中考数学之全等三角形的存在性(讲义)

合集下载

专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。

考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。

考点11 三角形与全等三角形-备战2022年中考数学一轮复习考点帮(浙江专用)(解析版)

考点11  三角形与全等三角形-备战2022年中考数学一轮复习考点帮(浙江专用)(解析版)

考点11 三角形与全等三角形【命题趋势】三角形的基础知识是解决后续很多几何问题的基础,全等三角形也是几何问题中证明线段相等或者角相等的常用关系。

所以,在中考中,考察的几率也是比较大。

但是因为该考点与其他几何考点的融入性特别多,所以不会再过多的单独考察,很多城市基本都是融合考察,不再单独出题。

【中考考查重点】一、三角形的三边关系二、三角形的内角和定理及其外角定理三、三角形中的重要线段四、全等三角形的性质与判定考向一:三角形的三边关系三角形三边关系的定理及其推论1.若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.4D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有4,故选:C.2.三个数3,1﹣a,1﹣2a在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a的取值范围为.【分析】由三个数的大小关系初步确定a的取值范围a<﹣2;再由三角形三边关系得到3+(1﹣a)>1﹣2a,从而求出a的取值范围.【解答】解:∵3,1﹣a,1﹣2a在数轴上从左到右依次排列,∴3<1﹣a<1﹣2a,∴a<﹣2,∵这三个数为边长能构成三角形,∴3+(1﹣a)>1﹣2a,∴a>﹣3,∴﹣3<a<﹣2,故答案为﹣3<a<﹣2.考向二:三角形的内角和定理及其外角定理角的定义、性质及其他相关:三角形内角和定理三角形的内角和等于180°三角形外角的推论三角形的一个外角=和它不相邻的两个内角的和【方法提炼】➢三角形内角和与外角定理是几何图形求解角度时常用的等量关系;即使是其他多边形,也常转化为三角形求角度【同步练习】1.在△ABC中,∠A=20°,∠B=4∠C,则∠C等于()A.32°B.36°C.40°D.128°【分析】由三角形的内角和定理可得:∠A+∠B+∠C=180°,再结合所给的条件,可得5∠C=160°,从而可求解.【解答】解:∵∠A=20°,∠B=4∠C,∴在△ABC中,∠A+∠B+∠C=180°,20°+4∠C+∠C=180°,5∠C=160°,∠C=32°.故选:A.2.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=160°,则∠B 的度数为()A.40°B.50°C.60°D.70°【分析】利用平角的定义可得∠ADE=20°,再根据平行线的性质知∠A=∠ADE=20°,再由内角和定理可得答案.【解答】解:∵∠CDE=160°,∴∠ADE=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°.故选:D.3.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60或10;4.如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为()A.60°B.70°C.75°D.85°【分析】由三角形的内角和定理,可得∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,所以∠1=180°﹣(∠B+∠A+∠C),由此解答即可.【解答】解:∵∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,∴∠1=180°﹣(∠B+∠A+∠C)=180°﹣(25°+35°+50°)=180°﹣110°=70°,故选:B.5.满足下列条件的△ABC中,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A:∠B:∠C=2:3:5C.∠A+∠B=∠CD.一个外角等于和它相邻的一个内角【解答】解:A.∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴三角形中最大角∠C =×180°=75°<90°,∴满足条件的三角形为锐角三角形,选项A符合题意;B.∵∠A:∠B:∠C=2:3:5,∠A+∠B+∠C=180°,∴三角形中最大角∠C =×180°=90°,∴满足条件的三角形为直角三角形,选项B不符合题意;C.∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴三角形中最大角∠C =×180°=90°,∴满足条件的三角形为直角三角形,选项C不符合题意;D.∵一个外角等于和它相邻的一个内角,∴该内角=×180°=90°,∴满足条件的三角形为直角三角形,选项D不符合题意.故选:A.考向三:三角形中重要的线一.三角形的分类按角分类锐角三角形(三个内角都是锐角)直角三角形(有一个内角是直角)钝角三角形(有一个内角是钝角)按边分类非等边三角形(三边均不相等)等腰三角形普通等腰三角形(有两边长相等)等边三角形(三边长均相等)二.三角形中的重要线段∠CAD ∠BACEC=½BC∠AFC=90°½BC【方法提炼】三角形中“三线”的常见作用及其辅助线:(一).中线常见“用途”:平分线段、平分面积;辅助线类型:倍长中线造全等—→延伸:倍长中线类模型;(二)高线常见“用途”:求面积(等积法)、求角度(余角);辅助线类型:见特殊角做⊥,构特殊直角△、见等腰做底边上高线,构三线合一;(三)角平分线常见“用途”:得角相等(定义)、得线段相等(性质)、SAS证全等、知2得1等;辅助线类型:见角平分线作双垂、见角平分线作对称、截长补短构全等、见角平分线+垂直,延长出等腰;(四)中垂线常见“用途”:平分线段、得90°、证全等、求新形成三角形周长等;辅助线类型:连接两点由△的三线组成的几个“心”:△三边中线交点—→重心—→性质:△的重心到一中线中点的距离=重心到这条中线定点距离的一半;△三条角平分线交点—→内心—→性质:△的内心到△三边的距离(垂线段)相等;△三边中垂线交点—→外心—→性质:△的外心到△三个顶点的距离(连接)相等;【同步练习】1.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积为24,则△BEF的面积是()A.2B.4C.6D.8【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ACD=12,再求出S△EBD=6,S△ECD=6,然后利用F点为CE的中点得到S△BEF=S△EBC.【解答】解:∵D点为BC的中点,∴S△ABD=S△ACD=S△ABC=×24=12,∵E点为AD的中点,∴S△EBD=S△ABD=6,S△ECD=S△ACD=6,∴S△EBC=S△EBD+S△ECD=6+6=12,∵F点为CE的中点,∴S△BEF=S△EBC=×12=6.故选:C.2.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.3.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.8B.7.5C.15D.无法确定【分析】过D点作DE⊥BC于E,如图,根据角平分线的性质得到DE=DA=3,然后根据三角形面积公式计算.【解答】解:过D点作DE⊥BC于E,如图,∵BD平分∠ABC,DE⊥BC,DA⊥AB,∴DE=DA=3,∴△BCD的面积=×5×3=7.5.故选:B.4.如图,Rt△ABC中,∠C=90°,D是BC的中点,∠CAD=30°,BC=6,则AD+DB 的长为.【分析】先根据D是BC的中点得出CD=DB=BC=3,然后根据30°角所对的直角边等于斜边的一半得出AD=2CD=6,进而求出AD+DB的长.【解答】解:∵D是BC的中点,BC=6,∴CD=DB=BC=3.∵Rt△ABC中,∠C=90°,∠CAD=30°,∴AD=2CD=6,∴AD+DB=6+3=9.故答案为:9.5.如图,BD是△ABC的高,AE是△ABC的角平分线,BD交AE于F,若∠BAC=44°,∠C=80°,求∠BEF和∠AFD的度数.【分析】根据三角形内角和定理和角平分线的定义解答即可.【解答】解:∵BD是△ABC的高,AE是△ABC的角平分线,∠BAC=44°,∠C=80°,∴∠ADB=90°,∠BAE=∠EAD=22°,∴∠CBA=180°﹣44°﹣80°=56°,∴∠BEF=180°﹣22°﹣56°=102°,∠AFD=180°﹣90°﹣22°=68°.考向四:全等三角形的性质和判定一.全等三角形的性质性质对应边相等,对应角相等推论全等三角形的周长相等,面积相等,对应边上的中线相等,对应边上的高线相等,对应角的角平分线相等所有三角形SSS 、SAS 、ASA 、AAS直角三角形HL【方法提炼】➢证三角形全等的基本步骤:①准备条件;②罗列条件;③得出结论。

2020中考数学 专题突破:全等三角形的判定与性质(解析版)

2020中考数学 专题突破:全等三角形的判定与性质(解析版)

2020中考数学专题突破:全等三角形的判定与性质(解析版)【例题1】如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF,使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可求证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF均可.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【例题2】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是 ①④ (填写所有正确结论的序号)【分析】①证明△ABC ≌△ADC ,可作判断;②③由于AB 与BC 不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC 和△ADC 中,∵,∴△ABC ≌△ADC (SSS ),∴∠ABC=∠ADC ,故①结论正确;②∵△ABC ≌△ADC ,∴∠BAC=∠DAC ,∵AB=AD ,∴OB=OD ,AC ⊥BD ,而AB 与BC 不一定相等,所以AO 与OC 不一定相等,故②结论不正确;③由②可知:AC 平分四边形ABCD 的∠BAD 、∠BCD ,而AB 与BC 不一定相等,所以BD 不一定平分四边形ABCD 的对角;故③结论不正确;④∵AC ⊥BD ,∴四边形ABCD 的面积S=S △ABD +S △BCD =BD•AO +BD•CO=BD•(AO +CO )=AC•BD . 故④结论正确;所以正确的有:①④;故答案为:①④. 【点评】本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,第1问可以利用等边对等角,由等量加等量和相等来解决.【例题3】如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.【例题4】如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?【分析】(1)先表示出BP,根据PC=BC﹣BP,可得出答案;(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;【解答】解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2))△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴BD=4厘米.∴PC=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t==秒,∴V Q===厘米/秒.巩固练习一、选择题:1.在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D【分析】根据所给条件可知,应加一对对应边相等才可证明这两个三角形全等,AB和EF是对应边,因此应加AB=FE.【解答】解:A、加上AB=DE,不能证明这两个三角形全等,故此选项错误;B、加上BC=EF,不能证明这两个三角形全等,故此选项错误;C、加上AB=FE,可用ASA证明两个三角形全等,故此选项正确;D、加上∠C=∠D,不能证明这两个三角形全等,故此选项错误;故选:C.2.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()A.2对 B.3 对C.4对 D.5对【分析】根据SAS推出△ABD≌△ACD,求出∠B=∠C,BE=CF,根据全等三角形的判定推出△BDE≌△CDF,△AED≌△AFD,△AFB≌△AEC即可.【解答】解:全等三角形有:△ABD≌△ACD,△BDE≌△CDF,△AED≌△AFD,△AFB ≌△AEC,共4对,故选C3.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.2【分析】根据全等三角形的对应边相等可得AB=AC,AE=AD,再由CD=AC﹣AD即可求出其长度.【解答】解:∵△ABD≌△ACE,∴AB=AC=6,AE=AD=4,∴CD=AC﹣AD=6﹣4=2,故选D.4.如图,AB∥DE,CD=BF,若要证明△ABC≌△EDF,还需补充的条件是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充【分析】根据平行线的性质得出∠B=∠D,求出BC=DF,根据全等三角形的判定定理逐个判断即可.【解答】解:AB=DE,理由是:∵AB∥DE,∴∠B=∠D,∵BF=DC,∴BC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF,即选项A、C、D都错误,故选B.5.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB的角平分线,那么△DOP≌△EOP的依据是()A.SSS B.SAS C.ASA D.AAS【分析】熟练掌握三角形全等的判定条件是解答此题的关键.易知:OD=OE,PD=PE,OP=OP,因此符合SSS的条件,故选择A.【解答】解:由作图知:OD=OE、PD=PE、OP是公共边,即三边分别对应相等(SSS),△DOP≌△EOP,故选A.二、填空题:6.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF,使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF 或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,故答案为AB=DE或BC=EF或AC=DF均可.7.如图,AC=DC,BC=EC,请你添加一个适当的条件:CE=BC,使得△ABC≌△DEC.【分析】本题要判定△ABC≌△DEC,已知AC=DC,BC=EC,具备了两组边对应相等,利用SSS即可判定两三角形全等了.【解答】解:添加条件是:CE=BC,在△ABC与△DEC中,,∴△ABC≌△DEC.故答案为:CE=BC.本题答案不唯一.8.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可),使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF 或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).9.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.10. AD是△ABC的中线,DE=DF.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有.【分析】根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE,最后根据等底等高的三角形的面积相等判断出②正确.【解答】解:∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故④正确∴CE=BF,∠F=∠CED,故①正确,∴BF∥CE,故③正确,∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故②正确,综上所述,正确的是①②③④.故答案为:①②③④.三、解答题:1.如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.【分析】欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.【解答】证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.2.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;【解答】(1)解:HL;故答案为:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等.。

初中八年级数学竞赛培优讲义全套专题15 全等三角形[精品]

初中八年级数学竞赛培优讲义全套专题15 全等三角形[精品]

专题15 全等三角形阅读与思考两个几何图形的全等是指两个图形之间的一种关系,其中最基本的关系是两个图形的点的对应关系,以及对应边之间、对应角之间的相等关系.全等三角形是研究三角形、四边形等图形性质的主要工具,是解决有关线段、角等问题的一个出发点,证明线段相等、线段和差相等、角相等、两直线位置关系等问题总要直接或间接用到全等三角形,我们把这种应用全等三角形来解决问题的方法称为全等三角形法.我们实际遇到的图形,两个全等三角形并不重合在一起,而是处于各种不同的位置,但其中一个是由另一个经过平移、翻折、旋转等变换而成的.了解全等变换的这几种形式,有助于发现全等三角形、确定对应元素.善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,应熟悉涉及有关会共边、公共角的以下两类基本图形:例题与求解【例1】考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上高)对应相等的两个三角形全等.其中正确命题的个数有()A.4个B.3个C.2个D.1个(山东省竞赛试题)解题思路:真命题给出证明,假命题举出一个反例.【例2】如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.(第十六届江苏省竞赛试题)解题思路:(1)证明对应的两个三角形全等;(2)证明∠PAQ =90°.【例3】如图,已知为AD 为△ABC 的中线,求证:AD <1()2AB AC .(陕西省中考试题)解题思路:三角形三边关系定理是证明线段不等关系的基本工具,关键是设法将AB ,AC ,AD 集中到同一个三角形中,从构造2AD 入手.【例4】如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E . 求证:AB =AC +BD .(“希望杯”邀请赛试题)解题思路:本例是线段和差问题的证明,截长法(或补短法)是证明这类问题的基本方法,即在AB 上截取AF ,使AF =AC ,以下只要证明FB =BD 即可,于是将问题转化为证明两线段相等.【例5】如图1,CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E ,F 分别是直线CD 上两点,且∠BECQABC DEOPABCDA BCDE=∠CFA =∠α.(1)若直线CD 经过∠BCA 内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图2,若∠BCA =90°,∠α=90°,则BE ____CF ,EF ____BE AF -(填“>”、“<”或“=”);②如图3,若0°<∠BCA <180°,请添加一个关于∠α与∠BCA 关系的条件____,使①中的两个结论仍然成立,并证明这两个结论;(2)如图4,若直线CD 经过∠BCA 的外部,∠α=∠BCA ,请提出EF ,BE 、AF 三条线段数量关系的合理猜想(不要求证明).(台州市中考试题)解题思路:对于②,可用①进行逆推,寻找△BCE ≌△CAF 应满足的条件.对于(2)可用归纳类比方法提出猜想.【例6】如图,在四边形ABCD 中,∠ACB =∠BAD =105°,∠ABC =∠ADC =45°. 求证:CD =AB .(天津市竞赛试题)解题思路:由已知易得∠CAB =30°,∠GAC =75°,∠DCA =60°,∠ACB +∠DAC =180°,由特殊度数可联想到特殊三角形、共线点等.BCDEFαα图1ABCDEF 图2 ABCE F图3D ABCDEF图4AB CD能力训练A 级1.如图,在△ABC 中,∠C =90°,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ︰DB =3︰5,则点D 到AB 的距离是____.2.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,分别过B ,C 作经过点A 的直线的垂线BD ,CE ,若BD =3cm ,CE =4cm ,则DE =____.3.如图,△ABE 和△ACF 分别是以△ABC 的边AB 、AC 为边的形外的等腰直角三角形,CE 和BF 相交于O ,则∠EOB =____.4.如图,四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,且AB =AE ,AC =AD .有如下四个结论:①AC ⊥BD ;②BC =DE ;③∠DBC =12∠DAB ;④△ABE 是等边三角形.请写出正确结论的序号____.(把你认为正确结论的序号都填上)(天津市中考试题)5.如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AC =AE ,则( ) A .△ABD ≌△AFD B .△AFE ≌△ADC C .△AFE ≌△DFCD .△ABC ≌△ADE6.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E .若AB =6cm ,则△DEB 的周长为( )A .5cmB .6cmC .7cmD .8cm7.如图,从下列四个条件:①BC =B 'C ;②AC =A ′C ;③∠A ′CA =∠B ′CB ;④AB =A ′B ′中,任取三个为题设,余下的一个为结论,则最多可以构成的正确命题的个数是( )A .1个B .2个C .3个D .4个(北京市东城区中考试题)ABCD 第1题ADE第2题 ABC EFO第3题ABCDE第4题第5题ABCDE F321ABCD第6题ABCB 'A '第7题8.如图1,在锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE交于F,且BF=AC.(1)求证:ED平分∠FEC;(2)如图2,若△ABC中,∠C为钝角,其他条件不变,(1)中结论是否仍然成立?若不成立,请说明理由;若成立,请给予证明.9.在等腰Rt△AOB和等腰Rt△DOC中,∠AOB=∠DOC=90°,连AD,M为AD中点,连OM.(1)如图1,请写出OM与BC的关系,并说明理由;(2)将图1中的△COD旋转至图2的位置,其他条件不变,(1)中结论是否成立?请说明理由.10.如图,已知∠1=∠2,EF⊥AD于P,交BC延长线于M.求证:∠M=1()2ACB B∠-∠.(天津市竞赛试题)AB CDEF图1AB DEC图2A BCDMO图1A BCDMO图2ABCDEFMP2111.如图,已知△ABC 中,∠A =60°,BE ,CD 分别平分∠ABC ,∠ACB ,P 为BE ,CD 的交点. 求证:BD +CE =BC .12.如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC =DM ,求证:ME =BD .(日照市中考试题)B 级1.在△ABC 中,高AD 和BE 交于H 点,且BH =AC ,则∠ABC =____.(武汉市竞赛试题)2.在△ABC 中,AD 为BC 边上的中线,若AB =5,AC =3,则AD 的取值范围是____.(“希望杯”竞赛试题)3.如图,在△ABC 中,AB >AC ,AD 是角平分线,P 是AD 上任意一点,在AB -AC 与BP -PC 两式中,较大的一个是____.4.如图,已知AB ∥CD ,AC ∥DB ,AD 与BC 交于O ,AE ⊥BC 于E ,DF ⊥BC 于F ,那么图中全等的三角A BC DE PA BC 第2题DA BC PD第3题A BCD EFO 第4题第5题A BCDEF A形有( )A .5对B .6对C .7对D .8对5.如图,AD 是△ABC 的中线,E ,F 分别在AB ,AC 上,且DE ⊥DF ,则( ) A .BE +CF >EF B .BE +CF =EFC .BE +CF <EFD .BE +CF 与的大小关系不确定(第十五届江苏省竞赛试题)6.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角( )A .相等B .不相等C .互余D.互补或相等(北京市竞赛试题)7.如图,在△ABE 和△ACD 中,给出以下四个论断:①AB =AC ;②AD =AE ;③AM =AN ;④AD ⊥DC ,AE ⊥BE .以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程.已知:___________________. 求证:___________________.(荆州市中考试题)8.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE =1()2AB AD ,求∠ABC+∠ADC 的度数. (上海市竞赛试题)9.在四边形ABCD 中,已知AB =a ,AD =6,且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画出图形并证明你的结论.(河北省竞赛试题)ABC DEM NABCDE10.如图,在△ABC 中,∠ABC =60°,AD ,CE :分别平分∠BAC ,∠ACB .求证:AC =AE +CD .(武汉市选拔赛试题)11.如图,在Rt △ABC 中,∠B =90°,AP ,CQ 分别平分∠BAC ,∠BCA .AP 交CQ 于I ,连PQ . 求证:IAC ACPQS S ∆四边形为定值.12.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD 丄MN 于O ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证:DE =AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问:DE ,AD ,BE 有怎样的等量关系?请写出这个等 量关系,并加以证明. (海口市中考试题)ABCDEMN图1ABCM N图3DEAB CMN图2DEQAB CIPA BCDEO13.CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E ,F 分别是直线CD 上两点,且∠BEC =∠CFA =∠α.(1)若直线CD 经过∠BCA 内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若∠BCA =90°,∠α=90°,则BE ____CF ,EF ____BE AF -(填“>”、“<”或“=”);②如图2,若0°<∠BCA <180°,请添加一个关于∠α与∠BCA 关系的条件____,使①中的两个结论仍然成立,并证明这两个结论;(2)如图3,若直线CD 经过∠BCA 的外部,∠α=∠BCA ,请提出EF ,BE 、AF 三条线段数量关系的合理猜想(不要求证明).(台州市中考试题)A BCDE F 图1ABCE F图2DABCDEF图3。

