上海中考数学初三总复习知识点

合集下载

(word完整版)上海市中考初三数学知识点总结,推荐文档

(word完整版)上海市中考初三数学知识点总结,推荐文档

上海市中考初三数学知识点王港中学各位亲爱的初三同学看过来,初三知识点早知道,老师整理了五个大类,二十八个知识点,整个初三的知识点如下所示:一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义. 考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.考点5:三角形的重心考核要求:知道重心的定义并初步应用.考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.考点11:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.注意求函数解析式的步骤:一设、二代、三列、四还原.考点12:画二次函数的图像考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.考点13:二次函数的图像及其基本性质考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质. 注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.四、圆的相关概念(6个考点)考点14:圆心角、弦、弦心距的概念考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.考点15:圆心角、弧、弦、弦心距之间的关系考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.考点16:垂径定理及其推论垂径定理及其推论是圆这一板块中最重要的知识点之一.考点17:直线与圆、圆与圆的位置关系及其相应的数量关系直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.考点18:正多边形的有关概念和基本性质考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.考点19:画正三、四、六边形.考核要求:能用基本作图工具,正确作出正三、四、六边形.五、数据整理和概率统计(9个考点)考点20:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件.考点21:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.考点22:等可能试验中事件的概率问题及概率计算本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整.考点23:数据整理与统计图表本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.考点24:统计的含义本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法.考点25:平均数、加权平均数的概念和计算本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.考点26:中位数、众数、方差、标准差的概念和计算考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序.考点27:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.考点28:中位数、众数、方差、标准差、频数、频率的应用本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.。

上海中考数学初三总复习知识点

上海中考数学初三总复习知识点

2011上海中考总复习要点总结第1课 实数的有关概念考查重点:1. 有理数、无理数、实数、非负数概念;2. 相反数、倒数、数的绝对值概念;3.在已知中,以非负数 a2、|a 、 a (a >0)之和为零作为条件,解决有关问题。

实数的有关概念(1)实数的组成正整数 整数 零 有理数负整数有尽小数或无尽循环小数(2) 数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一不可),实数与数轴上的点是 ----- 对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数,(3) 相反数: 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.⑷绝对值a(a 0)从数轴上看,|a| 0(a 0)一个数的绝对值就是表示这个数的点与原点的距离a(a 0)1(5)倒数: 实数a(a 工0)的 a 倒数是(乘积为1的两个数,叫做互为倒数 );零没有倒数.巩固练习题:1. 若a,b 互为相反数则a+b= __________2. 若a,b 互为倒数则ab= _________3. 若a,b 互为负倒数则ab= _________4. 数轴的三要素为: ____________________________5. 若数轴上有两个点 X 1,X 2,则这两个点之间的距离为: _________________________6. 数a 的绝对值表示的几何意义为: ________________________________________7. |a|=8. 如何比较两个数的大小: ______________________________________________ 9.若|x| < 5 |则x 可取的整数为: ______________________10. 若|a |=2, |b|=8,贝U a+b= ___________ 11. 若 a v -3,则 ||a|+3化简为: _________________12. 数轴上与-3这个点的距离等于 4的点都是哪些整数: ______________________________ 13. 若a , b 互为相反数,c , d 互为倒数,x 的绝对值为9,2 214. __________________________________ 贝9( a+b ) x -2acd-2b+2dc x =2x实数分数正分数 负分数无理数正无理数 负无理数无尽不循环小数15. 若|x-y-6|与|x+y-2012|互为相反数,则的值为:x y16. 已知 a , b , c 如图所示,|a+b|+|b+c|-|a-c | 化简为: ___________________ 17. 有效数字:18. 近似计算的法则(要求) 19. 用科学计数法表示下列各数 25670000 (保留到10万位),4010000 (保留两个有效数字),61340 (保留一个有效数字),1.396 (精确到0.01)20. 下列说法正确的是:21. 近似数1.80所表示的准确数为 m,则1.795 v me 1.805 22. 近似数0.042含有4个有效数字23. 用四舍五入对17975保留4个有效数字为1800 24. 3.1415926精确到0.001时,有效数字为 3,1,4,1,6 25. 按要求计算(结果保留 3个有效数字)108-0.7+ nX 0.7226. 按要求表示下列各数:用科学计数法表示下列各数:0.0075 , -105600 (保留三个有效数字),-0.0000345 (保留2个有效数字)第2课 实数的运算考查重点:1. 考查近似数、有效数字、科学计算法;2. 考查实数的运算;3.计算器的使用。

