最新-2018年浙江省慈溪中学初中保送生招生考试数学试卷及参考答案 精品

合集下载

2018年浙江省宁波市慈溪市中考数学模拟试卷(4月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟试卷(4月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟试卷(4月份)一、选择题(每小题4分,共48分)1.(4分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(4分)下列是国际数学家大会会徽中的部分图案,属于轴对称图形的是()A.B.C.D.3.(4分)在一个不同透明的口袋中装有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸出一个小球,其标号为3的倍数的概率为()A.B.C.D.4.(4分)宁波市共有55632名学生参加2018年初中毕业生英语听力口语自动化考试,55632精确到千位并用科学记数法表示为()A.56000B.56×103C.5.6×104D.0.56×105 5.(4分)下表是我市10个气象站点4月7日10点的实测气温(单位:°C)则这组数据的众数和中位数分别是()A.11.9,12.4B.11.9,11.9C.11.9,12.9D.12.9,11.9 6.(4分)下列计算正确的是()A.a3+a3=a6B.x2•x3=x6C.(﹣a)2÷a=﹣a D.(xy2)3=x3y67.(4分)不等式组的解集是()A.1≤x<3B.1<x≤3C.x<1D.x≥38.(4分)如图,由4个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A.主视图不变,左视图改变B.主视图不变,左视图不变C.主视图改变,左视图不变D.主视图改变,左视图改变9.(4分)在劳技课上,同学们想用圆心角为120°,半径为6cm的扇形纸片做成一个圆锥形的圣诞帽,则这个圣诞帽的侧面积为()A.6πB.8πC.12πD.16π10.(4分)能说明命题:“方程x2+3x﹣c=0有实数根”是假命题的反例是()A.c=0B.c=﹣3C.c=﹣2D.c=211.(4分)如图,点P是等腰直角△ABC的斜边AB所在的直线上一点,设m=AP2+BP2,则m与CP2的大小关系是()A.m=CP2B.对点P有有限多个位置,使得m<2CP2C.m>2CP2D.对直线AB上的所有点P都有m=2CP212.(4分)如图是德国1998年发行的纪念在柏林召开的国际数学家大会的邮票(面值为110芬尼),它的图案是一个矩形,这个矩形被分割成大小不相同的11个正方形,这是“矩形求方”问题的一种解法,如果图中所有的正方形的边长都是整数,那么这个矩形周长的最小值是()A.548B.706C.748D.768二、填空题(每小题4分,共24分)13.(4分)写出一个比3大且比4小的无理数:.14.(4分)人数相等的甲、乙两班学生参加同一次数学测验,班级的平均分和方差如下:=76,=76,S 甲2=432,S乙2=350,则成绩较为整齐的班级是.15.(4分)当x=时,分式的值为0.16.(4分)若一个矩形截去两个以短边长为边长的正方形后得到的矩形与原矩形相似,则这个矩形的长与宽之比为.17.(4分)如图,半径为1的⊙O与x轴负半轴,y轴正半轴分别交于点D、E,直线y=kx(k>0)交⊙O于A,B,AD,BE的延长线相交于点C,当k的值改变时,下列结论:①∠ACB的度数不变.②CB与CD的比值不变.③CO的长度不变,其中正确的结论的序号是.18.(4分)如图,P为反比例函数y=在第三象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x+2的图象于点A、B.若∠AOB=135°,则k的值是.三、解答题(本题共78分)19.(6分)化简:a(a﹣2)﹣(a+2)(a﹣2),并求当a=()﹣2时的值.20.(8分)如图,在矩形方格纸ABCD中,点E,F均为格点(注:组成方格纸的小正方形顶点称为格点).(1)直接写出sin∠EAF的值;(2)按下列要求画出图形:①在方格纸中找一格点P,使AP平分∠EAF,画出线段AP;②在CD边上找一格点Q,使FQ⊥AP,画出线段FQ.21.(8分)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.22.(10分)如图,在平面直角坐标系xOy中,一次函数y=ax﹣a(a为常数)的图象与y 轴相交于点A,与函数y=(x>0)的图象相交于点B(t,1).(1)求点B的坐标及一次函数的解析式;(2)点P的坐标为(m,m)(m>0),过P作PE∥x轴,交直线AB于点E,作PF∥y轴,交函数y=(x>0)的图象于点F.①若m=2,比较线段PE,PF的大小;②直接写出使PE≤PF的m的取值范围.23.(10分)如图,⊙O的直径AD长为6,AB是弦,∠A=30°,CD∥AB,且CD=.