中考数学专题17 三角形与全等三角形

中考数学专题17 三角形与全等三角形
(5)中位线:三角形中位线平行于第三边且等于第三边的一半.
温馨提示:
三角形的边、角之间的关系是三角形中重要的性质,在比较角的大小、线段的长短及求角或线段中经常用到。学习时应结合图形,做到熟练、准确地应用。
三角形的角平分线、高、中线均为线段。
(三)全等三角形的概念与性质
1.能够完全重合的两个三角形叫做全等三角形.
【答案】(1)C(2)A(3)C
方法总结:
(1)考查三角形的边或角时,一定要注意三角形形成的条件:两边之和大于第三边,两边之差小于第三边;
(2)在求三角形内角和外角时,要明确所求的角属于哪个三角形的内角和外角,要抓住题目中的等量关系;
类型二全等三角形
(1)如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________________________.
2.三角形的两边之和大于第三边,两边之差小于第三边.
3.三角形中的重要线段
(1)角平分线:三角形的三条角平分线交于一点,这点叫做三角形的内心,它到三角形各边的距离相等.
(2)中线:三角形的三条中线交于一点,这点叫做三角形的重心.
(3)高:三角形的三条高交于一点,这点叫做三角形的垂心.
(4)三边垂直平分线:三角形的三边垂直平分线交于一点,这点叫做三角形的外心,外心到三角形三个顶点距离相等.
1.(2009·温州)下列长度的三条线段能组成三角形的是()
A.1cm,2cm,3.5cmB.4cm,5cm,9cm
C.5cm,8cm,15cmD.6cm,8cm,9cm
解析:计算较小两数的和与最大数比较,大于的组成三角形,否则不能.
答案:D
2.(2008·嘉兴)如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=()

春中考数学《二次函数:全等三角形的存在性问题》课件

春中考数学《二次函数:全等三角形的存在性问题》课件

理解偏差
对于全等三角形的理解存 在偏差,导致在应用判定 定理时出现错误。
判定方法的实际应用
解题技巧
在解决二次函数问题时,利用全 等三角形的存在性判定可以简化
解题过程。
实际应用
全等三角形的存在性判定在实际生 活中也有广泛的应用,例如在几何 图形的设计和制作中。
拓展应用
通过全等三角形的存在性判定,还 可以进一步探究二次函数图像中的 其他几何性质和规律。
高难度练习题3
题目内容涉及二次函数的最值求解和全等三角形 的证明,以及数学思想的运用。
基础练习题答案
详细解答每个基础练习题的解题思路和步骤,帮助 学习者掌握基础知识。
中等难度练习题答案
详细解答每个中等难度练习题的解题思路和步骤 ,提高学习者的解题能力。
高难度练习题答案
详细解答每个高难度练习题的解题思路和步骤,激发学 习者的创新思维和数学素养。
总结词
基础题目是全等三角形存在性问题的入门级题目,主要考察学生对基础概念和 公式的掌握程度。
详细描述
基础题目通常包括简单的图形变换、基本的全等条件和简单的计算。通过这些 题目,学生可以熟悉全等三角形存在性问题的基本解题思路和方法,为解决更 复杂的问题打下基础。
中等难度题目解析
总结词
中等难度题目是在基础题目上的提升,需要学生具备一定的 推理和问题解决能力。
详细描述
这类题目通常涉及到更复杂的图形变换、多个全等条件的应 用以及一些计算技巧。学生需要通过仔细分析图形和条件, 逐步推导出结论,并能够运用所学知识解决实际问题。
高难度题目解析
总结词
高难度题目是全等三角形存在性问题的最高级别题目,对学生的推理、计算和问题解决能力有很高的要求。

中考数学 第四章 课时14 三角形及其全等(知识清单重难点讲解中考真题演练)

中考数学 第四章 课时14 三角形及其全等(知识清单重难点讲解中考真题演练)

中考数学一轮复习·学与练第四章 三角形 课时14 三角形及其全等知 识 清 单考点一 三角形的概念及分类 1.三角形的概念由不在同一条直线上的三条线段首尾顺次连接所组成的 图形叫做三角形. 2.三角形的分类(1)按边分一般三角形:三条边都不相等等腰三角形:有两条边相等等边三角形:三条边都相等(2)按角分90锐角三角形:三个角都是锐角直角三角形:有一个角为钝角三角形:有一个角为钝角考点二 三角形的边角关系1.边的关系:两边之和 第三边,两边之差 第三边.判断三条边(a ,b ,c ,a ≤b ≤c )能否构成三角形,只需比较两条短边(a ,b )的和与第三边(c )的大小,若a +b >c ,则能构成三角形;反之不能构成三角形.2.角的关系(1)三角形内角和等于 ;(2)任意一个外角 与它不相邻的两个内角之和; (3)任意一个外角 任何一个和它不相邻的内角.3.边角关系:同一个三角形中,等边对等角,等角对 ,大边对 . 4.三角形的稳定性三角形具有稳定性,即当三角形的三边确定时,三角形的形状和大小也就随之确定,而不再发生改变.考点三 三角形中的重要线段 1.角平分线(1)概念:一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段.(2)图形及性质:如图1,在△ABC 中,AD 为角平分线,则有∠1= =12∠BAC .(3)内心(三角形内切圆的圆心):三角形的三条角平分线交于一点,该点称为三角形的内心,该点到三角形三边的距离相等.图1 图22.中线(1)概念:连接一个顶点与它对边中点的线段.(2)图形及性质:如图2,在△ABC 中,AD 为BC 边上的中线,则有BD = =12BC .(3)重心:三角形的三条中线交于一点,该点称为三角形的重心,该点到三角形顶点的距离等于它到对边中点距离的 倍.3.高线(1)概念:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.(2)图形及性质:如图3,在△ABC 中,AD 为BC 边上的高线,则有AD ⊥ ,即∠ADB =∠ADC =90°.(3)垂心:三角形的三条高线的交点,该点称为三角形的垂心.图3 图4知识延伸:外心(三角形外接圆的圆心):三角形三条边中垂线的交点.外心到三角形三个顶点的距离 .4.中位线(1)概念:连接三角形两边中点的 .(2)图形及性质:如图4,在△ABC 中,D ,E 分别为AB ,AC 的中点,则DE 为△ABC 中位线,DE ∥ 且DE =12BC .考点四全等三角形的性质及判定1.全等三角形的概念能够的两个三角形叫的全等三角形.2.全等三角形的性质(1)全等三角形的对应角、对应边、周长、面积;(2)全等三角形的对应高、对应中线、对应角平分线都分别.3.全等三角形的判定判定1:三边分别的两个三角形全等(简写成“边边边”或“SSS”).判定2:两边和它们的分别相等的两个三角形全等(简写成“边角边”或“SAS”).判定3:两角和它们的分别相等的两个三角形全等(简写成“角边角”或“ASA”).判定4:两角和其中一个角的对边分别的两个三角形全等(简写成“角角边”或“AAS”).判定5:斜边和一条直角边分别的两个直角三角形全等(简写成“斜边、直角边”或“HL”).重难点讲解命题点1 利用三角形“三线”的性质解题三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角;由三角形的中线可得线段之间的关系;由三角形的角平分线可得角之间的关系,可利用角平分线的性质和三角形的内角与外角的关系建立所求角度与已知条件的联系,达到解题的目的.经典例题1如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A.15°B.20°C.25°D.30°【解析】根据角平分线的定义可得∠ABC=2∠ABE,由AD是BC边上的高可得∠ADB=90°,再由三角形内角和定理可得∠BAD的度数,根据∠DAC=∠BAC-∠BAD即可得解.【答案】B命题点2 全等三角形判定方法的合理选择从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,我们可以利用题目中的已知边(角)确定要补充的边(角),完善三角形全等的条件,从而得到判定两个三角形全等的思路.(1)已知两边⎩⎪⎨⎪⎧找夹角→SAS ,找直角→HL ,找第三边→SSS.(2)已知一边、一角⎩⎪⎨⎪⎧一边为角的对边→找另一角→AAS ,一边为角的邻边⎩⎪⎨⎪⎧找夹角的另一边→SAS ,找夹边的另一角→ASA ,找边的对角→AAS.(3)已知两角⎩⎪⎨⎪⎧找夹边→ASA ,找其中一角的对边→AAS.经典例题2 如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:∠C =∠D .【解析】根据题意选择“边角边”(SAS)即可求证.【证明】 ∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE .在△ADF 和△BCE 中,⎩⎪⎨⎪⎧AD =BC ,∠A =∠B ,AF =BE ,∴△ADF ≌△BCE . ∴∠C =∠D .命题点3 三角形的角度计算问题中的方程思想方程思想的本质是设未知数,用未知量表示已知量的方法,通过分析题目,利用所学定理、性质等寻找出等量关系.三角形有关角度的计算问题,可利用三角形内角和及外角性质构建方程,利用方程思想解决有关角度问题.经典例题3 在△ABC 中,∠A ∶∠B ∶∠C =5∶6∶7,则∠B 的度数是( )A .50°B .60°C .70°D .80° 【解析】因为∠A ∶∠B ∶∠C =5∶6∶7,设∠A =5x °,∠B =6x °,∠C =7x °,根据三角形的内角和是180°,可得5x +6x +7x =180,解得x =10,所以∠B =6x °=60°.【答案】 B中 考 真 题 演 练一、选择题1. 下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm 2. 已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1 B .2 C .8 D .113. 如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A =54°,∠B =48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°第3题 第4题4. 如图,在△ABC 中有四条线段DE ,BE ,EF ,FG ,其中有一条线段是△ABC 的中线,则该线段是( )A .线段DEB .线段BEC .线段EFD .线段FG 5. 若一个三角形的两边长分别为5和8,则第三边长可能是( )A .14B .10C .3D .26. 如图,点D 在△ABC 边AB 的延长线上,DE ∥BC .若∠A =35°,∠C =24°,则∠D 的度数是( )A .24°B .59°C .60°D .69°第6题 第7题7. 如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E 作EF ∥CD (点F 位于点E右侧),且EF =2CD ,连接DF .若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2 8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =12∠ADC D .∠ADE =13∠ADC9. 如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是( )A .7B .9C .10D .11第9题 第10题10. 如图,直线l 1∥l 2,∠1=55°,∠2=65°,则∠3为( )A .50°B .55°C .60°D .65° 11. 如图,AB ⊥CD ,且AB =CD .E ,F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a -b +cD .a +b -c第11题 第12题12. 如图,已知点P 在线段AB 外,且P A =PB ,求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC =BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C13. 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长线交AC于点E.若DF=5,BC=16,则线段EF的长为( )A.4 B.3 C.2 D.1第13题第14题14. 如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)-CD2. 其中正确的是( )A.①②③④B.②④C.①②③D.①③④二、填空题15. 三角形三边长分别为3,2a-1,4,则a的取值范围是 .16. 如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.第16题第17题17. 如图,在△ABC中,BO,CO分别平分∠ABC,∠ACB.若∠BOC=110°,则∠A=.18. 如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AC=6,则AB=.第18题第19题19. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.20. 等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.三、解答题21. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,B不重合),连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE,交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.22. 如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.23. 如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:△AEF≌△DEC;(2)若CF=AD,试判断四边形AFDC是什么样的四边形?并说明理由.24. 如图,AB∥CD,E,F分别为AB,CD上的点,且EC∥BF,连接AD,分别与EC,BF相交于点G,H,若AB=CD,求证:AG=DH.25. 如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.26. 在等腰直角△ABC中,∠ACB=90°,AC=BC,点P在斜边AB上(AP>BP).作AQ⊥AB,且AQ=BP,连接CQ(如图1).(1)求证:△ACQ≌△BCP;(2)延长QA至点R,使得∠RCP=45°,RC与AB交于点H,如图2.①求证:CQ2=QA·QR;②判断三条线段AH,HP,PB的长度满足的数量关系,并说明理由.中小学教育资源及组卷应用平台21世纪教育网(.21c.c)。

2020年中考数学一轮复习讲义(上海专版) 专题29 全等三角形(解析版)

2020年中考数学一轮复习讲义(上海专版) 专题29  全等三角形(解析版)