(完整版)上海中考数学知识点梳理

(完整版)上海中考数学知识点梳理

上海中考数学知识点梳理第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。

2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。

(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。

3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。

难点是求两个正整数的最小公倍数。

4.知识结构二、实数1.内容要目实数的概念,实数的运算。

近似计算以及科学记数法。

2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。

(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。

(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。

3.重点和难点重点是理解实数概念,会正确进行实数的运算。

难点是认识实数与数轴上的点的一一对应关系。

4.知识结构第二单元 方程与代数一、整式与分式 1.内容要目 代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。

单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。

乘法公式:22222()();()2a b a b a b a b a ab b +-=-±=±+因式分解:提取公因式法,公式法,十字相乘法,分组分解法。

分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。

2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。

(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。

(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。

上海中考数学知识点总结新

上海中考数学知识点总结新

上海中考数学知识点总结新一、数与式1.整数、有理数、无理数、实数的概念及它们之间的关系。

2.实数的近似数及其应用。

3.代数式:含有字母的算式。

4.代数式的化简、展开和因式分解。

5.二次根式的化简与近似计算。

二、方程与不等式1.一元一次方程及其应用。

2.一元二次方程及其应用。

3.一元一次不等式及其应用。

4.一元二次不等式及其应用。

三、函数1.函数的概念及表示法。

2.线性函数的性质及图象。

3.一次函数、二次函数及其图象。

4.反比例函数及其图象。

5.导数的概念及计算。

四、图形的性质1.点、线、面、角的概念。

2.直线与平面的位置关系。

3.平行线与垂直线的性质。

4.同位角与内错角的性质。

5.平行四边形与特殊四边形的性质。

6.三角形的基本性质。

7.三角形的分类及其性质。

8.圆的相关概念及性质。

五、空间与图形运动1.空间坐标系的建立及应用。

2.直线与平面的位置关系。

3.空间中的图形运动。

4.图形的平移、旋转、对称等变换。

六、数据与统计1.统计中的基本概念。

2.统计中的图表和图形。

3.列数据的分组、统计和分析。

4.事件的概念与性质。

七、几何证明1.几何证明的基本思想与方法。

2.证明方法的灵活运用。

3.利用已知条件论证结论的正确性。

4.聪明构造和直观推理的应用。

以上是上海中考数学的主要知识点总结,包含了数与式、方程与不等式、函数、图形的性质、空间与图形运动、数据与统计以及几何证明等内容。

熟练掌握这些知识点,可以帮助学生更好地应对中考数学考试。

上海中考数学复习要点

上海中考数学复习要点

上海中考数学复习要点一、整数运算1.整数的加减乘除运算。

2.整数加减法的应用。

二、分数与小数1.分数和小数的相互转换。

2.分数的加减乘除运算。

3.分数的化简与约分。

三、代数式与简单方程1.代数式的运算。

2.一元一次方程的解法。

3.文字题中的一元一次方程。

四、几何基础1.直线、线段、射线的概念与特点。

2.角的概念与特点。

3.三角形的分类与特点。

4.四边形的分类与特点。

5.梯形、平行四边形、矩形、正方形、菱形的性质。

6.圆的概念、元素及性质。

五、平面图形的认识1.平面图形的特点。

2.等边三角形、等腰三角形、直角三角形的性质。

3.同边角、同位角、内错角、内反角的概念与性质。

4.平行线、垂直线与四边形之间的关系。

5.合同图形的判定。

六、比例与相似1.比例与比例的性质。

2.身高、体重等的比例问题。

3.相似图形的概念与性质。

七、数的运算1.小数的加减乘除运算。

2.平方根与简单的开方运算。

3.百分数的计算。

4.比例、百分比、利率的关系。

八、统计与概率1.统计图表的分析。

2.数据的计算。

3.简单的概率计算。

九、函数1.一元一次函数的概念与性质。

2.函数图象的认识。

十、三角函数1.正弦、余弦、正切的概念与性质。

2.三角函数在直角三角形中的应用。

十一、空间几何与解题思路1.空间图形的特征与性质。

2.空间图形的正视图、侧视图与俯视图的认识与绘制。

3.平面与空间几何的运用。

以上是上海中考数学的复习要点,希望对你的复习有所帮助。

祝你取得好成绩!。

上海初三数学知识点

上海初三数学知识点

上海初三数学知识点上海初三数学知识点概述一、实数1. 有理数和无理数的概念2. 实数的运算法则,包括加法、减法、乘法、除法和乘方3. 绝对值的概念及性质4. 实数的大小比较和不等式5. 二次根式的性质和运算二、代数式1. 单项式和多项式的概念2. 多项式的加减法运算3. 乘法公式,包括平方差、完全平方、立方和与立方差4. 多项式的乘法和除法运算5. 因式分解,包括提取公因式法、配方法、十字相乘法等三、方程与不等式1. 一元一次方程和二元一次方程的解法2. 一元二次方程的解法,包括直接开平方法、配方法、公式法和因式分解法3. 不等式的性质和解集表示4. 一元一次不等式和一元二次不等式的解法5. 系统方程组的解法,包括代入法、消元法等四、平面几何1. 平行线和垂线的性质2. 三角形的基本概念,包括分类、面积计算、内角和外角性质3. 四边形的基本概念和性质,包括平行四边形、矩形、菱形、正方形和梯形4. 圆的基本性质,包括圆心、半径、直径、弦、弧、切线等5. 相似三角形和相似四边形的性质及判定6. 几何图形的平移、旋转和对称性质五、立体几何1. 立体图形的基本概念,包括体积和表面积的计算2. 柱体、锥体和台体的性质3. 球体的性质4. 空间图形的视图和投影六、概率与统计1. 随机事件的概率计算2. 概率分布和期望值3. 统计的基本概念,包括平均数、中位数、众数、方差和标准差4. 数据的收集、整理和图表表示,如条形图、折线图和饼图七、函数1. 函数的概念及表示方法2. 线性函数和二次函数的图像和性质3. 函数的运算,包括加法、减法、乘法和复合函数4. 函数的极值和最值问题5. 反函数的概念和性质八、数列1. 等差数列和等比数列的概念2. 等差数列和等比数列的通项公式和求和公式3. 数列的极限概念和计算九、三角函数1. 三角函数的定义和基本性质2. 三角函数的图像和周期性3. 三角恒等变换4. 解三角形问题,包括正弦定理和余弦定理十、应用题1. 利用所学数学知识解决实际问题2. 数学建模的基本方法3. 分析问题和建立数学关系的能力请注意,以上内容是根据一般的教学大纲和上海地区的初三数学教学要求编写的,具体的教学内容和要求可能会根据不同学校和教师的教学计划有所变化。