(1)求∠C的度数;(2)求证:BC是⊙O的切线;(3)求阴影部分面积.24.(10分)小明从家骑自行车出发,沿一条直线到相距2000m的邮局办事,小明出发的同时,他的爸爸以80m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留4min后沿原路以原速返回,恰好比爸爸早5分钟到家.图中折线OABC和线段EF分别是表示他们与家的距离sm与小明从家出发后的时间tmin之间的函数关系的图象.(1)求小明爸爸回家用时间及小明从家到邮局的时间;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家多远?25.(12分)定义:有一组邻边相等,并且它们的夹角是直角的四边形叫做等腰直角四边形,如图1,AB=BC,∠ABC=90°,四边形ABCD即为等腰直角四边形ABCD.(1)下列图形中一定是等腰直角四边形的有哪些?①矩形;②菱形;③正方形;④直角梯形.(2)如图(2),在平面直角坐标系中,已如A(8,0),B(0,6),在以AB为直径的圆上找一点C,连结AC、BC,使得四边形OACB为等腰直角四边形,求C点的坐标.(3)点P从点Q出发以每秒m个单位的速度沿线段OA运动,点Q从点A出发以每秒n 个单位的速度沿线度AB运动,在运动过程存在一个时刻使四边形BOPQ为等腰直角四边形,且OP≠OB,求m:n的值.26.(14分)已知如图1,抛物线y=﹣x2+bx+c与x轴的一个交点B的坐标为(3,0),与y轴交于点D(0,3),其顶点为C,延长CD交x轴于点A.(1)求抛物线的解析式;(2)连结BD,求tan∠DBC的值;(3)如图2,点P是线段OB上一点,过点P作PQ∥BC交直线BD于点Q,R是线段AD 上一点,且∠QPR=45°,连结QR.①若Q在线段BD上,且△PQR是等腰三角形时,求此时△PQR的面积;②当△PQR与△APR相似时,求P点的坐标.2018年浙江省宁波市慈溪市中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)﹣3的相反数是()A.3B.﹣3C.D.﹣【解答】解:﹣3的相反数是3,故选:A.2.(4分)下列是国际数学家大会会徽中的部分图案,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.3.(4分)在一个不同透明的口袋中装有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸出一个小球,其标号为3的倍数的概率为()A.B.C.D.【解答】解:∵在标号为1,2,3,4,5,6的六个小球中,标号为3的倍数的有3、6这2个,∴随机摸出一个小球,其标号为3的倍数的概率为=,故选:B.4.(4分)宁波市共有55632名学生参加2018年初中毕业生英语听力口语自动化考试,55632精确到千位并用科学记数法表示为()A.56000B.56×103C.5.6×104D.0.56×105【解答】解:55632≈5.6×104,故选:C.5.(4分)下表是我市10个气象站点4月7日10点的实测气温(单位:°C)则这组数据的众数和中位数分别是()A.11.9,12.4B.11.9,11.9C.11.9,12.9D.12.9,11.9【解答】解:将这组数据按从小到大的顺序排列为:11.2,11.5,11.9,11.9,11.9,12.9,12.9,13,13.1,13.2,其中11.9出现了3次,次数最多,故众数是11.9;处于中间位置的两个数是11.9和12.9,那么由中位数的定义可知,这组数据的中位数是(11.9+12.9)÷2=12.4.故选:A.6.(4分)下列计算正确的是()A.a3+a3=a6B.x2•x3=x6C.(﹣a)2÷a=﹣a D.(xy2)3=x3y6【解答】解:A、a3+a3=2a3,此选项错误;B、x2•x3=x5,此选项错误;C、(﹣a)2÷a=a2÷a=a,此选项错误;D、(xy2)3=x3y6,此选项正确;故选:D.7.(4分)不等式组的解集是()A.1≤x<3B.1<x≤3C.x<1D.x≥3【解答】解:,解①得x>1,解②得x≤3,所以不等式组的解集为1<x≤3.故选:B.8.(4分)如图,由4个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A.主视图不变,左视图改变B.主视图不变,左视图不变C.主视图改变,左视图不变D.主视图改变,左视图改变【解答】解:将正方体①移走前的主视图正方形的个数为2,1,1;正方体①移走后的主视图正方形的个数为2,1;发生改变.将正方体①移走前的左视图正方形的个数为2,1;正方体①移走后的左视图正方形的个数为2,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为2,1,1;正方体①移走后的俯视图正方形的个数,2,1;发生改变.故选:C.9.