专题29 全等三角形1、全等三角形的概念能够完全重合的两个图形叫做全等形。

能够完全重合的两个三角形叫做全等三角形。

两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。

2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例1】(2019•上海)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 .【分析】根据勾股定理求得AB =5,设AD =x ,则BD =5﹣x ,根据全等三角形的性质得出C 1D 1=AD =x ,∠A 1C 1D 1=∠A ,∠A 1D 1C 1=∠CDA ,即可求得∠C 1D 1B 1=∠BDC ,根据等角的余角相等求得∠B 1C 1D 1=∠B ,即可证得△C 1B 1D ∽△BCD ,根据其性质得出5−x x =2,解得求出AD 的长.【解答】解:如图,∵在△ABC 和△A 1B 1C 1中,∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2, ∴AB =√32+42=5,设AD =x ,则BD =5﹣x ,∵△ACD ≌△C 1A 1D 1,∴C 1D 1=AD =x ,∠A 1C 1D 1=∠A ,∠A 1D 1C 1=∠CDA ,∴∠C 1D 1B 1=∠BDC ,∵∠B =90°﹣∠A ,∠B 1C 1D 1=90°﹣∠A 1C 1D 1,∴∠B 1C 1D 1=∠B ,∴△C 1B 1D 1∽△BCD ,∴BDC 1D 1=BC C 1B 1,即5−x x =2, 解得x =53,∴AD 的长为53, 故答案为53.【例2】(2019春•徐汇区校级期中)如图,BF =EC ,∠A =∠D ,那么要得到△ABC ≌△DEF ,可以添加一个条件(只需填上一个正确的条件 .【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵BF =CE ,∴BC =EF ,∵∠A =∠D ,∴当∠B =∠E 或∠ACB =∠DFE 时,△ABC ≌△DEF ,故答案为∠B =∠E 或∠ACB =∠DFE【例3】(2019秋•浦东新区期末)已知:如图,△ABC 中,∠ABC =45°,AD ⊥BC ,BE ⊥AC 于D ,垂足分别为点D 、E ,AD 与BE 相交于点F .求证:DF =DC .【分析】证出△ABD 是等腰直角三角形,得出BD =AD ,证明△BDF ≌△ADC (ASA ),即可得出结论.【解答】证明:∵∠ABC =45°,AD ⊥BC ,∴△ABD 是等腰直角三角形,∴BD =AD ,∵BE ⊥AC ,∴∠C +DBF =∠C +DAC =90°,∴∠DBF =∠DAC ,在△BDF 和△ADC 中,{∠BDF =∠ADC =90°BD =AD ∠DBF =∠DAC,∴△BDF ≌△ADC (ASA ),∴DF =DC .1.(2019春•普陀区期末)下列判定两个等腰三角形全等的方法中,正确的是()A.一角对应相等B.两腰对应相等C.底边对应相等D.一腰和底边对应相等【分析】依据全等三角形的判定定理回答即可.【解答】解:A.有一角对应相等,没有边的参与不能证明它们全等,故本选项不符合题意;B.两腰对应相等,第三边不一定对应相等,不符合全等的条件,故不能判定两三角形全等,故本选项不符合题意;C.只有底边相等,别的边,角均不确定,不符合全等的条件,故不能判定两三角形全等,故本选项不符合题意;D.一腰和底边对应相等,相当于两腰和底边对应相等,利用SSS可以证得两个等腰三角形全等,故本选项符合题意.故选:D.2.(2019春•普陀区期末)如图,已知△ABC≌△AEF,其中AB=AE,∠B=∠E.在下列结论①AC=AF,②∠BAF=∠B,③EF=BC,④∠BAE=∠CAF中,正确的个数有()A.1个B.2个C.3个D.4个【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=BC,故①③正确;∠EAF=∠BAC,∴∠EAB=∠F AC,故④正确;∵AF≠BF,∴∠BAF≠∠B,故②错误;综上所述,结论正确的是①③④共3个.故选:C.3.(2018秋•普陀区期中)不能使△ABC≌△DEF必定成立是()A.AB=DE,∠A=∠D,∠C=∠F B.AB=DE,BC=EF,∠B=∠EC.AC=DF,BC=EF,∠A=∠D D.AB=DE,BC=EF,CA=FD【分析】根据全等三角形的判定方法即可判断;【解答】解:A、根据AAS即可判断;本选项不符合题意;B、根据SAS即可判断;本选项不符合题意;C、错误,SSA无法判断三角形全等;本选项符合题意;D、根据SSS即可判断,本选项不符合题意;故选:C.4.(2018春•金山区期末)如图,△ABC≌△AED,点D在BC边上,BC∥AE,∠CAB=80°,则∠BAE的度数是()A.35°B.30°C.25°D.20°【分析】根据全等三角形的性质得到∠CAB=∠DAE,由平行可知可得∠CDA=800°,利用等腰三角形性质可知∠C=∠CDA=80°,推出∠CAD=20°即可解决问题;【解答】解:∵△ABC≌△AED,∴∠CAB=∠DAE=80°,∵BC∥AE,∴∠CDA=∠DAE=80°∵AC=AD,∴∠C=∠ADC=80°,∴∠CAD=20°,∵∠CAB=∠DAE,∴∠CAD=∠BAE=20°故选:D.5.(2019秋•静安区月考)如图,已知正方形ABCD中,E是AD的中点,BF=CD+DF,若∠ABE为α,用含α的代数式表示∠CBF的度数是.【分析】延长BC至G,使得CG=DF,连接FG交CD于H,判定△FDH≌△GCH(AAS),即可得出FH =GH,DH=CH,再判定△ABF≌△CBH(SAS),即可得到∠ABF=∠CBH=α°,进而得出∠FBC=2∠CBH=2α°.【解答】解:如图,延长BC至G,使得CG=DF,连接FG交CD于H,∵BF=CD+DF,CD=BC,∴BF=BG,∵∠D=∠HCG=90°,∠DHF=∠CHG,DF=CG,∴△FDH≌△GCH(AAS),∴FH=GH,DH=CH,∴等腰三角形BFG中,∠FBG=2∠HBC,∵点E是AD中点,DH=CH,∴AE=CH,又∵∠A=∠BCH,AB=CB,∴△ABF≌△CBH(SAS),∴∠ABF=∠CBH=α°,∴∠FBC=2∠CBH=2α°.故答案为:2α.6.(2019秋•浦东新区期中)如图,已知AB=AC,AD=AE,∠BAC=∠DAE,∠BAD=22°,∠ACE=30°,则∠ADE=.【分析】利用全等三角形的性质得出∠ABD=∠2=30°,再利用三角形的外角得出得出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△ABD和△ACE中,{AB=AC∠1=∠CAE AD=AE,∴△ABD≌△ACE(SAS);∴∠ABD=∠2=30°,∵∠1=22°,∴∠3=∠1+∠ABD=22°+30°=52°,故答案为:52°7.(2019春•普陀区期末)如图,△ACE≌△DBF,如果∠E=∠F,DA=10,CB=2,那么线段AB的长是.【分析】直接利用全等三角形的性质得出AB=CD,进而求出答案.【解答】解:∵△ACE≌△DBF,DA=10,CB=2,∴AB=CD=AD−BC2=10−224.故答案为:4.8.(2019秋•浦东新区期中)如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB=60°,且CA+AP=BC,则∠CAB的度数为.【分析】由角平分线的性质可得∠ABP+∠BAP=60°,由“SAS”可证△ACP≌△BCP,可得AP=PE,∠CAP=∠CEP,可得PE=BE,由等腰三角形的性质和外角性质可得∠P AB=2∠PBA,即可求解.【解答】解:如图,在BC上截取CE=AC,连接PE,∵∠ACB=60°,∴∠CAB+∠ABC=120°∵点P是△ABC三个内角的角平分线的交点,∴∠CAP=∠BAP=12∠CAB,∠ABP=∠CBP=12∠ABC,∠ACP=∠BCP,∴∠ABP+∠BAP=60°∵CA=CE,∠ACP=∠BCP,CP=CP∴△ACP≌△ECP(SAS)∴AP=PE,∠CAP=∠CEP∵CA+AP=BC,且CB=CE+BE,∴AP=BE,∴BE=PE,∴∠EPB=∠EBP,∴∠PEC=∠EBP+∠EPB=2∠PBE=∠CAP∴∠P AB=2∠PBA,且∠ABP+∠BAP=60°,∴∠P AB=40°,∴∠CAB=80°故答案为:80°9.(2019春•浦东新区期末)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是cm.【分析】根据全等三角形的性质得到DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,求出OB,根据等腰三角形的性质解答.【解答】解:∵△ABC≌△DCB,∴DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,∴OB=DB﹣DO=7cm,∠OBC=∠OCB,∴OC=OB=7cm,故答案为:7.10.(2018秋•嘉定区期末)在△ABC中,AB=5,AC=7,AD是BC边上的中线,则AD的取值范围是.【分析】作出图形,延长中线AD到E,使DE=AD,利用“边角边”证明△ACD和△EBD全等,根据全等三角形对应边相等可得AC=BE,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的范围,再除以2即可得解.【解答】解:如图,延长中线AD到E,使DE=AD,∵AD是三角形的中线,∴BD=CD,在△ACD和△EBD中,∵{BD=CD∠BDE=∠ADC DE=AD,∴△ACD≌△EBD(SAS),∴AC=BE,∵AB=5,BE=AC=7,∴7﹣5<2AD<7+5,即2<2x<12,∴1<AD<6.故答案为:1<AD<6.11.(2019秋•虹口区校级月考)如图,CD 是经过∠BCA 顶点C 的一条直线,且直线CD 经过∠BCA 的内部,点E ,F 在射线CD 上,已知CA =CB 且∠BEC =∠CF A =∠α.(1)如图1,若∠BCA =80°,∠α=100°,问EF =BE ﹣AF ,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA =∠β,∠α+∠β=180°(如图2),问EF =BE ﹣AF 仍成立吗?说明理由.【分析】(1)根据“AAS ”可以证明△BCE ≌△CAF ,则BE =CF ;(2)同理证明△BCE ≌△CAF ,则CE =AF ,BE =CF ,可得EF =CE ﹣CF =BE ﹣AF .【解答】解:(1)EF =BE ﹣AF 成立,理由如下:∵∠BCA =80°(已知),∴∠BCE +∠ACE =80°∵∠BEC =∠α=100°(已知),∴∠BEF =180°﹣100°=80°(平角定义).∴∠B +∠BCE =80°(三角形外角和定理)∴∠B =∠ACE (等量代换).在△BCE 和△CAF 中,{∠B =∠ACF ∠BEC =∠CFA CB =AC,∴△BCE ≌△CAF (AAS ),∴BE =CF ,AF =EC (全等三角形对应边相等).∴EF =CF ﹣CE =BE ﹣AF (等量代换).(2)EF =BE ﹣AF 成立,理由如下:∵∠BCA =∠β,∴∠BCE +∠ACE =∠β∵∠BEC =∠α=180°﹣∠β,∴∠BEF =180°﹣∠α=∠β.∴∠B +∠BCE =∠β.∴∠B =∠ACE在△BCE 和△CAF 中,{∠B =∠ACF ∠BEC =∠CFA CB =AC,∴△BCE ≌△CAF (AAS ).∴BE =CF ,AF =EC ,∴EF =CF ﹣CE =BE ﹣AF .12.(2019秋•浦东新区期中)已知:如图所示,AB =BC ,AD 为△ABC 中BC 边的中线,延长BC 至E 点,使CE =BC ,连接AE .求证:∠DAC =∠CAE .【分析】延长AD 到F ,使得DF =AD ,连接CF .证明△ACF ≌△ACE 即可解决问题.【解答】解:延长AD 到F ,使得DF =AD ,连接CF .∵AD =DF ,∠ADB =∠FDC ,D =DC ,∴△ADB ≌△FDC (SAS ),∴AB =CF ,∠B =∠DCF ,∵BA =BC ,CE =CB∴∠BAC =∠BCA ,CE =CF ,∵∠ACE =∠B +∠BAC ,∠ACF =∠DCF +∠ACB ,∴∠ACF =∠ACE ,∵AC =AC ,∴△ACF ≌△ACE (SAS ),∴∠CAD =∠CAE .13.(2019春•长宁区期末)如图,已知AD 是△ABC 的一条中线,延长AD 至E ,使得DE =AD ,连接BE .如果AB =5,AC =7,试求AD 的取值范围.【分析】根据SAS 即可证明△BED ≌△CAD .在△ABE 利用三边关系定理即可解决.【解答】解:∵AD 是△ABC 的一条中线,∴BD =CD ,在△BED 和△CAD 中,{BD =CD∠BDE =∠ADC ED =AD,∴△BED ≌△CAD (SAS ),∴BE =AC =5,∵AB =7,∴2<AE <12,∴2<2AD <12,∴1<AD <6.14.(2019春•长宁区期末)如图,在△ABC 中,AD ⊥BC ,垂足为D ,BE ⊥AC ,垂足为E ,AD 与BE 相交于F ,(1)∠DAC 与∠EBC 相等吗?为什么?(2)如果∠BAC =45°,请说明△AEF ≌△BEC 的理由;(3)如果∠BAC =45°,AF =2BD ,试说明AD 平分∠BAC 的理由.【分析】(1)由垂直的定义得到∠ADC=90°,求得∠DAC=90°﹣∠C,于是得到结论;(2)根据三角形的内角和得到∠ABE=180°﹣∠BEA﹣∠BAE=45°,求得BE=AE,根据全等三角形的判定定理即可得到结论;(3)根据已知条件得到BC=2BD,由D是BC的中点,得到BD=CD,于是得到结论.【解答】解:(1)相等,理由:∵AD⊥BC,∴∠ADC=90°,∴∠DAC+∠C=90°,∴∠DAC=90°﹣∠C,∴∠DAC=∠EBC;(2)∵∠BEA=90°,∠BAE=45°,∴∠ABE=180°﹣∠BEA﹣∠BAE=45°,∴∠ABE=∠BAE,∴BE=AE,在△AEF与△BEC中,{∠EAF=∠EBC ∠AEF=∠BEC AE=BE,∴△AEF≌△BEC(AAS);(3)由(2)知,AF=BC,∵AF=2BD,∴BC=2BD,∴D是BC的中点,∴BD=CD,∵AD⊥BC,∠BAD=∠CAD=12∠BAC,∴AD平分∠BAC.。

中考数学专题讲义-全等三角形解题模型一(含解析)

中考数学专题讲义-全等三角形解题模型一(含解析)

全等三角形解题模型一解题模型一平移模型1.如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,AB∥DE.求证:BC=EF.【答案】证明:∵AB∥DE,∴∠A=∠EDF,∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴BC=EF.【解析】【分析】由AB∥DE,可得∠A=∠EDF,由AC=AD+DC,DF=DC+CF,且AD=CF,可得AC=DF,根据SAS可证△ABC≌△DEF,从而可得BC=EF.2.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中图示:∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【解析】【分析】先利用BE=CF求出BF=CE,结合已知条件易证△ABF≌△DCE,然后利用全等三角形得性质得∠GEF=∠GFE,进而利用等角对等边可得EG=FG.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:DE=AF.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴ DE=AF【解析】【分析】由线段的和差和全等三角形的判定方法SAS,得到△ABF≌△DCE,得到对应边DE=AF.4.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.【答案】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)解:△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC,∴OE=OF,∴△OEF为等腰三角形.【解析】【分析】(1)根据BE=CF得到BF=CE,又∠A=∠D,∠B=∠C,所以△ABF≌△DCE,根据全等三角形对应边相等即可得证;(2)根据三角形全等得∠AFB=∠DEC,所以是等腰三角形.5.如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【答案】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.【解析】【分析】直接利用HL判断出Rt△ABC≌Rt△DCB,根据全等三角形对应角相等得出∠OBC=∠OCB,根据等角对等边得出BO=CO.解题模型二对称模型1.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【答案】解:∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS),∴∠C=∠E.【解析】【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△ABC≌△ADE,根据全等的性质即可得到∠C=∠E.图示:2.已知:在如图所示的“风筝”图案中,AB=AD,∠C=∠E,∠BAE=∠DAC.求证:AC=AE.【答案】证明:∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE∴∠BAC=∠DAE在△BAC和△DAE中∴△BAC≌△DAE∴AC=AE【解析】【分析】根据角的和差证出:∠BAC=∠DAE,然后利用AAS证明△BAC≌△DAE,即可得AC=AE.3.如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C。

中考数学复习考点知识与题型专题讲义26---全等三角形的应用(提高篇)

中考数学复习考点知识与题型专题讲义26---全等三角形的应用(提高篇)

