内蒙古赤峰市2020届高三5.20模拟考试试题文科数学试题PDF高清版

合集下载

2020赤峰420-文数

2020赤峰420-文数

D.既不充分也不必要条件
4.随着我国经济实力的不断提升,居民收入也在不断增加。抽样发现赤峰市某家庭 2019 年全年的收入与 2015
年全年的收入相比增加了一倍,实现翻番。同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不
同品类的消费额占全年总收入的比例,得到了如下折线图:
则下列结论中正确的是
极轴建立极坐标系,曲线
C
的极坐标方程为
2
12 3 sin2
.
(1)若 a=-2,求曲线 C 与 l 的交点坐标;
(2)过曲线 C 上任意一点 P 作与 l 夹角为 45°的直线,交 l 于点 A,且|PA|的最大值 10, 求 a 的值.
23. (10 分)选修 4- -5:不等式选讲
已知函数 f (x) | x 1| | x 2 | .
粮仓的表面积(含上下两底)最小那么它的底面半径是____尺.
16.设数列{an} 的前
n
项和为 Sn , 且满足 2an
Sn
1,
则使 a12
a22
an2
5 2n1 成立的 3
n
的最大值为
_____.
三、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都
7.李生素数猜想是希尔伯特在 1900 年提出的 23 个问题之一,2013 年华人数学家张益唐证明了孪生素数猜想
的一个弱化形式,问题可以描述为:存在无穷多个素数 p,使得 p+2 是素数,素数对(p, p+2)称为孪生素数对.问:如果
从 30 以内的素数组成的孪生素数对中随机抽取一对,这对孪生素数的积不超过 20 的概率是
2

内蒙古2020年高考文科数学模拟试题及答案(一)

内蒙古2020年高考文科数学模拟试题及答案(一)

又 2x12 ax1 2 0 , 2 x22 ax2 2 0
∴ ax1 2x12 2 , ax2 2 x22 2
∴ f ( x2 ) f (x1) ( x22 ax2 2ln x2) ( x12 ax1 2ln x1)
[ x22 (2 x22 2) 2ln x2 ] [ x12 (2 x12 2) 2ln x1]
( 1)写出曲线 C 的直角坐标方程和直线 l 的普通方程;
( 2)若点 P 的极坐标为 2, , PM PN 5 2 ,求 a 的值 .
23. [ 选修 4— 5:不等式选讲 ] (10 分)
已知函数 f x 2x 1 2x 3.
( 1)解不等式 f x 6 ;
( 2)记 f x 的最小值是 m , 正实数 a,b 满足 2ab+a 2b m , 求 a 2b 的最小值 .
0.001
10.828
19.(本试题满分 12 分)
如图,在四棱锥 P ABCD 中 , 底面 ABCD 为四边形, AC BD , BC CD , PB PD , 平面 PAC 平面
PBD , AC 2 3, PCA 30 , PC 4.
(1) 求证: PA 平面 ABCD ; (2) 若四边形 ABCD 中, BAD 120 , AB BC , M 为 PC 上
R ,使得
x
2 0
-
x0
1
0 ”的否定是 _________ .
4
14. 在区间( 0, 4)内任取一实数 t ,则 log 2(t 1) 1 的概率是 _____.
15. 已知 △ABC 中, AB
5 , AC
7,
ABC
2 ,则该三角形的面积是
________.

2020年内蒙古赤峰市高考数学模拟试卷(文科)含答案解析

2020年内蒙古赤峰市高考数学模拟试卷(文科)含答案解析

2020年内蒙古赤峰市高考数学模拟试卷(文科)一、选择题1.设全集U={﹣2,﹣1,0,1,2},集合M={﹣1,0,1},N={x|x2﹣x﹣2=0},则(∁U M)∩N=()A.{2}B.{﹣1}C.{﹣2,﹣1,2}D.{﹣1,1}2.已知复数z=,则()A.z的实部为B.z的虚部为﹣iC.|z|=D.z的共轭复数为+i3.若方程x2+=1(a是常数),则下列结论正确的是()A.任意实数a方程表示椭圆B.存在实数a方程表示椭圆C.任意实数a方程表示双曲线D.存在实数a方程表示抛物线4.已知=(1,2),=(﹣2,4),且k+与垂直,则k=()A.B.﹣C.﹣D.5.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x 11 10.5 10 9.5 9y 5 6 8 10 10根据上表得回归直线方程=x+,其中=﹣3.2,=﹣,据此回归方程估计零售价为5元时销售量估计为()A.16个B.20个C.24个D.28个6.不等式x2﹣2x+m>0在R上恒成立的必要不充分条件是()A.m>2 B.0<m<1 C.m>0 D.m>17.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.898.设S n是公差d=﹣1的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则a n=()A.﹣﹣n B.﹣n C. +n D.﹣+n9.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.100cm3B.98cm3C.88cm3D.78cm310.已知ω>0,|φ|<,若x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的极值点,将y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则下列说法正确的是()A.y=g(x)是奇函数B.y=g(x)的图象关于点(﹣,0)对称C.y=g(x)的图象关于直线x=对称D.y=g(x)的周期为π11.已知点,过点P的直线与圆x2+y2=14相交于A,B两点,则|AB|的最小值为()A.2 B. C. D.412.已知椭圆的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为()A.B.C.D.二、填空题13.已知sin(α+)=,且,则cosα=.14.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于.15.已知长方体ABCD﹣A1B1C1D1各个顶点都在球面上,AB=3,AD=2,A1A=2,过棱AD 作该球的截面,则当截面面积最小时,球心到截面的距离为.16.已知函数f(x)=2lnx﹣x2+a在[,e]上有两个零点,则实数a的取值范围为.三、解答题17.设数列{a n}的前n项之和为S n,且满足S n=1﹣a n,n∈N*.(1)求数列{a n}的通项公式;(2)令b n=(n+1)a n,求数列{b n}的前n项和T n.18.如图,在多面体ABC﹣A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,△A1BC是正三角形,B1C1∥BC,B1C1=BC.(Ⅰ)求证:面A1AC⊥面ABC;(Ⅱ)求该几何体的体积.19.从某校随机抽取200名学生,获得了他们的一周课外阅读时间(单位:小时)的数据,整理得到数据分组级频数分布直方图:编号分组频数1 [0,2)122 [2,4)163 [4,6)344 [6,8)445 [8,10)506 [10,12)247 [12,14)128 [14,16) 49 [16,18) 4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.20.已知椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点A(4,2)在椭圆上,且AF2与x轴垂直.(1)求椭圆的方程;(2)过点F2作直线与椭圆交于B、C两点,求△COB面积的最大值.21.设函数f(x)=xlna﹣x2﹣a x(a>0,a≠1).(1)当a=e时,求函数f(x)的图象在点(0,f(0))的切线方程;(2)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e为自然对数的底数),求实数a的取值范围.[选修4-1:几何证明选讲]22.如图,四边形ABCD内接于⊙O,过点A作⊙O的切线EP交CB的延长线于P,∠PAB=35°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠PAB=35°,求证:=.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x﹣a|+|x+b|+c的最小值为1.(1)求a+b+c的值;(2)求证:a2+b2+c2.2020年内蒙古赤峰市高考数学模拟试卷(文科)参考答案与试题解析一、选择题1.设全集U={﹣2,﹣1,0,1,2},集合M={﹣1,0,1},N={x|x2﹣x﹣2=0},则(∁U M)∩N=()A.{2}B.{﹣1}C.{﹣2,﹣1,2}D.{﹣1,1}【考点】交、并、补集的混合运算.【分析】直接由全集U,集合M求出∁U M,则N∩(∁U M)的答案可求.【解答】解:∵全集U={﹣2,﹣1,0,1,2},集合M={﹣1,0,1},N={x|x2﹣x﹣2=0}={﹣1,2},∴∁U M={﹣2,2}.则N∩(∁U M)={﹣1,2}∩{﹣2,2}={2}.故选:A.2.已知复数z=,则()A.z的实部为B.z的虚部为﹣iC.|z|=D.z的共轭复数为+i【考点】复数代数形式的乘除运算.【分析】根据复数的运算性质求出z,分别判断各个选项即可.【解答】解:∵z===﹣﹣i,故|z|=,故选:C.3.若方程x2+=1(a是常数),则下列结论正确的是()A.任意实数a方程表示椭圆B.存在实数a方程表示椭圆C.任意实数a方程表示双曲线D.存在实数a方程表示抛物线【考点】曲线与方程.【分析】根据三种圆锥曲线的定义,结合举例可得选项.【解答】解:对于a=1,方程x2+=1表示圆,选项A错误;当a>0且a≠1时,方程x2+=1表示椭圆,B正确;当a<0时,方程x2+=1表示双曲线,C错误;对于任意实数a,方程x2+=1不是抛物线,D错误.故选:B.4.已知=(1,2),=(﹣2,4),且k+与垂直,则k=()A.B.﹣C.﹣D.【考点】平面向量数量积的运算.【分析】由向量数量积的坐标表示和向量模的公式,可得,的数量积和模,再由向量垂直的条件:数量积为0,计算即可得到k的值.【解答】解:=(1,2),=(﹣2,4),可得•=﹣2+8=6,||==2,由k+与垂直,可得(k+)•=0,k•+2=0,即有6k+20=0,解得k=﹣.故选B.5.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x 11 10.5 10 9.5 9y 5 6 8 10 10根据上表得回归直线方程=x+,其中=﹣3.2,=﹣,据此回归方程估计零售价为5元时销售量估计为()A.16个B.20个C.24个D.28个【考点】线性回归方程.【分析】求出样本中心代入回归方程得出,从而得出回归方程解析式,令x=5,计算即可.【解答】解:=,=.∴7.8=﹣3.2×10+,解得=39.8.∴线性回归方程为=﹣3.2x+39.8.当x=5时,=﹣3.2×5+39.8=23.8≈24.故选C.6.不等式x2﹣2x+m>0在R上恒成立的必要不充分条件是()A.m>2 B.0<m<1 C.m>0 D.m>1【考点】一元二次不等式的解法.【分析】根据不等式x2﹣x+m>0在R上恒成立,△<0,可解得m的范围,然后看m>1与选项中的m范围,即可得出答案.【解答】解:当不等式x2﹣2x+m>0在R上恒成立时,△=4﹣4m<0,解得m>1;所以m>1是不等式恒成立的充要条件;m>2是不等式成立的充分不必要条件;0<m<1是不等式成立的既不充分也不必要条件;m>0是不等式成立的必要不充分条件.故选:C.7.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89【考点】程序框图;程序框图的三种基本逻辑结构的应用.【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选B8.设S n是公差d=﹣1的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则a n=()A.﹣﹣n B.﹣n C. +n D.﹣+n【考点】等比数列的通项公式.【分析】由S1,S2,S4成等比数列,得到S22=S1•S4,即(2a1﹣1)2=a1•(4a1﹣6),求出a1,即可求出通项公式.【解答】解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得S22=S1•S4,即(2a1﹣1)2=a1•(4a1﹣6),解得a1=﹣,∴a n=﹣+1﹣n=﹣n,故选:B.9.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.100cm3B.98cm3C.88cm3D.78cm3【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是由长方体截去一个三棱锥而得到的.【解答】解:由三视图可知:该几何体是由正方体截去一个三棱锥而得到的.∴该几何体的体积V=6×6×3﹣=100cm3.故选:A.10.已知ω>0,|φ|<,若x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的极值点,将y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则下列说法正确的是()A.y=g(x)是奇函数B.y=g(x)的图象关于点(﹣,0)对称C.y=g(x)的图象关于直线x=对称D.y=g(x)的周期为π【考点】命题的真假判断与应用;函数y=Asin(ωx+φ)的图象变换.【分析】根据x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的极值点,得到函数的周期,求出ω=1,然后根据三角函数的图象关系求出g(x),结合函数奇偶性,对称性的性质分别进行判断即可.【解答】解:∵若x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的极值点,∴若x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的对称轴,则函数的周期T=2×(﹣)=2π,即=2π,则ω=1,即f(x)=cos(x+φ),①若x=时,函数取得极大值,则f()=cos(+φ)=1,则+φ=2kπ,即φ=2kπ﹣,当k=0时,φ=﹣,此时f(x)=cos(x﹣),将y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,即g(x)=)=cos[(x+)﹣]=cosx,此时函数g(x)是偶函数不是奇函数,故A错误,g(﹣)=cos(﹣)=0,即函数y=g(x)的图象关于点(﹣,0)对称,故B正确,g()=cos()=0,即函数y=g(x)的图象关于关于直线x=不对称,故C错误,y=g(x)的周期为2π,故D错误,②若x=时,函数取得极小值,则f()=cos(+φ)=cos(+φ)=﹣1,则+φ=2kπ﹣π,即φ=2kπ﹣,当k=1时,φ=,∵|φ|<,∴此时φ不存在.综上故选:B.11.已知点,过点P的直线与圆x2+y2=14相交于A,B两点,则|AB|的最小值为()A.2 B. C. D.4【考点】简单线性规划.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得直线过在(1,3)处取得最小值.【解答】解:约束条件的可行域如下图示:画图得出P点的坐标(x,y)就是三条直线x+y=4,y﹣x=0和x=1构成的三角形区域,三个交点分别为(2,2),(1,3),(1,1),因为圆c:x2+y2=14的半径r=,得三个交点都在圆内,故过P点的直线l与圆相交的线段AB长度最短,就是过三角形区域内距离原点最远的点的弦的长度.三角形区域内距离原点最远的点就是(1,3),可用圆d:x2+y2=10与直线x=y的交点为(,)验证,过点(1,3)作垂直于直线y=3x的弦,国灰r2=14,故|AB|=2=4,所以线段AB的最小值为4.故选:D12.已知椭圆的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】由题意可求得AB的方程,设出P点坐标,代入AB的方程,由PF1⊥PF2,得•=0,运用导数求得极值点,结合椭圆的离心率公式,解方程即可求得答案.【解答】解:依题意,作图如下:由A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),可得直线AB的方程为: +=1,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,由PF1⊥PF2,∴•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=(y﹣a)2+y2﹣c2,令f(y)=(y﹣a)2+y2﹣c2,则f′(y)=2(y﹣a)•+2y,由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2==()2,可得e=,故选:D.二、填空题13.已知sin(α+)=,且,则cosα=﹣.【考点】三角函数的化简求值.【分析】由,可得:<π,=﹣.利用cosα=,展开即可得出.【解答】解:∵,∴<π,∴=﹣=﹣.∴cosα==+=+=.故答案为:﹣.14.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于180.【考点】二项式定理.【分析】如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间那项的二次项系数最大,由此可确定n的值,进而利用展开式,即可求得常数项.【解答】解:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间项的二次项系数最大.∵展开式中只有第六项的二项式系数最大,∴n=10∴展开式的通项为=令=0,可得r=2∴展开式中的常数项等于=180故答案为:18015.已知长方体ABCD﹣A1B1C1D1各个顶点都在球面上,AB=3,AD=2,A1A=2,过棱AD 作该球的截面,则当截面面积最小时,球心到截面的距离为.【考点】球内接多面体.【分析】过棱AD作该球的截面,则当截面面积最小时,截面的直径为AD=2,求出球的半径,可得球心到截面的距离.【解答】解:过棱AD作该球的截面,则当截面面积最小时,截面的直径为AD=2,∵长方体ABCD﹣A1B1C1D1各个顶点都在球面上,AB=3,AD=2,A1A=2,∴球的半径为=,∴球心到截面的距离为=,故答案为:.16.已知函数f(x)=2lnx﹣x2+a在[,e]上有两个零点,则实数a的取值范围为(1,2+).【考点】函数零点的判定定理.【分析】求出f(x)的导数f′(x),分析f′(x)的零点和区间[,e]的位置关系,判断f (x)的单调性为在[,1]上单调递增,在(1,e)上单调递减,若有两个不同的零点,则,即可解出a的取值范围.【解答】解:f(x)=2lnx﹣x2+a,f′(x)=,∵x∈[,e],故f′(x)=0,解得x=1,当<x<1,f′(x)>0;当1<x<e,f′(x)<0,故f(x)在x=1有唯一的极值点,f(1)=a﹣1,f()=a﹣2﹣,f(e)=a+2﹣e2,则f(e)<f(),f(x)在[,e]上有两个零点的条件,,解得1<a<2+,故实数a 的取值范围(1,2+].故答案为:(1,2+].三、解答题17.设数列{a n }的前n 项之和为S n ,且满足S n =1﹣a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =(n +1)a n ,求数列{b n }的前n 项和T n .【考点】数列的求和;数列递推式.【分析】(1)通过S n =1﹣a n 与S n ﹣1=1﹣a n ﹣1作差可知a n =a n ﹣1,进而计算可得结论; (2)通过(1)可知b n =(n +1),进而利用错位相减法计算即得结论.【解答】解:(1)∵S n =1﹣a n ,S n ﹣1=1﹣a n ﹣1,∴a n =a n ﹣1﹣a n ,即a n =a n ﹣1,又∵S 1=1﹣a 1,即a 1=,∴数列{a n }是首项、公比均为的等比数列,∴其通项公式a n =;(2)由(1)可知b n =(n +1)a n =(n +1), ∴T n =2•+3•+4•+…+(n +1), T n =2•+3•+…+n •+(n +1), 两式相减得: T n =2•+++…+﹣(n +1) =+﹣(n +1)=﹣, ∴T n =3﹣.18.如图,在多面体ABC ﹣A 1B 1C 1中,四边形ABB 1A 1是正方形,AC=AB=1,△A 1BC 是 正三角形,B 1C 1∥BC ,B 1C 1=BC .(Ⅰ)求证:面A 1AC ⊥面ABC ;(Ⅱ)求该几何体的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(Ⅰ)由已知得,从而A1A⊥AC,由此能证明面A1AC ⊥面ABC.(Ⅱ)依题意得:而,,由此能求出该几何体的体积.【解答】(Ⅰ)证明:∵在多面体ABC﹣A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,△A1BC是正三角形,B1C1∥BC,B1C1=BC,∴,∴,∴A1A⊥AC,又A1A⊥AB,∴A1A⊥平面ABC,∴面A1AC⊥面ABC.(Ⅱ)解:依题意得:而,,故:.19.从某校随机抽取200名学生,获得了他们的一周课外阅读时间(单位:小时)的数据,整理得到数据分组级频数分布直方图:编号分组频数1 [0,2)122 [2,4)163 [4,6)344 [6,8)445 [8,10)506 [10,12)247 [12,14)128 [14,16) 49 [16,18) 4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.【考点】频率分布直方图.【分析】(1)根据频率分布表求出1周课外阅读时间少于12小时的频数,再根据频率=求频率;(2)根据小矩形的高=,求a、b的值;(3)利用平均数公式求得数据的平均数,可得答案.【解答】解:(1)由频率分布表知:1周课外阅读时间少于12小时的频数为2+4+4=10,∴1周课外阅读时间少于12小时的频率为1﹣=0.9;(2)由频率分布表知:数据在[4,6)的频数为34,∴频率为0.17,∴a=0.085;数据在[8,10)的频数为25,∴频率为0.25,∴b=0.125;(3)数据的平均数为(12×1+3×16+5×34+7×44+9×50+11×24+13×12+15×4+17×4)=7.68(小时),∴样本中的200名学生该周课外阅读时间的平均数在第四组.20.已知椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点A(4,2)在椭圆上,且AF2与x轴垂直.(1)求椭圆的方程;(2)过点F2作直线与椭圆交于B、C两点,求△COB面积的最大值.【考点】椭圆的简单性质.【分析】(1)由题意可得c=4,令x=4,代入椭圆方程可得=2,由a,b,c的关系,解得a,b,进而得到椭圆方程;(2)点F2(4,0),可设直线BC:x=ty+4,代入椭圆方程x2+2y2=32,可得y的方程,运用韦达定理,以及三角形的面积公式可得S△OBC=|OF2|•|y1﹣y2|,化简整理,运用解不等式即可得到所求最大值.【解答】解:(1)由A(4,2)在椭圆上,且AF2与x轴垂直,可得c=4,令x=4,代入椭圆方程可得y=±b=±,即有=2,又a2﹣b2=16,解得a=4,b=4,则椭圆方程为+=1;(2)点F2(4,0),可设直线BC:x=ty+4,代入椭圆方程x2+2y2=32,可得(2+t2)y2+8ty﹣16=0,设B(x1,y1),C(x2,y2),可得△=64t2+64(2+t2)>0y1+y2=﹣,y1y2=﹣,|y1﹣y2|===,S△OBC=|OF2|•|y1﹣y2|=•4•=16•=16•≤16•=8,当且仅当=,即t=0时,△COB面积的最大值为8.21.设函数f(x)=xlna﹣x2﹣a x(a>0,a≠1).(1)当a=e时,求函数f(x)的图象在点(0,f(0))的切线方程;(2)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e为自然对数的底数),求实数a的取值范围.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求得a=e时,f(x)=xlne﹣x2﹣e x的导数,可得f(x)在(0,f(0))处的切线的斜率和切点,即可得到所求切线的方程;(2)由题意可得f(x)的最大值减去f(x)的最小值大于或等于e﹣1,由单调性知,f(x)的最小值是f(1)或f(﹣1),最大值f(0)=1,由f(1)﹣f(﹣1)的单调性,判断f(1)与f(﹣1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e﹣1求出a的取值范围.【解答】解:(1)当a=e时,f(x)=xlne﹣x2﹣e x的导数为f′(x)=1﹣2x﹣e x,可得函数f(x)的图象在点(0,f(0))的切线斜率为1﹣0﹣1=0,切点为(0,﹣1),即有切线的方程为y=﹣1;(2)由存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1成立,而当x∈[﹣1,1]时|f(x1)﹣f(x2)|≤f(x)max﹣f(x)min,则只要f(x)max﹣f(x)min≥e﹣1,f(x)=xlna﹣x2﹣a x的导数为f′(x)=lna﹣2x﹣a x lna,又x,f'(x),f(x)的变化情况如下表所示:x (﹣∞,0)0 (0,+∞)f′(x)+0 ﹣f(x)增函数极大值减函数所以f(x)在[﹣1,0]上是增函数,在[0,1]上是减函数,所以当x∈[﹣1,1]时,f(x)的最大值f(x)max=f(0)=﹣1,f(x)的最小值f(x)min为f(﹣1)和f(1)中的最小值.因为f(1)﹣f(﹣1)=(lna﹣1﹣a)﹣(﹣lna﹣1﹣)=2lna﹣a+,令g(a)=2lna﹣a+,由g′(a)=﹣1﹣=﹣<0,所以g(a)在a∈(0,+∞)上是减函数.而g(1)=0,故当a>1时,g(a)<0,即f(1)<f(﹣1);当0<a<1时,g(a)>0,即f(1)>f(﹣1),所以,当a>1时,f(0)﹣f(1)≥e﹣1,即a﹣lna≥e﹣1,而函数y=a﹣lna的导数y′=1﹣,可得函数y在a∈(1,+∞)上是增函数,解得a≥e;当0<a<1时,f(0)﹣f(﹣1)≥e﹣1,即+lna≥e﹣1,函数y=+lna的导数为y′=﹣=,可得函数y在a∈(0,1)上是减函数,解得0<a≤.综上可知,所求a的取值范围为(0,]∪[e,+∞).[选修4-1:几何证明选讲]22.如图,四边形ABCD内接于⊙O,过点A作⊙O的切线EP交CB的延长线于P,∠PAB=35°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠PAB=35°,求证:=.【考点】与圆有关的比例线段;弦切角.【分析】(1)由弦切角定理得∠ACB=∠PAB=25°,从而∠ABC=65°,由此利用四边形ABCD 内接于⊙O,能求出∠D.(2)由∠DAE=25°,∠ACD=∠PAB,∠D=∠PBA,从而△ADC∽△PBA,由此能证明DA2=DC•BP,AP2=PC•BP,即可证明结论.【解答】(1)解:∵EP与⊙O相切于点A,∴∠ACB=∠PAB=35°,又BC是⊙O的直径,∴∠ABC=55°.∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°,∴∠D=112°.(2)证明:∵∠DAE=35°,∴∠ACD=∠PAB,∠D=∠PBA,∴△ADC∽△ABP,∴=,∠DBA=∠BDA,∴DA=BA,∴DA2=DC•BP,AP2=PC•BP,∴=.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l的参数方程为(t为参数),化为,消去t可得直线l的普通方程.曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0),解得ρ=4.把ρ2=x2+y2代入可得曲线C的极坐标方程.(2)⊙Cd的圆心(0,0)到直线l的距离d=2.可得cos=,进而得出答案.【解答】解:(1)直线l的参数方程为(t为参数),化为,消去t可得直线l的普通方程:x+y﹣4=0.曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0),解得ρ=4.可得曲线C的直角坐标方程:x2+y2=16.(2)⊙Cd的圆心(0,0)到直线l的距离d==2.∴cos==,∵,∴∠AOB=,可得∠AOB=.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x﹣a|+|x+b|+c的最小值为1.(1)求a+b+c的值;(2)求证:a2+b2+c2.【考点】基本不等式.【分析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)通过作差法证明即可.【解答】解:(1)∵a>0,b>0,c>0,∴f(x)=|x﹣a|+|x+b|+c≥|x﹣a﹣x﹣b|+c=a+b+c,当且仅当(x﹣a)(x﹣b)≤0时:“=”成立,故a+b+c=1;(2)3(a2+b2+c2)﹣12=3(a2+b2+c2)﹣(a+b+c)2=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(b﹣c)2+(c﹣a)2≥0,∴a2+b2+c2.2020年8月27日。