(4分)在劳技课上,同学们想用圆心角为120°,半径为6cm的扇形纸片做成一个圆锥形的圣诞帽,则这个圣诞帽的侧面积为()A.6πB.8πC.12πD.16π【解答】解:这个圣诞帽的侧面积==12π(cm2).故选:C.10.(4分)能说明命题:“方程x2+3x﹣c=0有实数根”是假命题的反例是()A.c=0B.c=﹣3C.c=﹣2D.c=2【解答】解:当c=﹣3时,方程x2+3x﹣c=0无实数根也成立,所以证明命题“方程x2+3x ﹣c=0有实数根”是假命题的反例是:c=﹣3;故选:B.11.(4分)如图,点P是等腰直角△ABC的斜边AB所在的直线上一点,设m=AP2+BP2,则m与CP2的大小关系是()A.m=CP2B.对点P有有限多个位置,使得m<2CP2C.m>2CP2D.对直线AB上的所有点P都有m=2CP2【解答】解:当P为AB上时,假设P为中点时,AP=PB=PC,满足条件,当点P不为中点时,过点C作AB的垂线,亦满足条件;当点P在BA的延长线上时,过点P作PF⊥BC,PE⊥CA;PC2=PF2+CF2,AP2=AE2+PE2=AE2+FC2=2CF2PB2=BF2+PF2=PF2+(BC+CF)2=2PF2AP2+PB2=2CF2+PF2+PF22PC2=2PF2+2CF2所以AP2+PB2=2PC2,即k=2CP2;同理,当点P在AB的延长线上时,m=2CP2.综上可知:m=2CP2.故选:D.12.(4分)如图是德国1998年发行的纪念在柏林召开的国际数学家大会的邮票(面值为110芬尼),它的图案是一个矩形,这个矩形被分割成大小不相同的11个正方形,这是“矩形求方”问题的一种解法,如果图中所有的正方形的边长都是整数,那么这个矩形周长的最小值是()A.548B.706C.748D.768【解答】解:设最小,次小和中间小正方形的边长分别为x、y、z,如图所示,正方形的边长均写在正方形内,则x+3y+2z=8x+3y﹣z,得7x=3z①,由大长方形的宽得:5x+2y+x+3y+2z=x+3y+z+x+3y+x+2y,6x+5y+2z=3x+8y+z,3x﹣3y+z=0②,由①②得:,∵所有的正方形的边长都是整数,∴,∴x的最小值是9,从而y和z的最小值是16和21,此时长方形的邻边的长分别为:6x+5y+2z=6×9+5×16+2×21=176,2x+6y+3z=2×9+6×16+3×21=177,∴所求长方形的最小周长=2(177+176)=706,故选:B.二、填空题(每小题4分,共24分)13.(4分)写出一个比3大且比4小的无理数:π.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.14.(4分)人数相等的甲、乙两班学生参加同一次数学测验,班级的平均分和方差如下:=76,=76,S 甲2=432,S乙2=350,则成绩较为整齐的班级是乙.【解答】解:∵:=76,=76,S 甲2=432,S乙2=350,∴S甲2>S乙2,∴成绩较为整齐的班级是乙;故答案为:乙.15.(4分)当x=﹣2时,分式的值为0.【解答】解:∵=0,∴x=﹣2.故答案为:﹣2.16.(4分)若一个矩形截去两个以短边长为边长的正方形后得到的矩形与原矩形相似,则这个矩形的长与宽之比为1+.【解答】解:设矩形的长是a,宽是b,则AE=EH=b,DH=a﹣2b,∵矩形ABCD∽矩形HDCG,∴=,即=,整理得:a2﹣2ab﹣b2=0,两边同除以b2,得()2﹣﹣1=0,解得,=1+或=1﹣(舍去)∴长与宽的比为1+,故答案为:1+.17.(4分)如图,半径为1的⊙O与x轴负半轴,y轴正半轴分别交于点D、E,直线y=kx(k>0)交⊙O于A,B,AD,BE的延长线相交于点C,当k的值改变时,下列结论:①∠ACB的度数不变.②CB与CD的比值不变.③CO的长度不变,其中正确的结论的序号是①②.【解答】解:如图,连接BD,∵∠EOD=90°,∴∠AOD+∠BOE=90°,∵OB=OE,OA=OD,∴∠OAD=∠ODA,∠OBE=∠OEB,∴∠OAD+∠OBE=(360°﹣90°)=135°,∴∠ACB=45°,∵AB是直径,∴∠ADB=∠CDB=90°,∴△CDB是等腰直角三角形,∴CB:CD=,故①②正确,在△ABC中,AB是定值,∠C=45°,中线OC是变化的,故③错误,故答案为①②.18.(4分)如图,P为反比例函数y=在第三象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x+2的图象于点A、B.若∠AOB=135°,则k的值是6.【解答】解:如图,过B作BC⊥x轴于C,过A作AD⊥于轴于D,∵当x=0时,y=2,即ON=2,当y=0时,x=2,即OM=2,∴OM=ON,∠OMN=∠ONM=45°,∴∠ANO=∠OMB=135°,∵∠AOB=135°,∴∠BOM+∠AON=45°,又∵∠BOM+∠OBM=45°,∴∠OBM=∠AON,∴△BOM∽△OAN,∴=,即=,∴BM•AN=12,∵∠AND=∠MNO=∠NMO=∠BMC=45°,∴△ADN和△BCM都是等腰直角三角形,设P(a,b),则k=ab,BC=﹣b,AD=﹣a,∴Rt△BCM中,BM=﹣b;Rt△ADN中,AN=﹣a,∵﹣a×(﹣b)=12,∴ab=6,即k=6,故答案为:6.