数学建模——层次分析法
数学建模——层次分析法模型
危害性分级模型的建立与求解1.基于层次分析模型对恐怖袭击事件危害性指标建立层次结构模型考虑到恐怖袭击事件的危害性、人员伤亡、经济损失、发生的时机、地域、针对的对象等等诸多因素有关,在构建指标体系时,无法全部考虑到所有指标,因此本文采用层次分析模型,以定性和定量相结合的方法处理指标。
根据上述分析可知, 影响恐怖事件危险性级别的因素有很多,但是,在构建综合评价指标体系时,很难一次性考虑全部细节,此时可以将问题分解成多个层次,而每个层次又包含多个要素,依据大系统理论的分解协调原理,由粗到细,从全局到局部地逐步深入分析,把危险性级别评价的诸多影响因素条理化、层次化,从而建立一个递阶层次分析模型具体的层次分析模型如图1所示。
通过附件1对所有数据指标分析,建立系统的递阶层次结构,第一层为目标层分为5大类,第二层为准则层,第三层为子准则层,第四层为方案层。
其结果目标层准则层子准则层方案层恐怖袭击危害性指标响应级别人员伤亡死亡人数级别1级别2级别3级别4级别5受伤人数被绑人数经济损失损失程度1损失程度2损失程度3损失程度4攻击类型攻击设施攻击个人攻击群体武器类型无杀伤力中小型杀伤力攻击设施1.2 构造成对比较矩阵上一层因素的同一层诸因素,用成对比较法和1~9比较尺度构建成对比较矩阵[1],直到最底层。
表2 标度------比较尺度解释标度 定义1 因素i 与因素j 相同重要 3 因素i 比因素j 稍重要 5 因素i 比因素j 较重要 7 因素i 比因素j 非常重要 9 因素i 比因素j 绝对重要2,4,6,8因素i 与因素j 的重要性的比值介于上述两个相邻等级之间倒数1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9因素j 与因素i 比较得到判断值为ij a 的互反数,ijji a a 1=1=ii a设要素为i F ,j F ;当i F 与j F 相比同等重要,有ij R =1 ;当i F 与j F 相比略为重要,有ij R =3/1 ;当i F 与j F 相比相当重要,有ij R =5/1 ;当i F 与j F 相比明显重要,有ij R =7/1 ;当i F 与j F 相比绝对重要,有ij R =9/1。
数学建模队员的选拔-层次分析法
数学建模队员的选拔摘要一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。
但在对参赛队员进行选拔时,往往会遇到很多难题,以致有时并不能选出真正优秀的队员代表学校参加全国竞赛。
本文通过对学生自身具备的与数学建模有关的素质的考察,解决了选拔参赛队员及确定最佳组队的问题。
本文主要采用层次分析法,通过对建模队员的综合能力以及专项能力的考察,综合考虑个人的指标以及整队的技术水平,给出了选拔队员的模型,并最终从15名队员中选出9名优秀队员组成三队,建立了最佳的组队方案。
问题一,我们给出了选拔队员时应考察的情况,并针对数学建模应具备的关键素质,给出了相关素质的权重。
问题二,我们全面考察了15名队员的六项指标,并利用层次分析法及matlab 编程求出了各指标的权重,然后根据权重得到15名队员的的综合排名,最后剔除后六名,得到前九名队员,依次是:2S ,1S ,14S ,8S ,11S ,4S 10S ,6S ,13S 。
为了组成3个队,使得这3队的整体水平最高,我们建立了求每个队竞赛水平的模型,根据题目要求,为使三名队员的技术水平可以互补,参赛学生最好来自不同专业,我们在多种组合方式下经计算比较后得到最佳组合方案。
如下表:问题三,我们如果只考察计算机而不考察其它能力,选出最佳队员S11和S13,其成绩分别为第五和第九,并非特别拔尖。
而且通过对计算机编程能力在关键素质中所占的比例24.9%分析(1/4不到),这种直接录用的选拔方式,有可能影响队伍的总体水平,而且有失公平,所以不可取。
问题四,我们在前几问的基础上,综合数学建模的关键素质所占的权重分析,给出了对数学建模教练组在选拔队员时的建议。
关键词:最佳组队;层次分析法;matlab 编程,权重一、问题重述由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。
为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。
(完整版)数学建模之层次分析法
层次分析法层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。
该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
缺点:(1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。
(2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。
(5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。
1.模型的应用用于解决多目标的复杂问题的定性与定量相结合的决策分析。
(1)公司选拔人员,(2)旅游地点的选取,(3)产品的购买等,(4)船舶投资决策问题(下载文档),(5)煤矿安全研究,(6)城市灾害应急能力,(7)油库安全性评价,(8)交通安全评价等。
2.步骤①建立层次结构模型首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。
目标层准则层方案层目标层:表示解决问题的目的,即层次分析要达到的总目标。
通常只有一个总目标。
准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。
方案层:表示将选用的解决问题的各种措施、政策、方案等。
通常有几个方案可选。
注意:(1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不是任一元素与下层元素都有联系;(2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。
这是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。
当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。
②构造判断(成对比较)矩阵以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比a重要程度的衡量用Santy的1—9较。
层次分析法(AHP)建模
新余高等专科学校 数学建模教练组 2005-
6
Mathematical Contest in Modeling
层次分析法
3
计算权向量并做一致性检验
什么是权重(权系数)? 在决策问题中,通常要把变量Z表成变量x1,x2, … , xn的线性组合:
z w1x1 w2 x2 wn xn
n
其中 wi 0, wi 1 w1, w2 ,...., w则n
1 例: A 1/ 2
2 1
6 4
列向量 归一化
0.6 0.3
0.615 0.308
0.545 0.364
按行求和
1.760 0.972
1/ 6 1/ 4 1
0.1 0.077 0.091
0.268
, 即为
归一化
0.587 0.324 w
0.089
1.769 Aw 0.974
0.268
1 (1.769 0.974 0.268) 3.009
比较因素的权向量,其不一致程度应在容许的范围内.如何确定这个范围?
Mathematical Contest in Modeling 第5讲: 层次分析法(AHP)建模
