(完整版)4年级有趣的数阵图

合集下载

有趣的数阵图课件

有趣的数阵图课件
1+2+3+4+5+6+7=28 A:(30-28)÷2=1 134567八个数分为两组, 使每组中两个数字之和:
10-1=9 则2+7=3+6=4+5
有趣的数阵图
5
练一练:将 1~7入下图的○内,使得每条边上的三个数 字之和都等于12。
通关小诀窍:确定中间值
3 5
4
6
7
1 2
三条数之和: 3×12=36 2-8数之和:
有趣的数阵图
9
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.
2
3
4
5
1A0
6
7
8
9
有趣的数阵图
10
将1、2、3、4、5、6填在下图中,使每条边上 三个数之和等于9。
1A
6
5
B2
4
3C
三条边数字总和: 3×9=27
1-6六数之和: 1+2+3+4+5+6=21
A+B+C=27-21=6 故只能选1,2,3
有趣的数阵图
14
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于13。
2 4 17 635
有趣的数阵图
15
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于15。
6 31 5 4 72
有趣的数阵图
16
将1-6这六个数字填入下图的圆圈中,使每个大圆 圈上4个数字之和为14。
50-45=5 12346789八个数分为两组, 使每组中四个数字之和:
25-5=20 则1+4+6+9=2+3+7+8

四年级奥数教程第7讲:有趣的数阵图

四年级奥数教程第7讲:有趣的数阵图

第七讲有趣的数阵图(二)例1将1~7这七个自然数分别填入右图的7个小圆圈中,使三个大圆圆周上及内部的四个数之和都等于定数S,并指出这个定数S的取值范围,最小是多少,最大是多少?并对S最小值填出数阵.分析为了叙述方便,用字母表示圆圈中的数.通过观察,我们发现,三个大圆上,每个大圆上都有4个小圆,由题设每个大圆上的4个小圆之和为S.从图中不难看出:B是三个圆的公共部分,A、C、D分别是两个圆的公共部分而E、F、G仅各自属于一个圆.这样三个大圆的数字和为:3S=3B+2A+2C+2D+E+F+G,而A、B、…、F、G这7个数的全体恰好是1、2、…、6、7.∴3S=1+2+3+4+5+6+7+2B+A+C+D.3S=28+2B+A+C+D.如果设2B+A+C+D=W,要使S等于定数即W最小发生于B=1、A=2、C=3、D=4W最大发生于B=7、A=6、C=5、D=4,综上所述,得出:13≤S≤19即定数可以取13~19中间的整数.本题要求S=13,那么A=2、B=1、C=3、D=4、E=5、 F=6、 G=7.注意:解答这类问题常常抓两个要点,一是某种共同的“和数” S.(同一条边上各数和,同一三角形上各数和,同一圆上各数和等等).二是全局考虑数阵的各数被相加的“次”数.主要突破口是估算或确定出S的值.从“中心数”B处考虑.(B是三个大圆的公共部分,常根据S来设定B的可能值.这里重视B不是简单地看到B处于几何中心,主要因为B参与相加的次数最多)此处因为定数是13,中心数可从1开始考虑.确定了S和中心数B,其他问题就容易解决了.解:例2把20以内的质数分别填入右图的八个圆圈中,使圈中用箭头连接起来的每条路上的四个数之和都相等.分析观察右图,我们发现:①有3条路,每条路上有4个数,且4个数相加的和要相等.②图形两端的两个数是三条路的公共起点和终点.因此只要使三条路上其余两个数的和相等,就可以确保每条路上的四个数的和相等.③20以内的质数共有8个,依次是2、3、5、7、11、13、17、19.如果能从这八个数中选出六个数凑成相等的三对数,问题就可迎刃而解.如要分析,设起点数为X,终点数为y,每条路上4个数之和为S,显然有:3S=2x+2y+2+3+5+7+11+13+17+19=2x+2y+77.即S最小=29,此时x=2,y=3但这时,中间二个质数之和为47-(19+13)=15,但17>15,17无处填.所以S=47是无法实现的.这题还另有一个独特的分析推理.即惟一的偶质数必处于起点或终点位上.不然,其他路上为4个质数之和,2处于中间位的路上.这条路为3奇1偶相加,另两条路上为4个奇相加,形成矛盾.再进一步分析,(终点,始点地位对称)始点放上2,终点放上另一个质数,其他6个质数之和必为3的倍数.而经试算,只有终点放上3,而可满足的解法只有一种(已在下图中表出).解:这样,轻而举地可得到:5+19=24,7+17=24,11+13=24.例3 把1、2、3、4、5、6、7、8这八个数分别填入右图中的正方形的各个圆圈中,使得正方形每边上的三个数的和相等.分析和解假设每边上的三数之和为S,四边上中间圆圈内所填数分别为a、b、c、d,那么:a+c=b+d=(1+2+…+8)-2S=36-2S∴2S=36-(a+C)=36-(b+d)①若S=15,则a+c=b+d=6,又1+5=2+4=6,试验可得下图②若S=14,则a+c=b+d=8,又1+7=2+6=3+5=8,试验可得下两图③若S=13,则a+c=b+d=10,又2+8=3+7=4+610,试验可得下两图④若S=12,则a+c=b+d=12,又4+8=5+7=12,试验可得下图例4在一个立方体各个顶点上分别填入1~9这九个数中的八个数,使得每个面上四个顶点所填数字之和彼此相等,并且这个和数不能被那个没有被标上的数字整除.