三、解答题(本题共78分)19.(6分)化简:a(a﹣2)﹣(a+2)(a﹣2),并求当a=()﹣2时的值.【解答】解:原式=a2﹣2a﹣a2+4=﹣2a+4,当a=()﹣2=4时,原式=﹣8+4=﹣4.20.(8分)如图,在矩形方格纸ABCD中,点E,F均为格点(注:组成方格纸的小正方形顶点称为格点).(1)直接写出sin∠EAF的值;(2)按下列要求画出图形:①在方格纸中找一格点P,使AP平分∠EAF,画出线段AP;②在CD边上找一格点Q,使FQ⊥AP,画出线段FQ.【解答】解:(1)sin∠EAF=,(2)如图所示:21.(8分)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.【解答】解:解:(1)由题意可得总人数为10÷20%=50名;(2)听音乐的人数为50﹣10﹣15﹣5﹣8=12名,“体育活动C”所对应的圆心角度数=360°×=108°,补全统计图得:(3)画树状图得:∵共有20种等可能的结果,选出都是女生的有2种情况,∴选取的两名同学都是女生的概率==.22.(10分)如图,在平面直角坐标系xOy中,一次函数y=ax﹣a(a为常数)的图象与y 轴相交于点A,与函数y=(x>0)的图象相交于点B(t,1).(1)求点B的坐标及一次函数的解析式;(2)点P的坐标为(m,m)(m>0),过P作PE∥x轴,交直线AB于点E,作PF∥y轴,交函数y=(x>0)的图象于点F.①若m=2,比较线段PE,PF的大小;②直接写出使PE≤PF的m的取值范围.【解答】解:(1)∵函数y=(x>0)的图象经过点B(t,1).∴t=2,∴B(2,1),代入y=ax﹣a得,1=2a﹣a,∴a=1,∴一次函数的解析式为y=x﹣1;(2)①当m=2时,点P的坐标为(2,2),又∵PE∥x轴,交直线AB于点E,PF∥y轴,交函数y=(x>0)的图象于点F,∴当y=2时,2=x﹣1,即x=3,∴PE=3﹣2=1,当x=2时,y==1,∴PF=2﹣1=1,∴PE=PF;②由①可得,当m=2,PE=PF;∵PE=m+1﹣m=1,令﹣m=1,则m=1或m=﹣2(舍去),∴当m=1,PE=PF;∵PE≤PF,∴由图象可得,0<m≤1或m≥2.23.(10分)如图,⊙O的直径AD长为6,AB是弦,∠A=30°,CD∥AB,且CD=.(1)求∠C的度数;(2)求证:BC是⊙O的切线;(3)求阴影部分面积.【解答】(1)解:如图,连接BD,∵AD为圆O的直径,∴∠ABD=90°,∴BD=AD=3,∵CD∥AB,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt△CDB中,tan C===,∴∠C=60°;(2)证明:连接OB,∵OA=OB,∴∠OBA=∠A=30°,∵CD∥AB,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,∴OB⊥BC,∴BC为圆O的切线;(3)解:过点O作OE⊥AB,则有OE=OA=,∵AB===3,∴S△OAB=AB•OE=×3×=,∵∠AOB=180°﹣2∠A=120°,∴S扇形OAB==3π,则S阴影=S扇形OAB﹣S△AOB=3π﹣.24.(10分)小明从家骑自行车出发,沿一条直线到相距2000m的邮局办事,小明出发的同时,他的爸爸以80m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留4min后沿原路以原速返回,恰好比爸爸早5分钟到家.图中折线OABC和线段EF分别是表示他们与家的距离sm与小明从家出发后的时间tmin之间的函数关系的图象.(1)求小明爸爸回家用时间及小明从家到邮局的时间;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家多远?【解答】解:(1)由题意可得,小明爸爸回家用时间是:2000÷80=25(min),小明从家到邮局的时间是:(25﹣5﹣4)÷2=8(min),答:小明爸爸回家用时间是25min,小明从家到邮局的时间是8min;(2)设小明返回家中在图象对应的点是点C,如右图所示,由(1)可知,点E(0,2000),点F(25,0),点B(12,2000),点C(20,0),设过点E、F的函数解析式为s=at+b,,得,即过点E、F的函数解析式为s=﹣80t+2000,设过点B、C的函数解析式为s=ct+d,,得,即过点B、C的函数解析式为s=﹣250t+5000,令,得,答:小明从家出发,经过min在返回途中追上爸爸,这时他们距离家m.25.(12分)定义:有一组邻边相等,并且它们的夹角是直角的四边形叫做等腰直角四边形,如图1,AB=BC,∠ABC=90°,四边形ABCD即为等腰直角四边形ABCD.