中考数学复习考点知识与题型专题讲义26 全等三角形的应用(提高篇)1.小聪同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=10米,请根据上述信息求标语CD的长度.【分析】由AB∥CD,利用平行线的性质可得∠ABO=∠CDO,由垂直的定义可得∠CDO=90°,易得OB⊥AB,由相邻两平行线间的距离相等可得OD=OB,利用ASA定理可得△ABO≌△CDO,由全等三角形的性质可得标语CD的长度.【解答】解:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,{∠ABO =∠CDOOB =OD ∠AOB =∠COD,∴△ABO ≌△CDO (ASA ),∴CD =AB =10m .即标语CD 的长度是10m .【点评】本题主要考查了平行线的性质和全等三角形的判定及性质定理,综合运用各定理是解答此题的关键.2.如图1,在△ABC 中,∠ACB =90°,AC =BC ,D 为边BC 上一点(不与点B 、C 重合),连接AD ,过点C 作CE ⊥AD 于E ,延长CE 至F ,使得CF =AE .(1)依题意补全图形(图2);(2)求证:BF ⊥CE ;(3)作CM ⊥AB 于点M ,连接FM ,若AC =a ,∠CAE =30°,求FM 的长.【分析】(1)根据要求画出图形即可.(2)证明△ACE ≌△CBF (SAS ),推出∠AEC =∠F =90°,即可解决问题.(3)如图3中,连接EM ,设CF 交AB 于点O .证明△MCE ≌△MBF (SAS ),推出ME =MF ,∠CME =∠BMF ,推出∠EMF =∠CMB =90°,推出FM =√22EF =√22(CF ﹣EC ),由此即可解决问题.【解答】(1)解:图形如图2所示:(2)证明:∵CF ⊥AD ,∴∠AEC =90°,∵CA =CB ,∠ACD =90°,∴∠ACE +∠BCF =90°,∠CAE +∠ACE =90°,∴∠CAE =∠BCF ,在△ACE 和△CBF 中,{AC =CB ∠CAE =∠BCF AE =CF,∴△ACE ≌△CBF (SAS ),∴∠AEC =∠F =90°,∴BF ⊥CF .(3)如图3中,连接EM ,设CF 交AB 于点O .在Rt △ACE 中,∵∠AEC =90°,AC =a ,∠CAE =30°,∴EC =12AC =12a ,AE =√3EC =√32a ,∵∠ACB =90°,CA =CB ,CM ⊥AB ,∴CM =AM =BM .∵∠CMO =∠OFB =90°,∠COM =∠FOB ,∴∠MCO =∠MBF ,∵△ACE ≌△CBF ,∴CE =BF =12a ,AE =CF =√32a在△MCE 和△MBF 中,{CM =BM ∠MCE =∠MBF CE =BF,∴△MCE ≌△MBF (SAS ),∴ME =MF ,∠CME =∠BMF ,∴∠EMF =∠CMB =90°,∴FM =√22EF =√22(CF ﹣EC )=√22(√32a −12a )=√6−√24a .【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.3.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长就是AB 的长,请你运用自己所学知识说明他们的做法是正确的.【分析】由已知可以得到∠ABC =∠BDE ,又CD =BC ,∠ACB =∠DCE ,由此根据角边角即可判定△EDC≌△ABC.【解答】证明:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA),∴DE=BA.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.4.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A:②沿河岸直走20m有一树C.继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.(1)河的宽度是5米.(2)请你说明他们做法的正确性.【分析】将题目中的实际问题转化为数学问题,然后利用全等三角形的判定方法证得两个三角形全等即可说明其做法的正确性.【解答】证明:(1)由题意知,DE=AB=5米,即河的宽度是5米.故答案是:5.(2)如图,由题意知,在Rt △ABC 和Rt △EDC 中,{∠ABC =∠EDC =90°BC =DC ∠ACB =∠ECD∴Rt △ABC ≌Rt △EDC (ASA )∴AB =ED .即他们的做法是正确的.【点评】本题考查了全等三角形的应用,解题的关键是将实际问题转化为数学问题.5.小明家门前有一条小河,村里准备在河面上架上一座桥,但河宽AB 无法直接测量,爱动脑的小明想到了如下方法:在与AB 垂直的岸边BF 上取两点C 、D 使CD = CB ,再引出BF 的垂线DG ,在DG 上取一点E ,并使A 、C 、E 在一条直线上,这时测出线段 DE 的长度就是AB 的长.(1)按小明的想法填写题目中的空格;(2)请完成推理过程.【分析】(1)根据全等三角形的性质进行填空,构造全等三角形即可;(2)首先证明△ABC ≌△EDC ,进而可根据全等三角形对应边相等可得DE =AB .【解答】解:(1)在与AB 垂直的岸边BF 上取两点C 、D 使CD =CB ,再引出BF 的垂线DG ,在DG 上取一点E ,并使A 、C 、E 在一条直线上,这时测出线段DE 的长度就是AB 的长. 故答案为:CB ,DE ;(2)由题意得DG ⊥BF ,∴∠CDE =∠CBA =90°,在△ABC 和△EDC 中,{∠CDE =∠CBACB =CD ∠ACB =∠ECD,∴△ABC ≌△EDC (ASA ),∴DE =AB (全等三角形的对应边相等).【点评】此题主要考查了全等三角形的应用,解决问题的关键是掌握全等三角形对应边相等.6.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A ,利用旗杆顶部的绳索,划过90°到达与高台A 水平距离为17米,高为3米的矮台B ,求旗杆的高度OM 和玛丽在荡绳索过程中离地面的最低点的高度MN .【分析】首先得出△AOE ≌△OBF (AAS ),进而得出CD 的长,进而求出OM ,MN 的长即可.【解答】解:作AE ⊥OM ,BF ⊥OM ,∵∠AOE +∠BOF =∠BOF +∠OBF =90°∴∠AOE =∠OBF在△AOE 和△OBF 中,{∠OEA =∠BFO∠AOE =∠OBF OA =OB,∴△AOE ≌△OBF (AAS ),∴OE =BF ,AE =OF即OE +OF =AE +BF =CD =17(m )∵EF =EM ﹣FM =AC ﹣BD =10﹣3=7(m ),∴2EO +EF =17,则2×EO =10,所以OE =5m ,OF =12m ,所以OM =OF +FM =15m又因为由勾股定理得ON =OA =13,所以MN =15﹣13=2(m ).答:旗杆的高度OM 为15米,玛丽在荡绳索过程中离地面的最低点的高度MN 为2米.【点评】此题主要考查了勾股定理的应用以及全等三角形的应用,正确得出△AOE ≌△OBF 是解题关键.7.如图,△ABC 中,AB =BC =CA ,∠A =∠ABC =∠ACB ,在△ABC 的顶点A ,C 处各有一只小蚂蚁,它们同时出发,分别以相同速度由A 向B 和由C 向A 爬行,经过t (s )后,它们分别爬行到了D ,E 处,设DC 与BE 的交点为F .(1)证明△ACD ≌△CBE ;(2)小蚂蚁在爬行过程中,DC 与BE 所成的∠BFC 的大小有无变化?请说明理由.【分析】(1)根据小蚂蚁的速度相同求出AD =CE ,再利用“边角边”证明△ACD 和△CBE 全等即可;(2)根据全等三角形对应角相等可得∠EBC =∠ACD ,然后表示出∠BFC ,再根据等边三角形的性质求出∠ACB ,从而得到∠BFC .【解答】(1)证明:∵小蚂蚁同时从A 、C 出发,速度相同,∴t (s )后两只小蚂蚁爬行的路程AD =CE ,∵在△ACD 和△CBE 中,{AD =CE ∠A =∠ACB AC =CB,∴△ACD ≌△CBE (SAS );(2)解:∵△ACD ≌△CBE ,∴∠EBC =∠ACD ,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.【点评】本题考查了全等三角形的应用,主要利用了全等三角形对应角相等的性质,等边三角形的性质,根据小蚂蚁的速度相同求出AD=CE是证明三角形全等的关键.8.如图,操场上有两根旗杆间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?【分析】(1)首先证明△CAM≌△MBD,可得AM=DB,AC=MB,然后可求出AM的长,进而可得DB长;(2)利用路程除以速度可得时间.【解答】解:(1)∵CM和DM的夹角为90°,∴∠1+∠2=90°,∵∠DBA =90°,∴∠2+∠D =90°,∴∠1=∠D ,在△CAM 和△MBD 中,{∠A =∠B∠1=∠D CM =MD,∴△CAM ≌△MBD (AAS ),∴AM =DB ,AC =MB ,∵AC =3m ,∴MB =3m ,∵AB =12m ,∴AM =9m ,∴DB =9m ;(2)9÷0.5=18(s ).答:小强从M 点到达A 点还需要18秒.【点评】此题主要考查了全等三角形的应用,关键是正确判定△CAM ≌△MBD ,掌握全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL .9.小强为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 视线PC 与地面夹角∠DPC =36°,测楼顶A 视线P A 与地面夹角∠APB =54°,量得P 到楼底距离PB 与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB =36米,小强计算出了楼高,楼高AB 是多少米?【分析】根据题意可得△CPD ≌△P AB (ASA ),进而利用AB =DP =DB ﹣PB 求出即可.【解答】解:∵∠CPD =36°,∠APB =54°,∠CDP =∠ABP =90°,∴∠DCP =∠APB =54°,在△CPD 和△P AB 中∵{∠CDP =∠ABPDC =PB ∠DCP =∠APB,∴△CPD ≌△P AB (ASA ),∴DP =AB ,∵DB =36,PB =10,∴AB =36﹣10=26(m ),答:楼高AB 是26米.【点评】此题主要考查了全等三角形的应用,根据题意得出△CPD ≌△P AB 是解题关键.10.如图是小磊家的两个房间甲与乙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA ,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB .(1)当他在甲房间时,测得MA =a ,NB =b ,求甲房间的宽AB ;(2)当他在乙房间时,测得MA =c ,NB =d ,且∠MP A =75°,∠NPB =45°①求∠MPN 的度数;②求乙房间的宽AB .【分析】(1)证明△AMP ≌△BPN ,从而得到MA =PB =a ,P A =NB =b ,即可求出AB =P A +PB =a +b ;(2)①根据平角的定义即可求出∠MPN =60°;②根据PM =PN 以及∠MPN 的度数可得到△PMN 为等边三角形.利用相应的三角函数表示出MN ,MP 的长,可得到房间宽AB 和AM 长相等.【解答】解:(1)∵∠MPN =90°,∴∠APM +∠BPN =90°,∵∠APM +∠AMP =90°,∴∠AMP =∠BPN .在△AMP 与△BPN 中,{∠AMP =∠BPN∠MAP =∠PBN =90°MP =PN,∴△AMP ≌△BPN ,∴MA =PB =a ,P A =NB =b ,∴AB =P A +PB =a +b ;(2)①∠MPN =180°﹣∠APM ﹣∠BPN =60°;②过N点作MA垂线,垂足点D,连接NM.设AB=x,且AB=ND=x.∵梯子的倾斜角∠BPN为45°,∴△BNP为等腰直角三角形,△PNM为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND=15°.∵∠APM=75°,∴∠AMP=15°.∴cos15°=xMN=MAMP.∵△PNM为等边三角形,∴NM=PM.∴x=MA=c.即乙房间的宽AB是c.【点评】此题考查了全等三角形的应用,解直角三角形的应用,根据PM=PN以及∠MPN的度数得到△PMN为等边三角形是解题的关键.11.(1)如图1,已知△ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连结BE、CD,猜想BE与CD有什么数量关系?并说明理由;(2)请模仿正方形情景下构造全等三角形的思路,利用构造全等三角形完成下题:如图2,要测量池塘两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC =AE ,求BE 的长(结果保留根号).【分析】(1)由正方形的性质就可以得出△ADC ≌△ABE ,就可以得出CD =BE ;(2)在AB 的外侧作AD ⊥AB ,使AD =AB ,连结CD ,BD ,就可以得出△ADC ≌△ABE ,就有CD =BE ,在Rt △CDB 中由勾股定理就可以求出CD 的值,进而得出结论.【解答】解:(1)CD =BE .理由:如图①∵四边形ABFD 和四边形ACGE 都是正方形,∴AD =AB ,AC =AE ,∠DAB =∠CAE =90°,∴∠DAB +∠BAC =∠CAE +∠BAC ,∴∠DAC =∠BAE .在△ADC 和△ABE 中,{AD =AB ∠DAC =∠BAE AC =AE,∴△ADC ≌△ABE (SAS ),∴CD =BE ;(2)如图②,在AB 的外侧作AD ⊥AB ,使AD =AB ,连结CD ,BD ,∴∠DAB =90°,∴∠ABD =∠ADB =45°.∵∠ABC =45°,∴∠ABD +∠ABC =45°+45°=90°,即∠DBC =90°.∴∠CAE =90°,∴∠DAB =∠CAE ,∴∠DAB +∠BAC =∠CAE +∠BAC ,即∠DAC =∠BAE .在△ADC 和△ABE 中{AD =AB ∠DAC =∠BAE AC =AE,∴△ADC ≌△ABE (SAS ),∴CD =BE .∵AB =100m ,在直角△ABD 中,由勾股定理,得BD =100√2.∴CD =√1002+(100√2)2=100√3,∴BE =CD =100√3,答:BE 的长为100√3米.【点评】本题考查了正方形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等腰直角三角形的性质的运用,解答时证明三角形全等是关键.12.如图,在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以相同的速度由A 向B和由C 向A 爬行,经过7分钟后,它们分别爬行到D 、E 处,设DC 与BE 的交点为点F .(1)求证:△ACD ≌△CBE ;(2)蜗牛在爬行过程中,DC 与BE 所成的∠BFC 的大小有无变化?请证明你的结论.【分析】(1)根据SAS 即可判断出△ACD ≌△CBE ;(2)根据△ACD ≌△CBE ,可知∠BFC =180°﹣∠FBC ﹣∠BCD =180°﹣∠ACD ﹣∠BCD .【解答】(1)证明:∵AB =BC =CA ,两只蜗牛速度相同,且同时出发,∴CE =AD ;∠A =∠BCE =60°,在△ACD 与△CBE 中,{AC =CB ∠A =∠BCE CE =AD,∴△ACD ≌△CBE (SAS );(2)解:DC 和BE 所成的∠BFC的大小不变.理由如下:∵△ACD ≌△CBE ,∴∠BFC =180°﹣∠FBC ﹣∠BCD =180°﹣∠ACD ﹣∠BCD =120°.【点评】本题考查全等三角形的应用及等边三角形的性质,难度适中,求解第二问时找出∠BFC =180°﹣∠FBC ﹣∠BCD =180°﹣∠ACD ﹣∠BCD 是关键.13.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=(40√3−40)米,现要在E、F之间修一条笔直道路,求这条道路EF的长为40(√3+1)米.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△F AE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE,∴AG =AE ,∠DAG =∠BAE ,DG =BE ,又∵∠EAF =45°,即∠DAF +∠BEA =∠EAF =45°,∴∠GAF =∠F AE ,在△GAF 和△F AE 中,{AG =AE ∠GAF =∠FAE AF =AF,∴△AFG ≌△AFE (SAS ).∴GF =EF .又∵DG =BE ,∴GF =BE +DF ,∴BE +DF =EF .【类比引申】∠BAD =2∠EAF .理由如下:如图(2),延长CB 至M ,使BM =DF ,连接AM ,∵∠ABC +∠D =180°,∠ABC +∠ABM =180°,∴∠D =∠ABM ,在△ABM 和△ADF 中,{AB =AD ∠ABM =∠D BM =DF,∴△ABM ≌△ADF (SAS ),∴AF =AM ,∠DAF =∠BAM ,∵∠BAD =2∠EAF ,∴∠DAF +∠BAE =∠EAF ,∴∠EAB +∠BAM =∠EAM =∠EAF ,在△F AE 和△MAE 中,{AE =AE ∠FAE =∠MAE AF =AM,∴△F AE ≌△MAE (SAS ),∴EF =EM =BE +BM =BE +DF ,即EF =BE +DF .故答案是:∠BAD =2∠EAF .【探究应用】如图3,把△ABE 绕点A 逆时针旋转150°至△ADG ,连接AF ,过A 作AH ⊥GD ,垂足为H .∵∠BAD =150°,∠DAE =90°,∴∠BAE =60°.又∵∠B =60°,∴△ABE 是等边三角形,∴BE =AB =80米.根据旋转的性质得到:∠ADG =∠B =60°,又∵∠ADF =120°,∴∠GDF =180°,即点G 在 CD 的延长线上.易得,△ADG ≌△ABE ,∴AG =AE ,∠DAG =∠BAE ,DG =BE ,又∵AH =80×√32=40√3,HF =HD +DF =40+40(√3−1)=40√3,故∠HAF =45°,∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°又∵∠BAD=150°=2×75°=2∠EAF∴根据上述推论有:EF=BE+DF=80+40(√3−1)=40(√3+1)(米),即这条道路EF的长为40(√3+1).故答案是:40(√3+1).【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.14.如图,小强在河的一边,要测河面的一只船B与对岸码头A的距离,他的做法如下:①在岸边确定一点C,使C与A,B在同一直线上;②在AC的垂直方向画线段CD,取其中点O;③画DF ⊥CD 使F 、O 、A 在同一直线上;④在线段DF 上找一点E ,使E 与O 、B 共线.他说测出线段EF 的长就是船B 与码头A 的距离.他这样做有道理吗?为什么?【分析】首先证明△ACO ≌△FDO ,根据全等三角形的性质可得AO =FO ,∠A =∠F ,再证明△ABO ≌△FEO ,进而可得EF =AB .【解答】解:有道理,∵DF ⊥CD ,AC ⊥CD ,∴∠C =∠D =90°,∵O 为CD 中点,∴CO =DO ,在△ACO 和△FDO 中{∠C =∠DCO =DO ∠AOC =∠DOF,∴△ACO ≌△FDO (ASA ),∴AO =FO ,∠A =∠F ,在△ABO 和△EOF 中{∠A =∠FAO =FO ∠AOB =∠FOE,∴△ABO ≌△FEO (ASA ),∴EF =AB .【点评】此题主要全等三角形的应用,关键是掌握全等三角形的判定方法和性质定理.15.如图,一个特大型设备人字梁,工人师傅要检查人字梁的AB 和AC 是否相等,但是他直接测量不方便,身边只有一个刻度尺(长度远远不够).它是这样操作的:①分别在BA 和CA 上取BE =CG ;②在BC 上取BD =CF ;③量出DE 的长a 米,FG 的长b 米,如果a =b ,则说明AB 和AC 是相等的,他的这种做法合理吗?为什么?【分析】利用全等三角形的判定方法得出△BDE ≌△CFG (SSS ),进而得出答案.【解答】解:合理,理由:在△BDE 和△CFG 中,{BE =CG BD =CF DE =FG,∴△BDE ≌△CFG (SSS ),∴∠B =∠C ,∴AB =AC .【点评】此题主要考查了全等三角形的应用,根据题意正确得出对应边相等是解题关键.16.如图,在等边△ABC 的顶点B 、C 处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C 向A 和由B 向C 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、P 处,请问:(1)在爬行过程中,BD 和AP 始终相等吗?(2)在爬行过程中BD 与AP 所成的∠DQA 有变化吗?若无变化是多少度?【分析】(1)根据等边三角形性质得出∠CAB =∠C =∠ABP =60°,AB =BC ,根据SAS 推出△BDC ≌△APB 即可.(2)根据△BDC ≌△APB 得出∠CBD =∠BAP ,根据三角形外角性质求出∠DQA =∠ABC ,即可求出答案.【解答】解:(1)在爬行过程中,BD 和AP 始终相等,理由是:∵△ABC 是等边三角形,∴∠CAB =∠C =∠ABP =60°,AB =BC ,在△BDC 和△APB 中,{BC =AB ∠C =∠ABP CD =BP,∴△BDC ≌△APB (SAS ),∴BD =AP .(2)蜗牛在爬行过程中BD 与AP 所成的∠DQA 大小无变化,理由:∵△BDC ≌△APB ,∴∠CBD =∠BAP ,∴∠DQA =∠DBA +∠BAP =∠DBA +∠CBD =∠ABC =60°,即蜗牛在爬行过程中BD 与AP 所成的∠DQA 大小无变化,始终是60°.【点评】本题考查了等边三角形的性质,三角形外角性质以及全等三角形的性质和判定的应用.注意证得△BDC≌△APB是关键.17.对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求CDAD的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)【分析】(1)依据△BCE是等腰直角三角形,即可得到CE=√2BC,由图②,可得CE=CD,而AD=BC,即可得到CD=√2AD,即CDAD=√2;(2)①由翻折可得,PH=PC,即PH2=PC2,依据勾股定理可得AH2+AP2=BP2+BC2,进而得出AP=BC,再根据PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),进而得到∠CPH=90°;②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得到CP平分∠BCE,故沿着过点C 的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【解答】解:(1)由图①,可得∠BCE=12∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴BCEC=cos45°=√22,即CE=√2BC,由图②,可得CE=CD,而AD=BC,∴CD=√2AD,∴CDAD=√2;(2)①设AD=BC=a,则AB=CD=√2a,BE=a,∴AE=(√2−1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(√2−1)a,设AP=x,则BP=√2a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(√2−1)a]2+x2=(√2a﹣x)2+a2,解得x=a,即AP=BC,又∵PH=CP,∠A=∠B=90°,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【点评】本题属于折叠问题,主要考查了等腰直角三角形的性质,矩形的性质,全等三角形的判定与性质的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.18.如图,在一个风筝ABCD中,AB=AD,BC=DC,分别在AB、AD的中点E、F处贴两根彩线EC 、FC .(1)∠B 与∠D 相等吗?请说明理由;(2)求证:EC =FC .【分析】(1)结论∠B =∠D ,只要证明△ABC ≌△ADC 即可.(2)欲证明EC =FC ,只要证明△EBC ≌△FDC ,或△ACE ≌△ACF 即可.【解答】(1)解:结论∠B =∠D .理由:连接AC .在△ACB 和△ACD 中,{AC =AC BC =CD AB =AD,∴△ABC ≌△ADC (SSS )∴∠B =∠D(2)∵点E 与F 分别是AB 、AD 的重点∴BE =12AB ,DF =12AD ,∵AB =AD∴BE =DF ,在△EBC 和△FDC 中,{BE =DF ∠B =∠D BC =DC,∴△EBC ≌△FDC (SAS )∴EC =FC .【点评】本题考查全等三角形的判定和性质,解题的关键是根据条件正确寻找全等三角形解决问题,属于基础题.19.在△ABC 中,∠B =45°,∠C =30°,点D 是BC 上一点,连接AD ,过点A 作AG ⊥AD ,在AG 上取点F ,连接DF .延长DA 至E ,使AE =AF ,连接EG ,DG ,且GE =DF .(1)若AB =2√2,求BC 的长;(2)如图1,当点G 在AC 上时,求证:BD =12CG ;(3)如图2,当点G 在AC 的垂直平分线上时,直接写出AB CG 的值.【分析】(1)如图1中,过点A 作AH ⊥BC 于H ,分别在RT △ABH ,RT △AHC 中求出BH 、HC 即可.(2)如图1中,过点A 作AP ⊥AB 交BC 于P ,连接PG ,由△ABD ≌△APG 推出BD =PG ,再利用30度角性质即可解决问题.(3)如图2中,作AH ⊥BC 于H ,AC 的垂直平分线交AC 于P ,交BC 于M .则AP =PC ,作DK⊥AB 于K ,设BK =DK =a ,则AK =√3a ,AD =2a ,只要证明∠BAD =30°即可解决问题.【解答】解:(1)如图1中,过点A 作AH ⊥BC 于H . ∴∠AHB =∠AHC =90°,在RT △AHB 中,∵AB =2√2,∠B =45°,∴BH =AB •cos B =2√2×√22=2, AH =AB •sin B =2,在RT △AHC 中,∵∠C =30°,∴AC =2AH =4,CH =AC •cos C =2√3,∴BC =BH +CH =2+2√3.(2)证明:如图1中,过点A 作AP ⊥AB 交BC 于P ,连接PG , ∵AG ⊥AD ,∴∠DAF =∠EAC =90°,在△DAF 和△GAE 中,{AF =AE DF =EG, ∴△DAF ≌△GAE ,∴AD =AG ,∴∠BAP =90°=∠DAG ,∴∠BAD =∠P AG ,∵∠B =∠APB =45°,∴AB =AP ,在△ABD 和△APG 中,{AB =AP ∠BAD =∠PAG AD =AG,∴△ABD ≌△APG ,∴BD=PG,∠B=∠APG=45°,∴∠GPB=∠GPC=90°,∵∠C=30°,∴PG=12GC,∴BD=12CG.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,在RT△AHC中,∵∠ACH=30°,∴AC=2AH,∴AH=AP,在RT△AHD和RT△APG中,{AH=APAD=AG,∴△AHD≌△APG,∴∠DAH=∠GAP,∵GM⊥AC,P A=PC,∴MA=MC,∴∠MAC=∠MCA=∠MAH=30°,∴∠DAM=∠GAM=45°,∴∠DAH=∠GAP=15°,∴∠BAD=∠BAH﹣∠DAH=30°,作DK⊥AB于K,设BK=DK=a,则AK=√3a,AD=2a,∴ABAD=a+√3a2a=√3+12,∵AG=CG=AD,∴ABCG=√3+12.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、直角三角形30度角性质、线段垂直平分线性质等知识,解题的关键是添加辅助线构造全等三角形,学会设参数解决问题,属于中考压轴题.20.如图,A,B,C,D,E,F,M,N是某公园里的8个独立的景点,D,E,B三个景点之间的距离相等;A,B,C三个景点距离相等.其中D,B,C在一条直线上,E,F,N,C在同一直线上,D,M,F,A也在同一条直线上.游客甲从E点出发,沿E→F→N→C→A→B→M游览,同时,游客乙从D点出发,沿D→M→F→A→C→B→N游览.若两人的速度相同且在各景点游览的时间相同,甲、乙两人谁最先游览完?请说明理由.【分析】根据等边三角形的性质求出∠ABD=∠CBE,然后利用“边角边”证明△ABD和△CBE 全等,根据全等三角形对应边相等可得CE=AD,全等三角形对应角相等可得∠BDA=∠BEC,再利用“角边角”证明△MBD和△NBE全等,根据全等三角形对应边相等可得BM=BN,然后求出两人游览路线长度相同.【解答】答:甲、乙两人同时浏览完.理由如下:∵D ,E ,B 三个景点之间距离相等,∴BD =BE =DE .∴△BDE 是等边三角形.∴∠DBE =60°.同理,△ABC 也是等边三角形,∠ABC =60°.∴∠ABE =180°﹣∠DBE ﹣∠ABC =60°.∴∠DBE =∠ABC =∠ABE .∴∠ABD =∠ABE +∠DBE ,∠CBE =∠ABE +∠ABC .∴∠ABD =∠CBE .在△ABD 和△CBE 中,{AB =CB∠ABD =∠CBE BD =BE,∴△ABD ≌△CBE (SAS ).∴CE =AD ,∠BDA =∠BEC .在△MBD 和△NBE 中,{∠BDA =∠BEC∠DBE =∠ABE BD =BE,∴△MBD ≌△NBE (ASA ).∴BM =BN .∴EC +AC +AB +BM =AD +AC +BC +BN .∴沿E →F →N →C →A →B →M ,D →M →F →A →C →B →N 的距离相等,所以甲、乙两人同时浏览完.【点评】本题考查了全等三角形的应用,等边三角形的性质,利用两次三角形全等证明得到BM =BN是解题的关键.。