内蒙古赤峰市普通高中2020届高三5.20模拟考试文科数学答案

内蒙古赤峰市普通高中2020届高三5.20模拟考试文科数学答案

无极大值 ………………………………………………………………6 分
(2)当 a
1时, hx
gx
f
x=
x2 ex
x
ln x
x
0 ,则
hx
2x ex
x2
1
1 x
…………………………………………7

2x x2 1
2x x2 ex
1 ex
,又 x
0

1 ex
1hx 1
x
0
hx在 0, 上为减函数 …………………………………………9 分
x1 3
x1 3
于是 BM 3 3y1 x1 3
……………………………………8 分
直线 PB 的方程为 y y1 3 x 3 ,令 y 0 得: N ( 3x1 ,0)
x1
y1 3
于是 AN 3 3x1 y1 3
……………………………………9 分
AN BM = 3 3x1 y1 3
AB
/
/EF
平面ABEF
平面POC
EF
………………………3 分
AB / /EF
EF
平面ABCD
EF
/
/平面ABCD
AB 平面ABCD
……………………………5 分
文科数学答案 第 2 页 共 6 页
(2)VE ACD
1 3
S
ACD
1 2
PO
1 6
SACD
PO
…………………………………6 分
(2 22 23+ 2n) (1 2+3 n) n …………………9 分
文科数学答案 第 1 页 共 6 页

2020届内蒙古赤峰市高三上学期期末试卷文科数学(解析版)

2020届内蒙古赤峰市高三上学期期末试卷文科数学(解析版)