(1)下列图形中一定是等腰直角四边形的有哪些?①矩形;②菱形;③正方形;④直角梯形.(2)如图(2),在平面直角坐标系中,已如A(8,0),B(0,6),在以AB为直径的圆上找一点C,连结AC、BC,使得四边形OACB为等腰直角四边形,求C点的坐标.(3)点P从点Q出发以每秒m个单位的速度沿线段OA运动,点Q从点A出发以每秒n 个单位的速度沿线度AB运动,在运动过程存在一个时刻使四边形BOPQ为等腰直角四边形,且OP≠OB,求m:n的值.【解答】解:(1)根据等腰直角四边形的定义得,正方形是等腰直角四边形,故选③;(2)如图2,过点C作CD⊥x轴于D,作CE⊥y轴于E,∵四边形OACB为等腰直角四边形,∴AC⊥BC,且AC=BC,∵∠CBE=∠CAD,∠CEB=90°=∠CDA,∴△CEB≌△CDA,∴AD=BE,CD=CE,∴四边形ODCE是正方形,∵A(8,0),B(0,6),∴OD=OE=7,∴C(7,7),(3)①如果OP与PQ垂直且相等,∴设点P,Q的活动时间为t,由题意知,PQ=OP=mt,AQ=nt,∵PQ⊥x轴,∴OB∥PQ,∴△APQ∽△AOB,∴,∴,②如果BQ与PQ垂直且相等,∴△APQ∽△ABO,∴,∴,∴=.26.(14分)已知如图1,抛物线y=﹣x2+bx+c与x轴的一个交点B的坐标为(3,0),与y轴交于点D(0,3),其顶点为C,延长CD交x轴于点A.(1)求抛物线的解析式;(2)连结BD,求tan∠DBC的值;(3)如图2,点P是线段OB上一点,过点P作PQ∥BC交直线BD于点Q,R是线段AD 上一点,且∠QPR=45°,连结QR.①若Q在线段BD上,且△PQR是等腰三角形时,求此时△PQR的面积;②当△PQR与△APR相似时,求P点的坐标.【解答】解:(1)把B(3,0),D(0,3)代入y=﹣x2+bx+c中得到,∴抛物线的解析式为y=﹣x2+2x+3.(2)作CE⊥y轴于E.∵y=﹣x2+2x+3,∴顶点C(1,4),∴△ODB,△CDE都是等腰直角三角形,∴CD=,BD=3,∠CDB=90°,∴tan∠DBC===.(3)①当Q在线段BD上,且△PQR是等腰直角三角形时,则∠PQR=45°,PQ=QR,作PE⊥BD于E,可得△DQR≌△EPQ,设BE=t,则PE=t,BE=PE=DQ=t,∵PQ∥BC,tan∠DBC=,∴BD=t+3t+t=3,∴t=,∴S△PQR=×PQ2=×(t)2=5t2=.②当△APR∽△PRQ时,∵∠APR=∠PRQ,∴PQ∥AB,由(2)可得,BQ=4t,PB=t,∴AR=4t,AP=6﹣t,∵∠DAB=∠ABD=∠RPQ=45°,∴△APR∽△BQP,∴=,即=,解得t=,∴PB=,OP=,∴P(,0).当△APR∽△PQR时,则∠PQR=∠APR=∠PQB,在QB上取点E,使得QE=QR,则△QQPR≌△QPE,则PR=PE,∠RPE=45°×2=90°,作RF⊥轴于F,EG⊥x轴于G.则AF=RF=PG,PF=EG=GB,∴AP=PB,∴P是AB的中点,即P(0,0).综上所述,满足条件的点P坐标为(,0)或(0,0).。

2018年宁波中考数学试题与答案15396

2018年宁波中考数学试题与答案15396

宁波市2018年初中毕业生学业考试数学试题考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满分为120分,考试时间为120分钟.TtGkZJkUBD2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.3.答题时,把试题卷I的答案在答题卷I上对应的选项位置用2B 铅笔涂黑、涂满.将试题卷II的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷II各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.TtGkZJkUBD4.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线的顶点坐标为.试题卷Ⅰ一、选择题<每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列各数中是正整数的是(第8题> (A> (B> 2 (C>0.5 (D>TtGkZJkUBD 2.下列计算正确的是(A>(B> (C>3在数轴上表示正确的是(D> 4.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为TtGkZJkUBD (A>人 (B>人 (C> 人(D> 人5.平面直角坐标系中,与点关于原点中心对称的点是 (A> (B> (C> (D> 6.如图所示的物体的俯视图是7.一个多边形的内角和是720°,这个多边形的边数是(D> 7 TtGkZJkUBD 8.