专题25 二次函数与全等三角形存在问题-2022中考数学之二次函数重点题型专题(全国通用版)(解析版

专题25 二次函数与全等三角形存在问题-2022中考数学之二次函数重点题型专题(全国通用版)(解析版

专题25 二次函数与全等三角形存在问题1.如图,抛物线C1:y=x2﹣2x﹣3与x轴交于A、B两点,点A在点B的左侧,将抛物线C1向上平移1个单位得到抛物线C2,点Q(m,n)在抛物线C2上,其中m>0且n<0,过点P作PQ∥y轴交抛物线C1于点P,点M是x轴上一点,当以点P、Q、M为顶点的三角形与△AOQ全等时,点M的横坐标为_____.【答案】4【分析】此题首先需要确定全等的对应关系,函数图象向上平移后,两个函数上下间距为1,OA=1,所以AO与PQ对应,∠AOQ=∠PQM,可确定OQ=QM,AQ=PB,得到两组线段相等后,设点M坐标,以两组线段相等为等量建立方程即可解决问题.【详解】解:∵△AOQ≌△PQM,AO=PQ∴∠AOQ=∠PQM,AQ=PB,OQ=QM∴AQ2=PB2,OQ2=QM2设Q(m,m2﹣2m﹣2),P(m,m2﹣2m﹣3),M(a,0)如图,过点Q作QH⊥AB,垂足为H,则在Rt△OHQ中,OQ2=(m)2+(m2﹣2m﹣2)2;在Rt△MHQ中,QM2=(a﹣m)2+(m2﹣2m﹣2)2;在Rt△AHQ中,AQ2=(m+1)2+(m2﹣2m﹣2)2;在Rt△PHB中,PB2=(a﹣m)2+(m2﹣2m﹣3)2a由(m)2+(m2﹣2m﹣2)2=(a﹣m)2+(m2﹣2m﹣2)2,解得m=2由(m+1)2+(m2﹣2m﹣2)2=(a﹣m)2+(m2﹣2m﹣3)2,解得a=﹣2(舍)或a=4∴点M的横坐标为4.【点睛】此题是代几综合问题,考查了全等关系在二次函数中的应用和二次函数中点坐标与线段长的转换,首先要确定边角的对应关系,发现线段相等后,利用等量建立方程,只要确定了对应关系,此题就好解决了.2.如图,在第一象限内作射线OC ,与x 轴的夹角为30°,在射线OC 上取点A ,过点A 作AH ⊥x 轴于点H .在抛物线y =x 2(x >0)上取点P ,在y 轴上取点Q ,使得以P 、O 、Q 为顶点,且以点Q 为直角顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是__________.【答案】)12233或()或( 【分析】此题应分四种情况考虑:①∠POQ =∠OAH =60°,此时A 、P 重合,可联立直线OA 和抛物线的解析式,即可得A 点坐标;②∠POQ =∠AOH =30°,此时∠POH =60°,即直线OP :y,联立抛物线的解析式可得P点坐标,进而可求出OQ 、PQ 的长,由于△POQ ≌△AOH ,那么OH =OQ 、AH =PQ ,由此得到点A 的坐标.③当∠OPQ =90°,∠POQ =∠AOH =30°时,此时△QOP ≌△AOH ,由此求得点A 的坐标; ④当∠OPQ =90°,∠POQ =∠OAH =60°,此时△OQP ≌△AOH ,由此求得点A 的坐标;【详解】①当∠POQ =∠OAH =60°,若以P ,O ,Q 为顶点的三角形与△AOH 全等,那么A 、P 重合; 由于∠AOH =30°,设A 坐标为(a ,b ), 在直角三角形OAH 中,tan ∠AOH =tanba, 设直线OA 的方程为y =kx ,把A 的坐标代入得k =b a∴直线OA 的解析式: y,联立抛物线的解析式,得:2y y x ⎧=⎪⎨⎪=⎩,解得 00x y =⎧⎨=⎩,13x y ⎧=⎪⎪⎨⎪=⎪⎩ ;∴A13); ②当∠POQ =∠AOH =30°,此时△POQ ≌△AOH ;易知∠POH =60°,则直线OP :yx,联立抛物线的解析式,得:2y y x ⎧=⎪⎨=⎪⎩, 解得00x y =⎧⎨=⎩,3x y ⎧=⎪⎨=⎪⎩∴P3),即可得A (3;③当∠OPQ =90°,∠POQ =∠AOH =30°时,此时△QOP ≌△AOH ;易知∠POH =60°,则直线OP :y,联立抛物线的解析式,得:2y y x ⎧=⎪⎨=⎪⎩, 解得 00x y =⎧⎨=⎩,3x y ⎧=⎪⎨=⎪⎩∴P3), ∴OPQP =2, ∴OH =OPAH =QP =2, ∴A (2);④当∠OPQ =90°,∠POQ =∠OAH =60°,此时△OQP ≌△AOH ;此时直线OP:y,联立抛物线的解析式,得:2y xy x⎧=⎪⎨⎪=⎩,解得xy=⎧⎨=⎩,13xy⎧=⎪⎪⎨⎪=⎪⎩;∴P13),∴QPOP=23,∴OH=QPAH=OP=23,∴A23).综上可知:符合条件的点A有四个,且坐标为:,13),(3,(2),23).【点睛】本题主要考查的是全等三角形的判定和性质以及函数图象交点坐标的求法;由于全等三角形的对应顶点不明确,因此要注意分类讨论思想的运用.3.(2021·陕西·西安市中考三模)如图,抛物线y=ax2+bx+c经过A(0),B0),C(0,3)三点,线段BC与抛物线的对称轴l交于点D,该抛物线的顶点为P,连接P A,AD,线段AD与y轴相交于点E.(1)求该抛物线的表达式和点P的坐标;(2)在y轴上是否存在一点Q,使以Q,C,D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=−13x2+3,P4);(2)存在,点Q的坐标为(0,7).【分析】(1)已知抛物线经过的三点坐标,直接利用待定系数法求解即可.(2)先求出直线BC 的解析式,从而得点D 的坐标为D2).可求出AD 并证明CD=DP ,利用三角函数及等腰三角形性质求出∠ADP =120°,则可根据点Q 的位置在y 轴上,分别从两种情况利用SAS 判定两三角形全等的方法来求解. 【详解】解:(1)设抛物线的解析式为:y =a (x(x,将C (0,3)代入得: a (0(3, 解得 a =−13.∴抛物线的解析式:y =−13(x(x−13x 2+3. ∵y =−13x 2x +3=−13(x2+4, ∴P4). (2)存在,设直线BC 的解析式:y =kx +b ,依题意得:3b b +==⎪⎩, 解得3k b ⎧=⎪⎨⎪=⎩∴直线BC 的解析式为:y =+3. 当xy =2, ∴D2). ∴AD=4,CD2=PD .∵tan ∠ABD =DF BF, ∴∠ABD =30°.∵l 是抛物线的对称轴,点D 在l 上, ∴AD =BD .∴∠ABD =∠BAD =30°. ∴∠ADB =120°. ∴∠ADF =∠BDF =60°. ∴∠ADP =120°,△QCD 和△APD 中,CD =PD ,且点Q 在y 轴上,当点Q 在CD 上方,∠DCQ =∠ADP =120°,CQ =AD 时,△QCD ≌△APD , 设点Q (0,y ),则CQ =y -3, 即y -3=4, 解得y =7, ∴Q (0,7),当点Q 在CD 下方时,∠CDQ =120°,此时点Q 在抛物线的对称轴上. 综上,当△QCD ≌△APD 时,点Q 的坐标为(0,7). 【点睛】此题属于二次函数综合题,难度较大,涉及到:函数解析式的确定以及全等三角形的应用等重点知识.在解题时,一定要注意从图中找出合适的解题思路,能否将琐碎的知识运用到同一题目中进行解答,也是对基础知识掌握情况的重点考查.4.(2021·北京市九年级月考)在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点A (-0),B (0),C (0,-3).(1)求抛物线顶点P 的坐标;(2)连接BC 与抛物线对称轴交于点D ,连接PC . ①求证:PCD 是等边三角形.②连接AD ,与y 轴交于点E ,连接AP ,在平面直角坐标系中是否存在一点Q ,使以Q ,C ,D 为顶点的三角形与ADP 全等.若存在,直接写出点Q 坐标,若不存在,请说明理由;(3)在(2)的条件下,点M 是直线BC 上任意一点,连接ME ,以点E 为中心,将线段ME 逆时针旋转60°,得到线段NE ,点N 的横坐标是否发生改变,若不改变,直接写出点N 的横坐标;若改变,请说明理由.【答案】(1)4)P -;(2)①见解析;②存在,2)或(2)--;(3)不改变,N 的理由见解析.【分析】(1)利用待定系数法求得二次函数的解析式,再用配方法解题;(2)①利用勾股定理求出PC ,PD ,CD 的值,即可求解;②存在,在对称轴上取一点Q ,使得DQ =AD ,连接AQ ,证明()ADP QDC SAS ≅,可解得2)Q ,再根据对称性得到,当点Q '与Q 关于A 对称时,Q CD ADP '≅,解得(2)Q '--; (3)设EN 交DM 于J ,利用全等三角形的性质,证明点N 在对称轴上即可. 【详解】解:(1)抛物线y =ax 2+bx +c 经过点A (0),B(0),C (0,-3)330270c a c a c =-⎧⎪∴+=⎨⎪+=⎩133a b c ⎧=⎪⎪⎪∴=⎨⎪=-⎪⎪⎩2221113()3(4333y x x x ∴=-=--=-4)P ∴-;(2)①设直线BC 的解析式为y kx b =+,代入 B(0),C (0,-3),得3b b ⎧+=⎪⎨=-⎪⎩3k b ⎧=⎪∴⎨⎪=-⎩直线BC的解析式为3y x =-当x =2y =-,2)D ∴-2,2,2PD CD PC ∴===CD PC PD ∴==∴PCD 是等边三角形;②存在,理由如下,在对称轴上取一点Q ,使得DQ =AD ,连接AQ ,tan OC ABC OB ∠==30ABC ∴∠=︒ ,DA DB DQ AB =⊥ 30,120DAB ADB ∴∠=︒∠=︒ 60ADQ BDQ ∴∠=∠=︒ 60ADQ CDP ∠=∠=︒ADP CDQ ∴∠=∠,DA DQ DP DC == ()ADP QDC SAS ∴≅ 4AD DQ ∴==2)Q ∴根据对称性可知,当点Q '与Q 关于A 对称时,Q CD ADP '≅,(2)Q '∴--,综上所述,满足条件的点Q 的坐标为:2)或(2)--; (3)不改变,理由如下, 设EN 交DM 于J , 60MEN CED ∠=∠=︒ MEC NED ∴∠=∠,ME NE EC ED == ()MEC NED SAS ∴≅EMC END ∴∠=∠ EJM DJN ∠=∠ 60MEJ JDN ∴∠=∠=︒ 60CDP CDN ∴∠=∠=︒ N ∴在对称轴上, N ∴【点睛】本题考查二次函数综合题,涉及待定系数法求二次函数解析式、配方法求顶点坐标、全等三角形的判定与性质、正切、等边三角形的判定与性质等知识,是重要考点,有难度,掌握相关知识是解题关键.5.如图所示,抛物线()20y ax bx c a =++≠经过()A,()B ,()0,3C 三点,线段BC 与抛物线的对称轴l 相交于点D .设抛物线的顶点为P ,连接P A ,AD ,DP ,线段AD 与y 轴相交于点E .(1)求该抛物线的表达式.(2)在平面直角坐标系中是否存在点Q ,使以Q ,C ,D 为顶点的三角形与△ADP 全等?若存在,求出点Q 的坐标;若不存在,说明理由.(3)将CED ∠绕点E 顺时针旋转,边EC 旋转后与线段BC 相交于点M ,边ED 旋转后与对称轴l 相交于点N ,连接PM ,DN ,若2PM DN =,求点N 的坐标(直接写出结果).【答案】(1)2133y x =-+;(2)存在,点Q的坐标为())2-,()0,7或()-;(3)点N的坐标为⎭【分析】(1)已知抛物线经过的三点坐标,直接利用待定系数法求解即可;(2)先求出直线BC 的解析式,求出点D 的坐标;方法1,设点Q 的坐标为(),x y ,利用两点间距离公式AB =22226704210x y y x y y ⎧+--=⎪⎨+---=⎪⎩,从而求解;方法2,利用全等条件先确定点Q 的几何位置,从而利用全等的条件得到对应线段的长来解决问题;注意分类讨论;(3)先证明CEM DEN ≌,设点M 的坐标为,3x x ⎛⎫+ ⎪ ⎪⎝⎭,可得22443PM x =+,22221433CM x x x =+=,根据224PM CM =求出x的值,然后根据2FN DF DN =-==【详解】解:(1)设抛物线的表达式为(y a x x =-,将点()0,3C 代入后,得(003a -=,解得13a =-.∴抛物线的表达式为(211333y x x x =--=-+. (2)设直线BC 的解析式为y kx b=+,由题意, 得03b b ⎧+=⎪⎨=⎪⎩,解得3k b ⎧=⎪⎨⎪=⎩.∴直线BC 的解析式为3y x =+.由抛物线的表达式2133y x =-+,得顶点P 的坐标为)4.当x =32y =+=, ∴点D 的坐标为)2.方法1:设点Q 的坐标为(),x y .∴()()222220369QC x y x y y =-+-=+-+,(()22222247QD x y x y y =+-=+--+,(()2220428AP =+-=,(()2220216AD =+-=,2CD DP ==.∵在QCD 和APD △中,CD PD =,若两个三角形全等,则有以下两种情况. ①当QC AP =,QD AD =时,22QC AP =,22QD AD =,则222269284716x y y x y y ⎧+-+=⎪⎨+--+=⎪⎩,解得114x y ⎧=⎪⎨=⎪⎩222x y ⎧=⎪⎨=-⎪⎩∴点Q的坐标为(),)2-.②当QC AD =,QD AP =时,22QC AD =,22QD AP =,则222269164728x y y x y y ⎧+-+=⎪⎨+--+=⎪⎩, 解得3307x y =⎧⎨=⎩,441x y ⎧=-⎪⎨=⎪⎩∴点Q 的坐标为()0,7,()-. 综上所述,点Q的坐标为(),)2-,()0,7或()-.方法2:∵点A的坐标为(),点B的坐标为(),点C 的坐标为()0,3,点F的坐标为),∴AF =4=AD,OB =3OC =,6BC =,2PD DF CD ===. ∴60BDF ADF ADC PDC ∠=∠=∠=∠=︒,120ADP CDF ∠=∠=︒. 如图所示,分以下四种情况.①当1Q 在y 轴上,且1Q C AD =时,()1SAS ADP QCD ≅. 此时1Q 的坐标为()0,7.②当2Q 在 PD 延长线上,且2Q D AD =时,()2SAS ADP Q DC ≅. ∴此时2Q的坐标为)2-.③当3Q 在AD 延长线上,且3Q D AD =时,()3SAS ADP Q DC ≅. 连接3Q P ,∵3ADF Q DP ∠=∠,∴()3SAS ADF Q DP ≅. ∴3Q P AF =.此时3Q的坐标为().④当4120Q CD ADP ∠=∠=︒且4Q C AD =时,()4SAS ADP Q CD ≅,同理可得,()4SAS ADP Q CE ≅,∴4Q的坐标为()-.综上所述,点Q 的坐标为()0,7,)2-,()或()-. (3)如图所示,∵点D的坐标为)2,点B的坐标为(),∴2DF =,BF =.∴60BDF ADF CDE DCE ∠=∠=∠=∠=︒. ∴CEO 为等边三角形.在CEM 和DEN 中,60CEM DEN ECM EDN CE DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴CEM DEN ≌.∴CM DN =,22PM CM DN ==,设点M的坐标为,3x x ⎛⎫+ ⎪ ⎪⎝⎭,∴)222244343PM x x x ⎛⎫=+-=+ ⎪ ⎪⎝⎭. 又∵22221433CM x x x =+=,∴224PM CM =,即22444433x x +=⨯,解得)16x =(负值舍去).∴)16CM DN x ==,∴2FN DF DN =-==∴点N 的坐标为⎭解后反思本题第(2)问考查“在平面直角坐标系中是否存在点Q ,使以Q ,C ,D 为顶点的三角形与ADP △全等”,这里要注意由于对应点的不同,需要有分类讨论的意识.方法1,设点Q 的坐标为(),x y ,利用两点间距离公式AB =化为方程组22226704210x y y x y y ⎧+--=⎪⎨+---=⎪⎩,从而求解;方法2,利用全等条件先确定点Q 的几何位置,从而利用全等的条件得到对应线段的长来解决问题.相对于以上两种解法,因为方法1需要解复杂的二元二次方程组,所以方法2的几何方法更为简捷. 6.如图,抛物线23y ax bx =+-与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求抛物线的解析式.(2)点N 是y 轴负半轴上的一点,且ON =Q 在对称轴右侧的抛物线上运动,连接QO ,QO 与抛物线的对称轴交于点M ,连接MN ,当MN 平分OMD ∠时,求点Q 的坐标.(3)直线BC 交对称轴于点E ,P 是坐标平面内一点,请直接写出PCE ∆与ACD ∆全等时点P 的坐标.【答案】(1)223y x x =--;(2)点Q 的坐标为:1Q ,2Q ;(3)若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 【分析】(1)用待定系数法,直接将,A B 代入解析式即可求解.(2)由MN 平分OMD ∠,MD 平行ON 即可求出OM ON =M 点坐标,由直线OM 解析式即可求出与抛物线交点坐标Q 即可.(3)由,,A C D 三点的坐标可得ACD ∆三边长,由CE 坐标可得PCE ∆和ACD ∆中CD CE =,则另两组边对应相等即可,设P 点坐标为(,)x y ;利用两点间距离公式即列方程求解. 【详解】(1)抛物线23y ax bx =+-经过(1,0)A -,(3,0)B 两点,∴309330a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =--.