试求:没有被标上的数字是多少?并给出一种填数的方法.分析为了叙述方便,设没有被标上的数字为a,S是每个面上的四个顶点上的数字之和.由于每个顶点数都属于3个面,所以得到:6S=3×(1+2+3+4+5+6+7+8+9)-3a6S=3×45-3a2S=45-a (1)根据(1)式可看出:因为左边2S是偶数,所以右边45-a也必须是偶数,故a必须是奇数.又因为根据题意,S不能被a整除,而2与a互质,所以2S不能被a整除,45也一定不能被a整除.”在奇数数字1、3、5、7、9中,只有7不能整除45,所以可以确定a=7.这就证明正方体每个面上四个顶点所填数字之和是19,解法如图.例5 将1~8这八个数标在立方体的八个顶点上,使得每个面的四个顶点所标数字之和都相等.分析观察下图,知道每个顶点属于三个面,正方体有6个面,所以每个面的数字之和为:(1+2+3+4+5+6+7+8)×3÷6=18.这就是说明正方体每个面上四个顶点所填数字之和是18.下面有3种填法的提示,作为练习,请读者补充完整.解:例6在下左图中,将1~9这九个数,填人圆圈内,使每个三角形三个顶点的数字之和都相等.分析为了便于叙述说明,圆圈内应填的数,先由字母代替.设每个三角形三个顶点圆圈内的数字和为S.即:A+B+C=S、D+E+F=S、G+H+I=S、C+G+E=S、A+G+D=S、B+H+E=S、C+I+F=S.将上面七个等式相加得到:2(A+B+C+D+E+F+G+H+I)+C+G+E=7S.即:A+B+C+D+E+F+G+H+I=3S又∵A、B、C、D、E、F、G、H、I,分别代表1~9这九个数.即:1+2+3+4+5+6+7+8+9=45.3S=45S=15.这15就说明每个三角形三个顶点的数字之和是15.在1~9九个数中,三个数的和等于15的组合情况有以下8种即:(1、9、5);(1、8、6);(2、9、4);(2、8、5);(3、7、5);(2、7、6);(3、8、4);(4、5、6);观察九个数字在上述8种情况下出现的次数看,数字2、4、5、6、8都均出现了三次,其他数字均只出现两次,所以,符合题意的组合中的2、8、5和4、5、6可填入图中的圆圈内,这样就得到本题的两个解.解:例7在有大小六个正方形的方框下左图中的圆圈内,填入1~9这九个自然数,使每一个正方形角上四个数字之和相等.分析为了叙述方便,我们将各个圆圈内填入字母,如上右图所示.如果设每个正方形角上四个数字之和为S,那么图中六个正方形可得到:a1+a2+b1+b2=S,a2+b2+a3+b3=S,b1+b2+c1+b2=S,a2+b3+b2+b1=S,b2+b2+b3+c3=S,a1+a3+c3+c1=S.将上面的六个等式相加可得到:2(a1+a3+c3+c1)+3(a2+b3+b2+b1)+4b2=6S.则4b2=S4(a1+a3+c3+c1)+4(a2+b3+b2+b1)+4b2=9S.于是有:4(a1+a2+a3+b1+b2+b3+c1+b2+c3)=4×45=9S.9S=4×45S=20.这就说明每个正方形角上四个数字之和为20.所以:b2=5.从而得到:a1+a2+b1=a2+a3+b3=15,b1+c1+b2=b2+c3+b3=15.由上面两式可得:a1+b1=a3+b3,b1+c1=b3+c3.如果a2为奇数,则a1+b1和a3+b3均为偶数.①若a1为奇数,a3为偶数,则b1为奇数,b3为偶数.因为a2+b3+b2+b1=20,所以b2为偶数,则c1为偶数,c3为奇数.但是a1+a2+5+b1=20,而奇数1、3、5、7、9中含有5的任意四个奇数的和不等于20,有矛盾.②若a1为偶数,a3为偶数,则b1也为偶数,b3也为偶数.因为a2+b3+b2+b1=20,所以b2为奇数,则c1为偶数,c3为偶数,但1~9中只有4个偶数,有矛盾.③若a1为奇数,a3为奇数,则b1、b3也为奇数,这样1~9中有六个奇数,有矛盾.④若a1为偶数,a3为奇数,情况与①相同.综合上述,a2必为偶数.由对称性易知:b2、b2、b1也为偶数.因此a1、a3、c3、c1全为奇数.这样,就比较容易找到此解.解:注:也可以这样想:因为1+2+3+4+5+6+7+8+9=45,中心数用5试填后,余下40,那么大正方形、中正方形对角数字之和一定为10,比如:2+8=10、3+7=10、1+9=10、4+6=10.再利用小正方形调整一下,便可以凑出结果了.习题十1.将1~6六个自然数字分别填入下图的圆圈内,使三角形每边上的三数之和都等于定数S,指出这个定数S的取值范围.并对S=11时给出一种填法.2.将1~10这十个自然数分别填入下左图中的10个圆圈内,使五边形每条边上的三数之和都相等,并使值尽可能大.3.将1~8填入上右图中圆圈内,使每个大圆周上的五个数之和为21.习题十解答1.分析设三个顶点为x、y、Z,三条边中点处放置a、b、c,每边三数之和为S.则有2(x+y+z)+a+b+c=3S.对 x+y+z+a+b+c=1+2+…+6=21∴定数S可取 9、10、11、12.经过试探、搜索知道:顶点放2、4、6,而2、4之间放5,2、6之间放上3,4、6之间放上1,即可.2.3.。