如图所示,AB ∥CD ,∠E =37°,∠C =20°,则∠EAB的度数为.如图,某游乐场一山顶滑梯的高为,滑梯的坡角为那么滑梯长为 (A>(B> (C>(D> (第(第9题><第6题) (A> (B> (C> (D>10.如图,Rt △中,∠ACB=90°,,若把Rt△绕边所在直线旋转一周,则所得几何体的表面积为 (A> (B>(C> (D>11.如图,⊙O1 的半径为1,正方形ABCD 的边长为6,点O2为正方形ABCD 的中心,O1O2垂直AB 于P 点,O1O2=8.若将⊙O1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD 的边只有一个公共点的情况一共出现TtGkZJkUBD(A>3次 (B>5次 (C>6次 (D>7次TtGkZJkUBD12.把四张形状大小完全相同的小长方形卡片>不n cm>的盒子底部(如图②>用阴影表示.则图②中两块阴影部分周长和是TtGkZJkUBD (A>4m cm (B>4n cm (C> 2(m+n>cm (D>4(m-n> cmTtGkZJkUBD 试 题 卷 Ⅱ二、填空题<每小题3分,共18分)13.实数27的立方根是 ▲ .14.因式分解:= ▲ .15.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:0.03则射击成绩最稳定的选手是. (填“甲”、“乙”、“丙”中的一个>16.将抛物线的图象向上平移1个单位,则平移后的抛物线的解读式为 ▲ .n<第11题)(第18题> x17.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内两点,AD平分∠BAC ,∠EBC=∠E=60°,若BE=6cm ,DE=2cm ,则BC= ▲ cm .TtGkZJkUBD 18.如图,正方形的顶点、在反比例函数的图象上,顶点、 分别在轴、轴的正半轴上,再在其右侧作正方形,顶点在反比例函数的图象上,顶点在轴的正半轴上,则点的坐标为 ▲ . 三、解答题<本大题有8小题,共66分) 19.<本题6. 20.<本题6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.TtGkZJkUBD 21.<本题6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变22.<5月的(第17题> A D BE C<1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整.TtGkZJkUBD <2)商场服装部5月份的销售额是多少万元?<3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.TtGkZJkUBD 23.<本题8分)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过A 点作 AG ∥BD 交CB 的延长线于点G .<1)求证:DE ∥BF ;<2)若∠G=90°,求证:四边形DEBF 是菱形.24.<本题10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.TtGkZJkUBD <1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?<2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?<3)在<2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.25.<本题10分)阅读下面的情景对话,然后解答问题:<1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?TtGkZJkUBD 小明:那直角三角形中是否存在奇异三角形呢?老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三 A B C DG E F (第23题><2)在Rt △ABC 中,∠ACB =90°,AB=,AC=,BC=,且,若Rt △ABC 是奇异三角形,求; TtGkZJkUBD <3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A 、B 重合>,D 是半圆ADB 的中点, C 、D 在直径AB 两侧,若在⊙O 内存在点E ,使得CB=CE .TtGkZJkUBD ① 求证:△ACE 是奇异三角形; ② 当△ACE 26.<本题12分)如图,平面直角坐标系标为,点的坐标为、点,连结、、,线段交轴于点.TtGkZJkUBD (1) 求点的坐标; (2) 求抛物线的函数解读式; <3) 点为线段上的一个动点<不与点、重合),直线与抛物线交于、两点<点在轴右侧),连结、,当点在线段上运动时,求△BON 面积的最大值,并求出此时点的坐标;TtGkZJkUBD <4) 连结AN ,当△BON 面积最大时,在坐标平面内求使得△BOP 与△OAN 相似<点、、分别与点、、对应)的点的坐标.TtGkZJkUBD (第25题> A B个人收集整理资料,仅供交流学习,勿作商业用途个人收集整理资料,仅供交流学习,勿作商业用途个人收集整理资料,仅供交流学习,勿作商业用途申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