(完整word版)上海中考数学知识点梳理

(完整word版)上海中考数学知识点梳理

上海中考数学知识点梳理第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。

2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。

(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。

3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。

难点是求两个正整数的最小公倍数。

4.知识结构二、实数1.内容要目实数的概念,实数的运算。

近似计算以及科学记数法。

2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。

(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。

(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。

3.重点和难点重点是理解实数概念,会正确进行实数的运算。

难点是认识实数与数轴上的点的一一对应关系。

4.知识结构第二单元 方程与代数一、整式与分式 1.内容要目 代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。

单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。

乘法公式:22222()();()2a b a b a b a b a ab b +-=-±=±+因式分解:提取公因式法,公式法,十字相乘法,分组分解法。

分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。

2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。

(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。

(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。

上海市中考初三数学知识点

上海市中考初三数学知识点

上海市中考初三数学知识点王港中学各位亲爱的初三同学看过来,初三知识点早知道,老师整理了五个大类,二十八个知识点,整个初三的知识点如下所示:一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义. 考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.考点5:三角形的重心考核要求:知道重心的定义并初步应用.考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.考点11:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.注意求函数解析式的步骤:一设、二代、三列、四还原.考点12:画二次函数的图像考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.考点13:二次函数的图像及其基本性质考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质. 注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.四、圆的相关概念(6个考点)考点14:圆心角、弦、弦心距的概念考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.考点15:圆心角、弧、弦、弦心距之间的关系考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.考点16:垂径定理及其推论垂径定理及其推论是圆这一板块中最重要的知识点之一.考点17:直线与圆、圆与圆的位置关系及其相应的数量关系直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.考点18:正多边形的有关概念和基本性质考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.考点19:画正三、四、六边形.考核要求:能用基本作图工具,正确作出正三、四、六边形.五、数据整理和概率统计(9个考点)考点20:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件.考点21:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.考点22:等可能试验中事件的概率问题及概率计算本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整.考点23:数据整理与统计图表本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.考点24:统计的含义本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法.考点25:平均数、加权平均数的概念和计算本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.考点26:中位数、众数、方差、标准差的概念和计算考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序.考点27:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.考点28:中位数、众数、方差、标准差、频数、频率的应用本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.。