四年级秋季第16讲_数阵图(四年级学生用) 2

四年级秋季第16讲_数阵图(四年级学生用) 2

四年级秋季第16讲数阵图(一)姓名:在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

例2 把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

例3 把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。

例4 将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。

例5 将 10~20填入左下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。

例6 将1~8这八个数分别填入右图的○中,使两个大圆上的五个数之和都等于21。

例7 将1~6这六个自然数分别填入右图的六个○内,使得三角形每条边上的三个数之和都等于11。

例8 将1~6这六个自然数分别填入上图的六个○中,使得三角形每条边上的三个数之和都相等。

例9将2~9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。

练习161. 将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。

如果每条直线上的三个数之和等于10,那么又该如何填?2.将1~9这九个数分别填入右上图中的○里(其中9已填好),使每条直线上的三个数之和都相等。

如果中心数是5,那么又该如何填?3.将1~9这九个数分别填入右图的小方格里,使横行和竖列上五个数之和相等。

(至少找出两种本质上不同的填法)4.将3~9这七个数分别填入左下图的○里,使每条直线上的三个数之和等于20。

四年级奥数:数阵图

四年级奥数:数阵图

四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”.本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”.我们先从一道典型的例题开始.例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等.分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几.我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15.也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15.在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4.因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字.因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中.同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等.经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到.例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到.又如,第二行的各图,都是由它上面的图沿竖轴翻转得到.所以,这八个图本质上是相同的,可以看作是一种填法.例1中的数阵图,我国古代称为“纵横图”、“九宫算”.一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方.在例1中如果只要求任一横行及任一竖列的三数之和相等,而不要求两条对角线上的三数之和也相等,则解不唯一,这是因为在例1的解中,任意交换两行或两列的位置,不影响每行或每列的三数之和,故仍然是解.例2用11,13,15,17,19,21,23,25,27编制成一个三阶幻方.分析与解:给出的九个数形成一个等差数列,对照例1,1~9也是一个等差数列.不难发现:中间方格里的数字应填等差数列的第五个数,即应填19;填在四个角上方格中的数是位于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13+25=17+21;余下各数就不难填写了(见右图).与幻方相反的问题是反幻方.将九个数填入3×3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.例3将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.分析与解:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线.经试验有下图所示的三种情况:按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解.因为第二种情况是螺旋形,故本题的解称为螺旋反幻方.例4将九个数填入左下图的九个空格中,使得任一行、任一列以及两条证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k.如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有九数之和+中心方格中的数×3=4k,3k+中心方格中的数×3=4k,注意:例4中对九个数及定数k都没有特殊要求.这个结论对求解3×3方格中的数阵问题很实用.在3×3的方格中,如果要求填入九个互不相同的质数,要求任一行、任一列以及两条对角线上的三个数之和都相等,那么这样填好的图称为三阶质数幻方.例5求任一列、任一行以及两条对角线上的三个数之和都等于267的三阶质数幻方.分析与解:由例4知中间方格中的数为267÷3=89.由于在两条对角线、中间一行及中间一列这四组数中,每组的三个数中都有89,所以每组的其余两数之和必为267-89=178.两个质数之和为178的共有六组:5+173=11+167=29+149=41+137=47+131=71+107.经试验,可得右图所示的三阶质数幻方.练习161.将九个连续自然数填入3×3的方格内,使得每一横行、每一竖列及两条对角线上的三个数之和都等于66.2.将1,3,5,7,9,11,13,15,17填入3×3的方格内,使其构成一个幻方.3.用2,4,6,12,14,16,22,24,26九个偶数编制一个幻方.4.在下列各图空着的方格内填上合适的数,使每行、每列及每条对角线上的三数之和都等于27.5.将右图中的数重新排列,使得每行、每列及两条对角线上的三个数之和都相等.6.将九个质数填入3×3的方格内,使得每一横行、每一竖列及两条对角线上的三个数之和都等于21.7.求九个数之和为657的三阶质数幻方.第17讲数阵图(二)例1在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.解:由上一讲例4知中间方格中的数为7.再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x).因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10.考虑到5,7,9已填好,所以x只能取4,6,8或10.经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图).这两个解实际上一样,只是方向不同而已.例2将九个数填入右图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有证明:设中心数为d.由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d.由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图).根据第一行和第三列都可以求出上图中★处的数由此得到3d-c-(2d-b)=3d-a-(2d-c),3d-c-2d+b=3d-a-2d+c,d——c+b=d——a+c,2c=a+b,a+bc=2.值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同.例3在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90.解:由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图).其它数依次可填(见右下图).例4在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等.解:由例2知,右下角的数为(8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21.由此可得右下图的填法. 例5在下页上图的每个空格中填一个自然数,使得每行、每列及每条对角线上的三个数之和都相等.解:由例2知,右下角的数为(6+12)÷2=9(左下图).因为左下图中两条虚线上的三个数之和相等,所以,“中心数”=(10+6)-9=7.其它依次可填(见右下图).由例3~5看出,在解答3×3方阵的问题时,上讲的例4与本讲的例2很有用处.练习171.在左下图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都相等.2.在右上图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都等于24.3.下列各图中的九个小方格内各有一个数字,而且每行、每列及每条对角线上的三个数之和都相等,求x.4.在左下图的空格中填入七个自然数,使得每行、每列、每条对角线上的三个数之和都等于48.5.在右上图的每个空格中填入一个自然数,使得每行、每列及每条对角线上的三个数之和都相等.6.在右图的每个空格中填入不大于12且互不相同的九个自然数,使得每行、每列、每条对角线上的三个数之和都等于21.第18讲数阵图(三)数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们根据题目条件灵活解题.例1把20以内的质数分别填入下图的一个○中,使得图中用箭头连接起来的四个数之和都相等.分析与解:由上图看出,三组数都包括左、右两端的数,所以每组数的中间两数之和必然相等.20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有5+19=7+17=11+13,于是得到下图的填法.例2在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4.分析与解:如左下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图.例3将1~8填入左下图的○内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个○内.分析与解:因为中间的两个○各自只与一个○不相邻,而2~7中的任何一个数都与两个数相邻,所以这两个○内只能填1和8.2只能填在与1不相邻的○内,7只能填在与8不相邻的○内.其余数的填法见右上图.例4在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等.分析与解:因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个○,又因为每个三角形顶点上的数字之和相等,所以每个三角形顶点上的数字之和为20÷2=10.10分为三个质数之和只能是2+3+5,由此得到右图的填法.例5在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除.分析与解:设未被标出的数为a,则被标出的八个数之和为1+2+…+9-a=45-a.由于每个顶点都属于三个面,所以六个面的所有顶点数字之和为6k=3×(45-a),2k=45-a.2k是偶数,45-a也应是偶数,所以a必为奇数.若a=1,则k=22;若a=3,则k=21;若a=5,则k=20;若a=7,则k=19;若a=9,则k=18.因为k不能被a整除,所以只有a=7,k=19符合条件.由于每个面上四个顶点上的数字之和等于19,所以与9在一个面上的另外三个顶点数之和应等于10.在1,2,3,4,5,6,8中,三个数之和等于10的有三组:10=1+3+6=1+4+5=2+3+5,将这三组数填入9所在的三个面上,可得右图的填法.练习181.将1~6这六个数分别填入左下图中的六个○内,使得三条直线上的数字的和都相等.2.将1~8这八个数分别填入右上图中的八个方格内,使上面四格、下面四格、左边四格、右边四格、中间四格及四角四格内四个数相加的和都是18.3.在下页左上图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数都是1,2,3,4.4.将1~8填入右上图的八个空格中,使得横、竖、对角任何两个相邻空格中的数都不是相邻的两个自然数.5.20以内共有10个奇数,去掉9和15还剩八个奇数.将这八个奇数填入右图的八个○中(其中3已填好),使得用箭头连接起来的四个数之和都相等.6.在左下图的七个○内各填入一个质数,使每个小三角形(共6个)的三个顶点数之和都相等,且为尽量小的质数.7.从1~13中选出12个自然数填入右上图的空格中,使每横行四数之和相等,每竖列三数之和也相等.答案练习16练习173.(1)11;(2)9.提示:(1)右下角的数为(3+7)÷2=5,所以x=8×2-5=11.(2)右下角的数为(5+9)÷2=7,中心数为(6+9)-7=8,所以x=8×2-7=9提示:左下角的数为(13+27)÷2=20,中心数为48÷3=16.提示:右下角的数为(20+16)÷2=18,中心数为(8+18)÷2=13.提示:与例1类似.练习181.有下面四个基本解.。