2020年赤峰市高三期末考试试卷文科数学注意事项:1.答题前,考生先将自己的姓名,准考证号码填写清楚,将条形码粘贴在条形码区域内. 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 一、选择题:在每小题给出的四个选项中,只有一个选项是符合题目要求的1.设集合{}2|230A x Z x x =∈--<,{}1,0,1,2B =-,则A B =IA. {}0,1B. {}0,1,2C. {}1,0,1-D. {}1,0-【答案】B 【解析】【详解】由题得{}2|230A x Z x x =∈--<={}|1x 3A x Z <<=∈-={0,1,2},所以A∩B={0,1,2}.故选B.2.设复数z 满足()1i 2i z +=,i 为虚数单位,则下列说法正确的是( ). A. 2z =B. z 的虚部是iC. z 在复平面内所对应的点为()1,1D. 1i z =-+【答案】C 【解析】 【分析】利用复数代数形式的乘除运算化简,然后逐一核对四个选项得答案. 【详解】复数z 满足()1i 2i z +=,则()2i 1i 2i =11i 2z i ⋅-==++,z =A 错误;z 的虚部是1,故选项B 错误;z 在复平面内所对应的点为()1,1,故选项C 正确;1i z =-,故选项D 错误;故选:C .【点睛】本题考查复数的相关概念、几何性质、乘除运算,属于基础题. 3.设函数()sin cos f x x x =-,则下列结论正确的是( ). A. ()f x 的最小正周期为π B. ()f x 的图像关于直线9π4x =对称 C. ()πf x +一个零点为π4D. ()f x 在π3π,44⎛⎫⎪⎝⎭,上单调递减【答案】C 【解析】 【分析】利用公式将函数()sin cos f x x x =-化简,根据正弦函数图象和性质逐一判断即可. 【详解】函数()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,最小正周期为2T π=,故A 不正确;990444f πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图像不关于直线9π4x =对称,故B 不正确; ()3+4πx x f π⎛⎫= ⎝+⎪⎭3+=044ππ⎛⎫ ⎪⎝⎭,所以()πf x +的一个零点为π4,故C 正确; 当π3π,44x ∈⎛⎫⎪⎝⎭时,0,42x ππ⎛⎫-∈ ⎪⎝⎭,而sin y x =在0,2π⎛⎫⎪⎝⎭单调递增,所以D 不正确.故选:C .【点睛】本题考查正弦函数的图象和相关性质,考查计算求解与数形结合能力,属于基础题.的4.函数()1ln 1y x x=-+的图象大致为( ) A. B.C. D.【答案】A 【解析】 分析】确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项.【详解】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足. 故选:A. 【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项. 5.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行: 32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 54 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取数据,则得到的第6个样本编号( ).A. 478B. 324C. 535D. 522【答案】A 【解析】【根据随机数表法抽样的定义进行抽取即可.【详解】第6行第6列的数开始的数为808,不合适,436, 789不合适,535,577,348,994不合适,837不合适, 522,535重复不合适,478合适,则满足条件的6个编号为436,535,577,348,522,478, 则第6个编号为478, 故选:A .【点睛】本题考查简单随机抽样,随机数表法抽样的具体操作步骤,属于基础题. 6.对于直线,m n 和平面,αβ,能得出αβ⊥的一组条件是( ) A. m n ⊥,m αP ,n βP B. m n ⊥,m αβ=I ,n β⊂ C. m n P ,n β⊥,m α⊂ D. m n P ,m α⊥,n β⊥【答案】C 【解析】 【分析】根据空间直线与平面,平面与平面的关系对四个选项分别进行判断,得到答案.【详解】A 选项中,根据m n ⊥,m αP ,n βP ,得到αβ⊥或αβ∥,所以A 错误; B 选项中,m n ⊥,m αβ=I ,n β⊂,不一定得到αβ⊥,所以B 错误; C 选项中,因为m n P ,n β⊥,所以m β⊥. 又m α⊂,从而得到αβ⊥,所以C 正确;D 选项中,根据m n P ,m α⊥,所以n α⊥,而n β⊥,所以得到αβ∥,所以D 错误. 故选:C.【点睛】本题考查空间中线面关系有关命题的判断,面面关系有关命题的判断,属于简单题. 7.已知π为圆周率,e 为自然对数的底数,则 A. e π<3e B. π23e -<32e π-C. log e π>3log eD. π3log e >3log e π【答案】D【分析】利用指数函数与对数函数的单调性、不等式的性质即可得出. 【详解】对于A :函数y=x e 是(0,+∞)上的增函数,A 错;对于B :π3e ﹣2<3πe ﹣2⇔3e ﹣3<πe ﹣3,而函数y=x e ﹣3是(0,+∞)上的减函数,B 错; 对于C :31133e e e e log e log e log log log log πππ⇔⇔>><,而函数y=log e x 是(0,+∞)上的 增函数,C 错,对于D :33333333e e e e log e log e log log log log ππππππππ⇔⇔⇔>>>>,D 正确; 故答案为:D .【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.8.已知三点()2,0A ,(B ,(C ,则ABC V 的外接圆的圆心到原点的距离为( ).A.53C.3D.43【答案】B 【解析】 【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论. 【详解】因为,ABC 外接圆的圆心在直线BC 垂直平分线上,即直线x =2上, 可设圆心P (2,p ),由P A =PB 得|p得p圆心坐标为P ,所以圆心到原点的距离|OP故选:B.【点睛】本题考查三角形外接圆性质,已知坐标求圆心坐标可设未知数,建立方程解出未知数即可,考查计算能力,属于简单题.9.已知双曲线C 与双曲线22126x y -=有公共的渐近线,且经过点(P -,则双曲线C 的离心率为( ).A.B.3C. 4D. 2【答案】D 【解析】 【分析】双曲线C 与双曲线22126x y -=有公共的渐近线,设双曲线C 的方程2226x y λ-=,其中λ≠0,又因为点(P -在双曲线上,再代入点P 的坐标即可得到双曲线C 的方程,然后求解焦距即可. 【详解】双曲线C 与双曲线22126x y -=有公共的渐近线,设双曲线C 的方程2226x y λ-=,其中λ≠0,∵点(P -在双曲线上, ∴122λ-=,解之得32λ=, 因此双曲线方程为22139x y -=,a c ==故离心率为2ce a==. 故选:D .【点睛】本题考查双曲线的性质及离心率,根据题意列出未知数,解出a ,b ,c 即可求得离心率,属于中等题.10.在ABC V 中,2π3B =,3AB =,E 为AB 的中点,AEC S =△,则AC 等于( ).A. B.C.D. 3【答案】A 【解析】 【分析】根据题意,可求ABC V 面积,根据面积公式可得1BC =,再利用余弦定理可求AC . 【详解】在ABC V 中,2π3B =,3AB =,E 为AB 的中点,AEC S =△,∴24ABC AEC S S ==△△,又11sin 322ABC S AB BC B BC =⋅⋅=⋅⋅△, 可得1BC =, 由余弦定理可得:A C ==.故选:A .【点睛】本题考查解三角形问题,根据题目的边角关系代入正弦或者余弦定理即可,考查计算能力,属于基础题.11.已知向量a r ,b r满足1a =r ,2b =r ,则a b a b +--r r r r 的取值范围是( ). A. ()2,2- B. []2,4-C. ()4,2-D. []22-,【答案】D 【解析】 【分析】根据向量三角不等式()|||2|=2a b a b a b a b a +--+±-≤≤r r r r r r r r r ,可得22a b a b -≤+--≤r rr r ,从而得取值范围.【详解】根据向量三角不等式()|||2|=2a b a b a b a b a +--+±-≤≤r r r r r r r r r,,22a b a b -≤+--≤r rr r ,故选:D .【点睛】本题考查向量的性质与向量三角不等式,属于基础题.12.如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒ ②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A. ①②③ B. ①②④C. ③④D. ②③④【答案】A 【解析】 【分析】①根据异面直线所成的角的定义即可判断; ②由线面垂直的性质即可判断;③先求得M 到平面DCC 1D 1的距离再利用锥体体积公式求解;④将问题转化为平面图形中线段AD 1的长度,利用余弦定理解三角形解得1AD 即可判断. 【详解】①∵AD ,BC ,,异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角,可得夹角为45︒,故,正确; ,连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1,∴11DC D M ⊥, 故,正确;,∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又,DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值, 故,正确;④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在,D 1A 1A 中,∠D 1A 1A =135°,利用余弦定理解三角形得12AD ==<,故④不正确.因此只有①②③正确. 故选:A .【点睛】本题考查命题的真假判断与应用,涉及空间位置关系及数量关系,综合性强,考查空间推理能力,属于中等题.二、填空题13.如图所示,在边长为2的正方形中随机撒1500粒豆子,有300粒落到阴影部分,据此估计阴影部分的面积为______.【答案】45【解析】 【分析】根据几何概型的概率意义,即可得到结论.【详解】正方形的面积S =4,设阴影部分的面积为1S , ∵随机撒1500粒豆子,有300粒落到阴影部分, ∴几何概型的概率公式进行估计得1130041500S S P S ===, 即143004=15005S ⨯=, 故答案为:45.【点睛】本题考查几何概型的应用,求几何概型关键是找出几何度量之间的关系,常见几何度量有:长度、面积、体积等,属于基础题.14.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圆周率3π=),则该圆柱形容器能放米______斛. 【答案】2700 【解析】2πr=54,r 9≈,圆柱形容器体积为22π3918r h ≈⨯⨯ ,所以此容器能装2391827001.62⨯⨯=斛米.15.现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.【答案】 (1). 12 (2). 90 【解析】 【分析】由题目分析,可设这个足球有正五边形皮子x 块,则根据题意可得等量关系式:正六边形的块数×3=正五边形的块数×5,由此可以解出正五边形个数,根据两条边组成一条棱,因此可求棱的条数. 【详解】足球每块黑色皮子的5条边分别与5块白色皮子的边缝在一起; 每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起, 另3条边则与其他白色皮子的边缝在一起.所以设这个足球有x 块正五边形,一共有5x 条边,其中白皮三条边和黑皮相连, 又足球表面中的正六边形的面为20个, 根据题意可得方程:5203x =⨯, 解得12x =,该足球表面中的正五边形的面为12个; 因为任何相邻两个面的公共边叫做足球的棱, 所以每条棱由两条边组成,该足球表面的棱为:()125+206290⨯⨯÷=条. 故答案为:12;90.【点睛】本题考查列方程解含有未知数的应用题,考查想象能力与转化能力,属于中等题.16.已知函数()()()200x x e e m x f x x e x -⎧+->⎪=⎨-+<⎪⎩的图像上存在两点关于y 轴对称,则实数m 的取值范围是______. 【答案】()2,e -+∞ 【解析】 【分析】设对称两点坐标为()00,x y ,()()000,0x y x ->,代入则有0020=xx e em x e -+--+,两边各构造函数,将此方程有解,转化为令0(,)x x e x g e x -=+>,2()=+h x x e m -+,两函数有交点,求导,利用数形结合即可解答.【详解】由已知函数()()()200x x e e m x f x x e x -⎧+->⎪=⎨-+<⎪⎩的图像上存在两点关于y 轴对称, 设对称两点坐标为()00,x y ,()()000,0x y x ->, 则有0020=xx e e m x e -+--+,此方程有解,即0020=+xx e ex e m -+-+,令()0(,)xxe x g e x -=+>,2()=+h x x e m -+,即需满足,(0)g x x >时与()h x 有交点,21'()x x xxe g e ee x ---==, 则'()0g x >恒成立,()g x 0x >处单调递增,()(0)2g g x >=,只需(0)=+2h e m >即可, 即2m e >-, 故答案为:()2,e -+∞.【点睛】本题考查分段函数的综合应用,根据条件求参数的取值范围,一般根据条件运用转化思想,转化为方程有解或者函数图像有交点问题,再利用数形结合求交点即可,属于较难题.三、解答题:解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答. (一)必考题17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,ABCD 是平行四边形,2AC AB AD ===,AC 、BD 交于点O ,E 是PB 上一点.(1)求证:AC DE ⊥;(2)已知3PD =,若E 为PB 的中点,求三棱锥E PCD -的体积.【答案】(1)见解析(2)2【解析】 【分析】(1)要证AC DE ⊥,根据条件只需先证明AC ⊥平面PBD ,又DE ⊂平面PBD ,得证; (2)由(1)知CO ⊥平面PBD ,所以转化为1124E PCD C PDE C PDB P ABCD V V V V ----===求解即可. 【详解】(1),PD ⊥平面ABCD ,AC ⊂平面ABCD , ,PD AC ⊥.又,ABCD 为菱形,,BD AC ⊥. 又BD PD D =I ,,AC ⊥平面PBD ,DE ⊂平面PBD , ,AC DE ⊥.(2)由(1)知CO ⊥平面PBD ,所以211113222443E PCD C PDE C PDB P ABCD V V V V ----====⨯⨯⨯=. 【点睛】本题考查线线垂直的证明、棱锥体积的计算,需熟悉垂直判定定理及棱锥体积公式,意在考查学生的转化能力和计算求解能力,属于简单题. 18.已知数列{}n a 满足112a =-,()1212n n a a n -=-≥. (1)求证:{}1n a +为等比数列,并求数列{}n a 的通项公式;(2)若数列{}n n a b +是首项为1,公差为3的等差数列,求数列{}n b 的前n 项和.【答案】(1)见解析,112n n a ⎛⎫=- ⎪⎝⎭(2)231122nn n +⎛⎫-+ ⎪⎝⎭【解析】 【分析】(1)由已知构造等比数列,可得111122n n a -⎛⎫+=⋅ ⎪⎝⎭,化简即为{}n a 的通项.(2)由已知得32n n a b n +=-,代入112nn a ⎛⎫=- ⎪⎝⎭,可得()1=312nn b n ⎛⎫-- ⎪⎝⎭,所以数列{}n b 的前n 项和分别利用等差数列和等比数列求和公式即可求得.【详解】(1)由()1212n n a a n -=-≥,得()1211n n a a -+=+,即()11112n n a a -+=+, 又11102a +=≠,∴{}1n a +是以1112a +=为首项,公比为12的等比数列.∴111122n n a -⎛⎫+=⋅ ⎪⎝⎭,∴112nn a ⎛⎫=- ⎪⎝⎭. (2)由已知得()11332n n a b n n +=+-⨯=-,,112n n a ⎛⎫=- ⎪⎝⎭,,()()()11323213122n nn n b n a n n ⎛⎫⎛⎫=--=--+=-- ⎪ ⎪⎝⎭⎝⎭. 所以数列{}n b 的前n 项和为:()2121112531222nn b b b n ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++-- ⎪⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L L()21112531222nn ⎡⎤⎛⎫⎛⎫=+++--+++⎡⎤⎢⎥ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦L L()211122231311122212nn n n n n ⎡⎤⎛⎫-⎢⎥ ⎪+-⎡⎤⎝⎭+⎢⎥⎛⎫⎣⎦⎣⎦=-=-+ ⎪⎝⎭-. 【点睛】本题主要考查等差数列的定义、等差、等比数列的求和公式以及已知数列的递推公式求通项,属于综合题.由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、等比数列);(2)累加法,相邻两项的差成等求和的数列可利用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法,形如()10,1n n a qa p p q -=-≠≠的递推数列求通项往往用构造法,利用待定系数法构造成()1n n a m q a m -+=+的形式,再根据等比数例求出{}+n a m 的通项,进而得出{}n a 的通项公式.属于中等题.19.2017年3月18日,国务院办公厅发布了《生活垃圾分类制度实施方案》,我市环保部门组织了一次垃圾分类知识的网络问卷调查,每位市民都可以通过电脑网络或手机微信平台参与,但仅有一次参加机会工作人员通过随机抽样,得到参与网络问卷调查的100人的得分(满分按100分计)数据,统计结果如下表.(1)环保部门规定:问卷得分不低于70分的市民被称为“环保关注者”.请列出22⨯列联表,并判断能否在犯错误的概率不超过0.10的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”.现在从本次调查的“环保达人”中利用分层抽样的方法随机抽取5名市民参与环保知识问答,再从这5名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“环保达人”又有女“环保达人”的概率.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1)见解析,在犯错误的概率不超过0.10的前提下,可以认为是否为是“环保关注者”与性别是有关的.(2)35【解析】 【分析】(1)根据题目所给的数据可求2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论; (2)利用列举法求得所有情况,根据古典概型可计算. 【详解】(1)22⨯列联表如下:将22⨯列联表中的数据代入公式计算,得2K 的观测值()2210045153010300 3.030 2.7062575554599K ⨯⨯-⨯==≈>⨯⨯⨯,所以在犯错误的概率不超过0.10的前提下,可以认为是否为是“环保关注者”与性别是有关的. (2)由题意可知,利用分层抽样的方法可得女“环保达人”3人,男“环保达人”2人. 设女“环保达人”3人分别为A ,B ,C ;男“环保达人”2人为D ,E .从中抽取两人的所有情况为:(),A B ,(),A C ,(),A D ,(),A E ,(),B C ,(),B D ,(),B E ,(),C D ,(),C E ,(),D E ,共l 0种情况.既有女“环保达人”又有男“环保达人”的情况有(),A D ,(),A E ,(),B D ,(),B E ,(),C D ,(),C E ,共6种情况. 故所求概率为63105P ==. 【点睛】本题考查独立性检验,相互独立事件的概率计算,考查计算能力,属于简单题. 20.已知函数()()xf x x a e =-.(1)求函数()f x 的极值;(2)若()()1f x f ≥,证明:()32111326f x x x e -+≥-. 【答案】(1)()1=a f x e --极小值 ,无极大值.(2)见解析【解析】 【分析】(1)对函数()f x 的求导,得()()1xf x x a e '=-+,令导函数得0,可求极值点及极值;(2)由()()1f x f ≥知()()min 1f x f =,则1为()f x 极小值点,则2a =, ()()2xf x x e =-,代入求出()()321132g x f x x x =-+的最小值即可. 【详解】(1)函数()f x 的定义域为(),-∞+∞, 由()()xf x x a e =-,得()()1xf x x a e '=-+,由()0f x '>得()f x 在()1,a -+∞上为增函数, 由()0f x '<得()f x 在(),1a -∞-上为减函数, 所以,()()11a f x f a e-=-=-极小值,无极大值.(2)由()()1f x f ≥知()()min 1f x f =,则1为()f x 极小值点, 由(1)知11a -=,则2a =,,()()2xf x x e =-,令()()()3232111123232x g x f x x x x e x x =-+=--+, 则()()()1xg x x e x '=--,,x y e =的图象在y x =图象的上方, ,0x e x ->,,()0g x '>,可得1x >,()0g x '<,1x <,,()g x 在(),1-∞为减函数,在()1,+∞为增函数, ,()()116g x g e ≥=-,即()32111326f x x x e -+≥-. 【点睛】本题主要考查导数在函数中的应用、利用导数证明不等式,通常需要对函数求导,研究其单调性和极值等,属于常考题型;利用导数证明不等式常见类型及解题策略(1) 构造差函数()()()=h x f xg x -,根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,求解函数最值.属于中等题.21.已知P 为椭圆22:154x y S +=上的动点,PQ x ⊥轴于Q ,M 为PQ 的中点,设点M 的轨迹为T .(1)求曲线T 的方程; (2)若点)A,直线()0y kx k =≠与曲线T 交于C ,D 两点,与椭圆S 交于E ,F 两点,问是否存在与k 无关实数λ,使得AC AFAE ADk k k k λ=成立,若存在求出λ的值;若不存在请说明理由(AC k ,AE k ,AF k ,AD k 分别表示直线AC ,AE ,AF ,AD 的斜率). 【答案】(1)2215x y +=(2)存在,14λ= 【解析】 【分析】(1)设()00,P x y ,(),M x y ,由题意得002x xy y =⎧⎨=⎩,又P 在椭圆S 上,代入得椭圆S 方程即可得到曲线T的方程.(2)根据题意,要使AC AFAE ADk k k k λ=成立,只要AC AD AE AF k k k k λ⋅=⋅成立即可,将AC AD k k ⋅及 AE AF k k ⋅表的示出来,利用点在椭圆上,化简可得15AC AD k k ⋅=-,45AE AF k k ⋅=-,可得14λ=.【详解】(1)设()00,P x y ,(),M x y ,由题意得002x xy y =⎧⎨=⎩,又P 在椭圆S 上,代入得22154x y +=,故曲线T 的方程为2215x y +=.(2)要使AC AF AE ADk kk k λ=成立,只要AC AD AE AF k k k k λ⋅=⋅成立即可, 设(),C C C x y ,(),C C D x y --,(),E E E x y ,(),E E F x y --,又已知点)A,得225CAC ADC y k k x ⋅==-,225EAE AFE y k k x ⋅==-, ,(),C C C x y 在椭圆2215x y +=上,,2215C C x y =-, ,(),E E E x y 在椭圆22154x y +=上,,22215E E x y ⎛⎫=- ⎪⎝⎭,15AC AD k k ⋅=-,45AE AF k k ⋅=-,,AC AD AE AF k k k k λ⋅=⋅, ,14λ=. 故存在与k 无关的实数14λ=,使得AC AF AE AD k k k k λ=成立. 【点睛】本题考查轨迹方程问题、直线与圆锥曲线综合问题,求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,解决直线与椭圆的存在性综合问题时,一般设存在,代入等量关系求解,如果能出现定值则存在,考查综合分析及计算能力,属于难题.(二)选考题22.在极坐标系中,曲线C 的极坐标方程为243cos 2ρθ=-,以极点为原点,以极轴所在直线为x 轴建立直角坐标系,曲线C 分别与x 轴正半轴和y 轴正半轴交于点A ,B ,P 为直线AB 上任意一点,点Q 在射线OP上运动,且OP OQ ⋅=. (1)求曲线C 的直角坐标方程; (2)求点Q 轨迹围成的面积.【答案】(1)2212x y +=(2)3π4.【解析】 【分析】(1)根据极坐标与平面直角坐标之间的关系即可求解.(2)由(1)知)A,()0,1B ,则可求直线AB 的极坐标方程为cos sin 0ρθθ-=,在极坐标系中,设(),Q ρθ,(),P ρθ',则ρρ'=P 在直线AB 上cos sin 0ρθθ''=,代入与Q 点关系即可得到Q 的轨迹方程2cos sin 0θθρρ+=,化简并转化为直角坐标方程可得轨迹为圆,求圆面积即可. 【详解】(1),243cos 2ρθ=-,,()22223cos sin 4ρρθθ--=.由cos sin x y ρθρθ=⎧⎨=⎩得2222x y +=, ,曲线C 的直角坐标方程2212x y +=.(2)由(1)知)A,()0,1B ,则直线AB 的直角坐标方程为0x =,极坐标方程为cos sin 0ρθθ+=.在极坐标系中,设(),Q ρθ,(),P ρθ',则ρρ'=,点P 在直线AB 上,,cos sin 0ρθθ''+=,,2cos sin 0θθρρ+=,即cos ρθθ=+,即2cos sin ρρθθ=+.,点Q 轨迹的直角坐标方程为220x y x +-=,即2213224x y ⎛⎛⎫-+-= ⎪ ⎝⎭⎝⎭,,点Q 3π4. 【点睛】本题考查极坐标方程转化为直角坐标方程,求轨迹方程问题,考察转化与化归思想,属于中等题. 23.设函数()3f x x m x m =-+-,m *∈N ,存在实数x ,使得()4f x <成立.(1)求不等式()2f x x <的解集;(2)若3a ≥,3b ≥,且满足()()12f a f b +=,求证:41910a b +≥. 【答案】(1)[)1,+∞(2)见解析【解析】【分析】(1)先根据题意解出1m =,再把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由条件和(1)求出10a b +=,再把不等式的左边利用极值定理解出极小值,不等式得证.【详解】(1)由已知得()()3324x m x m x m x m m -+-≥---=<,又,m *∈N ,,1m =,,()132f x x x x =-+-≤等价于 1242x x x ≤⎧⎨-+≤⎩或1322x x <<⎧⎨≤⎩或3242x x x≥⎧⎨-≤⎩, 解得1x =或13x <<或3x ≥,所以不等式()2f x x ≤的解集为[)1,+∞.(2)由(1)知()()1313f a f b a a b b +=-+-+-+-,,3a ≥,3b ≥,,()()22812f a f b a b +=+-=,即10a b +=,,()4114114195510101010b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝.所以当且仅当4b aa b=时等号成立,即203a=,103b=时等号成立.【点睛】本题考查绝对值三角不等式,绝对值不等式的解法:(1)数形结合:利用绝对值不等式的几何意义[即(x,0)到(a,0)与(b,0)的距离之和]求解.(2)分类讨论:利用“零点分段法”求解.(3)构造函数:利用函数的图像求解,体现了函数与方程的思想.本题属于中等题.。