完整版)上海中考数学知识点梳理

完整版)上海中考数学知识点梳理

完整版)上海中考数学知识点梳理3)掌握整式的加减法、单项式的乘法和除法、多项式的乘法和除法,以及分式的基本性质、约分、通分、乘除法和加减法等运算法则。

3.重点和难点重点是掌握整式和分式的基本性质和运算法则,以及因式分解的方法。

难点是理解代数式的概念和文字语言与数学式子的转换,以及分式的加减法。

4.知识结构代数式整式单项式多项式加减法乘法除法因式分解分式约分通分乘除法加减法二、方程与不等式1.内容要目一元一次方程及其应用,一元二次方程及其应用,简单的分式方程和含有绝对值的方程。

一元一次不等式及其应用,一元二次不等式及其应用,简单的分式不等式和含有绝对值的不等式。

2.基本要求1)掌握解一元一次方程及其应用的方法,理解解方程的意义。

2)掌握解一元二次方程及其应用的方法,理解二次函数的基本性质。

3)掌握解简单的分式方程和含有绝对值的方程的方法,理解绝对值的概念和性质。

4)掌握解一元一次不等式及其应用的方法,理解不等式的意义。

5)掌握解一元二次不等式及其应用的方法,理解二次函数的基本性质。

6)掌握解简单的分式不等式和含有绝对值的不等式的方法,理解绝对值的概念和性质。

3.重点和难点重点是掌握解一元一次方程和不等式、一元二次方程和不等式的方法,以及含有绝对值的方程和不等式的解法。

难点是理解二次函数的基本性质和绝对值的概念和性质,以及运用它们解题的能力。

4.知识结构一元一次方程及应用一元二次方程及应用分式方程和含有绝对值的方程一元一次不等式及应用一元二次不等式及应用分式不等式和含有绝对值的不等式本文介绍了数学中的几个重要概念和解法,包括二次根式、一次方程与不等式组、一元二次方程以及代数方程。