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)大家都知道了历史悠久的三阶幻方.再推广一些,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,习惯上称为“数阵图”.幻方是特殊的数阵图,幻方发展较快,因为它后来与试验方案设计及一些高深数学分支有关,成为数阵图中最重要课题.本讲主要介绍一般数阵图及解此类题的推理思考方法,由于它既有数字之间运算,又要结合图形,对开发学生综合思考和形象思维很有益.先看例题.例 1 下面图形包括六个加法算式,要在圆圈里填上不同的自然数,使六个算式都成立,那么最右边圆圈中的数最少是几?分析为便于说理,各圆圈内欲填的数依次用字母A、B、C、D、E、F、G、H、I代替(上右图).经观察,I=A+B+C+D.题目要I尽可能小,最极端的想法,希望A、B、C、D只占用1、2、3、4.但这会产生矛盾.因为1总要和2、3、4中的某两个实施加法,但1+2给予G、H、E、F中某值为3与A、B、C、D中已有的3冲突;同样1+3给于G、H、E、F中某值为4又与A、B、C、D中已有的4冲突;所以A、B、C、D不能是1、2、3、4.那么退而求之,不妨先设A=1.如先考虑B,B尽可能小,最好,B=2,从而决定了E=3,C≠3,D≠3.这样一来,C,D只能取4和5.但如C=4导致G=5和D=5冲突,而C=5,D=4,又导致G=A+C=6和H=B+D=2+4=6冲突.在碰了钉子后,回看在A=1设定后,不应随随便便先填B的值.从结构上看,因为B,C地位对称,不妨先考虑D.D尽可能小,最好设D=2,B、C至少取3、5,若如此,由B+D或C+D产生的5会与B、C中已有的5矛盾.所以,B、C可能取3、6.从而形成了:A=1、D=2、B、C取3、6(B,C地位对称).这样一来其他字母所代表的值就立即推出,不妨设B=3,C=6,A+B=E=4,C+D=6+2=8=F;A+C=1+6=7=G,B+D=3+2=5=H,恰好满足E+F=4+8=12=I;G+H=7+5=12=I;综上所述:A=1,D=2,B=3,C=6决定了其他值,且决定了I=12.是一个较小的I的值,自然要问I 值还可能比12小吗?分析I的值有三种不同的获得方式:I=A+B+C+D=E+F=G+H.3I=A+B+C+D+E+F+G+H,而8个字母最少是代表1、2、…、7、8的情况.3I≥(1+2+…+7+8)=36,I≥12.现已推出了使I=12的一种填法,所以是最佳方案了.例2 如右图,五圆相连,每个位置的数字都是按一定规律填写的,请找出规律,并求出x所代表的数.分析经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.解: x+18=17×2x=16.经检验,16和24相加除以2,也恰好等于20.例3 在下图中的各题中,将从1开始的连续自然数填入各题的圆圈中,要使每边上的数字之和都相等,中心处各有几种填法?(每小题请给出一个解)分析1 图(A)中的中心圆填入的数设为x,x参与3条线的连加,设每条线数字和都为S.由题意:1+2+3+…+7+2x=3S即28+2x=3S或28+2x≡0(mod 3)借用同余工具,是在两个未知数的不定方程中先缩小x应该取值的范围.在mod3情况下,只要试探x≡0,1,2三个值,很轻松地解出:x≡1(mod3),回复到x取值范围为1,2,…,7.有x1=1,x2=4,x3=7,得到:x1=1,S1=10;x2=4,S2=12;x3=7,S3=14;由此看出关键在求S(公共和)及x(参与相加次数最多的圆中值).此方法对下面解(B)、(C)、(D).都适用.注意:每条线上的数字之和随着中心数的变化而变化.分析2 我们分析图(B),首先应该考虑中心数,(B)题共10个数,由于中心数比其他数多使用了二次(总共使用三次).如果中心数用x表示,三条边的数码总和应为:1+2+3+4+5+6+7+8+9+10+2x=55+2x同理,因为是3条边,所以55+2x应是3的倍数55+2x≡0(mod 3),把x≡0、1、2代入试验,得x≡1(mod 3),即x=1、4、7、10.四种解.①当x=1时,55+2x=57,57÷3=19②当x=4时,55+2x=63,63÷3=21③当x=7时,55+2x=69,69÷3=23④当x=10时,55+2x=75,75÷3=25读者可按照上面相似的规律自己去分析一下图中(C)、(D)两题.解:(A)图:中心数可以为1、4、7,有三种填法,请读者补充其他两种解法.(B)图:中心数可以为1、4、7、10.有四种填法,请你补充其他三种填法.(C)图:中心数可以为1、5、9.有三种填法,请你补充其他两种填法.(D)图:中心数可以为1、6、11.有3种填法,请你补充其他两种填法.例 4 在下左图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x是多少?分析为了便于说明问题,我们用字母表示各个圆圈内所表示的数,如上右图所示:根据题意,我们观察:因为每一条直线上的三个数中,当中的数是两边的两个数的平均数.所以可以得出:D=(13+17)÷2=15.还可以得出以下三式:C=(B+15)÷2 (1)A=(13+B)÷2 (2)C=(A+17)÷2 (3)将上述三个算式进行变形,成下面三个算式:2C=B+15 (4)2A=13+B (5)2C=A+17 (6)用(4)式减去(5)式得出:2C-2A=2C-A=1C=A+1将C=A+1代入(6)式得到:2(A+1)=A+17,A=15.x=19.即:解:(略)例5 如下左图有5个圆,它们相交后相互分成几个区域,现在两个区域里已分别填上数字10、6,请在另外七个区域里分别填进2、3、4、5、6、7、9七个数字,使每个圈内的数的和都是15.分析为了便于说明,我们用字母表示其他的7个区域.如上右图.根据题意可以得出:A=5、G=9,九个区域中数的总和为:(2+3+4+5+6+7+9)+10+6=52,而每个圆圈内数的和是15,五个圆圈内数的总和为:15×5=75,又75-52=23,由此得出重叠的部分的四个数A、C、E、G的和是23.由于A=5和G=9已经填好,因此,余下的两个部分C+E的和是:23-5-9=9,此时9只有两种分解的可能:2+7=9、3+6=9.在E、F、G这个圆圈内,∵G=9,∴E不能填6、7.也不能填3(否则F也等于3),只能填2,这样,E=2,C=7.解:例6 如下左图所示4个小三角形的顶点处共有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形三顶点上的数之和相等,问这6个质数的积是多少?分析为了叙述方便,我们用字母表示图中圆圈里的数.如上右图所示.通过观察,我们不难发现,小三角形A1B2C2和小三角形A2B2C2有两个共同的顶点B2,C2,而这两个小三角形顶点上数字的和相等.因此A1=A2.同理有B1=B2,C1=C2,所以,此图只能填A、B、C三个质数(两个A、两个B、两个C.以下:A1=A2记为A,B1=B2记为B,C1=C2记为C)∵6个圆圈中的6个质数之和为20,即:2×(A+B+C)=20A+B+C=10.∴10分成三个质数之和只能是10=2+3+5.这样,A、B、C分别是2、3、5.这时所填6个数的积是:2×2×3×3×5×5=900.解:例7 能否将自然数1~10填入五角星各交点的“○”内使每条直线上的4个数字之和都相等?分析与解答不能,用反证法.假设可以填成数阵图,观察发现:十个点中的每一个点恰好是两条直线的公共点.因而全部直线(共5条)上数字总和,应该等于全部点上数字总和的2倍.记每条直线上数字和为S,则有5S=(1+2+3+…+10)×2,从而解出S=22.10和1必同在某一直线上.不然,如含有10的两条直线都不含有1,这样,这两条线上8个数字(10自然被计上两次)之和(本应为2S)大于等于2×10+2+3+4+5+6+7=47>44=2S.形成矛盾.所以10、1必处同一直线.此外,有三个数字与10不同线,不妨记为x、y、z.显然x+y+z={10数总和}-{其余七个数和}而这{其余七个数和}恰好为2S-10.所以x+y+z=55-2×22+10=21.已推出10,1共线.进一步看出,1无论在什么位置都与x、y、z三数中的两个共线.设1与x、y共线,此线上另一数设为v.则有1+x+y+v=22,从而x+y+v=21.前已证x+y+z=21,因而导致v=z的矛盾.其他情况推证类似,所以没有题设的填法.习题九1.将1~9这九个数字分别填入右图中的九个圆圈中,使各条边上的四个圆圈内的数的和相等.2.将0.01、0.02、…、0.09这九个数分别填入右图九个圆圈内,使每条边上的四个圆圈内的数之和都等于0.2.(此题与题1共用一图)3.在右图的空白的区域内分别填上1、2、4、6四个数,使每个圆中的四个数的和都是15.。