2020届内蒙古赤峰市高三下学期模拟考试文科数学试题

2020届内蒙古赤峰市高三下学期模拟考试文科数学试题
参考答案
1.C
【分析】
化简集合 , ,根据交集定义,即可求得 ;
【详解】

故选:C.
【点睛】
本题主要考查了集合的交集运算,解题关键是掌握交集定义和一元二次不等式的解法,考查了分析能力和计算能力,属于基础题.
2.D
【分析】
由复数 在复平面上的对应点为 ,可得 ,根据 为 的共轭复数,可得 ,逐项验证,即可求得答案.
轻—中度感染
重度(包括危重)
总计
男性患者
女性患者
总计
(1)求 列联表中的数据 的值;
(2)能否有 把握认为,新冠肺炎的感染程度和性别有关?
(3)该学生实验小组打算从“轻—中度感染”的患者中按男女比例再抽取5人,追踪某种中药制剂的效果.然后从这5人中随机抽取3人进行每日的健康记录,求至少抽到2名女性患者的概率.
四、解答题
17.如图,四棱锥 中,底面 为直角梯形, , , 为等边三角形,平面 底面 为 的中点.
(1)求证:平面 平面 ;
(2)点 在线段 上,且 ,求三棱锥 的体积.
18.在 中,内角 所对的边分别是 ,且 .
(1)求角 ;
(2)若 ,求 的面积的最大值.
19.3月3日,武汉大学人民医院的团队在预印本平台 上发布了一项研究:在新冠肺炎病例的统计数据中,男性患者往往比女性患者多.研究者分析了1月1日~29日的6013份病例数据,发现 的患者为男性;进入重症监护病房的患者中,则有 为男性.随后,他们分析了武汉大学人民医院的数据.他们按照症状程度的不同进行分析,结果发现,男性患者有 为危重,而女性患者危重情况的为 .也就是说男性的发病情况似乎普遍更严重.研究者总结道:“男性在新冠肺炎的传播中扮演着重要的角色.”那么,病毒真的偏爱男性吗?有一个中学生学习小组,在自己封闭的社区进行无接触抽样问卷调查,收集到男、女患者各50个数据,统计如下:

2020年内蒙古赤峰市高三5月模拟考试试题文科数学试题-含答案

2020年内蒙古赤峰市高三5月模拟考试试题文科数学试题-含答案

1
的图像向右平移
个单位长度得到函数 g(x) 的
2
8
图像,下列结论正确的是
A. g(x) 是最小正周期为 2 的偶函数
B. g(x) 是最小正周期为 4 的奇函数
C. g(x) 在 , 2 上单调递减
D.
g
(
x)

0,
2
上的最大值为
2 2
10.已知椭圆 C :
x2 a2 9
y2 a2
1,F1、F2 是其左右焦点,若对椭圆 C 上的任意一点 P ,
.
15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广
三丈,袤四丈五尺,容粟一万斛,问高几何?”其意思为:“今有一个长方体的粮仓,
宽 3 丈,长 4 丈 5 尺,可装粟一万斛.已知 1 斛粟的体积为 2.7 立方尺,1 丈为 10
尺,则该粮仓的高是________尺.若将这些粟装入一个圆柱形粮仓内,若使这个圆柱
则下列结论中正确的是 A.该家庭 2019 年食品的消费额是 2015 年食品的消费额的一半
B.该家庭 2019 年教育医疗的消费额是 2015 年教育医疗的消费额的 1.5 倍
C.该家庭 2019 年休闲旅游的消费额是 2015 年休闲旅游的消费额的六倍
D.该家庭 2019 年生活用品的消费额与 2015 年生活用品的消费额相当
13. 设 f (x) 在 R 上是奇函数,且 f (1 x) f (1 x) ,当 x (0,1) 时, f (x) = x3 ,则
f (7)=
.
2
文科数学试卷 第 3 页 共 8 页
14. 已知非零向量 a,b 满足 b =2 a ,且 b a a ,则 a 与 b 的夹角为

2020年高考文科数学模拟试题及答案(一).pdf

2020年高考文科数学模拟试题及答案(一).pdf

C. log 0.7 6 6 0. 7 0.7 6
D.
log 0. 7 6 0.7 6 6 0.7
7. 某学校美术室收藏有 6 幅国画,分别为人物、山水、花鸟各 2 幅,现从中随机抽取 2 幅进行展览,
则恰好抽到 2 幅不同种类的概率为
5
A.
6
4
B.
5
3
C.
4
2
D.
3
8. 下图虚线网格的最小正方形边长为 1,实线是某几何体的三视图,这个几何体的体积为(
0.001
10.828
19.(本试题满分 12 分)
如图,在四棱锥 P ABCD 中 , 底面 ABCD 为四边形, AC BD , BC CD , PB PD , 平面 PAC 平面
PBD , AC 2 3, PCA 30 , PC 4.
(1) 求证: PA 平面 ABCD ; (2) 若四边形 ABCD 中, BAD 120 , AB BC , M 为 PC 上
R ,使得
x
2 0
-
x0
1
0 ”的否定是 _________ .
4
14. 在区间( 0, 4)内任取一实数 t ,则 log 2(t 1) 1 的概率是 _____.
15. 已知 △ABC 中, AB
5 , AC
7,
ABC
2 ,则该三角形的面积是
________.
3
2
16.
已知双曲线
x2 C : a2
PM
一点,且满足
2 ,求三棱锥 M PBD 的体积
MC
20. (本试题满分 12 分)
已知椭圆 C : x2 a2
y2 b2
1(a b 0) 的左右焦点分别为 F1, F2 ,点 P 是椭圆 C 上的一点,若