层次分析法基本简介 层次分析法的基本步骤
1. 建立层次结构模型 2. 构造成对比较阵(判断矩阵) 3. 计算权向量并做一致性检验 4. 计算组合权向量并做组合一致性检验
不完全层次结构模型
新余高等专科学校 数学建模教练组 (设计制作: syllen
权重(权系数)?
a. 将A的每一列向量归一化得 w~ij aij / n aij
w~ b. 对 ij
按行求和得w~i n w~ij
j 1
i 1
数学建模方法详解三种最常用算法
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵1,0,ij ij ji n nijA a a a a表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ,,1,2,,i j k n L (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作 )的特征向量(归一化后)作为权向量w ,即w 满足:Aw w (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91 尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根 的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n ,而当n 时A 是一致阵.所以 比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n 数值的大小衡量A 的不一致程度.Saaty 将1nCI n(3)定义为一致性指标.0CI 时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除 外其余1n 个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ,然后计算A 的一致性指标CI .表1 随机一致性指标RI 的数值表中1,2n 时0RI ,是因为2,1阶的正互反阵总是一致阵.对于3n 的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI(4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:1,3,4,kkk w W w k s L (5)其中 kW 是以第k 层对第1k 层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:132s s s w W W W w L (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为p n p CI CI ,,1 (n 是第1 p 层因素的数目),随机一致性指标为1,,p p nRI RI L ,定义11,,P p p p n CI CI CI w L 11,,p p p p n RI RI RI wL 则第p 层的组合一致性比率为:,3,4,,p p p CI CRp s RIL (7) 第p 层通过组合一致性检验的条件为 0.1pCR .定义最下层(第s 层)对第一层的组合一致性比率为:2*sP p CR CR (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91 比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径. (五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根 ;2) 对应正特征向量w ( 的所有分量为正数);3)w IA I I A k k k lim ,其中1,1,1 I ,w 是对应 的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n ;当n 时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n .2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量 0wb .计算1,0,1,2,k k wAw k %L c .1k w%归一化,即令ni k ik k ww1111~~d .对于预先给定的精度 ,当 1||1,2,,k k i i i n L 时,1k w 即为所求的特征向量;否则返回be. 计算最大特征根 111k n ik i in %这是求最大特征根对应特征向量的迭代法, 0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a a%b .对ij %按行求和得1ni ij j %%c .将i %归一化 *121,,,ni ini w%%L 即为近似特征向量.d. 计算 11n ii iAw n ,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij %按行求积并开n 次方,即11nn iij j%%.根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量n w ,,1 的关系满iij ja,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ij相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: 21,,11min i nniij i n i j j aL (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i 的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:21,,11min ln ln i nni ij i n i j j aL (10)则化为求解关于ln i 的线性方程组.可以验证,如此解得的i 恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵 ij A a 构造修正阵 ijA a %%的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i j%为第行的个数, (11)表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵.(六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价该人体重为55kg维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵max 2 ,10CI ,100.1CR ,主特征向量0.75,0.25W 故第二层元素排序总权重为 10.75,0.25W表4 比较判断矩阵111max 1113,0,0,0.58CI CR RI ,主特征向量0.4,0.4,0.2W故相对权重 210.4,0.4,0.2,0P③ 第三层组合一致性检验问题因为 2111211112120;0.435CI CI CI W RI RI RI W ,212200.1CR CR CI RI故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:221221120.3,0.3,0.15,0.25W P W P P W求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化则最终的第四层各元素的综合权重向量为:3320.2376,0.2293,0.5331W P W ,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k ,20.2293x k ,30.5331x k ,代入 1LP123min 0.02750.0060.007f x x x131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x则得k f 0116.0min13.411375000.0017 1.6338..26.02828548.50k k s t LP k k容易求得1418.1k ,故得最优解 *336.9350,325.1650,755.9767x;最优值 *16.4497f ,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量12,,,m b b b b L ,其中, 01j b ,m为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb 时,最大隶属原则最有效;而在 1max 01,jj nbc c 1n j j b nc 时,最大隶属原则完全失效,且1max jj nb 越大(相对于1njj b 而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb 在1njj b 中的比重有关,于是令:11max njjj nj b b (12)显然,当11max 1,1njj j nj bb 时,则1 为 的最大值,当 1max 01jj nb c c ,1njj bnc时,有1n 为 的最小值,即得到 的取值范围为:11n .由于在最大隶属原则完全失效时,1n 而不为0,所以不宜直接用 值来判断最大隶属原则的有效性.为此设:11111n n n n(13)则 可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b 1sec (jnj b 1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b b(14)可见: 当 1,1,0,0,,0b L 时, 取得最大值12.当 0,1,0,0,,0b L 时, 取得最小值0.即 的取值范围为012 ,设 02120.一般地, 值越大最大隶属原则有效程度越高;而 值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:112121n n n n(15) 使用 指标能更准确地表明实施最大隶属原则的有效性.2. 指标的使用从 指标的计算公式看出 与 成反比,与 成正比.由 与 的取值范围,可以讨论 的取值范围: 当 取最大值, 取最小值时, 将取得最小值0;当 取最小值, 取最大值时, 将取得最大值:因为 0lim ,所以可定义0 时, .即:0 .由以上讨论,可得如下结论:当 时,可认定施行最大隶属原则完全有效;当1 时,可认为施行最大隶属原则非常有效;当0.51 时,可认为施行最大隶属原则比较有效,其有效程度即为 值;当00.5 时可认为施行最大隶属原则是最低效的;而当0 时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据 值的大小来直接判断使用最大隶属原则的有效性而不必计算 值.根据 与 之间的关系,当0.7 ,且4n 时,一定存在1 .通常评价等级数取4和9之间,所以4n 这一条件往往可以忽略,只要0.7 就可免算 值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对 12,,,m b b b b L 进行归一化处理而得到b ,则可直接根据b 进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设 ,,,D V A c 是一个带出发点s v 和收点t v 的容量-费用网络,对于任意,ijv v A ,ijc表示弧 ,i j v v 上的容量,ij 表示弧 ,i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧 ,i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:,0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c把条件(3)中的“容量大” 看作A 上的一个模糊子集A %,定义其隶属函数 : 0,1A 为: 00,0,1,ij ij ij i j A d c c v ij c c v v e c c%其中 1,i j ij v v c A cg (平均容量)21,21,0,1lg 1i j i j ij v v A ij v v A A c c d A c cg g建立ij 是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧 ,i j v v ,人为地降低运价ij ,形成“虚拟运价”ij ,其中ij 满足:ij c 越大,相应的ij 的调整幅度也越大.选取ij 为 1kij ij ij , ,i j v v A .其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij 代替原模型M 中的ij ,得到一个新的模型M .用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列 k 的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数0000min min ||max max ||||max max ||k i k k i k ik i ki k k i k k i k ikx x x x x x x x3. 取分辨系数 01 4. 求关联度11ni ki k k r n(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3) 灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列0k x 1,2,,k n L 进行一次累加生成序列 101kk i i x x1,2,,k n L(2)对0x 数列进行光滑性检验:00,k ,当0k k 时:0011101k k k k ii x x x x文献[11]进一步指出只要0101k k ii x x 为k 的递减函数即可.(3)对1x 作紧邻生成: 1111*1*,2,3,,k k k Z x x k n L一般取0.5b ax dtdx 11 (16)为灰色微分方程 01k k x aZ b 的白化方程. (4)按最小二乘法计算参数,a b(5)解(16)式并进行离散化得模拟序列1x 和0x 的计算公式: 1101exp k x x b a ak b a ,其中0,1,2,,k n L01111011exp *exp k k k x x x a x b a ak ,其中1,2,k L并假定 111101x x x文献[12,13]指出:假定 111101x x x 的理由是不充分的,文献[14]认为应当以最后一个 1n x 为已知条件来确定微分方程中常数项m c 的值,理由是最后一个数据是最新的,最能反映实际情况.同时文献[15]又进一步提出常数m c 的确定,由于数据序列中。
数学建模(层次分析法(AHP法))
例1. 选择旅游地 如何在3个目的地中按照景色、 费用、居住条件等因素选择.