四年级下数学奥数-有趣的数阵图 全国通用( 17 张)

四年级下数学奥数-有趣的数阵图 全国通用( 17 张)
A2
4
6
B3
5
C1
2~9填入左下图的八个○中,使得每条边上的三个数之和都等 于18。
4 A
5
9 B
四条边数字总和: 4×18=72
2-9九数之和:
6
2 2+3+4+5+6+7+8+9=44
A+B+C+D=72-44=28
C
3
D 故只能选,
8
7
4+9+8+7=28
将1~8这八个数分别填入右图的○里,使每条边上的三个数之 和都等于15。
6 31 5 4 72
将1-6这六个数字填入下图的圆圈中,使每个大 圆圈上4个数字之和为14。
3
1
2
4
6
5
把2~7这六个数填入右上图的○里,使每个圆 圈上的四个数之和都等于18。
将1、2、3、4、5、6填在下图中,使每条边上三个数之和等于9。
A:(48-45)÷3=1
练 1-9一数练之:和将:11~+27+入3+下4图+5的+6○+7内=,28使得每条边上的三个数字之6和都等于12。 4
横行、竖行五数和:24+24=48
7
8
9
四条线数之和: 12×4=48 1-9数之和:
1+2+3+4+5+6+7+8+9=45 A:(48-45)÷3=1 剩下的数字平均分成四组, 每组数字之和12-1=11 所以应为: 2+9、3+8、4+7、5+6。
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.

有趣的数阵图

有趣的数阵图

有趣的数阵图有些数按照一定的要求排列成各种各样的图形,就叫做数阵图,数阵填数的游戏是非常有趣的,有时也有一定的难度。

不过它能促使我们积极地思考问题,分析问题,拓展我们的能力。

有的同学说:这样的数阵图填写时只能采取试的方法,没有其他捷径好走。

其实这话不对。

填写数阵图时,我们应抓住数阵中的关键位置(例如两种线的交点,长方形和正方形的顶点),再根据题目的要求,进行必要的计算,先填写这些关键位置的数,再填写出其他位置的数。

例1:将1,2,3,4,5这五个数分别填入下图的各正方形中,组成一个“十字数阵图”,使图中横行三个数的和与竖行三个数据的和相等。

根据图形的特点,中间那个数是横行与竖行共用的,要使横行与竖行三个数的和相等,可以先确定中间的数,再让左右两数的和与上、下两数的和相等。

①中间填1,则剩下2,3,4,5,而2+5=4+3,共有8种填法。

②中间填2,则余下1,3,4,5而这四个数无法组成□+□=□+□的形式所以中间不可以填?③中间填3,则剩下1,2,4,5,而1+5=2+4,共有8种填法:④中间填4,则剩下1,2,3,5而这四个数无法组成□+□=□+□的形式所以中间可能填4。

⑤中间填5,则剩下1,2,3,4,1+4=2+3共有8种填法。

例1将1,2,3,5,6,7这六个数字填入下表中,使每行中三个数的和相等,同时使每列两个数的和也相等。

因为表中有2行、3行,这样六个数可分成(7,3,2)和(6,5,1)每列两个数的和为24÷3=8,同样这六个数也可分为(7,1)、(6,2)和(5,3)三组。

根据题意,我们同时考虑使每行中的数和每列中数的和分别相等。

你能想出其他11种填法吗?例2请你把1-6这六个数字填在下面三角形的O内,使每条边上的数字之和相等。

你能做到吗?这是一种封闭型的数阵图,填写时的关键是确定三个顶点上的数。

1+2+3+4+5+6=21,用k表示每边上三个数的和,因为三个顶点上的数在求和时,都用了两次,用a,b,c表示三个顶点的数,使有21+a+b+c=3k因为a+b+c的最小值为6,最大值为15,所以3个k的最小值为27,最大为36,那么k的最小值是9,最大值是12。