2020-2021学年内蒙古赤峰市高三第三次模拟考试数学(文)试题及答案解析

2020-2021学年内蒙古赤峰市高三第三次模拟考试数学(文)试题及答案解析

高考数学模拟试题数学试卷(文科)注意事项:1、本试卷本分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第(22)~(24)题为选考题,其它题为必考题.2、考生作答时,将答案答在答题卡上,写在本试卷上无效.3、考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,每小题给出的四个选项,只有一项是符合题目要求的.1. 已知全集{}=01,2,3,4,5,6U ,,集合{}=0,1,2,3A ,{}=3,4,5B ,则(∁UA )I =B(A ){}3 (B ){}4,5 (C ){}4,56,(D ){}0,1,2 2.已知3cos 25πα⎛⎫+= ⎪⎝⎭,且3,22ππα⎛⎫∈ ⎪⎝⎭,则tan α= (A )34 (B )43 (C ) 34- (D ) 34± 3.已知等差数列{n a }的公差d ≠0,若931,,a a a 成等比数列,那么公比为 (A )31 (B )3 (C )21(D )2 4.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(A )2)(x x f = (B )xx f 1)(=(C )x e x f =)((D )x x f sin )(=5.αβ,表示不重合的两个平面,m ,l 表示不重合的两条直线.若m αβ=I ,l α⊄,l β⊄,则“l ∥m ”是“l ∥α且l ∥β”的(A )充分且不必要条件 (B )必要且不充分条件 (C )充要条件 (D )既不充分也不必要条件6. 一名小学生的年龄和身高(单位:cm)的数据如下:年龄x 6 7[来源:]8 9 身高y118126136144由散点图可知,身高y 与年龄x 之间的线性回归直线方程为$$8.8y x a=+,预测该学生10岁时的身高为 (A )154 (B )153 (C )152 (D )151 7.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a= (A ) 0 (B ) 1 (C ) 2 (D )38.设函数()11sin 3cos 222f x x x πθθθ⎛⎫⎛⎫⎛⎫=+-+< ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,且其图像关于y 轴对称,则函数()y f x =的一个单调递减区间是()A 0,2π⎛⎫ ⎪⎝⎭ ()B ,2ππ⎛⎫ ⎪⎝⎭ ()C ,24ππ⎛⎫-- ⎪⎝⎭ ()D 3,22ππ⎛⎫⎪⎝⎭9.已知函数()x xf x e=,若(ln 2),(ln3),(ln5)a f b f c f ===,则,,a b c 的大小关系为 (A )a b c >> (B )c a b >> (C )b a c >> (D )b c a >>10. 已知12,F F 分别为椭圆22221(0)x y a b a b+=>>的左、右焦点,P 为椭圆上一点,且2PF 垂直于x 轴.若122||2||F F PF =,则该椭圆的离心率为(A )22(B ) 32 (C )312- (D )512-11. 函数()2sin 1xf x x =+的图象大致为( )12. 在△ABC 中,AB=1,AC=2,120A ∠=︒,点O 是△ABC 的外心,存在实数,λμ,使AO AB AC λμ=+u u u r u u u r u u u r ,则 (A )53,44λμ== (B )45,36λμ== (C )57,36λμ== (D )43,34λμ==数学试卷(文科)第Ⅱ卷本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第:24题为选考题,考生根据要求作答.二、填空题共4小题,每小题5分,共20分. 13.i 是虚数单位,复数iiZ -+=221,则=Z .14.若一个几何体的三视图如图 所示(单位长度:cm ),则此几何体的表面积是_______15.设变量,x y 满足约束条件20701x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则y x 的最大值为 .16.已知数列{n a }满足()()*11222,1n n n a a a n N n ++==∈+,则{n a }的通项公式n a =________________.三、解答题共6小题,共70分. 解答应写出文字说明,演算步骤或证明过程. 17.(本小题满分12分)如图,在ABC ∆中,90ABC ∠=o ,4AB =,3BC =,点D 在线段AC 上,且4AD DC =.(Ⅰ)求BD 的长; (Ⅱ)求sin CBD ∠的值.DA18. (本小题满分12分)某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续驶里程数R (单位:公里)分为3类,即A :80≤R <150,B :150≤R <250,C :R ≥250.对这140辆车的行驶总里程进行统计,结果如下表:类型A B C 已行驶总里程不超过5万公里的车辆数 10 40 30 已行驶总里程超过5万公里的车辆数202020(Ⅰ)从这140辆汽车中任取1辆,求该车行驶总里程超过5万公里的概率;(Ⅱ)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从C 类车中抽取了n 辆车. (ⅰ)求n 的值;(ⅱ)如果从这n 辆车中随机选取2辆车,求恰有1辆车行驶总里程超过5万公里的概率.19.(本小题满分12分)己知三棱柱111ABC A B C -,1A 在底面ABC 上的射影恰为AC 的中点D ,90BCA ∠=︒,2AC BC ==,又知11BA AC ⊥(Ⅰ)求证:1AC ⊥平面1A BC ; (Ⅱ)求点C 到平面1A AB 的距离.20.(本小题满分12分) 2:C x y =,自已知直线l 的方程是1y =-和抛物线l 上任意一点P 作抛物线的两条切线,设切点分别为,A B ,DB 1A 1CA1(Ⅰ)求证:直线AB 恒过定点.(Ⅱ)求△PAB 面积的最小值.21.(本小题满分12分) 已知函数()cos sin ,[0,]2f x x x x x π=-∈,(Ⅰ)求证:()0f x ≤;(Ⅱ)若sin x a b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,ABC △内接于圆O ,AD 平分BAC ∠交圆O 于点D ,过点B 作圆O 的切线交直线AD 于点E .(Ⅰ)求证:EBD CBD ∠=∠;(Ⅱ)求证:AB BE AE DC ⋅=⋅.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的参数方程是2cos sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2sin ρθ=. (Ⅰ)写出1C 的极坐标方程和2C 的直角坐标方程; (Ⅱ)已知点1M 、2M 的极坐标分别为1,2π⎛⎫⎪⎝⎭、()2,0,直线12M M 与曲线2C 相交于,P Q ,射线OP 与曲线1C 交于点A ,射线OQ 与曲线1C 交于点B ,求2211OAOB+的值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()|2||2|,f x x x a a R =---∈. (Ⅰ)当3a =时,解不等式()0f x >;(Ⅱ)当(,2)x ∈-∞时,()0f x <恒成立,求a 的取值范围. .数学试卷(文科)参考答案一、选择题:BABD CBDC CDAB二、填空题:13、1;14、20+;15、6;16、()121n n a n -=+. 三、解答题: 17.(Ⅰ)解:因为 ο90=∠ABC ,4=AB ,3=BC ,所以3cos 5C =,4sin 5C =,5=AC ,……………… 3分 又因为DC AD 4=,所以4=AD ,1=DC .在BCD ∆中,由余弦定理,得2222cos BD BC CD BC CD C =+-⋅223323123155=+-⨯⨯⨯=… 6分 所以 5104=BD . ……………… 7分(Ⅱ)在BCD ∆中,由正弦定理,得sin sin CD BDCBD C=∠,所以15sin 4CBD =∠, 即sin CDB ∠= ……… 12分18.解:(Ⅰ)从这140辆汽车中任取1辆,则该车行驶总里程超过5万公里的概率为73140202020=++. ……………………3分(Ⅱ)(ⅰ)依题意3020145140n +=⨯=. ……………………6分 (ⅱ)5辆车中已行驶总里程不超过5万公里的车有3辆,记为A ,B ,C ;5辆车中已行驶总里程超过5万公里的车有2辆,记为M ,N . “从5辆车中随机选取2辆车”的所有选法共10种:AB ,AC ,AM ,AN ,BC ,BM ,BN ,CM ,CN ,MN .---------------------8分 “从5辆车中随机选取2辆车,恰有一辆车行驶里程超过5万公里”的选法共6种: AM ,AN ,BM ,BN ,CM ,CN .设“选取2辆车中恰有一辆车行驶里程超过5万公里”为事件D ,--------10分则53106)(==D P .………………… 12分 19.解(Ⅰ)︒=∠90BCA 得AC BC ⊥,因为⊥D A 1底ABC ,所以BC D A ⊥1, …………2分又D AC D A =I 1,所以⊥BC 面AC A 1,所以1AC BC ⊥ ………………………………4分 因为11AC BA ⊥,B BC BA =I 1,所以⊥1AC 底BC A 1 ………………………………6分 (Ⅱ)解法1.由(Ⅰ)得C A AC 11⊥,所以11ACC A 是菱形, 即211===C A AA AC ,221==B A AB ,…………8分 由ABC A B AA C V V --=11,得7212=h …………………12分 (解法2)作AB DE ⊥于点E ,连E A 1作E A DF 1⊥, 因为1A D ⊥平面ABC ,所以AB D A ⊥1,又AB DE ⊥,D D A DE =1I ,所以⊥AB 平面DE A 1, ………………8分 又⊂DF 面DE A 1,所以DF AB ⊥,而E AB E A =I 1,所以⊥DF 平面AB A 1,……………………………………10分DE A Rt 1∆中,72111=⋅=E A DE D A DF , 因为D 是AC 中点,所以C 到面AB A 1距离7212 ……………………12分 20.(Ⅰ)证明:设()()()221122,,,,,1A x x B x x P t -因为()/'22y xx ==,所以切线PA 的方程是()21112y x x x x -=-即2112y x x x += ①, 同理切线PB 的方程是2222y x x x += ②--------3分由①②得12122,1t x x x x =+=-,显然直线AB 存在斜率. 设直线AB 的方程是y kx b =+,代入2xy =得20x kx b --=所以12122,1x x k t x x b +===-=-,------------- 5分 即直线AB 的方程是1y kx =+,恒过定点()0,1-------------6分 (Ⅱ)解:()()()()222222121212121AB x x x x x x x x ⎡⎤=-+-=-++⎣⎦()()2212121241x x x x x x ⎡⎤⎡⎤=+-++⎣⎦⎣⎦()()2241k k =++分点P 到直线AB 的距离是22242121k kt d kk++==++-----10分△PAB 的面积322114224AB d k =⋅=⋅+≥FA 1B 1C 1ABCD E当0k =时△PAB 的面积取得最小值2-----------------------12分 21.解:(I )由()cos sin f x x x x =-得'()cos sin cos sin f x x x x x x x =--=-. 因为在区间(0,)2π上'()f x sin 0x x =-<,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减. 从而()f x (0)0f ≤=.------------------------------4分 (Ⅱ)当0x >时,“sin xa x>”等价于“sin 0x ax ->”; sin xb x<”等价于“sin 0x bx -<”.-------------------6分 令()g x sin x cx =-,则'()g x cos x c =-,当0c ≤时,()0g x >对任意(0,)2x π∈恒成立.-------7分当1c ≥时,因为对任意(0,)2x π∈,'()g x cos x c =-0<,所以()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减. 从而()g x (0)0g <=对任意(0,)2x π∈恒成立.----------------------8分当01c <<时,存在唯一的0(0,)2x π∈使得0'()g x 0cos x c =-0=.()g x 与'()g x 在区间(0,)2π上的情况如下:因为(g x 在区间00,x 上是增函数,所以0()(0)0g x g >=. 进一步,()0g x >对任意(0,)2x π∈恒成立”当且仅当()1022g c ππ=-≥,即20c π<≤,------------------------10分综上所述,当且仅当2c π≤时,()0g x >对任意(0,)2x π∈恒成立;当且仅当1c ≥时,()0g x <对任意(0,)2x π∈恒成立.所以,若sin x a b x <<对任意(0,)2x π∈恒成立, 则a 最大值为2π,b 的最小值为1.-----------------------12分 22. (1)∵BE 为圆O 的切线∠EBD=∠BAD ………………2分 又∵AD 平分∠BAC ∴∠BAD=∠CAD ∴∠EBD =∠CAD ………………4分 又∵∠CBD=∠CAD ∴∠EBD=∠CBD ………………5分(2)在△EBD 和△EAB 中,∠E=∠E ,∠EBD=∠EAB∴△EBD ∽△EAB ………………7分∴BE BD AE AB = ∴AB •BE=AE •BD ………………9分 又∵AD 平分∠BAC ∴BD=DC 故AB •BE=AE •DC ………………10分23.解:(1)曲线1C 的普通方程为2214x y +=, 化成极坐标方程为2222cos sin 14ρθρθ+= ………3分曲线2C 的直角坐标方程为()2211x y +-= ……………5分(2)在直角坐标系下,()10,1M ,()22,0M ,线段PQ 是圆()2211x y +-=的一条直径 ∴90POQ ∠=o 由OP OQ ⊥ 得OA OB ⊥,A B 是椭圆2214x y +=上的两点,在极坐标下,设()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭ 分别代入222211cos sin 14ρθρθ+=中,有222211cos sin 14ρθρθ+=和222222cos 2sin 142πρθπρθ⎛⎫+ ⎪⎛⎫⎝⎭++= ⎪⎝⎭ EDOAC B22211cos sin ,4θθρ∴=+ 22221sin cos 4θθρ=+ 则22121154ρρ+= 即221154OA OB+=. ……………10分 24.解:(1)1, 23()53, 2231, 2x x f x x x x x ⎧⎪->⎪⎪=-≤≤⎨⎪⎪-<⎪⎩ ……………………2分 210, 1,35352530, ,2323x x x x x x x >-><∅≤≤-><≤<当时,即解得当时,即解得 3310, 1,122x x x x <->><<当时,即解得 513x x ⎧⎫<<⎨⎬⎩⎭不等式解集为 ……………………6分 (2)22|2|02|2|23a x x a x x a x a x +---<⇒-<-⇒<->或恒成立 即4a ≥ ……………………10分。

内蒙古2020届高考数学一模试卷 文(含解析)

内蒙古2020届高考数学一模试卷 文(含解析)

内蒙古2020年高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若复数满足,则 ( )A. B. C. D.【答案】C【解析】【分析】把已知等式变形,利用复数代数形式除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.设集合,则( )A. B.C. D.【答案】B【解析】分析】直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.3.已知实数,则的大小关系是( )A. B. C. D.【答案】B【解析】根据,利用指数函数对数函数的单调性即可得出.【详解】解:∵,∴,,.∴.故选:B.【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.4.已知单位向量,的夹角为,若向量,,且,则 ( )A. B. 2 C. 4 D. 6【答案】C【解析】【分析】根据单位向量,的夹角为,可得.由向量,,且,可得,解得.进而得解.【详解】解:单位向量,的夹角为,∴.∵向量,,且,∴,∴,解得.则.故选:C.【点睛】本题考查了向量数量积运算性质、向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.5.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )A. B. C. D.【答案】D【分析】利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….… 这样才能避免多写、漏写现象的发生.6.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为( )A. B. C. 4 D. 2【答案】D【解析】【分析】设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.【详解】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.【点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.7.在中,角的对边分别为,若.则角的大小为( )A. B. C. D.【答案】A【解析】【分析】由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选:A.【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.8.如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,算法框图(图二)中输入的为茎叶图中的学生成绩,则输出的分别是( )A.,B.,C.,D.,【答案】B【解析】试题分析:由程序框图可知,框图统计的是成绩不小于和成绩不小于且小于的人数,由茎叶图可知,成绩不小于的有个,成绩不小于且小于的有个,故,.考点:程序框图、茎叶图.【思路点睛】本题主要考查识图的能力,通过对程序框图的识图,根据所给循环结构中的判断框计算输出结果,属于基础知识的考查.由程序运行过程看,两个判断框执行的判断为求个成绩中成绩不小于和成绩不小于且小于的个数,由茎叶图可知,成绩不小于的有个,成绩不小于且小于的有个.9.如图,正方体的棱长为1,线段上有两个动点E,F,且,则下列结论中错误的是()A.B.C. 三棱锥的体积为定值D. 异面直线所成的角为定值【答案】D【解析】试题分析:∵AC⊥平面,又BE⊂平面,∴AC⊥BE.故A正确.∵EF垂直于直线,,∴⊥平面AEF.故B正确.C中由于点B到直线的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为,故VA-BEF为定值.C正确当点E在处,F为的中点时,异面直线AE,BF所成的角是∠FBC1,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠EAA1显然两个角不相等,D不正确考点:棱柱的结构特征;异面直线及其所成的角【此处有视频,请去附件查看】10.已知函数,则( )A. B. 1 C. D.【答案】C【解析】【分析】推导出,从而,由此能求出结果.【详解】解:∵函数,∴,.故选:C.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查对数函数的运算,考查运算求解能力,考查函数与方程思想,是基础题.11.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.【答案】B【解析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.12.已知函数,在区间上任取三个实数均存在以为边长的三角形,则实数的取值范围是( )A. B. C. D.【答案】【解析】试题分析:由条件可得2f(x)min>f(x)max且f(x)min>0,再利用导数求得函数的最值,从而得出结论.解:任取三个实数a,b,c均存在以f(a),f(b),f(c)为边长的三角形,等价于f(a)+f(b)>f(c)恒成立,可转化为2f(x)min>f(x)max且f(x)min>0.令得x=1.当时,f'(x)<0;当1<x<e时,f'(x)>0;所以当x=1时,f(x)min=f(1)=1+h, ==e﹣1+h,从而可得,解得h>e﹣3,故选:D.考点:导数在最大值、最小值问题中的应用.二、填空题(本大题共4小题,共20.0分)13.若函数与函数,在公共点处有共同的切线,则实数的值为______.【答案】【解析】【分析】函数的定义域为,求出导函数,利用曲线与曲线公共点为由于在公共点处有共同的切线,解得,,联立解得的值.【详解】解:函数的定义域为,,,设曲线与曲线公共点为,由于在公共点处有共同的切线,∴,解得,.由,可得.联立,解得.故答案为:.【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.14.设满足约束条件,若目标函数的值是最大值为12,则的最小值为______.【答案】【解析】试题分析:不等式组表示的平面区域如下图中的阴影区域所示,根据图形可知,目标函数在点处取得最大值,即,所以,则,当且仅当,即时等号成立.考点:1、线性规划;2、均值定理.【方法点晴】线性规划问题一般有截距型问题、斜率型问题、距离型问题、含参数问题、实际应用问题等几类常见的考法.这里重点考查截距型问题,即转化为,当时,直线在轴的截距越大则值越大,反之当时,直线在轴的截距越大则值越小,掌握这一结论便可以求出目标函数最优解.15.已知的终边过点,若,则__________.【答案】【解析】【分析】】由题意利用任意角的三角函数的定义,求得的值.【详解】∵的终边过点,若,.即答案为-2.【点睛】本题主要考查任意角的三角函数的定义和诱导公式,属基础题.16.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________.【答案】4【解析】设,则,,,,当且仅当,即时,等号成立.,故答案:4三、解答题(本大题共7小题,共82.0分)17.等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.【答案】(Ⅰ)或 (Ⅱ)12【解析】【分析】(Ⅰ)根据等比数列的通项公式即可求出;(Ⅱ)根据等比数列的前项和公式,建立方程即可得到结论.【详解】解:(Ⅰ)设数列的公比为,∴,∴,∴或,(Ⅱ)由(Ⅰ)知或,∴或 (舍去),解得.【点睛】本题主要考查等比数列的性质和通项公式以及前项和公式,考查学生的计算能力,注意要进行分类讨论.18.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1∶3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.(1)求a的值,并计算所抽取样本的平均值 (同一组中的数据用该组区间的中点值作代表);(2)填写下面的2×2列联表,并判断在犯错误的概率不超过0.05的前提下能否认为“获奖与学生的文、理科有关”.附表及公式:【答案】(1),;(2)在犯错误的概率不超过0.05的前提下能认为“获奖与学生的文、理科有关”【解析】试题分析:(1)利用频率和为1,求的值,利用同一组中的数据用该组区间的中点值作代表,计算所抽取样本的平均值;(2)求出,与临界值比较,即可得出结论.试题解析:(1),.(2)2×2列联表如下:因为,所以在犯错误的概率不超过的前提下能认为“获奖与学生的文、理科有关”.点睛:本题考查频率分布直方图,考查独立性检验知识的运用,考查学生的计算能力,属于中档题;在频率分布直方图中,注意纵轴的意义及所有条形的面积和为1,对于独立性检验解题步骤:(1)认真读题,取出相关数据,作出列联表;(2)根据列联表中的数据,计算的观测值;(3)通过观测值与临界值比较,得出事件有关的可能性大小.19.如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中点,则,而平面平面,而,∴平面.(Ⅱ)根据三棱锥的体积公式,得.【点睛】本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.20.已知点和椭圆. 直线与椭圆交于不同的两点.(Ⅰ) 求椭圆的离心率;(Ⅱ) 当时,求的面积;(Ⅲ)设直线与椭圆的另一个交点为,当为中点时,求的值 .【答案】(Ⅰ)(Ⅱ)4(Ⅲ)【解析】【分析】(Ⅰ)利用已知条件求出a,c,然后求解椭圆的离心率即可;(Ⅱ)设P(x1,y1),Q(x2,y2),直线l的方程为,与椭圆联立,求出坐标,然后求解三角形的面积;(Ⅲ)法一:设点C(x3,y3),P(x1,y1),B(0,﹣2),结合椭圆方程求出P(x1,y1),然后求解斜率.法二:设C(x3,y3),显然直线PB有斜率,设直线PB的方程为y=k1x﹣2,与椭圆联立,利用韦达定理求出P的坐标,求解斜率即可.【详解】(Ⅰ)因为,所以所以离心率(Ⅱ)设若,则直线的方程为由,得解得设,则(Ⅲ)法一:设点,因为,,所以又点,都在椭圆上,所以解得或所以或法二:设显然直线有斜率,设直线的方程为由,得所以又解得或所以或所以或【点睛】本题考查椭圆的简单性质以及直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.21.已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可; (Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.【详解】解:(Ⅰ)当时,,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:.∴当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是.(Ⅱ)对任意的和,恒成立等价于:,,恒成立.即,,恒成立.令:,,,则得,由此可得:在区间上单调递减,在区间上单调递增,∴当时,,即又∵,∴实数的取值范围是:.【点睛】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题.22.在平面直角坐标系中,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于两点,求点到两点的距离之积.【答案】(1),;(2).【解析】【分析】(1)消去曲线的参数方程中的参数后可得普通方程,运用转化公式并结合直线的极坐标方程可得直线的直角坐标方程.(2)由题意得到直线的参数方程,代入曲线的普通方程后,再根据直线参数方程中参数的几何意义求解.【详解】(1)消去方程(为参数)中的参数,可得曲线的普通方程为.由,得,将代入上式可得,所以直线的直角坐标方程为.(2)由题意可得直线的倾斜角为,且过点,所以直线的参数方程为(为参数),把参数方程代入方程,化简得,设,两点所对应的参数分别为,,则,所以.即点到,两点的距离之积为1.【点睛】对于直线参数方程的标准形式中t的几何意义,有如下常用结论:①直线与圆锥曲线相交时,若两交点M1,M2对应的参数分别为,则弦长;②若定点M0是弦M1M2的中点, M1,M2对应的参数分别为,则;③设弦M1M2中点为M,则点M对应的参数值 (由此可求|M2M|及中点坐标).23.设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1).(2).【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.详解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