将决策问题分为3个或多个层次: 最高层:目标层。表示解决问题的目的,即层次分析
要达到的总目标。通常只有一个总目标。 中间层:准则层、指标层、…。表示采取某种措施、
政策、方案等实现预定总目标所涉及的中间环节; 一般又分为准则层、指标层、策略层、约束层等。 最低层:方案层。表示将选用的解决问题的各种措施、 政策、方案等。通常有几个方案可选。 每层有若干元素,层间元素的关系用相连直线表示。
然后再考虑各种型号冰箱在上述各中间标 准下的优劣排序。借助这种排序,最终作 出选购决策。在决策时,由于6种电冰箱对 于每个中间标准的优劣排序一般是不一致 的,因此,决策者首先要对这7个标准的重 要度作一个估计,给出一种排序,然后把6 种冰箱分别对每一个标准的排序权重找出 来,最后把这些信息数据综合,得到针对 总目标即购买电冰箱的排序权重。有了这 个权重向量,决策就很容易了。
常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。决策是指
在面临多种方案时需要依据一定的标准选择 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6种不同类型的电冰箱进行了解 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等。
②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
数学建模(层次分析法(AHP法))
判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process
层次分析法及其应用数学建模
层次单排序
根据判断矩阵求解各因素对于上一层次因素的相 对重要性权重,得到层次单排序结果。
02
一致性检验
对判断矩阵进行一致性检验,检查各因素之间的 相对重要性是否合理。
层次总排序与一致性检验
层次总排序
根据各层次的权重和下一层因素相对于上一层因素的权重,计算出最底层因素相对于总目标的 权重。
一致性检验
判断矩阵的构造
确定比较标度
比较同一层次中各因素对于上一 层次因素的相对重要性,通常采 用1-9的标度法进行比较。
构造判断矩阵
根据比较标度,构造出判断矩阵, 矩阵中的元素表示对应因素的比 较结果。
求解判断矩阵
通过计算判断矩阵的特征向量, 得到各因素对于上一层次因素分析法可以根据问题 的实际情况调整层次结构 和判断矩阵,具有较高的 灵活性。
局限性
主观性
层次分析法在构造判断矩阵时依赖于专 家的主观判断,因此结果可能受到专家
主观因素的影响。
计算复杂度较高
对于大规模问题,层次分析法的计算 复杂度较高,需要借助计算机进行辅
助计算。
一致性检验困难
对于构造的判断矩阵,一致性检验是 一个难题,需要找到合适的检验方法。
层次分析法在数学建模中的应用
01 在数学建模中,层次分析法常用于解决多目标决 策问题,例如在资源分配、方案选择、风险评估 等方面。
02 通过构建层次结构模型,可以将复杂的决策问题 分解为多个层次,使得决策过程更加清晰和有条 理。
02 在应用层次分析法时,需要构建判断矩阵,并进 行一致性检验,以确保决策的合理性和准确性。
02
层次分析法的基本原理
层次结构模型的建立
01 明确问题
首先需要明确问题的目标,并确定相关的因素, 将因素按照属性不同分为不同的层次,形成层次 结构。
数学建模队员的选拔-层次分析法
数学建模队员的选拔-层次分析法层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策方法,通过构造层次结构分析问题,通过对于决策中所涉及的因素和目标进行层次分解,将问题的各部分分解成若干层次,在该层次结构中使用定量和定性的方法来描述因素之间的关联和权重。
本文将利用层次结构模型,以及层次分析法,对数学建模队员的选拔进行分析。
层次结构模型在进行数学建模队员的选拔中,影响选拔的多个因素可以构建成一个层次结构模型。
例如:在数学建模队员选拔中,可以将最终选出的队员作为最终的目标,而影响选拔的因素可以分解成以下多个因素:1.专业水平:参赛者们的数学水平、学习能力、逻辑思维等问题。