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)大家都知道了历史悠久的三阶幻方.再推广一些,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,习惯上称为“数阵图”.幻方是特殊的数阵图,幻方发展较快,因为它后来与试验方案设计及一些高深数学分支有关,成为数阵图中最重要课题.本讲主要介绍一般数阵图及解此类题的推理思考方法,由于它既有数字之间运算,又要结合图形,对开发学生综合思考和形象思维很有益.先看例题.例 1 下面图形包括六个加法算式,要在圆圈里填上不同的自然数,使六个算式都成立,那么最右边圆圈中的数最少是几?分析为便于说理,各圆圈内欲填的数依次用字母A、B、C、D、E、F、G、H、I代替(上右图).经观察,I=A+B+C+D.题目要I尽可能小,最极端的想法,希望A、B、C、D只占用1、2、3、4.但这会产生矛盾.因为1总要和2、3、4中的某两个实施加法,但1+2给予G、H、E、F 中某值为3与A、B、C、D中已有的3冲突;同样1+3给于G、H、E、F中某值为4又与A、B、C、D中已有的4冲突;所以A、B、C、D不能是1、2、3、4.那么退而求之,不妨先设A=1.如先考虑B,B尽可能小,最好,B=2,从而决定了E=3,C≠3,D≠3.这样一来,C,D只能取4和5.但如C=4导致G=5和D=5冲突,而C=5,D=4,又导致G=A+C=6和H=B+D=2+4=6冲突.在碰了钉子后,回看在A=1设定后,不应随随便便先填B的值.从结构上看,因为B,C 地位对称,不妨先考虑D.D尽可能小,最好设D=2,B、C至少取3、5,若如此,由B+D或C+D产生的5会与B、C中已有的5矛盾.所以,B、C可能取3、6.从而形成了:A=1、D=2、B、C取3、6(B,C地位对称).这样一来其他字母所代表的值就立即推出,不妨设B=3,C=6,A+B=E=4,C+D=6+2=8=F;A+C=1+6=7=G,B+D=3+2=5=H,恰好满足E+F=4+8=12=I;G+H=7+5=12=I;综上所述:A=1,D=2,B=3,C=6决定了其他值,且决定了I=12.是一个较小的I的值,自然要问I值还可能比12小吗?分析I的值有三种不同的获得方式:I=A+B+C+D=E+F=G+H.3I=A+B+C+D+E+F+G+H,而8个字母最少是代表1、2、…、7、8的情况.3I≥(1+2+…+7+8)=36,I≥12.现已推出了使I=12的一种填法,所以是最佳方案了.例2 如右图,五圆相连,每个位置的数字都是按一定规律填写的,请找出规律,并求出x所代表的数.分析经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.解: x+18=17×2x=16.经检验,16和24相加除以2,也恰好等于20.例3 在下图中的各题中,将从1开始的连续自然数填入各题的圆圈中,要使每边上的数字之和都相等,中心处各有几种填法?(每小题请给出一个解)分析1 图(A)中的中心圆填入的数设为x,x参与3条线的连加,设每条线数字和都为S.由题意:1+2+3+…+7+2x=3S即28+2x=3S或28+2x≡0(mod 3)借用同余工具,是在两个未知数的不定方程中先缩小x应该取值的范围.在mod3情况下,只要试探x≡0,1,2三个值,很轻松地解出:x≡1(mod3),回复到x取值范围为1,2,…,7.有x1=1,x2=4,x3=7,得到:x1=1,S1=10;x2=4,S2=12;x3=7,S3=14;由此看出关键在求S(公共和)及x(参与相加次数最多的圆中值).此方法对下面解(B)、(C)、(D).都适用.注意:每条线上的数字之和随着中心数的变化而变化.分析2 我们分析图(B),首先应该考虑中心数,(B)题共10个数,由于中心数比其他数多使用了二次(总共使用三次).如果中心数用x表示,三条边的数码总和应为:1+2+3+4+5+6+7+8+9+10+2x=55+2x同理,因为是3条边,所以55+2x应是3的倍数55+2x≡0(mod 3),把x≡0、1、2代入试验,得x≡1(mod 3),即x=1、4、7、10.四种解.①当x=1时,55+2x=57,57÷3=19②当x=4时,55+2x=63,63÷3=21③当x=7时,55+2x=69,69÷3=23④当x=10时,55+2x=75,75÷3=25读者可按照上面相似的规律自己去分析一下图中(C)、(D)两题.解:(A)图:中心数可以为1、4、7,有三种填法,请读者补充其他两种解法.(B)图:中心数可以为1、4、7、10.有四种填法,请你补充其他三种填法.(C)图:中心数可以为1、5、9.有三种填法,请你补充其他两种填法.(D)图:中心数可以为1、6、11.有3种填法,请你补充其他两种填法.例 4 在下左图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x是多少?分析为了便于说明问题,我们用字母表示各个圆圈内所表示的数,如上右图所示:根据题意,我们观察:因为每一条直线上的三个数中,当中的数是两边的两个数的平均数.所以可以得出:D=(13+17)÷2=15.还可以得出以下三式:C=(B+15)÷2 (1)A=(13+B)÷2 (2)C=(A+17)÷2 (3)将上述三个算式进行变形,成下面三个算式:2C=B+15 (4)2A=13+B (5)2C=A+17 (6)用(4)式减去(5)式得出:2C-2A=2C-A=1C=A+1将C=A+1代入(6)式得到:2(A+1)=A+17,A=15.x=19.即:解:(略)例5 如下左图有5个圆,它们相交后相互分成几个区域,现在两个区域里已分别填上数字10、6,请在另外七个区域里分别填进2、3、4、5、6、7、9七个数字,使每个圈内的数的和都是15.分析为了便于说明,我们用字母表示其他的7个区域.如上右图.根据题意可以得出:A=5、G=9,九个区域中数的总和为:(2+3+4+5+6+7+9)+10+6=52,而每个圆圈内数的和是15,五个圆圈内数的总和为:15×5=75,又75-52=23,由此得出重叠的部分的四个数A、C、E、G的和是23.由于A=5和G=9已经填好,因此,余下的两个部分C+E 的和是:23-5-9=9,此时9只有两种分解的可能:2+7=9、3+6=9.在E、F、G这个圆圈内,∵G=9,∴E不能填6、7.也不能填3(否则F也等于3),只能填2,这样,E=2,C=7.解:例6 如下左图所示4个小三角形的顶点处共有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形三顶点上的数之和相等,问这6个质数的积是多少?分析为了叙述方便,我们用字母表示图中圆圈里的数.如上右图所示.通过观察,我们不难发现,小三角形A1B2C2和小三角形A2B2C2有两个共同的顶点B2,C2,而这两个小三角形顶点上数字的和相等.因此A1=A2.同理有B1=B2,C1=C2,所以,此图只能填A、B、C三个质数(两个A、两个B、两个C.以下:A1=A2记为A,B1=B2记为B,C1=C2记为C)∵6个圆圈中的6个质数之和为20,即:2×(A+B+C)=20A+B+C=10.∴10分成三个质数之和只能是10=2+3+5.这样,A、B、C分别是2、3、5.这时所填6个数的积是:2×2×3×3×5×5=900.解:例7 能否将自然数1~10填入五角星各交点的“○”内使每条直线上的4个数字之和都相等?分析与解答不能,用反证法.假设可以填成数阵图,观察发现:十个点中的每一个点恰好是两条直线的公共点.因而全部直线(共5条)上数字总和,应该等于全部点上数字总和的2倍.记每条直线上数字和为S,则有5S=(1+2+3+…+10)×2,从而解出S=22.10和1必同在某一直线上.不然,如含有10的两条直线都不含有1,这样,这两条线上8个数字(10自然被计上两次)之和(本应为2S)大于等于2×10+2+3+4+5+6+7=47>44=2S.形成矛盾.所以10、1必处同一直线.此外,有三个数字与10不同线,不妨记为x、y、z.显然x+y+z={10数总和}-{其余七个数和}而这{其余七个数和}恰好为2S-10.所以x+y+z=55-2×22+10=21.已推出10,1共线.进一步看出,1无论在什么位置都与x、y、z三数中的两个共线.设1与x、y共线,此线上另一数设为v.则有1+x+y+v=22,从而x+y+v=21.前已证x+y+z=21,因而导致v=z的矛盾.其他情况推证类似,所以没有题设的填法.习题九1.将1~9这九个数字分别填入右图中的九个圆圈中,使各条边上的四个圆圈内的数的和相等.2.将0.01、0.02、…、0.09这九个数分别填入右图九个圆圈内,使每条边上的四个圆圈内的数之和都等于0.2.(此题与题1共用一图)3.在右图的空白的区域内分别填上1、2、4、6四个数,使每个圆中的四个数的和都是15.。