其中,二次根式的性质包括最简和同类,以及分母有理化的方法。

在一次方程与不等式组中,主要包括概念、解法、性质和应用,例如一元一次方程的解法、二元一次方程组的解法、不等式的解集和利用数轴表示不等式的解集等。

在一元二次方程中,涉及到解法、根的判别式和应用,例如利用开平方法、因式分解法和公式法解特殊的一元二次方程,以及利用判别式判断实数根的情况。

上海初三数学知识点

上海初三数学知识点

上海初三数学知识点初三数学是初中数学学习的重要阶段,知识点的难度和广度都有所增加。

以下为大家详细介绍上海初三数学的主要知识点。

一、二次函数二次函数是初三数学的重点和难点。

一般形式为 y = ax²+ bx + c (a ≠ 0),其中 a、b、c 为常数。

1、图像性质二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当a < 0 时,抛物线开口向下。

抛物线的对称轴为直线 x = b / 2a,顶点坐标为(b / 2a,(4ac b²) / 4a)。

2、解析式的确定通常可以通过已知的三个点坐标,利用待定系数法来确定二次函数的解析式。

3、与一元二次方程的关系抛物线与 x 轴的交点个数取决于判别式Δ = b² 4ac 的值。

当Δ > 0 时,抛物线与 x 轴有两个交点;当Δ = 0 时,抛物线与 x 轴有一个交点;当Δ < 0 时,抛物线与 x 轴没有交点。

二、相似三角形1、相似三角形的判定(1)两角对应相等,两个三角形相似。

(2)两边对应成比例且夹角相等,两个三角形相似。

(3)三边对应成比例,两个三角形相似。

2、相似三角形的性质(1)相似三角形对应边的比等于相似比。

(2)相似三角形对应角相等。

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

三、锐角三角函数1、正弦、余弦、正切的定义在直角三角形中,正弦等于对边与斜边的比值,余弦等于邻边与斜边的比值,正切等于对边与邻边的比值。

2、特殊角的三角函数值要牢记 30°、45°、60°这些特殊角的三角函数值。

3、解直角三角形已知直角三角形中的一些元素(至少一个边),求出其他未知元素的过程。

四、圆1、圆的基本性质(1)圆是轴对称图形,直径所在的直线是对称轴。

(2)垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧。

2、圆周角与圆心角(1)同弧所对的圆周角等于圆心角的一半。

(2)直径所对的圆周角是直角。

上海中考数学知识点

上海中考数学知识点

上海中考数学知识点上海中考数学知识点概述一、数与代数1. 有理数的混合运算- 绝对值、相反数、有理数的加、减、乘、除运算 - 有理数的乘方、平方根、立方根2. 整式的运算- 单项式与多项式的概念- 整式的加减、乘除运算- 因式分解:提公因式、公式法、分组分解法3. 代数式的化简与求值- 代数式的化简- 代数式的求值4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式及其解集- 一元一次不等式(组)的解法5. 函数的概念与性质- 函数的定义- 函数的表示方法:图像、表格、解析式- 函数的性质:定义域、值域、单调性、特殊点6. 二元一次方程组- 二元一次方程组的解法:代入法、消元法- 线性方程组的应用问题7. 一元二次方程- 一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法- 一元二次方程根的判别式- 一元二次方程的应用问题二、几何1. 平面图形的认识- 点、线、面的基本性质- 角的概念及其分类:邻角、对顶角、同位角、内错角2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形的性质- 三角形的内角和定理- 三角形的外角性质3. 四边形- 平行四边形的性质与判定- 矩形、菱形、正方形的性质与判定- 梯形的性质与判定4. 圆的基本性质- 圆的定义及其性质- 圆的对称性- 圆周角、圆心角、弦、弧的关系5. 圆的位置关系- 点与圆的位置关系- 直线与圆的位置关系- 圆与圆的位置关系6. 面积与体积的计算- 平面图形的面积计算:长方形、正方形、三角形、梯形、圆 - 立体图形的体积计算:长方体、正方体、圆柱、圆锥7. 相似与全等- 全等三角形的判定- 相似三角形的判定与性质- 相似多边形与相似比8. 解析几何- 坐标系中点的位置表示- 平面直角坐标系中直线的方程- 圆的标准方程三、统计与概率1. 统计- 统计调查- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图2. 概率- 随机事件的概率- 概率的计算- 简单事件的概率分布四、综合应用题- 结合实际情境,运用所学数学知识解决实际问题- 理解题目要求,分析问题,运用适当的数学工具和方法- 逻辑清晰地表述解题过程和结果请注意,本文仅为上海中考数学知识点的概述,具体的教学大纲和考试要求可能会有所变化。

上海初三数学知识点

上海初三数学知识点

上海初三数学知识点
上海初三数学知识点详解
一、代数与函数
1. 多项式运算
•加减乘除多项式的基本运算法则
•对多项式进行提取公因式和合并同类项的方法2. 一次函数与二次函数
•一次函数的定义及图像特点
•二次函数的定义及图像特点
•二次函数的平移、翻折、缩放等变化规律
3. 函数的性质
•函数的奇偶性及判定方法
•函数的单调性及判定方法
•函数图像的对称性及判定方法
二、几何与三视图
1. 几何图形的运算
•各种几何图形的周长和面积计算方法
•重叠图形的面积计算方法
•平行线、垂直线的性质及判定方法
2. 空间几何与三视图
•空间几何体的计算方法(包括长方体、正方体、圆柱体等)•三视图的绘制方法及用途
•空间位置关系的判定方法(平行、垂直等)
3. 相似与全等
•两个图形相似的判定方法
•相似图形的比例关系及应用
•全等图形的判定方法及应用
三、统计与概率
1. 数据的整理和描述
•数据的整理方法(频数表、频率分布表等)
•数据的描述性统计指标(均值、中位数、众数等)
2. 概率的基本概念
•随机事件的概念及表示方法
•概率的计算方法(频率法、古典概型等)
•互斥事件与独立事件的判定
3. 统计图表的应用
•条形图、折线图、饼图等统计图的绘制方法
•统计图的解读和应用
以上是上海初三数学的相关知识点详解。