2.团队合作能力:参赛者是否适应团队合作及与人组队互动等问题。
3.沟通和表达能力:参赛者的表达能力、口头和文字沟通交流等问题。
4.个人素质:如责任感、进取心、合作精神、团队协作精神等。
层次分析法在层次分析法中,问题通常首先进行分层,使用准则、子准则和指标以及目标来描述问题,并按照这种结构构造一个具有层次结构特征的问题描述。
接着,将问题中的各个层次之间的依赖关系描述出来,并将各个准则、子准则、指标和目标的重要性大小转化为数量化的比较关系。
比较矩阵是层次分析法中的核心概念。
比较矩阵是一种用于比较各个因素之间差异的矩阵视图,在比较矩阵中,每一个单元格代表两个不同的元素之间的相对权重。
比较矩阵的各行数值之和为1。
以数学建模队员选拔的专业水平为例:在该因素层面上考虑选择队员是否有良好的数学水平、学习能力、逻辑思维;在这些因素比较中,可以进行两两比较后形成下图所示的矩阵视图。
| 比较矩阵 | 数学水平 | 学习能力 | 逻辑思维 ||--------------|----------|----------|----------|| 数学水平 | 1 | 3 | 5 || 学习能力 | 1/3 | 1 | 3 || 逻辑思维 | 1/5 |1/3 | 1 |上表中的数字代表数量级:按比例表示数据之间的重要程度或优先级,并且满足归一化性质:对于矩阵中的每一列,它们的权重比之和应为1。
数学建模层次分析法
(Analytic Hierarchy Process) 建模
数学建模
模型背景 基本步骤 应用实例
一、模型背景
❖ 美国运筹学家匹兹堡大学教授Saaty在20世纪70 年代初提出的一种层次权重决策分析方法。
❖层次分析法(Analytic Hierarchy Process简称AHP) 是一种定性和定量分析相结合的决策分析方法。
对总目标Z的排序为
A1
A2
Am
a1, a2 ,, am
B层n个因素对上层 A中因素为 Aj
其层次单排序为
B1
B2
Bn b1 j ,b2 j ,,bnj ( j 1,2,, m)
层次 A A1
层次 B a1
B1
b11
B2
b21
.
.
.
.
.
.
Bn
bn1
A2 … Am B 层次总
a2
… am 排序权值
RI 0i RIi 0.58 i 1
CR CI / RI 0.087 / 0.58 0.015 0.1
C5
0.118 0.166 0.166 0.668
层次P的 总排序
0.3 0.246 0.456
层次分析法的优点
系统性——将对象视作系统,按照分解、比较、判断、综合 的思维方式进行决策。成为成为继机理分析、统 计分析之后发展起来的系统分析的重要工具;
w(2) (0.263, 0.475, 0.055, 0.090, 0.110)T
同样求第3层(方案)对第2层每一元素(准则)的权向量
方案层对C1(景色)的 成对比较阵
方案层对C2(费用)的 成对比较阵
…Cn
层次分析法-数学建模
步骤5 层次总排序即求各方案的综合得分
前面我们求的都是在一层中各因素的权重,这个过程称为单
层次排序。不妨设准则层权向量W (w1, w2,L , wn ),T 而方案层有 l
个方案可供选择,且每个方案的权向量分别为 1, 2,L , l 。那么 每个方案对最终目标的影响程度(C1,C2,L ,Cl )T 就可以通过下面的 式子算出来了。
合理分配企业利润
准则层 调动积极性 提高企业质量 改善生活条件
方案层 发奖金 扩展福利设施 引进人才和设备
在层次划分及因素选取时,我们要注意三点:
(1)上层对下层有支配作用;
(2)同一层因素不存在支配关系(相互独立);
(3)每层因素一般不要超过9个。 (心理学家通过实验认为,人对许多东西优劣及优劣 程度判断能力,最多大致在9个以内,超过这个范围就 会判断失真。例如,人们在面对琳琅满目的商品常常会 眼花缭乱,难以抉择。)
23
9
重要性
xi比 x j 相同 稍重要 重要
绝对 很重要 重要
aij
1
3
5
7
9
在每两个等级之间有一个中间状态, aij 可分别 取值 2 , 4 ,L , 8 。
例如:评价电影的好坏
目标层
评价
准则层 娱乐性 x1 艺术性 x2 教育性 x3
方案层 电影1