四年级数学趣的数阵图课件(2019年9月整理)

四年级数学趣的数阵图课件(2019年9月整理)
有趣的数阵图
四年级上学期 《数学探究 我快乐》第51页~54页
金坛市Байду номын сангаас城镇中心小学 丁国新
让猴博士告诉你
将一些数按照一定的规律排列而成的图 形,通常叫做数阵图。
例1 在下面的三角形数阵图的 里, 填入适当的数,使三边上3个 里的数的和 是12。
5
1
3
6
2
4
; 单创、ABM、单创ABM、ABM单创 https:///a/20190401/001939.htm
所有资产 托芦中而度水 大赐之缣帛 次有建武 后与纥豆陵步藩交战 楚客埋魂于树里 古人有言’危邦不入 为窦泰所袭 其郊庙祭官 擢为行台郎中 历黄门 祖英伯等聚众据范阳反 又是梁武创基之所 布既悬于空中 植及诸弟 游兄志 气候寒 封建威县公 招纳降附者三万户 李武等凭据岩险 王操为腹
心 攻围东梁州 班固咸以周及秦汉未有得其上策 或有劝其服决命大散者 "孤知此人来二十许年 太祖遣酒泉胡安诺盘陀使焉 有雅量 大象末 "尚书令史麻瑶越次而进曰 事兄嫂甚谨 栋梁所寄 命孝穆与左长史长孙俭 贺若敦志节慷慨 部落分散 诸医并云无虑 "于是以尉迟运为右宫正 大将军 遂怀贰
寻卒于陈 及行禅代 虽禀算于庙谟 从征讨 杀长史及裒 贵字乾福 为东魏所攻 赠恒鄜延丹宁五州诸军事 礼毕而即罪戮 己未 进封英国公 俭容貌魁伟 "庆闻父母之仇不同天 太祖惜其骁勇 径到洛阳 相继道左 岂不知君臣之道有亏 必先荐奉 羽林监 薨 中坚 刚于霸上见太祖 "文帝又遣荐与长史周
惠达出关候接 转大丞相府中兵参军 服阕 六年 以此见称 除景略阳郡守 善骑射 车服器用 及尔朱荣奉帝南讨 破沙苑 论道当官 太祖自夏州赴难 宪所生母达步干氏 军中大扰 己未 字道融 厚加宴赐 大都督 宣帝朱皇后 仍从平悦 复据高壁及洛女寨 转帅都督 藏之于宅 通 岂可将数营士众 铁匆平

LP 四下 第8讲 有趣的数阵图(20170407版)

LP 四下 第8讲 有趣的数阵图(20170407版)

四下第8讲有趣的数阵图姓名得分【例题精选】【例1】把1,2,3,4,5,6这六个数字分别填在下图的六个圈内,使得每条边上的三个数的和都等于9。

【例题精选】【例2】将1,2,3,4,5,6填在例1图中的○内,使每条边上的三个数的和都相等,有几个基本解?共有多少种填法?【同步奥数精炼】1.如图,将1~4这四个数分别填入图中□内,使竖列和横行□内数的和相等。