浙江省舟山市2018年中考数学试题卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.下列几何体中,俯视图...为三角形的是( )A .B .C .D .2.2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日2L 点,它距离地球约.数1500000用科学记数法表示为( )A .B .C .D . 3.2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是( )A .1月份销售为2.2万辆B .从2月到3月的月销售增长最快C .4月份销售比3月份增加了1万辆D .1~4月新能源乘用车销售逐月增加4.不等式的解在数轴上表示正确的是( )A .B .C .D .1500000km 51510⨯61.510⨯70.1510⨯51.510⨯12x -≥5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )A .B .C .D .6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A .点在圆内 B .点在圆上 C .点在圆心上 D .点在圆上或圆内7.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )A .的长B .的长C .的长D .的长 8.用尺规在一个平行四边形内作菱形,下列作法中错误..的是( )22x ax b +=Rt ABC ∆90ACB ∠=2a BC =AC b =AB 2aBD=AC AD BC CDABCDA .B .C .D . 9.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为1,则的值为( )A .1B .2C .3D .410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙 D .丙与丁卷Ⅱ(非选择题)二、填空题(本题有6小题,每题4分,共24分)11.分解因式: .12.如图,直线,直线交,,于点,,;直线交,,于点,,.已知,则 .13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 ,据此判断该游戏 (填“公平”或“不公平”).14.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量C (0)ky x x=>C x y A B AB BC =AOB ∆k 23m m -=123////l l l AC 1l 2l 3l A B C DF 1l 2l 3l D E F 13AB AC =EFDE=AB角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程: . 16.如图,在矩形中,,,点在上,,点在边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是 .三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(1)计算:;(2)化简并求值:,其中,. 18.用消元法解方程组时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”. (2)请选择一种你喜欢的方法,完成解答.C AD 10AD cm =D 60cm 10%x ABCD 4AB =2AD =E CD 1DE =F AB EF Rt EFP ∆P ABCDAF 01)31)+--a b abb a a b ⎛⎫-⋅⎪+⎝⎭1a =2b =35,43 2.x y x y -=⎧⎨-=⎩①②19.如图,等边的顶点,在矩形的边,上,且. 求证:矩形是正方形.20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为的产品为合格),随机各抽取了20个样品进行检测,过程如下: 收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183. 