电影2
……
这
个人认为:
x1 : x2 3
层次分析法是将定性问题定量化处理的一种有效手 段。
面临各种各样的方案,要进行比较、判断、评价、 最后作出决策。这个过程主观因素占有相当的比重给用 数学方法解决问题带来不便。T.L.saaty等人20世纪在七 十年代提出了一种能有效处理这类问题的实用方法。
数学建模的层次分析法
1、层次分析法的基本概念
1、层次分析法的基本概念
层次分析法(Analytic Hierarchy Process,AHP)是一种广泛应用于数学 建模中的方法。它通过将复杂问题分解为多个层次,帮助我们更好地理解和解决 实际问题。层次分析法的基本原理是将一个复杂问题分解为多个相关因素,并根 据这些因素之间的相对重要性进行排序。
3、层次分析法的实际应用
(4)权重计算:通过计算判断矩阵的特征向量,得到每个因素的权重值。 (5)一致性检验:对判断矩阵进行一致性检验,以确保得到的权重值是合理的。
3、层次分析法的实际应用
(6)结果分析:根据权重值的大小,对每个因素进行分析,从而得到问题的解 决方案。层次分析法在多目标决策、资源分配、风险评估等领域有着广泛的应用。 例如,在多目标决策中,层次分析法可以帮助我们确定各目标的权重,从而得到 最优解。
三、大学生毕业设计质量评价的 数学模型建立
三、大学生毕业设计质量评价的数学模型建立
1、确定评价指标:根据模糊层次分析法的原理,我们首先需要确定评价指标 体系。选取与毕业设计质量相关的指标,建立多级递阶结构,其中一级指标为选 题质量、设计过程、成果质量等,二级指标为选题难度、选题新颖性、设计规范 性等。
2、数学建模在各领域的应用
在科学研究领域,数学建模被广泛应用于物理学、化学、生物学等学科。例 如,牛顿第二定律、万有引力定律等都是通过数学建模得到的。在工程技术领域, 数学建模也发挥着重要的作用。例如,桥梁设计、建筑设计等领域都需要用到数 学建模来分析结构稳定性和安全性。此外,数学建模在金融、经济、社会等领域 也有着广泛的应用。
参考内容
一、引言
一、引言
随着高等教育的普及化,大学生毕业设计的质量评价已成为一个重要的研究 领域。毕业设计是大学生综合素质和教育水平的直接体现,因此,对其质量进行 科学、客观的评价至关重要。本次演示将介绍一种基于模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)的大学生毕业设计质量评价数学建模方 法,旨在为提高毕业设计质量和评价效率提供有效手段。
数学建模系列-常用模型
(4)计算层次总排序权值和一致性检验
B1 对总目标的权值为: 0.595 0.263 0.082 0.475 0.429 0.055 0.633 0.099 0.166 0.110 0.3
同理得,, B3 对总目标的权值分别为:0.246 B2 ,
决策层对总目标的权向量为: 又
2,4,6,8 表示需要在上述两个标准之间拆衷时的标度
1/bij 两个元素的反比较
旅游问题中,第二层A的各因素对目标层Z的影响 两两比较结果如下:
Z A1 A1 1 A2 2 A3 1/4 A4 1/3 A5 1/3 A2 A3 A4 A5
1/2
1 1/7 1/5 1/5
A1 , A2 , A3 , A4 , A5
作为权向量,否则要重新构造成对比较矩阵,对 A 加以调整。 一致性检验:利用一致性指标和一致性比率<0.1 及随机一致性指标的数值表,对 A 进行检验的过程。
4 层次总排序及其一致性检验
确定某层所有因素对于总目标相对重要性的排序权值 过程,
称为层次总排序 从最高层到最低层逐层进行。设: 层m个因素A1, A2 ,, Am , A
, n
时, 为一致阵。 n A
A n 由于 连续的依赖于 aij ,则 比 大的越多, 的不一致
性越严重。用最大特征值对应的特征向量作为被比较因素对上 层某因素影响程度的权向量,其不一致程度越大, 引起的判断误差越大。因而可以用
n 数值的大小来衡量
A 的不一致程度。
定义一致性指标
过去研究自然和社会现象主要有机理分析法和统计分析法两