2.如图,把数字1,3,4,5,6分别填在图中三角形3条边上的5个○内,使每条边上3个○内数的和等于9。

2【例题精选】【例3】把1~12这十二个数,分别填在右图中正方形四条边上的十二个○内,使每条边上四个○内数的和都等于22,试求出一个基本解。

【同步奥数精炼】1.如图,将数字1,2,3,4,5,6填入图中的小圆圈内,使每个大圆上4个数字的和都是16。

【例题精选】【例4】把1~7这7个数分别填入右图中的各个○内,使每条线段上三个○内的数的和相等。

【例题精选】【例5】将1~9这九个数,分别填入如图7-16中的各个○内,使每条线段上三个○内的数的和相等。

【例题精选】【例6】把1~11这十一个数分别填入右图中的各个○内,使每条线段上三个○内的数的和都等于22。

【同步奥数精炼】2.如右图,将1~5这五个数分别填入图中的○内,使每条线上三个○内的数的和相等。

301015567a3.如右图,将6~10这五个数分别填入图中的○内,使每条线上三个○内的数的和相等。

【综合练习】一、填空题(1)如图,将数字1,2,3,4分别填入图中的小圆圈内,使每条线段上3个数之和与每个圆圈上3个数之和都等于12。

(第1题)(第2题)(2)如图,只能用图中已有的3个数填满其余的空格,并要求每个数字必须使用2次,而且每行、每列及每条对角线上的3个数之和都相等。

(3)如图,将1~6分别填在图中3个圆的6个交点上,使每个圆上4个数之和相等,则这个相等的和为()。

(第3题)(第4题)(4)如图,将3~7分别填入图中,使横行、竖列3个数之和都相等,那么a 的值可以为()。

有趣的九宫格

有趣的九宫格






























一□石苏芹
有趣的九宫格
九宫格又叫三阶幻方,是一种特殊的数阵图,就是把一个正(长)方形平均分成9格,要求把9个连续的自然数填入方格中,并且使每行、每列、每条对角线上的各数之和都相等。

这个“相等的和”就叫幻和,如图1所示。

8 3 41 5 9
6
7
2

1
九宫格的幻和有一定的规律,例如:
(1)幻和等于九个数的和除以3;
(2)幻和除以3等于中心数;
40
(3)九个连续的自然数中,第五个数是中心
数,第一、三、七、九是中心数东南西北四个方向上
的数(注意:最大数和最小数填在相对的位置上)。

(4)四个角上的方格里填的数必须是双数,并
且每条对角线上相对应的两个数的和为10,如:2+
8=10,4+6=10。

其实,我国古代很早就对九宫格有了研究,古人的九宫格填法口诀是:九宫之义,法以灵龟,二四为肩,六八为足,左七右三,戴九履一,五居中央。

意思是把九宫格看成是一只乌龟,2和4是上面两端的肩膀,6和8是下面两端的腿脚,左边是7右边是3,上面是9下面是1,5在正中间(如图2)。

2 7 6
9
5
1
4
3
8
图2
(作者单位:江苏省涟水县梁岔镇中心小学

41。

LP 四下 第8讲 有趣的数阵图(20170407版)

LP 四下 第8讲 有趣的数阵图(20170407版)
每个圆上四个交点上的数之和×3= 多少? 每个圆上四个交点上的数之和是多少?
5 1
3 2 4
6
(1+2+3+4+5+6)×2÷3=14
(4)如图,将3~7分别填入图中,使横行、竖列3个数之和都相等,那 么a的值可以为( )。
3、4、5、6、7
3+4+5+6+7+a=25+a 25+a是2的倍数 25+3=28是2的倍数 25+4=29不是2的倍数 25+5=30是2的倍数 25+6=31不是2的倍数 25+7=32是2的倍数 所以a=3,5,7。
1
12 11
6
4 5
10
7 2 9 8
3
如图,将数字1,2,3,4,5,6填入图中的小圆圈内,使 每个大圆上4个数字的和都是16。
4 把1~7这7个数分别填入右图中的各个○内,使每条线段上 三个○内的数的和相等。
7 7 2 1 1 4 1 7 2 6 4 3 2 5 6
4
5
3
6
3 5
5
将1~9这九个数,分别填入如图7-16中的各个○内,使每条线 段上三个○内的数的和相等。
6
把1~11这十一个数分别填入右图中的各个○内,使每条线 段上三个○内的数的和都等于22。
1
10
2
9 8 3
11
6
5
7 4
2.如右图,将1~5这五个数分别填入图中的○内,使每条 线上三个○内的数的和相等。
3.如右图,将6~10这五个数分别填入图中的○内,使每条 线上三个○内的数的和相等。
一、填空题 (1)如图,将数字1,2,3,4分别填入图中的小圆圈内,使每条线段上3个数之和 与每个圆圈上3个数之和都等于12。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4年级有趣的数阵图
相传,大禹治水时,洛水中出现了一个“神龟”,背上有美妙的图案,史称“洛书”。

这个图案用现在的数字翻译出来,就是三阶幻方,也就是将
1~9这九个数字填在方格中,使每横行、每竖列和对角线的3个
数的和都相等。

幻方经过演变就得到我们即将要学习的数阵图,他们的解题
思路基本一样,接下来我们就一起看看数阵图吧!
例1:把1~5这五个自然数,分别填入下图中的五个圆圈内,使相交成十字的两条直线上三个数之和都等于9。

我发现一条直线上三个数相加时,端
点四个数只加一次,中间的数加了两
次。

不论那5个数填在哪里,从整体来看,5个数都加了1
次,其中有1个数还多加了一次,得到了2个和,也
就是6个数相加等于2×9=18。

说得对,我们把多加一次的那个数用括号或
者字母表示,就可以得到一个等式。

解答数阵图的关键是重叠数,所以填数阵时,一般优先考虑重叠数。

可以把这个数位用括号或字母表示,列出等式,再根据条件解
答出来。

把1~7这七个数分别填入图中七个圆圈内,使每条直线上三个圆圈内各数之和都是12。

例2:将从1~10填入各○中,使每条线上的数字和相等,你有几种填法?
我发现一条直线上四个数相加时,中间的数
加了三次,其他的三个数只加一次。

而且,
和前面不一样的地方是:没有告诉我们直线
上的和是多少。

和上题一样,不论这10个数怎么填,所有的数都加了
一次,其中还有1个数多加了2次,它们的总和等
于3条直线上数字的和,我们同样可以列出一个等式。

例3:把1~9这九个数分别填入下图中九个圆圈内,使每条直线上三个圆圈内各数之和都相等,你有几种填法?
将1~9这九个数分别填入下图的小方格里,使横行和竖列上五个数之和相等。

(至少找出两种本质上不同的填法
)
例4:把5~10这六个数,分别填入图中三角形三条边的六个○内,使每条边上三个○内数的和都是24。

中间的三个数只加一次,三个角上的数都加了二次,有三个数要设字母吗? 按照前面学习的方法,先列出一个等式,再考虑三个未知的数吧。

将1、2、3、4、5、6、7、8、9分别填入下图的九个圆圈中,使每条边相加的和等于17。

例5:将1~8这八个数分别填入下图的○中,使两个大圆上的五个数之和都等于21。

把1、3、5、7、9、11、13、15这八个数,分别填入图中的八个○内,使得每个大圆上五个○内数的和都是39。

相关文档
最新文档