(2)如图1,设对称轴与x 轴交于点H ,MN 平分OMD ∠,OMN DMN ∴∠=∠,又//DM ON ,DMN MNO ∴∠=∠, MNO OMN ∴∠=∠,OM ON ∴==.在Rt OHM ∆中,90OHM ∠=︒,1OH =.∴1HM ,1(1,1)M ∴;2(1,1)M -.①当1(1,1)M 时,直线OM 解析式为:y x =, 依题意得:223x x x =--.解得:1x 2x点Q 在对称轴右侧的抛物线上运动,Q ∴点纵坐标1y x =.∴1Q ,②当2(1,1)M -时,直线OM 解析式为:y x =-,同理可求:2Q , 综上所述:点Q的坐标为:1Q,2Q , (3)由题意可知:(1,0)A -,(0,3)C -,D (1,4)-,AC ∴,AD ,CD ,直线BC 经过(3,0)B ,(0,3)C -,∴直线BC 解析式为3y x =-,抛物线对称轴为1x =,而直线BC 交对称轴于点E ,E ∴坐标为(1,2)-;CE ∴,设P 点坐标为(,)x y , 则222(0)(3)CP x y =-++, 则222(1)(2)EP x y =-++,CE CD =,若PCE ∆与ACD ∆全等,有两种情况,Ⅰ.PC AC =,PE AD =,即PCE ACD ∆≅∆.∴2222(0)(3)10(1)(2)20x y x y ⎧-++=⎨-++=⎩, 解得:1134x y =-⎧⎨=-⎩,2216x y =-⎧⎨=-⎩,即P 点坐标为1(3,4)P --,2(1,6)P --. Ⅰ.PC AD =,PE AC =,即PCE ACD ∆≅∆.∴2222(0)(3)20(1)(2)10x y x y ⎧-++=⎨-++=⎩, 解得:3321x y =⎧⎨=⎩,4441x y =⎧⎨=-⎩,即P 点坐标为3(2,1)P ,4(4,1)P -.故若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 【点睛】本题主要考查了二次函数与几何图形的综合.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系. 7.如图,抛物线y 1=ax 2+bx +34与x 轴交于点A (﹣3,0),点B ,点D 是抛物线y 1的顶点,过点D 作x 轴的垂线,垂足为点C (﹣1,0).(1)求抛物线y 1所对应的函数解析式;(2)如图1,点M 在抛物线y 1上,横坐标为m ,连接MC ,若∠MCB =∠DAC ,求m 的值; (3)如图2,将抛物线y 1平移后得到顶点为B 的抛物线y 2.点P 为抛物线y 1上的一个动点,过点P 作y 轴的平行线,交抛物线y 2于点Q ,过点Q 作x 轴的平行线,交抛物线y 2于点R .当以点P ,Q ,R 为顶点的三角形与△ACD 全等时,请直接写出点P 的坐标.【答案】(1)2113424y x x =--+ ;(2)m (3)P 点坐标为(0,34)或P (2,﹣54). 【分析】(1)根据A 、C 两点的坐标用待定系数法求出解析式;(2)如图,当M 点在x 轴上方时,若∠M 1CB =∠DAC ,则DA ∥CM 1,先求直线AD 的解析式,由点C 的坐标可求出直线CM 1的解析式,联立直线和抛物线方程可求出点M 1的坐标,当点M 在x 轴下方时,由轴对称的性质可求出直线CM 2的解析式,同理联立直线和抛物线方程则求出点M 的坐标;(3)先求出y 2的解析式,可设出点P 坐标,表示Q 、R 坐标及PQ 、QR ,根据以P ,Q ,R 为顶点的三角形与△ACD 全等,分类讨论对应边相等的可能性即可求P 点坐标. 【详解】(1)由题意得:3930412a b b a ⎧-+=⎪⎪⎨⎪-=-⎪⎩,解得1412a b ⎧=-⎪⎪⎨⎪=-⎪⎩,抛物线y 1所对应的函数解析式为2113424y x x =--+;(2)当x =﹣1时,y =113424-++=1,∴D (﹣1,1),设直线AD 的解析式为y =kx +n , ∴301k n k n -+=⎧⎨-+=⎩,解得:1232k n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AD 的解析式为y =12x +32, 如图,①当M 点在x 轴上方时, ∵∠M 1CB =∠DAC , ∴DA ∥CM 1,设直线CM 1的解析式为y =12x +b 1, ∵直线经过点C ,∴-12+b 1=0,解得:b 1=12, ∴直线CM 1的解析式为y =12x +12, ∴21122113424y x y x x ⎧=+⎪⎪⎨⎪=--+⎪⎩, 解得:x =-x =-2舍去),∴m =﹣②当点M 在x 轴下方时,直线CM 2与直线CM 1关于x 轴对称, 由轴对称的性质可得直线CM 2的解析式为y =-12x -12, ∴21122113424y x y x x ⎧=--⎪⎪⎨⎪=--+⎪⎩,解得:xx舍去),∴m综合以上可得m(3)∵抛物线y 1平移后得到y 2,且顶点为B (1,0), ∴()22114y x =--, 即y 2=2111424x x -+-,设P (m ,2113424m m --+),则Q (m ,2111424m m -+-),∴R (2﹣m ,2111424m m -+-),①当P 在Q 点上方时,PQ =1﹣m ,QR =2﹣2m , ∵△PQR 与△ACD 全等,∴当PQ =DC 且QR =AC 时,m =0, ∴P (0,34),R (2,﹣14),当PQ =AC 且QR =DC 时,无解; ②当点P 在Q 点下方时,同理:PQ =m ﹣1,QR =2m ﹣2,可得P (2,54-),R (0,﹣14),综合可得P 点坐标为(0,34)或P (2,54-).【点睛】本题是二次函数综合题,考查了二次函数的性质、待定系数法求函数的解析式,三角形全等的判定,应用了数形结合和分类讨论的数学思想.8.如图,抛物线2y ax bx c =++与x 轴的交点分别为()6,0A -和点()4,0B ,与y 轴的交点为()0,3C .(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得APQ ∆和CDO ∆全等,若存在,求点D 的坐标,若不存在,请说明理由;②若DCB CDB ∠=∠,CD 是MN 的垂直平分线,求点M 的坐标.【答案】(1)211384y x x =--+;(2)①存在点D ,使得APQ ∆和CDO ∆全等,3,02D ⎛⎫⎪⎝⎭,理由见解析;②点3,02M ⎛⎫⎪⎝⎭【分析】(1)利用待定系数法,把A 、C 、G 三点坐标代入一般式,解方程组可求得抛物线解析式; (2)①分D 在线段AO 上和在线段OB 上两种情况讨论;②由已知点求出D 点坐标,连接DN ,证明DN //BC ,则可证DN 为△ABC 的中位线,根据题意可证DM =DN ,即可求出M 坐标. 【详解】(1)将点A ()6,0-,()0,3C ,()4,0B 代入2y ax bx c =++,得366016400a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得18143a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线解析式为:211384y x x =--+(2)①存在点D ,使得APQ ∆和CDO ∆全等当D 在线段OA 上,QAP DCO ∠=∠,3AP OC ==时,APQ ∆和CDO ∆全等 tan tan QAP DCO ∴∠=∠OC ODOA OC = 363OD ∴= 32OD ∴=∴点D 坐标为3,02⎛⎫- ⎪⎝⎭由对称性,当点D 坐标为3,02⎛⎫⎪⎝⎭时,由点B 坐标为()4,0此时点3,02D ⎛⎫⎪⎝⎭在线段OB 上满足条件.②3OC =,4OB =5BC ∴=DCB CDB ∠=∠5BD BC ∴==1OD BD OB ∴=-=则点D 坐标为()1,0-且5AD BD ==连DN ,CM则DN DM =,NDC MDC ∠=∠NDC DCB ∴∠=∠DN BC ∴∥1AN AD NC DB∴== 则点N 为AC 中点.DN ∴是ABC ∆的中位线1522DN DM BC === 32OM DM OD ∴=-= ∴点3,02M ⎛⎫ ⎪⎝⎭【点睛】本题考查二次函数综合题,待定系数法求二次函数解析式,三角形全等的判定定理,锐角三角函数解三角形.能在坐标轴中找准点的坐标与线段之间的关系是解决此题的关键. 9.(2020·四川都江堰·中考二模)如图,抛物线y =ax 2+c (a ≠0)与y 轴交于点A ,与x 轴交于B 、C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线经过点C 时,与x 轴的另一交点为E ,其顶点为F ,对称轴与x 轴的交点为H .(1)求a 、c 的值;(2)连接OF ,求△OEF 的周长;(3)现将一足够大的三角板的直角顶点Q放在射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使得以点P、Q、E为顶点的三角形与△POE 全等?若存在,请直接写出Q点坐标;若不存在,请说明理由.【答案】(1)122ac⎧=-⎪⎨⎪=⎩;(2)(3)存在,点Q(6,Q(6,3).【分析】(1)根据直角三角形的性质,可得B(﹣2,0),A(0,2),C(2,0),将点代入解析式即可求a,c的值;(2)求出AB的直线解析为y=x+2,设F(m,m+2),平移后抛物线解析式y=﹣12(x﹣m)2+m+2,将点C(2,0)代入,得平移后抛物线解析式为y=﹣12x2+6x﹣10,进而求出点E的坐标,即可得出结论;(3)当P在x轴上方时,由△PQE≌△POE,可得QE=OE=10,在Rt△QHE中,OH=Q(6,;当P在x轴下方时,PQ=OE=10,过点P作PK⊥HF与点K,可证明△PKQ∽△QHE,则PK QKQH HE=,则Q(6,3),即可得出结论.【详解】解:(1)∵△ABC为等腰直角三角形,∴AO=12BC,∵△ABC面积为4,∴12BC•OA=4,∴OA=2,BO=4,∴B(﹣2,0),A(0,2),C(2,0),∵点A,B在抛物线y=ax2+c上,∴240ca c=⎧⎨+=⎩,∴122ac⎧=-⎪⎨⎪=⎩,即a、c的值分别为﹣12和2;(2)如图1,连接OF,由(1)可知:y=﹣12x2+2,∵B(﹣2,0),A(0,2),∴AB的直线解析为y=x+2,∵平移后抛物线顶点F在射线BA上,设F(m,m+2),∴平移后抛物线解析式y=﹣12(x﹣m)2+m+2,将点C(2,0)代入y=﹣12(x﹣m)2+m+2,得﹣12(2﹣m)2+m+2=0,∴m=6或m=0(舍),∴F(6,8),∴平移后抛物线解析式为y=﹣12x2+6x﹣10,当y=0时,﹣12x2+6x﹣10=0,∴x=2或x=10,∴E(10,0),∴OE=10,∵F(6,8),∴OF10,EF∴△OEF的周长为OE+OF+EF=(3)当P在x轴上方时,如图2,∵△PQE≌△POE,∴QE=OE=10,在Rt△QHE中,HQ∴Q(6,,当P在x轴下方时,如图3,∵△PQE≌△EOP,∴PQ=OE=10,过点P作PK⊥HF与点K,∴PK=6,在Rt△PQK中,QK8,∵∠PQE=90°,∴∠PQK+∠HQE=90°,∵∠HQE+∠HEQ=90°,∴∠PQK=∠HEQ,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴PK QK QH HE=,∴684 QH=,∴QH=3,∴Q(6,3),综上所述:满足条件的点Q(6,Q(6,3).【点睛】此题是二次函数的综合题,考查了二次函数的性质,抛物线平移的特点,待定系数法求函数解析式,等腰直角三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,勾股定理,解题中注意分类讨论的思想.10.已知抛物线y=x2+bx+c过点(-6,-2),与y轴交于点C,且对称轴与x轴交于点B (-2,0),顶点为A.(1)求该抛物线的解析式和A点坐标;(2)若点D是该抛物线上的一个动点,且使△DBC是以B为直角顶点BC为腰的等腰直角三角形,求点D坐标;(3)若点M是第二象限内该抛物线上的一个动点,经过点M的直线MN与y轴交于点N,是否存在以O、M、N为顶点的三角形与△OMB全等?若存在,请求出直线MN的解析式;若不存在,请说明理由.【答案】(1)A点的坐标为(﹣2,6);(2)D点的坐标为:(2,﹣2);x+2.(3)存在.直线MN的解析式为y=6或y=﹣12【分析】(1)首先依据顶点坐标先求出b 的值,然后利用待定系数法求出抛物线的解析式;(2)过B 点作CB 的垂线交抛物线与D ,然后过D 点作x 轴的垂线,垂足为E ,通过三角形全等即可求得点D 的坐标.(3)由于三角形的各边,只有OB =2是确定长度的,因此可以以OB 为基准进行分类讨论: ①OB =OM .因为第二象限内点P 到原点的距离均大于4,因此OB ≠OM ,此种情形排除; ②OB =ON .分析可知,只有如答图2所示的情形成立;③OB =MN .分析可知,只有如答图3所示的情形成立.【详解】(1)∵对称轴与x 轴交于点B (﹣2,0),∴A 的横坐标为:x =﹣2, ∴﹣2b a=﹣2, 解得;b =﹣2,∴抛物线为y =﹣12x 2﹣2x +c , ∵抛物线y =﹣12x 2+bx +c 过点(﹣6,﹣2), ∴代入得﹣2=﹣12×(﹣6)2﹣2×(﹣6)+c ,解得c =4, ∴该抛物线的解析式为:y =﹣12x 2﹣2x +4, ∴y =﹣12x 2﹣2x +4=﹣12(x 2+4x +4)+6)=﹣12(x +2)2+6 ∴A 点的坐标为(﹣2,6);(2)过B 点作CB 的垂线交抛物线与D ,然后过D 点作x 轴的垂线,垂足为E , ∵∠CBD =90°,∴∠CBO +∠EBD =90°,∵∠BCO +∠CBO =90°,∴∠EBD =∠BCO ,∠CBO =∠BDE ,∴在△CBO 与△BDE 中EBD BCO BC BDCBO BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CBO ≌△BDE (ASA )∴DE =OB =2,BE =OC =4∴D点的坐标为(2,﹣2)或(﹣6.2),把(2,﹣2)或(﹣6.2)分别代入y=﹣12x2﹣2x+4,(﹣2,2)合适,(﹣6,2)不合适,∴D点的坐标为:(2,﹣2)图1(3)存在.若以O、M、N为顶点的三角形与△OBM全等,可能有以下情形:(I)OB=OM.由图象可知,OM最小值为4,即OM≠OB,故此种情形不存在.(II)OB=ON.若点M在y轴正半轴上,如答图2所示:图2此时△OBM≌△OMN,∴∠OMB=∠OMN,即点P在第二象限的角平分线上,ON=OB=2,M点坐标为:(4,-4),∴直线PE的解析式为:y=﹣12x+2;若点E在y轴负半轴上,易知此种情形下,两个三角形不可能全等,故不存在.(III)OB=MN.∵OB=2,∴第二象限内对称轴左侧的点到y轴的距离均大于2,则点M只能位于对称轴右侧或与顶点A重合.若点M位于第二象限内抛物线对称轴的右侧,易知△OMN为钝角三角形,而△OMB为锐角三角形,则不可能全等;若点M与点A重合,如答图3所示,此时△OBM≌△OMN,四边形MNOB为矩形,图3∴直线MN的解析式为:y=6.综上所述,存在以O、M、N为顶点的三角形与△OMB全等,直线MN的解析式为y=6,y=﹣12x+2.考点:二次函数综合题.11.定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线y=2x2﹣2x+2沿对称轴向下平移3个单位.①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明.【答案】(1)如y=x2,y=x2﹣x+1,y=x2+2x+4等(答案不唯一);(2)详见解析;(3)①y=2x2﹣2x﹣1;②符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【分析】(1)按照黄金抛物线的定义给a、b、c赋值即可;(2)将ac=b2代入判别式当中,消去ac,然后对b分等于0和不等于0两种情讨论即可;(3)①根据“上加下减”写出平移后的抛物线解析式即可;②根据所给的限制条件,只能画出四种图形,分别写出相应的P点坐标即可;【详解】(1)答:如y=x2,y=x2﹣x+1,y=x2+2x+4等;(2)依题意得b2=ac,∴△=b2﹣4ac=b2﹣4b2=﹣3b2,∴当b=0时,△=0,此时抛物线与x轴有一个公共点,当b≠0时,△<0,此时抛物线与x轴没有公共点;(3)①抛物线y=2x2﹣2x+2向下平移3个单位得到的新抛物线的解析式为y=2x2﹣2x﹣1,②存在.如图:若BQ=AO,过点Q作x轴的平行线,交抛物线于点P,P点的坐标为:(0,﹣1),(1,﹣1),此时,△AOB≌△BQP;若BQ=BO,过点Q作x轴的平行线,交抛物线于点P,令2x2﹣2x﹣1=12,解得:x=﹣12或x=32,∴P点的坐标为:(﹣12,12),(32,12).此时,△AOB≌△PQB;综上所述,有四个符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【点睛】此题主要考查新定义下抛物线的性质,熟练掌握,即可解题.。

中考数学专题-三角形及全等三角形-(解析版)

中考数学专题-三角形及全等三角形-(解析版)