种方法,前者用经典的数学工具分析现象的因果关系,后者 以随机数学为工具,通过大量的观察数据寻求统计规律。近 年发展的系统分析是又一种方法,而层次分析法是系统分析 的数学工具之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在大石头中的重量比)可用向量
且
n
w ( w1 , w2 ,..., wn
T 表示, )
. 显然, 的各个列向量与 w 1 A i
i 1
w
仅相差一个比例
因子。 一般地,如果一个正互反阵
A
满足 (8.2.4)
aij a jk aik , i, j, k 1, 2,..., n
则
3 计算权向量并做一致性检验
定理1
当
n 阶正互反阵 A的最大特征根 n,
时
当且仅
A为一致阵。 由于 连续的依赖于 aii ,则 比 n 大的越多, 的不 A
n
一致性越严重。用最大特征值对应的特征向量作为被比较因
素对上层某因素影响程度的权向量,其不一致程度越大,引 起的判断误差越大。因而可以用
RI。方法为:
A1 , A2 ,, A500
2.则可得一致性指标 : CI1 , CI 2 ,CI500
CI1 CI 2 CI500 RI 500
n RI
1 2 500 n 500 n 1
1 2 3 4 5 6 7 8 9 10 11 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
aii 1 ,如用 C1 , C2 ,..., Cn
2 构造成对比较矩阵
2.比较尺度 • 当比较两个可能具有不同性质的因素 Ci 和 C j 对于一个上层 因素 O 的影响时,Saaty提出用1—9尺度(见下表),即aij 的取值范围是1,2,,9 ,及其互反数1,1/ 2,,1/ 9 。其理由 如下:
重,景色次之,居住条件再次。 问题1.怎样由成对比较阵确定诸因素 C , C ,..., C 对上层因 1 2 n 素
o 的权重呢?
2 构造成对比较矩阵
由给出的成对比较阵 A 可以发现,既然 C与 C2之比为 1 1:2, C1 与 C3 之比为4:1,那么 C2与 C3 之比应为8:1,而不 是7:1,才能说明成对比较是一致的。但是, n 个要素要作
1.建立层次结构模型
例1 大学毕业生就业选择问题
获得大学毕业学位的毕业生,在“双向选择”时, 用人单位与毕业生都有各自的选择标准和要求。就毕业生来 说选择单位的标准和要求是多方面的,例如:
①能发挥自己才干作出较好贡献(即工作岗位适合发挥 自己的专长);
②工作收入较好(待遇好);
Leabharlann ③生活环境好(大城市、气候等工作条件等);
n 数值的大小来衡量
A 的不一致程度。
3 计算权向量并做一致性检验
定义一致性指标:
n CI n 1
CI 0 CI 接近于 0
,有完全的一致性 ;
,有满意的一致性;
CI 越大,不一致越严重。
3 计算权向量并做一致性检验
为衡量 CI 的大小,引入随机一致性指标 1.随机构造500个成对比较矩阵:
1-9尺度的含义
2 构造成对比较矩阵
3、问题的提出
(8.2.2)中 a 2 表示景色 C1 与费用 C2对选择旅游 21
地这个目标 表示景色 C1 O 的重要性之比为1:2 ;a13 4 与居住条件 C3 之比为4:1;a23 7 表示费用 C2 与居住条件
C3 之比为7:1。可以看出此人在选择旅游地时,费用因素最
4 计算组合权向量并做组合一致性检验
计算某一层次所有因素对于最高层(总目标)相对重要性的权 值,称为层次总排序。 这一过程是从最高层次到最低层次依次进行的。
4 计算组合权向量并做组合一致性检验
A 层 m个因素 A1 , A2 ,, Am ,
对总目标
Z 的排序为:
a1 , a2 ,, am ,B 层 n 个因素对上层 A 中因素 A j 的层次
3 计算权向量并做一致性检验
注:随机一致性指标
RI 定义一致性比率 CI CR RI
:
一般,当一致性比率 CR CI 时,认为 A 的不一致程 RI 度在容许范围之内,有满意的一致性,通过一致性检验。可 用其归一化特征向量作为权向量,否则要重新构造成对比较
矩阵 A ,对
aij 加以调整。
3 计算权向量并做一致性检验
A 称为一致性矩阵,简称一致阵。
2 构造成对比较矩阵
容易证明阶一致阵 A有下列性质。
1. 2.