内蒙古赤峰市2020届高三数学模拟考试试题 文(含解析)

内蒙古赤峰市2020届高三数学模拟考试试题 文(含解析)

内蒙古赤峰市 2020 届高三数学模拟考试试题 文(含解析)一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则 中的元素个数为( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】先求 B,再求交集则元素个数可求【详解】由题,则,则 中的元素个数为 3 个故选:C【点睛】本题考查交集的运算,描述法,是基础题2.已知是纯虚数,复数 是实数,则 ( )A.B.C.D.【答案】D 【解析】 【分析】 根据复数的运算及复数相等,即可得到结论.【详解】∵ 是实数,∴设a,a 是实数,则 z+1=a(2﹣i)=2a﹣ai, ∴z=2a﹣1﹣ai, ∵z 为纯虚数, ∴2a﹣1=0 且﹣a≠0,即a ,∴z=2a﹣1﹣ai,故选:D.【点睛】本题主要考查复数的运算,以及复数的有关概念,利用待定系数法是解决本题的关 键.3.《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等 马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中 等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐 王获胜的概率是( )A.B.C.D.【答案】A 【解析】 【分析】 首先求出满足 “从双方的马匹中随机选一匹马进行一场比赛” 这一条件的事件数,然后求 出满足“齐王获胜”这一条件的事件数,根据古典概型公式得出结果. 【详解】解:因为双方各有 3 匹马, 所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为 9 种, 满足“齐王获胜”的这一条件的情况为:齐王派出上等马,则获胜的 事件数为 3; 齐王派出中等马,则获胜的事件数为 2; 齐王派出下等马,则获胜的事件数为 1; 故满足“齐王获胜”这一条件的事件数为 6 种,根据古典概型公式可得,齐王获胜的概率,故选 A.【点睛】本题考查了古典概型问题,解题的关键是求出满足条件的事件数,再根据古典概型 的计算公式求解问题,属于基础题.4.若函数是定义在 上的奇函数,在上是增函数,且,,则使得的 的取值范围是( )A.B.C.D.【答案】C【解析】【分析】求解不等式的范围,当 时,显然不成立,可等价转化为当 时,求解的解集,当 时,求解的解集,即当 时,求解的解集,当 时,求解的解集,再根据函数 的性质求解不等式.【详解】解:因为是 R 上的奇函数,且在上是增函数,所以在上也是增函数,又因为,所以,,当 时,不等式的取值范围,等价于的取值范围,即求解的取值范围,根据函数在上是增函数,解得,,当 时,不等式的取值范围,等价于的取值范围,即求解的取值范围,根据函数在上是增函数,解得,,当 时,,不成立,故的 的取值范围是,故选 C.【点睛】本题考查了函数性质(单调性、奇偶性等)的综合运用,解题的关键是要将函数的问题转化为函数的问题,考查了学生转化与化归的思想方法.5.如图,网格纸上的小正方形的边长为 1,粗实线画出的是某几何体的三视图,则该几何体 的外接球的体积为( )A.B.C.D.【答案】B 【解析】 【分析】 根据几何体的三视图,可以得出该几何体是直三棱柱,且上下两底面是等腰直角三角形,侧 棱长为 4,底面等腰直角三角形的腰长为 4,找出球心的位置,求出球的半径,从而得出三 棱柱外接球的体积. 【详解】解:根据几何体的三视图,可以得出该几何体是直三棱柱,如图所示,其中四边形、四边形均是边长为 4 的正方形,三角形 、三角形是,的等腰直角三角形,设 的外接圆圆心为 ,故 即为 的中点,的外接圆圆心为 ,故 即为 的中点,设球的球心为 ,因为三棱柱的为直三棱柱,所以球的球心 为 的中点,且直线 与上、下底面垂直,连接 ,外接球的半径即为线段 的长,所以在中,,,故,即球的半径为 ,所以球的体积为,故选 B.【点睛】本题考查了柱体外接球的体积问题,由三视图解析出该几何体是前提,准确想象出 三棱柱各点、各棱、各面与外接球的位置关系,并且从立体图形中构建出平面图形是解得球半径的关键,属于中档题.6.我们可以用随机数法估计 的值,如图所示的程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生 内的任何一个实数).若输出的结果为 7840,则由此可估计 的近似值为( )A. 3.119B. 3.124C. 3.136D. 3.151【答案】C【解析】【分析】程序的 功能是利用随机模拟实验的方法求取(0,1)上的 x,y,计算 x2+y2+<1 发生的概率,代入几何概型公式,即可得到答案.【详解】x2+y2<1 发生的概率为,当输出结果为 7840 时,i=10001,m=7840,x2+y2<1 发生的概率为 P,∴,即 π=3.136故选:C. 【点睛】本题考查了程序框图的应用问题和随机模拟法求圆周率的问题,也考查了几何概率 的应用问题,是综合题.7.已知是等差数列,且,,则()A. -5 【答案】B 【解析】 【分析】B. -11C. -12由是等差数列,求得 ,则 可求D. 3【详解】∵是等差数列,设,∴故故选:B 【点睛】本题考查等差数列的通项公式,考查计算能力,是基础题8.设定义在 上的函数 满足,且,则下列函数值为-1 的是( )A.B.C.D.【答案】D【解析】【分析】由,得到函数的周期是 4,根据分段函数的表达式结合函数的周期性进行求解即可.【详解】由得 f(x-4)=﹣f(x-2)=f(x),则函数的周期是 4,则=,=-1即函数值为-1 的为 ,故选:D.【点睛】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用代入法和转化法是解决本题的关键.9.要得到函数的图象,只需将函数的图象( )A. 向左平移 个单位B. 向右平移 个单位C. 向左平移 个单位D. 向右平移 个单位【答案】C 【解析】 【分析】由条件利用二倍角公式和两角和的正弦公式,化简函数的解析式,再利用 y=Asin(ωx+φ)的图象变换规律,可得结论.【详解】函数=sin(2x )=sin2(x ),故把函数的图象向左平移 个单位,可得函数的图象,故选:C. 【点睛】本题主要考查二倍角公式和两角和的 正弦公式,y=Asin(ωx+φ)的图象变换规 律,熟记变换原则是关键,属于基础题.10.已知 为双曲线 的两个焦点, 是 上的一点,若,且,则 的离心率为( )A. 2B.C.D.【答案】B【解析】【分析】运用直角三角形的勾股定理和双曲线的定义,结合已知条件,由离心率公式即可得到所求值.【详解】由双曲线的定义可得=2a,又得点 P 满足 即有 c a,,可得=4c2,则离心率 e 故选:B. 【点睛】本题考查双曲线的定义,以及直角三角形的勾股定理,考查离心率的求法,以及运 算能力,属于基础题.11.已知直三棱柱 余弦值为( )的所有棱长都相等, 为 的中点,则 与 所成角的A.B.C.D.【答案】A【解析】【分析】由题意,取 AC 的中点 N,连接 N 和 NB,则 N∥AM,可得 AM 与 B 所成角为∠N B 或其补角,在△ NB 中,利用余弦定理即可求解 AM 与 B 所成角的余弦值.【详解】取 AC 的中点 N,连接 N 和 NB,则 N∥AM,所以 AM 与 B 所成角为∠NC1B 或其补角,设所有棱长为 2,则 N=B=2 ,BN= ,在△ NB 中,由余弦定理 cos∠N B=故选:A【点睛】本题考查线线角的余弦值的求法,是基础题,解题时要认真审题,注意余弦定理的 合理运用12.已知函数在区间 上只有一个零点,则实数 的取值范围是( )A.或B.或C. 【答案】D 【解析】 【分析】 原问题等价于 xlnx﹣kx+1=0 在区间[D. ]上有一个实根,即或 在区间[ ]上有一个实根.令,求出其值域,即可得实数 k 的取值范围.【详解】原问题等价于 xlnx﹣kx+1=0 在区间[ ]上有一个实根,∴在区间[ ]上有一个实根.令,0,可得 x=1,当时,f′(x)<0,此时函数 f(x)递减,当∈(1,e]时,f′(x)>0.此时函数 f(x)递增,∴f(x)≥f(1)=1,且,1+e,又﹣1+e,∴实数 k 的取值范围是 k=1 或 故选:D. 【点睛】本题考查了导数的应用,考查了函数与方程思想、转化思想,属于中档题.二、填空题(将答案填在答题纸上)13.设 的满足约束条件,则的最大值为______.【答案】 【解析】 【分析】先将题中 , 满足约束条件对应的可行域画出,目标函数意义为一条斜率为-2 的直线,通过平移求解出最值.的几何【详解】解:如图, , 满足约束条件 边界),对应的可行域为五边形内部(含目标函数的几何意义为一条斜率为-2、截距为 的直线,当直线经过点 O 时,直线的截距最小,最小,故.【点睛】代数问题转化为几何问题解决,往往能简化计算,但必须要将每一个代数形式的几何意义分析到位,这个是数形结合的必要前提.14.设向量 的模分别为 1,2,它们的夹角为 ,则向量 【答案】 【解析】 【分析】与 的夹角为____.利用向量 夹角公式 cosθ,先求出的模以及与 的数量积,再代入公式计算求解.【详解】∵()22﹣2 •∴||,()• =3,∴cosθ,∴θ=2=12﹣2×1×2×cos60°+22=3,故答案为 【点睛】本题考查了向量夹角的计算,涉及到向量数量积的计算,模的计算知识比较基础, 掌握基本的公式和技巧即可顺利求解15.若过点且斜率为 的直线与抛物线交点为 ,若,则 ____.【答案】【解析】【分析】的准线相交于点 ,与 的一个由直线方程为与准线得出点 坐标,再由可得,点 为线段的中点,由此求出点 A 的坐标,代入抛物线方程得出 的值.【详解】解:抛物线的准线方程为过点且斜率为 的直线方程为,联立方程组,解得,交点 坐标为,设 A 点坐标为,因为,所以点 为线段 的中点,所以,解得,将代入抛物线方程,即,因为 , 解得 . 【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.16.设数列 满足 ______.【答案】 【解析】 【分析】 将 相减求 即可 【详解】由题,且 平方得比数列,,则,则数列的前 项的和,进而得 的通项,得,由 错位,∴=0,故,所以 为等两式作差得-即 故答案为 【点睛】本题考查数列的递推关系求通项公式,错位相减求和,考查推理及计算能力,是中 档题三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.设 的内角 , , 所对的边长分别是 , ,,且满足.(1)求角 的大小;(2)若, ,求 的面积.【答案】(1)(2)【解析】 【分析】(1)由正弦定理得得,进而得【详解】(1)又, 故又,结合余弦定理得 ,则面积可求,则 B 可求(2)由余弦定理,. (2)由余弦定理得:,即 又. 【点睛】本题考查正余弦定理,三角形面积公式,熟记定理及面积公式是关键,是基础题18.国家统计局进行第四次经济普查,某调查机构从 15 个发达地区,10 个欠发达地区,5 个贫困地区中选取 6 个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查 小区.普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能 会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户9060150合计13070200(1)写出选择 6 个国家综合试点地区采用的抽样方法; (2)根据列联表判断是否有 97.5%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”,分析造成这个结果的原因并给出合理化建议.附:参考公式:,其中参考数据:0.500.400.250.150.100.050.0250.455 0.708 1.323 2.072 2.706 3.841 5.024【答案】(1) 分层抽样(2)见解析 【解析】 【分析】 (1)由分层抽样的定义与特点结合题意确定为分层抽样;(2)计算 的值即可进行判断, 再分析原因给出建议即可 【详解】(1)分层抽样 (2)由列联表中的数据可得 的观测值所以有 97.5%的把握认为“此普查小区的入户登记”是否顺利与普查对象类别有关 原因:1.居民对普查不够重视, 不愿意积极配合; 2.企事业单位工作时间固定,个体经营者相对时间不固定 建议:1.要加大宣传力度,宣传要贴近居民生活,易被居民接受; 2.合理的安排普查时间,要结合居民工作特点. 【点睛】本题考查分层抽样,考查独立性检验, 的计算,考查计算能力,是基础题19.如图,在四棱锥中, 底面 ,,,,点 为棱 的中点.(1)证明:;(2)若 与底面 所成角的正弦值为 ,求点 到平面 的距离.【答案】(1)见证明;(2)【解析】【分析】(1)连接,且面 ,即可证明,证明是正方形得,再由(2)由 平面 ,得 与底面角为,由,得,得求解距离即可证明 平 所成的平面,利用【详解】证明:(1)连接,BE,且,, 为棱 的中点,且是正方形,又 平面 , 平面 ,平面 ,,平面又平面 ,(2)因为 平面 ,所以 与底面 所成的平面角为 ,且,∵,∴tan = 得设点 到平面 的距离为 ,由已知得,,得,所以,点 到平面 的距离为 .【点睛】本题考查线面垂直的判定,线面角的应用,点面距离的考查,考查空间想象和推理 能力,是中档题20.顺次连接椭圆应该的四个顶点恰好构成了一个边长 为且面积为 的菱形.(1)求椭圆 的方程;(2)设,过椭圆 右焦点 的 直线交于 两点,若对满足条件的任意直线,不等式恒成立,求 的最小值.【答案】(1)(2)【解析】 【分析】(1)列 a,b,c 的方程组求解即可(2)当直线垂直于 轴时得,当直线不垂直于 轴时,设直线与椭圆联立,利用,代入韦达定理得即可求解【详解】(1)由已知得:,解得所以,椭圆 的方程为 (2)设当直线垂直于 轴时,此时,当直线不垂直于 轴时,设直线由,得且 ,要使不等式恒成立,只需,即 的最小值为 .【点睛】本题考查椭圆的方程,直线与椭圆的位置关系,向量坐标化运算及数量积,考查运 算求解能力,是中档题21.已知函数(1)若 ,求函数 的极值和单调区间;(2)若,在区间 上是否存在 ,使,若存在求出实数 的取值范围;若不存在,请说明理由.【答案】(1) 函数的单调递减区间为 ,单调递增区间为极小值为 3,无极大值(2)见解析 【解析】 【分析】(1), 判 断 符 号 变 化 , 则 极 值 和 单 调 区 间 可 求 ,( 2 )由时,,时得为函数的唯一极小值点,讨论当 求解时和当 时,的 a 的范围即可【详解】(1)当 时,时,,且 有极小值时,故函数的单调递减区间为 ,单调递增区间为极小值为 3,无极大值.(2)时,,时为函数的唯一极小值点又,当时在区间 上若存在 ,使,则,解得当 时,在为单调减函数,,不存在,使综上所述,在区间 上存在 ,使,此时【点睛】本题考查导数与函数的 单调性,函数的最值,极值与单调区间的求解,分类讨论思 想,考查推理能力,是中档题22.选修 4-4:坐标系与参数方程 在直角坐标系 中,曲线 的参数方程为的直线与曲线 交于 两点. (1)求 的取值范围; (2)求 中点 的轨迹的参数方程.为参数),过点且倾斜角为【答案】(1)(2)(为参数,).【解析】 【分析】 (1)求出曲线和直线的普通方程,通过直线与圆相交求出斜率的范围,从而得出倾斜角的 范围;(2)设出 对应的参数,联立直线与圆的方程,借助韦达定理表示 的参数,从而得出 点 的轨迹的参数方程.【详解】解:(1) 曲线 的直角坐标方程为,当 时,与 交于两点,当 时,记,则的方程为,与 交于两点当且仅当,解得 即或,或,综上 的取值范围是 .(2)的参数方程为(为参数,),设 对应的参数分别为,则且 满足,由韦达定理可得:,故,又点 的坐标 满足所以点 的轨迹的参数方程为(为参数,).【点睛】本题考查了直线的倾斜角问题,常见解法是转化为求斜率的范围问题;还考查了点 的轨迹问题,常见解法有相关点法、几何图形性质等方法.23.已知函数,.(1)若,不等式恒成立,求实数 的取值范围;(2)设,且,求证:.【答案】(1)(2)见证明【解析】【分析】(1)不等式恒成立,等价于,然后求出函数解决问题;的最小值,从而(2)要证,即证明即可.【详解】解:(1)由,,,所以 的取值范围是(2)由(1),当且仅当, 时等号成立,,然后借助于基本不等式证 ,,【点睛】本题考查了基本不等式、绝对值不等式等知识,运用基本不等式时,要注意题意是 否满足“一正、二定、三相等”的条件,熟练运用绝对值不等式也是解决本题的关键.。