三角形及全等三角形姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】 根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠∠ABC =∠BCD ,∠CB 平分∠DCE ,∠∠BCE =∠BCD ,∠∠BCE =∠ABC ,∠∠AEC =∠BCE +∠ABC =40°,∠∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B【分析】 由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∠25B ∠=︒,50C ∠=︒,∠在Rt ∠BEC 中,由三角形内角和可得105BEC ∠=︒,∠35A ∠=︒,∠170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒【答案】C【分析】 由垂直的定义可得∠2=90°;根据对顶角相等可得510α∠=∠=︒,再根据三角形外角的性质即可求得140β∠=︒.【详解】∠13l l ⊥,∠∠2=90°;∠510α∠=∠=︒,∠125090140β∠=∠+∠=︒+︒=︒.故选C .【点睛】本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∠∠BCD =100°,∠∠CBD +∠CDB =180°-100°=80°,∠∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形. 7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C与D.【详解】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.8.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:2sinA sinB sinCa cb R ===(其中R为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OAS 圆=163π. 【详解】解:方法一:∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 6032c R C ===︒,∠3R =, ∠S 圆=2221633R OA ππππ⎛=== ⎝⎭.方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,∠∠AOB =2∠C =2×60°=120°,∠OA =OB ,∠∠OAB =∠OBA =()1180120302︒-︒=︒, ∠OD ∠AB ,AB 为弦,∠AD =BD =122AB =,∠AD =OA cos30°,∠OA =343cos30223AD ÷︒=÷=, ∠S 圆=222431633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】 根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加 AB DC =,在ABC 和DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】 解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断∠ABC ∠∠DEF ,故C 符合题意;D. 添加一个条件AC ∠FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形【答案】D【分析】 此题是有关剪纸的问题,此类问题应亲自动手折一折,剪一剪.【详解】解:由题可知,AD 平分BAC ∠,折叠后AEO △与AFO 重合,故全等,所以EO =OF ;又作了AD 的垂直平分线,即EO 垂直平分AD ,所以AO =DO ,且EO ∠AD ;由平行四边形的判定:对角线互相平分的四边形为平行四边形,所以AEDF 为平行四边形;又AD ∠EF ,所以平行四边形AEDF 为菱形.故选:.D【点睛】本题主要考察学生对于立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,有几何图形想象出实物的图形”的要求相一致,充分体现了实践操作性原则.12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,42b a +是分式,故选项错误; D.若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A .【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.13.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4 【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简. 14.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∠//,140m n ∠=︒,∠∠4=∠1=40°,∠230∠=︒,∠34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点A B 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒【答案】C【分析】 根据题意可得直线MN 是线段AB 的垂直平分线,进而可得CB AC =,利用平行线的性质及等腰三角形中等边对等角,可得40CAB CBA ∠=∠=︒,所以可求得100ACB ∠=︒.【详解】∠已知分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,∠直线MN 垂直平分线段AB ,∠CB AC =,∠//a b ,140∠=︒,∠140CBA ∠=∠=︒,∠40CAB CBA ∠=∠=︒,∠180100ACB CBA CAB ∠=︒-∠-∠=︒.故选:C.【点睛】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线MN垂直平分线段AB 是解题关键.17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。

中考考试数学压轴题之三角形存在性问题

中考考试数学压轴题之三角形存在性问题

中考数学压轴题全面突破之四•三角形的存在性题型特点三角形的存在性问题是一类考查是否存在点,使其能构成某种特殊三角形的问题,如:直角三角形、等腰三角形、全等三角形及相似三角形的存在性.常结合动点、函数与几何,考查分类讨论、画图及建等式计算.解题思路①由判定定理确定三角形所满足的特殊关系;②分类讨论,画图;③建等式,对结果验证取舍.对于目标三角形不确定、点的位置难以寻找等存在性问题的思考方向为:①从角度入手,通过角的对应关系尝试画出一种情形.②解决第一种情形.能根据几何特征表达线段长的,借助对应边成比例、或线段长转坐标代入函数表达式求解;不能直接表达线段长的,观察点的位置,考虑联立函数表达式求解.③分类讨论,类比解决其他情形.分类时,先考虑点的位置,再考虑对应关系,用同样方法解决问题.难点拆解①直角三角形关键是用好直角,可考虑:勾股定理逆定理、弦图模型、直线k 值乘积为1;②等腰三角形可考虑直接表达线段长,利用两腰相等建等式,或借助三线合一找相似建等式;③全等三角形或相似三角形关键是研究目标三角形的边角关系,进而表达线段长,借助函数或几何特征建等式.④分类不仅要考虑图形存在性的分类,也要考虑点运动的分类.1.(2012云南改编)如图,在平面直角坐标系中,抛物线错误!未找到引用源。

的图象经过点(2,4),且与直线错误!未找到引用源。

交于A,B两点.(1)求抛物线的函数解析式.(2)过点A作AC⊥AB交x轴于点C,求点C的坐标.(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.2.(2009广西钦州)如图,已知抛物线错误!未找到引用源。

与坐标轴交于A,B,C三点,A点的坐标为(﹣1,0),过点C的直线错误!未找到引用源。

与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)点C的坐标是____________,b=_______,c=______.(2)求线段QH的长(用含t的式子表示).(3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ 相似?若存在,求出所有t的值;若不存在,说明理由.3.(2012海南)如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M,N关于点P对称,连接AN,ON.(1)求该二次函数的关系式.(2)若点A的坐标是(6,﹣3),求△ANO的面积.(3)当点A在对称轴l右侧的二次函数图象上运动,请解答下列问题:①证明:∠ANM =∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.4.(2011湖北天门)在平面直角坐标系中,抛物线错误!未找到引用源。

中考数学一轮综合复习同步讲义(第9课全等三角形)

中考数学一轮综合复习同步讲义(第9课全等三角形)

中考数学一轮分复习第09课 全等三角形知识点:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧;倍长中线:截长补短:角平分线上:已知角平分线及垂足在上一点到一边距离:已知角平分线及平分线辅助线做法:共边问题:重叠角问题:已知两角,已知两边,全等三角形判定方法:角平分线画法:角平分线判定:角平分线性质:,,,,全等三角形判定:全等三角形性质:定义:全等三角形课堂练习:1.下列说法错误的有( )①只有两个三角形才能完全重合; ②如果两个图形全等,它们的形状和大小一定都相同; ③两个正方形一定是全等图形; ④边数相同的图形一定能互相重合.A.4 个B.3 个C.2 个D.1 个2.已知△ABC 与△DEF 全等,∠A=∠D=900,∠B=370,则∠E 的度数是( )A.37°B.53°C.37°或63°D.37°或53°3.如图,已知∠1=∠2,要使△ABC ≌△ADE ,还需条件( )A.AB=AD,BC=DEB.BC=DE,AC=AEC.∠B=∠D,∠C=∠ED.AC=AE,AB=AD4.在△ABC 中,AC=5,中线AD=4,则边AB 的取值范围是( )A.1<AB<9B.3<AB<13C.5<AB<13D.9<AB<135.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=6.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=1050,∠CAD=150 ,∠B=∠D=300,则∠1的度数为第6题图第7题图第8题图7.如图,AB=DB,∠ABD=∠CBE,请添加一个适当条件,使△ABC≌△DBE.(只需添加一个即可)8.如图,在Rt△ABC中,∠ACB=900,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.9.如图,已知AB⊥BD 于B,ED⊥BD 于D,AB=CD,BC=DE,则∠ACE=____.10.如图,F在正方形ABCD的边BC边上,E在AB 的延长线上,FB=EB,AF 交CE 于G,则∠AGC的度数是______.11.如图,△ABC是不等边三角形,DE=BC,以D,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.12.如图,AE=DB,BC=EF,BC∥EF,求证:△ABC≌△DEF.13.如图∠BAC=∠DAE,∠ABD=∠ACE,BD=CE.求证:AB=AC.14.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.15.如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE=DF.求证:△ADE≌△CBF.16.如图,ΔABC和ΔBDE是等边三角形,D在AE 延长线上.求证:BD+DC=AD.17.如图,在△ABC中,∠ACB=900,AC=BC,D是AB上一点,AE⊥GD于E,BF⊥CD交CD的延长线于F.求证:AE=EF+BF.18.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=900,BE⊥AD,垂足为E.求证:BE=DE.19.已知,在ΔABC中,∠B=2∠C,AD平分∠A交BC于D点,求证:AC=AB+BD.20.如图,等腰 Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.21.已知在Rt△ABC中,∠C=900,AC=BC,AD为∠BAC的平分线,DE⊥AB,垂足为C.求证:△DBE的周长等于AB的长.22.已知,如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求证:∠BAD+∠BCD=180°.23.如图①,点E在正方形ABCD边BC上,BF⊥AE于F,DG⊥AE于G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,B>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为.第09课全等三角形测试题日期:月日满分:100分时间:20分钟姓名:得分:1.如图∠1=∠2=200,AD=AB,∠D=∠B,E 在线段BC 上,则∠AEC=()A.200B.700C.500D.800第1题图第2题图第3题图2.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是() A.带①去 B.带②去 C.带③去 D.带①和②去3.已知图中的两个三角形全等,则∠α度数是()A.72°B.60°C.58°D.50°4.如图,已知点A、D、C、F在同一直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还要添加一个条件是()A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF第4题图第5题图第6题图5.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等6.如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对7.在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形8.如图,△ABC中,∠C=900,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AC=10cm,则△DBE的周长等于( )A.10cm B.8cm C.6cm D.9cm第8题图第9题图9.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1 处B.2 处C.3 处D.4 处10.若两个三角形的面积相等, 则这两个三角形________全等.(选择:一定或不一定)11.已知:如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“ASA”为依据,还缺条件 .(2)若以“AAS ”为依据,还缺条件 .(3)若以“SAS ”为依据,还缺条件 .12.如图,AD 是△ABC 的中线,∠ADC=600,BC=6,把△ABC 沿直线AD 折叠,点C 落在C /处,连接BC /,那么BC /的长为 .第12题图 第13题图 第14题图13.如图,△ABD 与△AEC 都是等边三角形,AB ≠AC,下列结论中:①BE=DC ;②∠BOD=60°;③△BOD ∽△COE.正确的序号是 14.如图,△ABD 的三边AB 、BC 、CA 的长分别是20、30、40、其中三条角平分线将△ABD 分为三个三角形,则CAO BCO ABO S S S ∆∆∆:: 等于______.15.如图,AB ∥CD,O 是∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E,且OE=3,则AB 与CD 间的距离等于16.如图,AC ⊥BC,BD ⊥AD,AC 与BD 交于O,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.17.如图,已知AD 是∠BAC 的平分线,DE ⊥AB 于E,DF ⊥AC 于F,且BD=CD.求证:BE=CF .18.如图,在四边形ABCD 中,AD ∥BC,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F,点G 在边BC 上,且∠GDF=∠ADF .(1)求证:△ADE ≌△BFE ;(2)连接EG,判断EG 与DF 的位置关系并说明理由.。

2023年九年级中考数学复习讲义 三角形及其全等

2023年九年级中考数学复习讲义  三角形及其全等

2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。

数学中考总复习(一轮复习)第17讲全等三角形

数学中考总复习(一轮复习)第17讲全等三角形

第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。

(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。

2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。

微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。

二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。

2•判定:角的内部到角的两边的距离相等的点在 ____________ 。

3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。

2•角的平分线的性质定理和判定定理互为逆定理。

注意分清题设和结论。

高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。

(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。

中考数学二次函数:全等三角形的存在性问题》

中考数学二次函数:全等三角形的存在性问题》
点作MP1∥BC,交抛物线于P1,如解图, 若△MP1C≌△CBM,则MP1=BC.
∴四边形MBCP1为平行四边形,
∴xM-x =xP1-xC;
1 ∴xP=xM-xB+xC= 2 -0+2=
7 4
.
令抛物线中x= 5 ,解得y= 7 ,
2
4
∴P1(
5 2
,7 4
),此时P2与C点重合,
例题图
解:(1)将点A(-1,0),B(0,-2)代入y=x2+bx+c中得,
,解得 1-bc0 c2
b1 c2
∴二次函数表达式为y=x2-x-2;
(2)在抛物线上找出两点P1、P2,使得△MP1P2与 △MCB全等,并求出P1、P2的坐标.
【思维教练】利用全等时对应边相等,结合抛物线 的对称性,分别作B、C点关于对称轴对称的点, 所作对称点即为所求P1,P2点.
∴P1( 5 , 7 ),P2(2,0). 24
综上所述,满中足条件的P1,P2点共有两种,
分别为P1(-1,0),P2(1,-2);P1( 5 , 7 ),P2(2,0) 24
第二部分 攻克题型得高分
题型八 二次函数综合题
类型四 全等三角形的存在性问题
典例精析 例如图,抛物线y=x2+bx+c经过点A(-1,0),B(0,-2),并与 x轴交于点C,点M是抛物线对称轴l上任意一点(点 M、B、C三点不在同一直线上). (1)求该抛物线所表示的二次函数的表达式;
【思维教练】将点A、B分别代入抛物线的表 达式,通过解方程组,可得到b,c的值; (1) 求该抛物线所表示的二次函数的表达式;
(2)令y=x2-x-2=0得x1=-1,x2,所以点C的坐标为
(2,0). 易得抛物线对称轴为x=

中考数学压轴题 《全等三角形的存在性》

中考数学压轴题 《全等三角形的存在性》

《全等三角形的存在性》解题方法全等三角形的存在性问题的解题策略有:(1)当有一个三角形固定时(三角形中所有边角为定值),另一个三角形会与这个固定的三角形有一个元素相等;再根据全等三角形的判定,利用三角函数的知识(画图)或列方程来求解.(2)当两个三角形都不固定时(三角形中有角或边为变量),若条件中有一条边对应相等时,就要使夹这条边的两个角对应相等,或其余两条边对应相等;若条件中有一个角对应相等时,就要使夹这个角的两边对应相等,或再找一个角和一条边对应相等.例题讲解例1 如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的表达式;(2)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,求点P 的坐标;若不存在,请说明理由.(3)若点M在y轴的正半轴上,连结MA,过点M作MA的垂线,交抛物线的对称轴于点N.问:是否存在点M,使以点M、A、N为顶点的三角形与△BAN全等?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)由题意可列方程组424032a bba-+=⎧⎪⎨-=⎪⎩,解得1432ab⎧=-⎪⎪⎨⎪=⎪⎩,所以抛物线的表达式为213442y x x =-++.(2)显然OA =2, OB =3, OC =4.所以5BC BA ==. 若△P BD ≌△PBC ,则BD = BC =5,PD =PC所以D 为抛物线与x 轴的左交点或右交点,点B ,P 在CD 的垂直平分线上, ①若点D 为抛物线与 x 轴的左交点,即与点A 重合.如图1,取AC 的中点E ,作直线BE 交抛物线于P 1(x 1,y 1),P 2(x 2.y 2)两点. 此时△P 1BC ≌△P 1BD ,△P 2BC ≌△P 2 B D .由A 、C 两点的坐标可得点E 的坐标为(-1,2).所以直线BE 的表达式为1322y x =-+.联立方程组2132213442y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得114x y ⎧=-⎪⎨=⎪⎩,224x y ⎧=+⎪⎨=⎪⎩ . 所以点P 1,P 2的坐标分别为(4).(4②若D 为抛物线与x 轴的右交点,则点D 的坐标为(8,0).如图2,取CD 的中点F .作直线BF 交抛物线于P 3(x 3,y 3),P 4(x 4,,y 4)两点. 此时△P 3BC ≌△P 3BD ,△P 4BC ≌△P 4 B D .由C 、D 两点的坐标可得点F 的坐标为(4,2), 所以直线BF 的表达式为y =2x -6.联立方程组22613442y x y x x =-⎧⎪⎨=-++⎪⎩,解得3318x y ⎧=-+⎪⎨=-+⎪⎩,4418x y ⎧=--⎪⎨=--⎪⎩所以点P 3,P 4的坐标分别为(-1,-8+,( -1,-8-), 综上可得,满足题意的点P 的坐标为(4),(4(-18+)或(-18-).(3)由题意可设点M (0,m ),N (3,n ),且m >0,则AM 2=4+m 2,MN 2=9+(m -n )2,BN 2=n 2. 而∠AMN =∠ABN =900, 所以△AMN 与△ABN 全等有两种可能: ①当AM =AB ,MN =BN 时,可列方程组2224259()m m n n⎧+=⎪⎨+-=⎪⎩,解得11m n ⎧=⎪⎨=⎪⎩22m n ⎧=⎪⎨=⎪⎩(舍), 所以此时点M 的坐标为(0).②当AM =NB ,MN =BA 时,可列方程组:22249()25m nm n ⎧+=⎪⎨+-=⎪⎩·解得113252m n ⎧=⎪⎪⎨⎪=-⎪⎩,223252mn⎧=-⎪⎪⎨⎪=⎪⎩(舍)所以此时点M 的坐标为(0,32). 综上可得,满足题意的点M 的坐标为(0,21)或(0,32). 例2 如图,在平面直角坐标系xoy 中,△ABO 为等腰直角三角形,∠ABO = 900,点A 的坐标为(4.0),点B 在第一象限.若点D 在线段BO 上,OD = 2DB ,点E ,F 在△OAB 的边上,且满足△DOF 与△DEF 全等,求点E 的坐标.图1 图2 解: 由题意可得OA =4,从而OB =AB =22.所以OD =23OB =42,BD =13OB =22.①当点F 在OA 上时,(ⅰ)若△DFO ≌△DFE ,点E 在OA 上.如图1. 此时DF ⊥OA ,所以OF =2OD =43,所以OE =2OF =83,即点E 的坐标为(83,0). (ⅱ)若△DFO ≌△DFE ,点F 在AB 上,如图2.此时ED =OD =2BD ,所以sin ∠BED =BD ED =12;所以∠BED =300,从而BE =3BD =26,AE =6226-. 过点E 作EG ⊥OA 于点G .则EG =AG =2AE =232-, 所以OG =232+,即点E 的坐标为(232+,232-).图3 图4(ⅲ)若△DFO ≌△FDE ,点E 在AB 上,如图3.此时DE ∥OA ,所以BD =BE . 从而AE =OD, 过点E 作EG ⊥OA 于点G , 则EG =AGAE =43, 所以OG =83,即点E 的坐标为(83,43).②当点F 在AB 上时,只能有△ODF ≌△AFD ,如图4.此时DF ∥0A .且点E 与点A 重合, 即点E 的坐标为(4,0).综上可得,端足条件的点E 的坐标为(83,0),(2,2),(83,43)或(4,0).进阶训练1.如图,在平面直角坐标系xOy 中,已知抛物线21382y x x 与y 轴变于点C . 直线l ;43yx 与抛物线的对称轴交于点E .连结CE ,探究;抛物线上是否存在一点F ,使得△FOE ≌△FCE ..若存在,请写出点F 坐标;若不存在,请说明理由.答案:存在.点F 的坐标为(317,-4)或(317,-4)2. 如图,在平面直角坐标系xOy 中,直线l 1过点A (1,0)且与y 轴平行.直线l 2过点B (0,2)且与x 轴平行,直线l 1与l 2相交于点P .E 为直线l 2上一点,反比例函数kyx(k >0)的图象过点E 且与直线l 1相交干点F . (1)若点E 与点P 重合,求k 的值;(2)是否存在点E 及y 轴上的点M ,使得以点M ,E ,F 为顶点的三角形与△PEF 全等?若存在,求点E 的坐标:若不存在,请说明理由.备用图答案:(1)k=2(2)存在.点E的坐标为(38,2)或(83,2)【提示】(2)易得点E(3k,2),F(1,k).①如图1,当k<2时,只能有△MEF≌△PEF.过点F作FH⊥y轴于点H,易证△BME∽△HFM,用k表示相关线段的长度,从而得到BM=12,再解Rt△BME,得k=34,所以点E的坐标为(38,2);②如图2,当k>2时,只能有△MEF≌△PFE.过点F作FQ⊥y轴于点Q,同①可得点E的坐标为(83,2)图1图23.如图,抛物线2y ax bx c经过A(3,0),B(0),C(0,3)三点,线段BC与抛物线的对称轴交干D,该抛物线的顶点为P,连结PA,A D.线段AD与y轴相交于点E.(1)求该抛物线的表达式;(2)在平面直角坐标系中是否存在一点Q.使以Q,C,D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,请说明理由.答案:(1)抛物线的表达式为212333yx x(2)存在.点Q的坐标为(42),(23,1)或(0,7).【提示】(2)方法一:易求直线BC :333yx ,从而点D 2),可得CD =PD ,所以△QCD 与△ADP 全等有两种情况.设点Q 坐标,通过两点间距离公式列出QC ,QD ,AP ,AD 的长.再分类讨论列方程组,从而求得点Q 点坐标.方法二:连接CP ,易证△CDP 为等边三角形,∠ADC =60°,所以∠PDA =120°.△QCD 与△ADP 全等有两种情况,①如图1,∠DCQ =120°,CQ =DA =4,此时点Q 1的坐标为(0,7),点Q 2的坐标为(23,1);②如图2,∠CDQ =120°,DQ =DA =4,此时点Q 3的坐标为,-2),点Q 4的坐标为(4)。

