包括以下几个方面:1.结构的安全可靠性要求:混凝土结构的设计要满足一定的安全可靠性要求,以保证结构在使用寿命内能够稳定安全地工作。
通常,结构的安全可靠性要求包括极限状态和使用状态两方面,其中极限状态是指结构在承受极限荷载时的安全可靠性要求,使用状态是指结构在正常使用过程中的安全可靠性要求。
2.结构的可靠性指标:混凝土结构的可靠性指标是指结构在使用寿命内能够保持一定性能水平的能力,通常采用概率分析方法来确定结构的可靠性指标。
常用的可靠性指标包括极限状态设计值、可靠度指标、失效概率等。
3.结构的荷载和抗力:混凝土结构的可靠性设计要求对荷载和抗力进行合理的分析和评估,以保证结构在使用寿命内能够稳定安全地工作。
荷载分析主要包括自重、活载、风荷载、地震荷载等,抗力分析主要包括混凝土强度、钢筋强度、连接件等。
4.结构的材料性能:混凝土结构的可靠性设计要求对材料的性能进行充分的了解和评估,以保证结构在使用寿命内能够稳定安全地工作。
主要包括混凝土的强度、韧性、抗裂性等,钢筋的屈服强度、延伸率等。
四、混凝土结构的可靠性设计方法混凝土结构的可靠性设计方法主要包括以下几种:1.极限状态设计法:极限状态设计法是指在结构承受极限荷载时,结构的可靠性指标达到规定要求的设计方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可靠性设计的主要内容
1、研究产品的故障物理和故障模型
搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。
研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。
用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。
2、确定产品的可靠性指标及其等级
选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。
而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。
例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。
3、合理分配产品的可靠性指标值
将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。
采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。
4、以规定的可靠性指标值为依据对零件进行可靠性设计
即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。