希望对你的学习有所帮助!。

上海数学中考知识点

上海数学中考知识点

上海数学中考知识点上海数学中考知识点概述一、代数知识1. 整数与有理数- 整数: 正整数、负整数、零- 有理数: 分数、小数、比例- 有理数的四则运算- 绝对值与有理数的比较2. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算- 因式分解3. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式及其解集- 线性不等式的解法4. 二元一次方程组- 代入法与消元法- 方程组的解集- 线性方程组的应用问题二、几何知识1. 平面几何- 点、线、面的基本性质- 角的概念及分类- 三角形的性质- 四边形的性质- 圆的性质2. 空间几何- 空间图形的认识- 立体图形的表面积与体积计算 - 空间图形的位置关系3. 坐标几何- 平面直角坐标系- 点的坐标表示- 线段、射线、直线的方程- 距离公式与斜率概念三、数列与函数1. 数列- 等差数列与等比数列- 数列的通项公式与前n项和 - 数列的实际应用2. 函数- 函数的概念与表示方法- 线性函数与二次函数- 函数的图像与性质- 函数的应用问题四、概率与统计1. 概率- 随机事件的概率- 概率的计算- 条件概率与独立事件2. 统计- 数据的收集与整理- 统计量的概念与计算(平均数、中位数、众数等) - 统计图表的绘制与解读五、解题技巧与策略1. 题目分析- 理解题意与要求- 提取关键信息2. 解题方法- 选择适当的解题途径- 运用数学公式与定理3. 答题规范- 答题的格式与步骤- 检查与验算六、历年真题分析1. 真题回顾- 分析历年中考数学试题- 归纳常见题型与考点2. 模拟练习- 根据真题进行模拟练习- 针对薄弱环节进行强化训练请注意,以上内容仅为上海数学中考知识点的概述,具体的学习与复习应结合教材和教师的指导进行。

同时,考生应关注最新的考试大纲和相关信息,以确保所学内容与考试要求相符。

上海初中中考数学知识点总结

上海初中中考数学知识点总结

上海初中中考数学知识点总结一、整数和有理数1.整数概念:正整数、负整数、0。

数轴图示。

2.整数的比较和大小关系。

3.整数的加减运算:同号相加、异号相减。

整数的运算性质。

4.有理数的概念:正有理数、负有理数、0。

5.有理数的比较和大小关系。

6.有理数的加减乘除运算。

二、代数表达式与证明1.代数表达式:由常数、变量和运算符组成的表达式。

2.代数式的运算:加法、减法、乘法、除法、乘方。

3.代数式的化简和拓展。

4.方程与方程的解:一元一次方程、二元一次方程。

三、平面图形与几何体1.平面图形的基本概念:点、线、线段、直线、射线等。

2.角度的概念:锐角、直角、钝角、平角。

3.各种三角形的性质:等腰三角形、等边三角形、直角三角形等。

4.平行四边形的性质:对角线互相平分。

5.直角梯形、矩形、正方形的性质。

6.圆的概念:圆心、半径、直径。

7.圆的周长、面积的计算。

8.圆锥、圆柱、直角锥、直角柱的性质与计算。

四、函数与图像1.函数概念:自变量、因变量。

2.函数的性质:奇函数、偶函数、周期函数。

3.函数图像的绘制:一次函数、二次函数、绝对值函数等。

五、数据与图表1.统计概念:数据、频数、频率、平均数。

2.统计图表的绘制与分析:折线图、柱状图、扇形图等。

六、几何运动1.直角坐标系:坐标、横坐标、纵坐标、坐标轴。

2.图形的平移、旋转、翻折等变换。

3.坐标变换与对称性。

七、概率与统计1.事件与概率:基本事件、必然事件、不可能事件。

2.概率的计算:概率的加法原理、概率的乘法原理。

3.实际问题的概率计算。

4.统计的概念与方法:样本、总数、频数统计等。

总结:上海初中中考数学涵盖了整数和有理数、代数表达式与证明、平面图形与几何体、函数与图像、数据与图表、几何运动、概率与统计等多个知识点。

这些知识点包括整数和有理数的运算、代数表达式的化简和扩展、平面图形和几何体的性质、函数的概念和图像的绘制、统计的概念和方法等。

掌握这些知识点,可以更好地理解数学的基本概念和运算规律,提高解题能力和数学思维。

上海中考数学知识点汇总(简洁版)

上海中考数学知识点汇总(简洁版)

上海初中数学知识点汇总
第九章
解直角三角形
一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
2.特殊角的三角函数值:
0° 30° 45° 60° 90°
3.互余两角的三角函数关系:sin(90°-α)=cosα
4.三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1.定义:已知边和角(两个,其中必有一边)→所有未知的边和
角。