A 的秩为1,A 的惟一非零特征根为 n ;
A 的任一列向量都是对应于特征根 n 的特征向量。
如果得到的成对比较阵是一致阵,像(8.2.3)式的A 自
然应取对应于特征根
n
的,归一化的特征向量(即分量之
4 计算组合权向量并做组合一致性检验
即
B 层第 i 个因素对总目标的权值为: a j bij
j 1
m
4 计算组合权向量并做组合一致性检验
层次总排序的一致性检验:
设 B层的 B , B ,, B 对上层( A层)中因素 A ( j 1, 2, , m) j 1 2 n 的层次单排序一致性指标为 CI j ,随机一致性指标为 RI j ,
课题的可行性(包括课题的难易程度、研究周期及资金)。
在这些因素的影响下,如何选择课题?
1.建立层次结构模型
1.建立层次结构模型
层次分析法所要解决的问题是关于最低层对最高层
的相对权重问题,按此相对权重可以对最低层中的各种方 案、措施进行排序,从而在不同的方案中作出选择或形成 选择方案的原则。
2 构造成对比较矩阵
(2) T ( w1(2) ,..., w5 )
用同样的方法构造第3层(方案层)对第2层的每一个准则的
2 1 1 2
1 1 1 3
n(n 1) 次成对比较,全部一致的要求是太苛刻了。 2 问题2. 怎样确定这种不一致的容许范围?
为了解决上面两个问题,我们先考察成对比较完全一致的
情况
2 构造成对比较矩阵
设想把一块单位重量的大石头
O 砸成
块小石头 C1 , C2 ,..., Cn
如果精确地称出它们的重量为
令 a w / w ,那么得到 ij i j
“选择旅游地”中,准则层对目标的成对比较阵
最大特征根:
5.073
权向量(特征向量):
=(0.263,0.475,0.055,0.090,0.110) T
一致性指标: 随机一致性指标
RI 1.12
(查表可得),
一致性比率为
通过一致性检验。
CR=0.018/1.12=0.016<0.1
数学建模
—— 层次分析法
主讲教师
曾慧平
§2
层次分析法的基本步骤
1 建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对象按
它们之间的相互关系分为最高层、中间层和最低层,绘 出层次结构图。 最高层:决策的目的、要解决的问题。 最低层:决策时的备选方案。 中间层:考虑的因素、决策的准则。 对于相邻的两层,称高层为目标层,低层为因素层。 下面举例说明。
w1 ,..., wn ,在作成对比较时
w1 wn w2 wn
wn wn
w w1 1 w2 1 w w w2 2 w2 A w1 wn wn w w2 1
(8.2.3)
2 构造成对比较矩阵
这些比较显然是一致的, n 块小石头对大石头的权重(即
尺度 1 3 含义
Ci 与 C j 的影响相同
Ci 比 C j 的影响稍强
Ci 比 C j 的影响强 Ci 比 C j 的影响明显的强 Ci 比 C j 的影响绝对的强 Ci 与 C j 的影响之比在上述两个相邻等级 之间 Ci 与 C j 的影响之比为上面的互反数
5 7
9
2 , 4 , 6, 8
1,1/2,…,1/9
3 计算权向量并做一致性检验
对应于成对比较矩阵的最大特征根
max的特征向量,
经归一化(使向量中各元素之和等于1)后记为 W 。W 的元 素为同一层次因素对于上一层次因素某因素相对重要性的
排序权值,这一过程称为层次单排序。
能否确认层次单排序,需要进行一致性检验,所谓 一致性检验是指对 A 确定不一致的允许范围。 定理1 n 阶一致阵的唯一非零特征根为 n 。
④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
1.建立层次结构模型
1.建立层次结构模型
例2 选择旅游地 如何在3个目的地中按照景色、费用、居住条件等因素选择。
1.建立层次结构模型
例3 科研课题的选择 某研究所现有三个科研课题,限于人力及物力,只 能研究一个课题。有三个须考虑的因素:(1)科研成果贡 献大小(包括实用价值和科学意义);(2)人材的培养;(3)
4 计算组合权向量并做组合一致性检验
在旅游决策问题中我们已经得到了第二层(准则层)对 第一层(目标层)的权向量,记作 w(2) 成对比较阵,不妨设它们为:
1 1 B1 2 1 5 1 5 2 , B2 3 8 1 1 1 3 8 1 1 1 , B3 1 3 1 3 1 3 1 1 1 4 1 3 4 3 1 1 3 , B4 1 1 , B5 1 1 3 4 4 4 1 1 1 1 1 4
和为1)表示诸因素 C1 , C2 ,..., Cn
这个向量称为权向量。
,对上层因素
O 的权重,
2 构造成对比较矩阵
如果成对比较阵