内蒙古赤峰市2022-2023学年高三上学期期末模拟考试 数学(文)含答案

内蒙古赤峰市2022-2023学年高三上学期期末模拟考试 数学(文)含答案

赤峰市高三年级期末模拟考试试题文科数学(答案在最后)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3A x x =∈≤N ,{}(3)(3)0B x x x =∈-+<R ,则A B ⋂=( ) A .{0,1,2}B .{}33x x ∈-<<RC .{}13x x ∈≤<RD .{1,2}2.已知a ∈R ,(5i)i 15i a +=+,(i 为虚数单位),则a =( ) A .1-B .1C .3-D .33.5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造出更多的经济价值.如图1所示的统计图是某单位结合近几年的数据,对今后几年的5G 直接经济产出做出的预测.则以下结论错误的是( )A .运营商的5G 直接经济产出逐年增加B .设备制造商的5G 直接经济产出前期增长较快,后期放缓C .设备制造商在各年的5G 直接经济产出中一直处于领先地位D .信息服务商与运营商的5G 直接经济产出的差距有逐步拉大的趋势 4.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m α⊥,n α∥,则m n ⊥ ②若m n ∥,m α⊄,n α⊂,则m α∥ ③若αβ⊥,m α∥,则m β⊥ ④若m α⊥,m β⊂,则αβ⊥其中正确的命题个数为( ) A .0个B .1个C .2个D .3个5.已知向量a ,b 的夹角为120︒,||4a =,||2b =,则向量b 在向量a 方向上的投影为( )A .4B .2-C D .1-6.设0.732a ⎛⎫= ⎪⎝⎭,0.723b ⎛⎫= ⎪⎝⎭,()334log log 4c =,则( )A .c b a <<B .a b c <<C .c a b <<D .a c b <<7.函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =( ) A .0B .1-C .2D .18.已知函数1()sin()f x x ωϕ=-(其中0ω>,||ϕπ<)的部分图象如图所示,则ω与ϕ分别等于( )A .1,3π-B .1,23π-C .2,23π D .2,3π9.已知ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .ABC △的面积为且cos cos cos c a bC A B+=+,BC 的中点为D ,则AD 的最小值为( )A .B .4C .D .10.双曲线2222:1(0,0)x y C a b a b -=>>的左顶点为A ,点M ,N 均在C 上,且关于y 轴对称.若直线AM ,AN 的斜率之积为2-,则C 的离心率为( )A B .2C .2D 11.已知三棱锥P ABC -的所有顶点都在球O 的球面上,PC 为球O 的直径,且PC OA ⊥,PC OB ⊥,AOB △为等边三角形,三棱锥P ABC -O 的表面积为( ) A .4πB .8πC .12πD .16π12.已知函数2()2ln xe f x a x ax x=+-存在唯一的极值点,则实数a 的取值范围为( )A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎤-∞ ⎥⎝⎦C .22,44e e ⎛⎫- ⎪⎝⎭D .22,44e e ⎡⎤-⎢⎥⎣⎦二、填空题:全科试题免费下载公众号《高中僧课堂》本大题共4小题,每小题5分,共20分. 13.已知tan 3α=,则cos2α=______.14.在[1,1]-上随机取一个数a ,则事件“直线y ax =与圆22(5)9x y -+=相离”发生的概率为______.15.抛物线2:2C y x =的焦点为F ,过C 上一点P 作C 的准线l 的垂线,垂足为A ,若直线AF 的斜率为a -,则PAF △的面积为______. 16.设有下列四个命题:①1p :x ∃∈R ,x e m ≤为假命题,则(,0]m ∈-∞;②2p :函数212115y x x x ⎛⎫=+<< ⎪-⎝⎭的最小值为1+ ③3p :关于x 的不等式220x ax a -+>对x ∈R 恒成立的一个必要不充分条件是102a <<;④4p :设函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,如果n m >,且()()f n f m =,令t n m =-,那么t 1;则上述命题为真命题的序号是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答. (一)必考题:共60分17.(12分)已知单调递增的等差数列{}n a ,且12a =,2a ,32a +,64a +成等比数列. (1)求{}n a 的通项公式;(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k +=⋅⋅⋅之间插入2k,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.18.(12分)为了调查高中生文理科偏向情况是否与性别有关,设计了“更擅长理科,理科文科无差异,更擅长文科三个选项的调查问卷”,并从我校随机选择了55名男生,45名女生进行问卷调查.问卷调查的统计情况为:男生选择更擅长理科的人数占25,选择文科理科无显著差异的人数占15,选择更擅长文科的人数占25:女生选择更擅长理科的人数占15,选择文科理科无显著差异的人数占35,选择更擅长文科的人数占15.据调查结果制作了如下22⨯列联表.(1)请将22⨯的列联表补充完整,并判断能否有95%的把握认为文理科偏向与性别有关;(2)从55名男生中,根据问卷答题结果为标准,采取分层抽样的方法随机抽取5人,再从这5人中随机选取2人,若所选的2人中更擅长理科的人数恰为1人的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(12分)在四棱锥P ABCD -中,90ABC ACD ∠=∠=︒,60BAC CAD ∠=∠=︒,PA ⊥平面ABCD ,E 为PD 的中点,M 为AD 的中点,24PA AB ==.(1)取PC 中点F ,证明:PC ⊥平面AEF ; (2)求点D 到平面ACE 的距离.20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为4,离心率为12.(1)求椭圆C 的方程;(2)已知点(,0)A a ,(0,)B b ,直线l 过坐标原点O 交椭圆C 于P ,Q 两点(点A ,B 位于直线l 的两侧).设直线AP ,AQ ,BP ,BQ 的斜率分别为1k ,2k ,3k ,4k ,求证:1234k k k k +为定值. 21.(12分)已知函数()ln (1),f x x a x a =-+∈R .(1)讨论函数的单调性;(2)对任意0x >,求证:22(1)()xe a xf x xe-+>.(二)选考题:共10分.请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题计分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为244,x t y t⎧=⎨=⎩(t 为参数),以O 为极点,x 轴正半拍为极轴建立极坐标系,曲线2C sin 104πθ⎛⎫+-= ⎪⎝⎭,且两曲线1C 与2C 交于M ,N 两点. (1)求曲线1C ,2C 的直角坐标方程; (2)设(2,1)P -,求PM PN -. 23.(10分)【选修4-5:不等式选讲】 已知函数()|1|2|1|f x x x =++-. (1)解不等式()22f x x ≤+;(2)设函数()f x 的最小值为t ,若0a >,0b >,且a b t +=,证明:22111a b a b +≥++. 赤峰市高三1·30模拟考试试题文科数学参考答案一、选择题:本大题共12小题,每小题5分,共60分二、填空题:本大题共4小题,每小题5分,共20分. 13.45-14.14 15.15216.①④ 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)(1)解:设递增等差数列{}n a 的公差为(0)d d >,由22a d =+,322a d =+,625a d =+,有2(222)(2)(254)d d d ++=+++,化简得24d =.则2d =,1(1)2n a a n d n =+-=,所以{}n a 的通项公式为2n a n =.(2)解:因为k a 与1(1,2,)k a k +=⋅⋅⋅之间插入2k ,所以在数列{}n b 中有10项来自{}n a ,10项来自{}2n,所以()102021210(220)2156212T -+=+=-.18.(12分)(1)解:补充的列联表如下:所以22100(2236933)100334.628 3.841554531693123K ⨯⨯-⨯⨯==≈>⨯⨯⨯⨯, 所以有95%的把握认为文理科偏向与性别有关.(2)由题意可知,选取的5人中,有2人更擅长理科,3人不更擅长理科, 用1A ,2A 表示更擅长理科的两人,用1B ,2B ,3B 表示其他三人, 则从这5人中,任取两人共有以下10种情况:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()21,B B ,()31,B B ,()23,B B ,满足条件的有()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B 共6种情况,所以概率为35.19.(12分)(1)证明:因为PC 中点F ,在Rt ABC △中,2AB =,60BAC ∠=︒,则BC =4AC =. 而4PA =,则在等腰三角形APC 中,PC AF ⊥①.又在PCD △中,PE ED =,PF FC =,则EF CD ∥,因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 则PA CD ⊥,又90ACD ∠=︒,即AC CD ⊥,AC PA A ⋂=,则CD ⊥平面P AC ,因为PC ⊂平面P AC ,所以PC CD ⊥,因此EF PC ⊥②. 又EF AFF ⋂=,由①②知PC ⊥平面AEF ;(2)在Rt ACD △中,CD =4AC =,∴ACD S =△,又EM PA ∥,PA ⊥平面ABCD ,∴EM⊥平面ABCD ,即EM 为三棱锥E ACD -的高,∴112333E ACD ACD V S EM -=⋅=⋅=△,在ACE △中,AE CE ==4AC =,∴8ACE S =△,设点D 到平面ACE 的距离为h ,则133D ACE E ACD ACE V V S h --==⋅⋅=△,∴h =D 到平面ACE 的距离为20.(12分)(1)解:由题意得24,1,2a =⎧=解得24a =,23b =.所以椭圆C 的方程为22143x y +=. (2)点A ,B 的坐标分别为(2,0),.设点P 的坐标为(,)m n ,由对称性知点Q 的坐标为(,)m n --.所以12n k m =-,22n k m =+.所以2122224n n n k k m m m =⋅=-+-. 又因为点P 在椭圆22:143x y C +=上,所以22143m n +=,即22443m n -=-,所以21223443n k k n ==--. 同理3434k k =-.所以2234333442k k k k ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭为定值.21.(12分)(1)解:由题意得()f x 的定义域是(0,)+∞,11()axf x a x x-=-=', 当0a ≤时,令()0f x '>恒成立,∴()f x 在(0,)+∞单调递增, 当0a >时,令()0f x '>,解得10x a <<,令()0f x '<,解得:1x a>, ∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减; 综上:当0a ≤时,()f x 在(0,)+∞单调递增, 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减;(2)证明:要证22(1)()x e a x f x xe -+>,即证22ln 0xe x e x ⋅->, 令22()ln x e g x x e x =⋅-,则2222(1)()x x e e x g x e x--=', 令2()2(1)xr x x e e x =--,则2()2x r x xe e '=-,由()r x '在(0,)+∞单调递增,且2(1)20r e e ='-<,2(2)30r e ='>,∴存在唯一的实数0(1,2)x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增, ∵(0)0r <,(2)0r =,∴当()0r x >时,2x >,当()0r x <时,02x <<,∴()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,∴()(2)1ln20g x g ≥=->,综上,22ln 0x e x e x ⋅->,即22(1)()xe a xf x xe-+>. 22.(10分)选修4- 4:坐标系与参数方程(1)解:由曲线1C 的参数方程消去参数t ,得24y x =,即曲线1C 的直角坐标方程为24y x =. 由曲线2C 的极坐标方程,得sin cos 10ρθρθ+-=,则10x y +-= 即2C 的直角坐标方程为10x y +-=.(2)解:因为(2,1)P -在曲线2C 上,所以曲线2C的参数方程为2,21x t y ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),代入1C的直角坐标方程,得21702t +-=. 设M ,N 对应的参数分别为1t ,2t,则12t t +=-,1214t t =-,所以12||||||PM PN t t -=+= 23.(10分)选修4-5:不等式选讲(1)解:不等式等价于13122x x x ≤-⎧⎨-+≤+⎩或11322x x x -<<⎧⎨-+≤+⎩或13122x x x ≥⎧⎨-≤+⎩,解得x ∈∅或113x ≤<或13x ≤≤.所以不等式()22f x x ≤+的解集为133x x ⎧⎫≤≤⎨⎬⎩⎭. (2)解:法一:由31,1()3,1131,1x x f x x x x x -+≤-⎧⎪=-+-<<⎨⎪-≥⎩知,当1x =时,min ()(1)2f x f ==,即2a b +=.法二:()|1|2|1|(|1||1|)|1||11||11|2f x x x x x x x x =++-=++-+-≥+-++-=, 当且仅当1x =时,取得等号,则()f x 的最小值为2,即2a b +=.法一:22222222(1)(1)()()44111(1)(1)()13332a b a b b a ab a b a b a b a b a b ab a b ab ab a b ++++++++====≥=++++++++++⎛⎫+ ⎪⎝⎭, 当且仅当1a b ==,不等式取得等号,所以22111a b a b +≥++.法二:由柯西不等式可得:22222111()1114114a b a b a b a b a b a b ⎛⎫++++=+≥+= ⎪++++⎝⎭.当且仅当1a b ==,不等式取得等号,所以22111a b a b +≥++.。