2.依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的
处理
1.俯、仰角
2.方位角、象限角
3.坡度
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方
程的办法解决。

★重点★解直角三角形
第十
章圆一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等
圆、同圆、同心圆。

3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
6.与圆有关的角:
⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
弦切角的度数等于它所夹的弧的圆心角的度数的一半.
Welcome To Download
欢迎您的下载,资料仅供参考!。

上海中考数学概念知识点总汇

上海中考数学概念知识点总汇

上海中考数学概念知识点总汇1.整数的认识:正整数、负整数、零、绝对值、相反数、相邻整数、整数的比较、绝对值的性质等。

2.分数的认识:真分数、假分数、整数、带分数、约分、最简形式、分数的大小比较、分数的加减乘除、分数的本质、分数的应用等。

3.百分数的认识:百分数、百分之一、百分之十、百分之一十、百分数的加减乘除、百分数与小数的互化、百分数的应用等。

4.小数的认识:有限小数、无限不循环小数、无限循环小数、小数的大小比较、小数的加减乘除、小数与分数和百分数的互化、小数的应用等。

5.平方数与平方根:完全平方数、平方根、向下取整、平方数的性质、平方根的性质、开根号的运算、平方根的应用等。

6.比例与比例的应用:比例的认识、比例的性质、比例的四种关系、比例的简化、比例的求解、比例的应用等。

7.实数与实数运算:有理数、无理数、有理数的加减乘除、实数的大小比较、实数的绝对值、实数的应用等。

8.因式分解与最大公因数:因式分解、公因数、最大公因数、公倍数、最小公倍数、奇数、偶数、质数、合数、素因数分解等。

9.一次函数与一次函数的应用:斜率、截距、函数的变化趋势、函数的图像、函数的性质、函数方程的求解、函数的应用等。

10.二次函数与二次函数的应用:抛物线、对称轴、顶点、函数的图像、函数的性质、函数方程的求解、函数的应用等。

11.图形的认识与运动:平行线、垂直线、相交线、直角、等腰三角形、等边三角形、等角三角形、平行四边形、正方形、长方形等。

12.统计与概率:频数、频率、统计图、抽样、调查、统计量、概率、概率的运算、统计与概率的应用等。

13.数字和字母的加减运算:数字和字母的加减运算、字母的代数计算、字母的应用等。

14.数据的分析与解读:数据的收集、数据的整理、数据的分析、数据的解读、数据的应用等。

15.地图与比例尺:比例尺的认识、地图的缩放、地图上长度的测量、地图的应用等。

16.平方与立方:平方的认识、立方的认识、平方与立方的性质、平方与立方的计算等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011上海中考总复习要点总结第1课 实数的有关概念考查重点:1. 有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。

实数的有关概念 (1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一不可),实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数: 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数: 实数a(a ≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.a1⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a巩固练习题:1. 若a,b 互为相反数则a+b=2. 若a,b 互为倒数则ab=3. 若a,b 互为负倒数则ab=4. 数轴的三要素为:5. 若数轴上有两个点21,x x ,则这两个点之间的距离为:6. 数a 的绝对值表示的几何意义为:7. |a|=8. 如何比较两个数的大小: 9. 若|x |≤5 |则x 可取的整数为: 10. 若|a |=2,|b|=8,则a+b= 11. 若a <-3,则||a|+3|化简为:12. 数轴上与-3这个点的距离等于4的点都是哪些整数: 13.若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为9,14. 则(a+b )2x -2acd-2b+2dc 2x = 15. 若|x-y-6|与|x+y-2012|互为相反数,则yx x+2的值为: 16. 已知a ,b ,c 如图所示, |a+b|+|b+c|-|a-c | 化简为: 17. 有效数字:18. 近似计算的法则(要求)19. 用科学计数法表示下列各数25670000(保留到10万位),4010000(保留两个有效数字),61340(保留一个有效数字),1.396(精确到0.01) 20. 下列说法正确的是:21. 近似数1.80所表示的准确数为m,则1.795<m ≤1.805 22. 近似数0.042含有4个有效数字23. 用四舍五入对17975保留4个有效数字为1800 24. 3.1415926精确到0.001时,有效数字为3,1,4,1,625. 按要求计算(结果保留3个有效数字)108÷0.7+π×0.72 26.按要求表示下列各数:27. 用小数表示下列数:4.9×610- ,51068.2-⨯-用科学计数法表示下列各数: 0.0075,-105600(保留三个有效数字),-0.0000345(保留2个有效数字)第2课 实数的运算考查重点:1. 考查近似数、有效数字、科学计算法; 2.考查实数的运算;3. 计算器的使用。