2021年中考数学复习讲义:第四章全等三角形模型(十二)——手拉手模型

2021年中考数学复习讲义:第四章全等三角形模型(十二)——手拉手模型

第四章.全等三角形模型(十二)——手拉手模型【结论1】如图所示,AB=AC,AD=AE,∠BAC=∠DAE,则⑴△ABD ≌△ACE; ⑵BD和CE的夹角∠P=∠BAC=∠DAE.⑴⑵模型讲解口诀相同图形在一起要把边角边想起找全等三角形的方法:顶左左,顶右右【相同图形的左手拉左手,右手拉右手】【结论2】如图所示,AB=AC,AD=AE,∠BAC=∠DAE=90º,则⑴△ABD ≌△ACE; ⑵BD⊥CE(1)(2)【结论3】如图所示,△ABC与△DCE是等边三角形⑴△BCD ≌△ACE; ⑵∠AOB=∠DOE=60º【结论4】如图所示,△ABC与△DCE是等边三角形,当点B、C、E共线时典例秒杀典例1 ☆☆☆☆☆如图,△ACB 和△DCE均为等边三角形,点 A,D,E在同一条直线上,连接 BE,则∠AEB的度数是()A.30°B.45°C.60ºD.75°【答案】C【解析】∵△ACB 和△DCE 均为等边三角形,且△ACB与△DCE共点,形成了手拉手模型.根据模型结论可知:△ACD≌△BCE(SAS),∴∠ADC=∠BEC.∵∠ADC+∠CDE=180°,∠CDE=60°,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC -∠CED=120°-60°=60°.故选 C.典例2 ☆☆☆☆☆如图,△ABC和△ADE 都是等腰直角三角形,CE与 BD 相交于点 M,则 BD 与 CE 的数量关系为()A.2BD =CEB.3BD =2CEC.BD=CED.2BD=3CE【答案】C【解析】∵△ABC 和△ADE 都是等腰直角三角形,且△ABC与△ADE 共点,∴形成了手拉手模型,根据模型结论可知△BAD≌△CAE(SAS),∴BD=CE. 故选 C.典例3 ☆☆☆☆☆如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A 按逆时针方向旋转100°得到△ADE,连接 BD,CE交于点F,则 BD与CE的数量关系为( )A. 2BD=CEB.3BD=2CEC.BD=CED.2BD=3CE【答案】C【解析】∵△ABC绕点A 按逆时针方向旋转 100°得到△ADE,∴△ABC与△ADE 形成手拉手模型.根据模型结论可知,△ABD≌△ACE(SAS),∴BD=CE. 故选 C.小试牛刀1.(★☆☆☆☆)如图,△ABC 和△CDE均为等边三角形,点A, D,E在同一条直线上,连接 BE.若∠CAE=25°,则∠EBC 的度数是( )A.35ºB. 30°C. 25°D. 20°2.(★★☆☆☆)如图所示,B,D,E在同一条直线上,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=().A.60°B.55°C. 50°D. 无法计算第2题图第3题图3.(★★★☆☆)如图,在△ABC中,∠ABC=45°,AD,BE分别为 BC,AC边上的高,AD,BE相交于点F,连接 CF,则有下列结论∶①BF=AC;②∠FCD=45°;③若 BF=2EC,则△FDC的周长等于 AB 的长. 其中正确的有().A.0个B.1个C.2个D.3 个直击中考1.如图,在△AOB和△COD中,OA= OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接 AC,BD交于点M,连接OM.有下列结论∶①∠AMB=36°;②AC= BD;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论个数为( )A.4B.3C.2D.12OA<OM=ON),∠AOB=∠MON=90º3.已知△AOB 和△MON都是等腰直三角形(当2(1)如图 1,连接 AM,BN,求证∶△AOM≌△BON.(2)若将△MON 绕点 O 顺时针旋转.①如图2,当点N恰好在AB边上时,求证∶ BN2+AN2= 2ON2;②当点 A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.第四章.全等三角形模型(十二)——手拉手模型答案:小试牛刀1.答案 C解析:∵△ABC 和△CDE 均为等边三角形,且△ABC与△CDE共点,∴形成了手拉手模型,根据模型结论可知△ACD≌△BCE(SAS)∴∠CAE=∠EBC.∵∠CAE=25°,∴∠EBC=25º,故选 C.2.答案 B解析:∵AB=AC,AD=AE,等腰△ABC与等腰△DAE 共点,形成了手拉手模型,根据模型结论可知△BAD≌△CAE(SAS).∵∠2=30°,∴∠ABD=∠2=30°,∵∠1=25°,∴∠3=∠ABD+∠1=55°.故选 B.3.答案 D解析:△ABD是等腰直角三角形,要证明△FDC是等腰直角三角形,只需要证明△BDF≌△ADC.∵△ABC中,AD,BE分别为 BC,AC边上的高,∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD 的余角,而∠ADB= ∠ADC=90°,∴△BDF≌△ADC(ASA),∴BF=AC,故①正确;易得FD=CD,∴∠FCD=∠CFD=45°,故②正确;根据①得 BF=AC,若 BF=2EC,则 AC= 2EC,即 E为 AC的中点,∴BE为线段 AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+ CD=CF+DF+CD,即△FDC的周长等于 AB 的长,故③正确. 故选 D.直击中考1. 答案 B解析:∵ OA=OB, OC=DO,∴△AOB与△COD为等腰三角形.由于△AOB与△COD 共点,故形成手拉手模型,根据模型结论可知△AOC≌△BOD(SAS), ∴AC=BD,故②正确.由三角形外角的性质及对顶角相等可得∠AMB+∠OBD=∠OAC+∠AOB,又由△AOC≌△BOD,可得∠OAC=∠OBD,∴∠AMB=∠AOB=36°,故①正确.作 OG⊥AM于G,OH⊥DM 于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD, ∴OG=OH,∴MO平分∠AMD,故④正确,假设 OM平分∠AOD,则∠DOM= ∠AOM.在△AMO与△DMO中,∠AOM=∠DOM,OM=OM,∠AMO=∠DMO, ∴△AMO≌△DMO(ASA),∴AO=OD. 又OC=OD,∴OA=OC,而 OA<OC,故③错误.因此,正确结论的个数为 3.故选 B.2.解析:(1)∵∠AOB=∠MON=90°,∠MON+∠AON=∠AOB+∠AON,即∠AOM=∠BON.∵AO=BO,OM=ON, ∴△AOM≌△BON(SAS). (2)①如图,连接 AM.同(1)证明方法可证△AOM ≌△BON(SAS),∴AM=BN,∠OAM=∠B=45°,∵∠OAB=∠B=45º,∴∠MAN=∠OAM+∠OAB=90°, ∴MN²=AN²+AM²,∵△MON是等腰直角三角形, MN²=2ON²,∴BN2+AN²=2ON².②情况一∶如图,设OA交BN于点J,过点O作OH⊥MN于H由已知可知形成手拉手模型,根据手拉手模型可得△AOM≌△BON,∴AM=BN,∵OM=ON=3,∠MON=90°,OH⊥MN,∴MN=32,MH=HN=OH=223∴AH= 22OHOA-=22223-4⎪⎪⎭⎫⎝⎛=246∴BN=AM=MH+AH=22 346+情况二∶如图,同情况一方法可得 AM=BN=22 3-46。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 2.3.1.2.3. 如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与y 交于点C (0,4),对称轴直线2x =与x 轴交于点D ,顶点为且DM =OC +OD .(1)求该抛物线的解析式.(2)设点P (x ,y )是第一象限内该抛物线上的一动点,△的面积为S ,求S 与x 之间的函数关系式,并写出自变量的取值范围.(3)设点Q 是y 轴右侧该抛物线上的一动点,若经过点Q 直线QE 与y 轴交于点E ,是否存在以O ,Q ,E 形与△OQD 全等?若存在,求出直线QE 的解析式;请说明理由.4. 如图,在平面直角坐标系中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=(0k >)的图象过点E 且与直线1l 相交于点F .(1)若点E 与点P 重合,求k 的值.(2)连接OE ,OF ,EF .若2k >,且△OEF 的面积为△PEF 面积的2倍,求点E 的坐标.(3)是否存在点E 及y 轴上的点M ,使得以M ,E ,F 为顶点的三角形与△PEF 全等?若存在,求出点E 的坐标;若不存在,请说明理由.【参考答案】 1. (1)223y x x =-++(2)a =7,b =2或a =7,b =-2或a =-1,b =2或a =-1,b =-2或a =1,b =-4或a =5,b =-4或a =5,b =42. (1)213442y x x =-++(2)(18(18-+-+---,,(4(4+, 3.(1)21242y x x =-++(2)214(022S x x x =-+<<+(3)122y x =+,y =6或724y x =- 4.(1)2 (2)(3,2)(3)3(2)8,,8(2)3,学生做题前请先回答以下问题问题1:全等三角形的判定有哪些?问题2:全等三角形存在性问题中如何确定分类标准,分类标准确定的依据是什么?问题3:全等三角形存在性问题的处理思路是什么?问题4:全等三角形存在性问题与相似三角形存在性问题处理时的异同有哪些?全等三角形的存在性(一)1.如图1,直线y=-2x+4与x轴、y轴分别交于点A,B,点P(x,y)在直线y=-2x+4上,过点P作AB的垂线,与x轴、y轴分别交于点E,F.若△EOF与△AOB全等,则点P的坐标为( )A. B.C.D.2.如图2,已知点A,B在抛物线上,且点A在第四象限,点B在第一象限,A,B两点的横坐标满足方程.连接OB,OA,AB,将线段OB绕点O顺时针旋转90°得到线段OC.若D是坐标平面内一点,且△OAB和△OCD全等,则符合题意的点D的坐标为( )图1 图2A.B.C.D.3.如图3,抛物线经过三点,线段BC与抛物线的对称轴相交于点D.P为该抛物线的顶点,连接PA,AD,DP ,线段AD与y轴相交于点E.若Q 为平面直角坐标系中的一点,且以Q,C,D为顶点的三角形与△ADP全等,则图3 点Q的坐标为( )A. B.C.D.学生做题前请先回答以下问题问题1:全等三角形的判定有哪些?问题2:全等三角形存在性问题的处理思路是什么?全等三角形的存在性(二)1.如图1已知抛物线与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C,直线与x轴交于点D.在第一象限内,若直线上存在点P,使得以P,B,D为顶点的三角形与△OBC全等,则点P的坐标为( )A.(4,1),(0,3)B.(4,1),(3,2)或(1,2)C.(4,1),(0,3)或(3,2)D.(4,1),(4,-1),(3,2)或(3,-2)2.如图2,直线与x轴、y轴分别交于A,B两点,C是直线上不与A,B重合的动点.过点C的另一直线CD与y轴相交于点D,若以B,C,D为顶点的三角形与△AOB全等,则点C的坐标为( )A. B.C.D.图1 图23.如图3所示,抛物线的顶点为A,直线与y 轴的交点为B ,其中.若Q 为抛物线的对称轴直线l上一个动点,在对称轴左侧的抛物线上存在点P,使以P,Q,A为顶点的三角形与△OAB全等,则点P的坐标为( )A.图3 B.C.D.学生做题后建议通过以下问题总结反思问题1:结合试题1分析,如何确定分类标准?问题2:画图求解时需要根据分析得到的不变特征,结合两个三角形全等的判定进行分析,试题1中利用的是哪一个全等三角形的判定?问题3:全等三角形存在性问题与相似三角形存在性问题处理时的异同有哪些?学生做题前请先回答以下问题问题1:在处理全等三角形的存在性问题时首先要分析不变特征,那么如何分析不变特征?问题2:在全等三角形存在性问题处理时,依据不变特征处理的核心依据是什么?问题3:课堂所讲解示范的,一般会用哪个判定?问题4:全等三角形存在性处理时都需要考虑哪些方面?问题5:已经学习了平行四边形,菱形,矩形,正方形,相似三角形以及全等三角形等各种存在性,存在性问题处理的框架是什么?全等三角形的存在性(三)1.如图1,已知抛物线与x轴的交点为A,D (A在D的右侧),与y轴的交点为C,点B与点C关于对称轴对称.点M是抛物线上的一点,使得△CMD≌△CMB,则点M的坐标为( )A. B. C. D.2.如图2,已知抛物线与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,对称轴与x轴交于点D.M 为抛物线上一点,E是x轴上的一点,使得△DMC≌△DME,则点M 的坐标为( ) 图1图2A.B.C.D.3.如图3,已知抛物线与x 轴交于A ,B 两点,与y轴交于C点.若点E在x轴上,点P是抛物线在第一象限上的图3 点,△APC≌△APE,则点P的坐标为( )A. B. C. D.学生做题后建议通过以下问题总结反思问题1:结合第2题考虑全等三角形存在性问题的处理框架是什么?学生做题前请先回答以下问题问题1:全等三角形的判定有哪些?问题2:全等三角形存在性问题的处理思路是什么?问题3:试题1中如何分析不变特征?问题4:试题1中分析不变特征,确定△OPC≌△POQ利用的是全等三角形的哪一个判定?全等三角形的存在性(四)1.如图1,抛物线与y轴交于点C,P是x轴上一个动点,Q是抛物线上异于点C的一个动点.若△OPC≌△POQ,则点Q 的坐标为( )A. B.C.D.2.如图2,抛物线与y轴交于点A,对称轴与x轴交于点B.D是x轴上的一个动点,P是抛物线上的一个动点,使得△DPB≌△ABP,求点P的坐标.(1)要求点P的坐标有如下考虑:分析可知,需要结合A,D和公共边BP的相对位置进行分类讨论.当A,D在BP的同侧时,以A,D,B,P组成的四边形为_________(填“平行四边形”或“等腰梯形”或“梯形”);当A,D在BP的异侧时,此时以A,D,B,P组成的四边形为_________(填“平行四边形”或“等腰梯形”或“梯形”).A.平行四边形,梯形B.梯形,平行四边形C.平行四边形,等腰梯形D.等腰梯形,平行四边形(2)(上接第2题)当A,D在BP的异侧时,点P的坐标为( )A.(6,4)B.C.D.图24.如图4,抛物线与x轴交于A(-2,0),B(1,0)两点,与y轴交于点C(0,2),P为抛物线x轴上方的一个动点,Q为y轴负半轴上的一个动点.若△ABP≌△BAQ,则点P的坐标为( )A. B.(-1,2) C. D.条件不足,无法求解图4学生做题前请先回答以下问题问题1:全等三角形存在性问题的处理思路是什么?问题2:已经学习了平行四边形,菱形,矩形,正方形,相似三角形以及全等三角形等各种存在性,存在性问题处理的框架是什么?全等三角形的存在性(五)1.如图1,二次函数的顶点为A,与y轴的交点为B.若⊙M的圆心为,半径为r,过点A向该圆作切线,切点为N,若△AMN与△ABO全等,则满足题意的m,r的值分别为( )A. B.C.D.2.如图2,已知直线与抛物线相交于A,B两点,且点为抛物线的顶点,点B在x轴上.若P是抛物线的第二象限的图象上的一点,使得△POB与△POC全等,则点P 的坐标为( )A. B.C.D.图1 图23.直角坐标系中,O是坐标原点,D是过三点的抛物线上的一点(不与点A重合).若以D,O ,C为顶点的三角形与△AOC全等,则点D的坐标为( )A. B. C.D.4.如图4,在平面直角坐标系中,直线l 经过.M为x轴上的一点且,点P,Q在线段AB上.若以O,P,Q为顶点的三角形与△OMP 全等,则点P的坐标为( )A. B. C. D.学生做题后建议通过以下问题总结反思问题1:结合第2题考虑不变特征是什么?分类标准是什么?问题2:结合第4题考虑不变特征是什么?如何确定分类标准?依据是什么?图4学生做题前请先回答以下问题问题1:动点问题的处理思路是什么?问题2:动点问题分析运动过程,需要关注四要素是什么?、问题3:全等三角形的判定有哪些?问题4:全等三角形存在性问题的处理思路是什么?全等三角形的存在性(六)1.如图1,在△ABC中,AB=AC=10cm ,BC=8cm,D为AB的中点.点P在BC边上以3cm/s的速度由点B向点C运动;同时点Q在AC边上以相同的速度由点C向点A运动,其中一个点到达终点时另一个点也随之停止运动.当△BPD与△CQP全等时,点P运动的时间为( )A. B. C. D.2.如图2,抛物线与x轴交于A,B两点,与y轴交于点C.点P是x轴上一动点,点Q是x轴上方抛物线上的一个动点.若△AQC与△AQP全等,则点Q的坐标为( )A. B. C. D.图13.如图3,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取一点A,过点A作AH⊥x轴于点H.在抛物线上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标为( )图3 A. B.C.D.学生做题后建议通过以下问题总结反思问题1:结合试题1考虑,不变特征是什么?△BPD与△CQP利用的是三角形全等的哪一个判定?问题2:试题2中,如何确定分类标准?。

相关文档
最新文档