2020-2021学年内蒙古赤峰市高三统一考试(一模)数学(文)试题及答案解析

2020-2021学年内蒙古赤峰市高三统一考试(一模)数学(文)试题及答案解析

高考数学模拟试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1页~第2页,第II 卷第3页~第6页.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.全卷满分150分,考试时间为120分钟.第Ⅰ卷(选择题 共60分)一、选择题(每小题5 分,共12小题,满分60分)1.设集合}032|{2<--=x x x M ,}0log |{21<=x x N ,则N M I 等于( )(A ))1,1(- (B ))3,1( (C ))1,0( (D ))0,1(-2.下列函数中,在)0(∞+,上单调递增,并且是偶函数的是( )(A )2x y = (B )3x y -= (C )||lg x y -= (D )x y 2=3.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ).(A )9(B )10(C )19(D )294.已知向量(2,1)=a ,(,)x y =b ,则“4x =-且2y =-”是“∥a b ”的(A) 充分不必要条件 (B) 必要不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件5.某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是(A )23 (B )43(C )53 (D )836.在△ABC 中,点G 是△ABC 的重心,若存在实数,λμ,使AG AB AC λμ=+u u u r u u u r u u u r,则( )(A )11,33λμ== (B )21,33λμ== (C )12,33λμ== (D )22,33λμ== 7. 已知直线m 和平面α,β,则下列四个命题中正确的是(A ) 若αβ⊥,m β⊂,则m α⊥ (B ) 若//αβ,//m α,则//m β (C ) 若//αβ,m α⊥,则m β⊥ (D ) 若//m α,//m β,则//αβ俯视图侧(左)视图正(主)视图111128.甲、乙两名同学在5次体能测试中的成绩的茎叶图如图所示,设1x ,2x 分别表示甲、乙两名同学测试成绩的平均数,1s ,2s 分别表示甲、乙两名同学测试成绩的标准差,则有 (A) 12x x =,12s s < (B) 12x x =,12s s >(C) 12x x >,12s s >(D)12x x =,12s s =9.△ABC 的两个顶点为A(-4,0),B(4,0),△ABC 周长为18,则C 点轨迹为( ) (A )191622=+y x (y ≠0) (B ) 192522=+x y (y ≠0)(C )191622=+x y (y ≠0) (D )192522=+y x (y ≠0)10. 函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到x y ωsin =的图象,只需把)(x f y =的图象上所有点( ) (A ) 向左平移6π个单位长度 (B )向右平移12π个单位长度 (C ) 向右平移6π个单位长度 (D )向左平移12π个单位长度11.已知直线x y =按向量a 平移后得到的直线与曲线)2ln(+=x y 相切,则a 可以为 (A )(0,1) (B )(1,0) (C )(0,2) (D )(2,0)12.已知两点(1,0)M -,(1,0)N ,若直线(2)y k x =-上至少存在三个点P ,使得△MNP 是直角三角形,则实数k 的取值范围是 (A )[5,5]- (B )11[,]33-(C ) 11[,0)(0,]33-U (D )33[,0)(0,]-U数学试题(文科)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题(每小题5分,共4小题,满分20分) 13. 若复数i Z +=11, i Z -=32,则=12Z Z . 14.若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最大值是____________.15. 给出一个如图所示的流程图, 若要使输入的x 值与 输出的y 值相等, 则这样的x 值的集合为____________.16.已知数列{}n a 是递增数列,且对任意的自然数n ,2n a n n λ=+恒成立,则实数λ的取值范围为.三、解答题(共6小题,满分70分)17.(本题满分12分)在ABC ∆中,内角,,A B C 对边分别为,,a b c ,且sin 3cos b A a B =. (Ⅰ)求角B 的大小;(Ⅱ)若3,sin 2sin b C A ==,求,a c 的值.18.(本题满分12分)如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证://PB 平面AEC ;(Ⅱ)若4PA =,求点E 到平面ABCD 的距离.EDPCA19.(本题满分12分)有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示: (I )求频率分布直方图中m 的值;(Ⅱ) 分别求出成绩落在[70,80),[80,90),[90,100]中的学生人数;(III )从成绩在[80,100]的学生中任选2人,求所选学生的成绩都落在[80,90)中的概率.20.(本题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,且C 上任意一点到两个焦点的距离之和都为4.(Ⅰ)求椭圆C 的方程;(Ⅱ) 设直线l 与椭圆交于P 、Q ,O 为坐标原点,若90POQ ∠=︒,求证2211PQOQ+为定值.4653100频率 组距2xyQOP21.(本小题满分12分) 已知函数1()1e xf x x =+-. (Ⅰ)求函数()f x 的极小值;(Ⅱ)过点(0,)B t 能否存在曲线()y f x =的切线,请说明理由.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,BAC ∠的平分线AD 交⊙O 于D ,过点D 作DE AC ⊥交AC 的延长线于点E ,OE 交AD 于点F .若35AC AB =. (Ⅰ)OD ∥AE ; (Ⅱ)求FDAF的值.23. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度. 已知曲线2:sin 2cos C a ρθθ=(0)a >,过点(2,4)P --的直线l的参数方程为22,2(24.2x t t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩为参数).直线l 与曲线C 分别交于M N 、. (Ⅰ)求a 的取值范围;(Ⅱ)若||||||PM MN PN 、、成等比数列,求实数a 的值.24. (本小题满分10分)选修4-5:不等式选讲已知函数)m x x x f --++=|2||1(|log )(2. (Ⅰ)当7=m 时,求函数)(x f 的定义域;(Ⅱ)若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.数学试题(文科)参考答案一、选择题:BABA BACB DCAD 二、填空题:13、12i -; 14、53; 15、{}0,1,3; 16、()3,-+∞ 三、解答题:17. 解:(Ⅰ)因为sin 3cos b A a B =,由正弦定理sin sin a bA B=得:sin 3cos B B =,tan 3B = 因为02B π<<,所以3B π=---------------------------6分(Ⅱ)因为sin 2sin C A =,由正弦定理知2c a = ① 由余弦定理2222cos b a c ac B =+-得229a c ac =+- ② 由①②得3,23a c ==。

内蒙古自治区赤峰市元宝山矿区中学2020年高三数学文模拟试卷含解析

内蒙古自治区赤峰市元宝山矿区中学2020年高三数学文模拟试卷含解析

内蒙古自治区赤峰市元宝山矿区中学2020年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,则()A. B. C. D.参考答案:D略2. 已知数列的前项和,则等于A.B.C.D.参考答案:D略3. 幂函数的图象经过点,则的值为()A.1 B.2 C.3 D.4参考答案:B4. 函数的最大值与最小值之差为A B. 4 C. 3 D.参考答案:A5. 的定义域为()A. B. C.D.参考答案:C.试题分析:由函数的表达式知,函数的定义域应满足以下条件:,解之得,所以函数的定义域为.故应选C.考点:函数的定义域.6. 下列函数在其定义域内既是奇函数又是增函数的是( )(A)y=tanx (B)y=3x (C)y= (D)y=lg|x|参考答案:B略7.抛物线准线为l,l与x轴相交于点E,过F且倾斜角等于60°的直线与抛物线在x轴上方的部分相交于点A,AB⊥l,垂足为B,则四边形ABEF的面积等于()A. B. C. D.参考答案:答案:C8. 已知下列四个命题:p1:若f(x)=2x﹣2﹣x,则?x∈R,f(﹣x)=﹣f(x);p2:若函数f(x)=为R上的单调函数,则实数a的取值范围是(0,+∞);p3:若函数f(x)=xlnx﹣ax2有两个极值点,则实数a的取值范围是(0,);p4:已知函数f(x)的定义域为R,f(x)满足f(x)=且f(x)=f(x+2),g(x)=,则方程f(x)=g(x)在区间[﹣5,1]上所有实根之和为﹣7.其中真命题的个数是()A.1 B.2 C.3 D.4参考答案:C【考点】命题的真假判断与应用;根的存在性及根的个数判断.【分析】p1:根据奇函数的定义判定即可;p2:求出函数的导数,通过讨论a的范围结合函数的单调性求出a的范围即可;p3:先求导函数,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围p4:将方程根的问题转化为函数图象的交点问题,由图象读出即可.【解答】解:关于命题p1:根据奇函数的定义可知,f(﹣x)=2﹣x﹣2x=﹣f(x),故?x∈R,f(﹣x)=﹣f(x),故命题p1正确;关于命题p2:f′(x)=;∴(1)若a>0,x≥0时,f′(x)≥0,即函数f(x)在[0,+∞)上单调递增,且ax2+1≥1;要使f(x)在R上为单调函数则x<0时,a(a+2)>0,∵a>0,∴解得a>0,并且(a+2)e ax<a+2,∴a+2≤1,解得a≤﹣1,不符合a>0,∴这种情况不存在;(2)若a<0,x≥0时,f′(x)≤0,即函数f(x)在[0,+∞)上单调递减,且ax2+1≤1;要使f(x)在R上为单调函数,则x<0时,a(a+2)<0,解得﹣2<a<0,并且(a+2)e ax>a+2,∴a+2≥1,解得a≥﹣1,∴﹣1≤a<0;综上得a的取值范围为[﹣1,0);故命题p2是假命题;关于命题p3:由题意,y′=lnx+1﹣2ax令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数y=xlnx﹣ax2有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,);故命题p3正确,关于命题p4:∵,且f(x+2)=f(x),∴f(x﹣2)﹣2=;又,∴g(x﹣2)﹣2=,当x≠2k﹣1,k∈Z时,上述两个函数都是关于(﹣2,2)对称,;由图象可得:方程f(x)=g(x)在区间[﹣5,1]上的实根有3个,x1=﹣3,x2满足﹣5<x2<﹣4,x3满足0<x3<1,x2+x3=﹣4;∴方程f(x)=g(x)在区间[﹣5,1]上的所有实根之和为﹣7.故命题p4正确;故选:C.【点评】本题考查均值不等式,主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷9. 我校在模块考试中约有1000人参加考试,其数学考试成绩ξ~N(90,a2)(a>0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生人数约为( )A.600 B.400 C.300 D.200参考答案:D略10.已知是第二象限的角,,则= ()A. B.C. D.参考答案:答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 抛物线的焦点为F,过C上一点的切线与轴交于A,则= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

……………………………………………………12 分
19. (12 分)
解:(1)连结 OC , BC AO, BC / / AD
则四边形 ABCO 为平行四边形 …………………………………………1 分
AB / /OC
AB
平面POC
AB
/
/平面POC
OC 平面POC
AB / /平面POC
AB 平面ABEF
a
a
……………………………………………3 分
又由 2a 6 ,得: a2 9, b2 3 ,故所求方程: x2 y2 1 ……5 分 93
(2)由(1)知 A(3,0), B(0, 3) P(x1, y1)(x1 y1 0) 知…………………6 分
直线 PA 的方程为 y y1 (x 3) ,令 x 0 得: M (0, 3y1 )
x1 3
x1 3
于是 BM 3 3y1 x1 3
……………………………………8 分
直线 PB 的方程为 y y1 3 x 3 ,令 y 0 得: N ( 3x1 ,0)
x1
y1 3
于是 AN 3 3x1 y1 3
……………………………………9 分
AN BM = 3 3x1 y1 3
(2 22 23+ 2n) (1 2+3 n) n …………………9 分
文科数学答案 第 1 页 共 6 页
2(1 2n ) n(n 1) n 2n1 n 2 n 2
1 2
2
2
18. (12 分)
…………………12 分
解:(1)
有接触史
无接触史
总计
有武汉旅行史 8
16
24
解:(1)由
x
y
cos sin
,消去参数
,得
x2
y2
1,
所以曲线 C 的普通方程为 x2 y2 1. …………………………………2 分
由x y4
2 0 ,得
2 cos 2
2 2
sin
4

即 cos
4
4

所以直线 l 的极坐标方程为 cos
又 h1 1 1 0 , h 1 1 1 ln 2 0
e
2 4 e 2
存在 x0 0,1,且 h(x0 ) 0
函数 h(x) 有且只有一个零点 x x0 ,且 x0 (0,1) ………………12 分
文科数学答案 第 4 页 共 6 页
22.(10 分)选修 4-4:坐标系与参数方程
赤峰市高三 5·20 模拟考试试题
文科数学参考答案
2020.5
说明: 一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据
试题的主要考查内容比照评分标准制订相应的评分细则. 二、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 三、只给整数分数,选择题和填空题不给中间分.
xx
当 a 0 时, f x 0 , f x 在 0, 为增函数,无极值
当 a 0 时,由 f x 0 得, f x 在 x 0, a 为减函数
由 f x 0 得, f x 在 x a, 为增函数
此时, f x极小值 f a a a ln a ,无极大值…………5 分 综上,当 a 0 时,无极值;当 a 0 时, f x极小值 f a a a ln a ,
AB
/
/EF
平面ABEF
平面POC
EF
………………………3 分
AB / /EF
EF
平面ABCD
EF
/
/平面ABCD
AB 平面ABCD
……………………………5 分
文科数学答案 第 2 页 共 6 页
(2)VE ACD
1 3
S
ACD
1 2
PO
1 6
SACD
POLeabharlann …………………………………6 分
解:(1)
因为 Sn
n
2
2
n
,
n
N
,所以当
n
1
时,
a1
S1
1………2 分

n
2
时,
an
Sn
Sn1
n2 2
n
(n
1)2 2
n
1
n
因为当 n 1 时,也适合上式 ……………………………………………3 分
所以数列an 的通项公式为 an n ……………………………………6 分
(2)由(1)得 bn 2n n 1 ,故 Tn b1 b2 b3 bn
无极大值 ………………………………………………………………6 分
(2)当 a
1时, hx
gx
f
x=
x2 ex
x
ln x
x
0 ,则
hx
2x ex
x2
1
1 x
…………………………………………7

2x x2 1
2x x2 ex
1 ex
,又 x
0

1 ex
1hx 1
x
0
hx在 0, 上为减函数 …………………………………………9 分
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 B C A C B A D C B D A D
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
8 65
13.

65
3
14. ;
8
1
15. ;
7
16. 2 .
三、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤。 17. (12 分)
3
3 y1 x1 3
,又由
x12
3y12
9 ,整理得,
AN BM 6 3x1 y1 18x1 18 3y1 54 6 3 x1 y1 3x1 3y1 3 3
文科数学答案 第 3 页 共 6 页
于是 AN BM 为定值 6 3
…………………………………12 分
21.(12 分)
解:(1)函数 f x 数的定义域为 0, f x x a ln x f x 1 a x a x 0 ……………………2 分

SACD
=
1 2
2
3 2
3 , PO 2
PA2 AO2
3 ………………10 分
于是VE ACD
1 6
SACD
PO
1 6
3 2
3 1 …………………………12 分 4
20.(12 分)
解:(1)由于 a2
b2
c2 ,将 x c 代入
x2 a2
y2 b2
1中
得: y b2 即: 2b2 2
无武汉旅行史 16
8
24
总计
24
24
48
由调查数据得有武汉旅行史且有病例接触史的概率 p 8 1 。 24 3
(2) K 2 48 (88 16 16)2 5.333 5.024 24 24 24 24
故能在犯错误的概率不超过 0.025 的前提下,认为有武汉旅行史与有确诊病例
接触史有关系
相关文档
最新文档