实数的运算 (1)加法: 同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。

取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值; 任何数与零相加等于原数。

(2)减法 a-b=a+(-b)(3)乘法: 两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即(4)除法(5)乘方 方 如果x 2=a 且x ≥0,那么a =x ; 如果x 3=a ,那么x a =3 (6)开在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律(1)加法交换律 a+b =b+a(2)加法结合律 (a+b)+c=a+(b+c) (3)乘法交换律 ab =ba . (4)乘法结合律 (ab)c=a(bc) (5)分配律 a(b+c)=ab+ac其中a 、b 、c 表示任意实数.运用运算律有时可使运算简便.第3课 整式考查重点:1.代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p 叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. (3)代数式的分类 2.整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

(2)多项式:几个单项式的和,叫做多项式对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析 (3)多项式的降幂排列与升幂排列把一个多项式按某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列 把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列 给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.个n n a aa a =)0(1≠⋅=b b a b a ⎪⎩⎪⎨⎧⋅-⋅=)(0),(||||),(||||为零或异号同号b a b a b a b a b a ab(4)同类项所含字母相同,并且相同字母的指数也分别相同项,叫做同类顷.要会判断给出的项是否同类项,知道同类项可以合并.即{ 注意:其中的X 可以代表单项式中的字母部分,代表其他式子。

}3.整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一 般步骤是:(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。

括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.(ii)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质: * 多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.*多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加. *遇到特殊形式的多项式乘法,还可以直接算:(3)整式的乘方单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。

单项式的乘方要用到幂的乘方性质与积的乘方性质:多项式的乘方只涉及 考查重点与常见题型 1、 考查列代数式的能力。

题型多为选择题,如: 下列各题中,所列代数式错误的是( )(A )表示“比a 与b 的积的2倍小5的数”的代数式是2ab -5 (B )表示“被5除商是a ,余数是2的数”的代数式是5a+2 (C )表示“a 与b 的平方差的倒数”的代数式是1a -b2(D )表示“数的一半与数的3倍的差”的代数式是a2-3b2、 考查整数指数幂的运算、零指数。

题型多为选择题,在实数运算中也有出现,如:下列各式中,正确的是( )(A )a 3+a 3=a 6 (B)(3a 3)2=6a 6 (C)a 3•a 3=a 6 (D)(a 3)2=a 6整式的运算,题型多样,常见的填空、选择、化简等都有。

.222)(,2)(2222222ca bc ab c b a c b a b ab a b a +++++=+++±=±)()(),,()(是整数是整数n b a ab n m a a n n n mn n m ==.))((,2)(,))((,)())((332222222b a b ab a b a b ab a b a b a b a b a ab x b a x b x a x ±=+±+±=±-=-++++=++ ),,0(),(是整数是整数n m a a a a n m a a a n m n m n m n m ≠=÷=⋅-+x b a bx ax )(+=+第4课 因式分解〖考查重点与常见题型〗考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

因式分解知识点:多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:(1)提公因式法: 如多项其中m 叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式. (2)运用公式法,即用 写出结果.(3)十字相乘法:对于二次项系数为l 的二次三项式 寻找满足ab=q ,a+b=p 的a ,b ,如有,则般的二次三项式),0(2≠++a c bx ax 寻找满足 );)((2b x a x q px x ++=++对于一a 1a 2=a ,c 1c 2=c, a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果),0(02≠=++a c bx ax 有两个根X 1,X 2,那么).)((212x x x x a c bx ax --=++,2q px x ++))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- ),(c b a m cm bm am ++=++第5课 分式考查重点与常见题型:1.考查整数指数幂的运算,零运算,有关习题经常出现在选择题中,如:下列运算正确的是( )(A )-40 =1 (B) (-2)-1= 12(C) (-3m-n )2=9m-n (D)(a+b)-1=a -1+b -12.考查分式的化简求值。

在中考题中,经常出现分式的计算就或化简求值,有关习题多为中档的解答题。

相关文档
最新文档