整理数据:甲车间 245621乙车间 122 0分析数据: 车间 平均数 众数 中位数 方差 甲车间 180 185 180 43.1 乙车间18018018022.6AEF ∆E F ABCD BC CD 45CEF ∠=ABCD 176185mm mm mm 165.5170.5170.5175.5175.5180.5180.5185.5185.5190.5190.5195.5a b 组别频 数应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度与摆动时间之间的关系如图2所示.(1)根据函数的定义,请判断变量是否为关于的函数? (2)结合图象回答:①当时,的值是多少?并说明它的实际意义. ②秋千摆动第一个来回需多少时间?22.如图1,滑动调节式遮阳伞的立柱垂直于地面,为立柱上的滑动调节点,伞体的截面示意图为,为中点,,,,.当点位于初始位置时,点与重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从()h m ()ts h t 0.7t s =h AC AB P PDE ∆F PD 2.8AC m =2PD m =1CF m =20DPE ∠=P 0P D CPE 65P 0P上调多少距离?(结果精确到)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离?(结果精确到)(参考数据:,,) 23.已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点,.(1)判断顶点是否在直线上,并说明理由.(2)如图1,若二次函数图象也经过点,,且,根据图象,写出的取值范围.(3)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.24.已知,中,,是边上一点,作,分别交边,于点,.(1)若(如图1),求证:.(2)若,过点作,交(或的延长线)于点.试猜想:线段,和之间的数量关系,并就情形(如图2)说明理由.0.1m P 0.1m sin 700.94≈cos700.34≈tan 70 2.75≈ 1.41≈ 1.73≈M 2()41y x b b =--++5y mx =+x y A B M 41y x =+A B 25()41mx x b b +>--++x A (5,0)M AOB ∆11(,)4C y 23(,)4D y 1y 2y ABC ∆B C ∠=∠P BC CPE BPF ∠=∠AC AB E F CPE C ∠=∠PE PF AB +=CPE C ∠≠∠B CBD CPE ∠=∠CA CA D PE PF BD CPE C ∠>∠(3)若点与重合(如图3),,且. ①求的度数;②设,,,试证明:.数学参考答案一、选择题1-5: CBDAA 6-10: DBCDB二、填空题11. 12. 2 13.;不公平 14.15. 16. 0或或4 三、解答题17.(1)原式(2)原式. 当,时,原式. 18.(1)解法一中的计算有误(标记略). (2)由①-②,得,解得, 把代入①,得,解得,所以原方程组的解是.18.用消元法解方程组时,两位同学的解法如下:19.(方法一)∵四边形是矩形, ∴,F A 27C ∠=PA AE =CPE ∠PB a =PA b =AB c =22a c b c-=(3)m m -14300200(110%)20x x =⨯--1113AF <<231=+-=22a b aba b ab a b-=⋅=-+1a =2b =121=-=-33x -=1x =-1x =-135y --=2y =-12x y =-⎧⎨=-⎩35,43 2.x y x y -=⎧⎨-=⎩①②ABCD 90B D C ∠=∠=∠=∵是等边三角形,∴,, 又,∴,∴, ∴, ∴, ∴矩形是正方形.(方法二)(连结,利用轴对称证明,表述正确也可)20.(1)甲车间样品的合格率为. (2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为. ∴乙车间的合格产品数为(个).(3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好. ②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.21.(1)∵对于每一个摆动时间,都有一个唯一的的值与其对应, ∴变量是关于的函数.(2)①,它的实际意义是秋千摆动时,离地面的高度为. ②.AEF ∆AE AF =60AEF AFE ∠=∠=45CEF ∠=45CFE CEF ∠=∠=180456075AFD AEB ∠=∠=--=()AEB AFD AAS ∆≅∆AB AD =ABCDAC 56100%55%20+⨯=20(122)15-++=15100%75%20⨯=100075%750⨯=t h h t 0.5h m =0.7s 0.5m 2.8s22.(1)如图2,当点位于初始位置时,.如图3,10:00时,太阳光线与地面的夹角为,点上调至处,,,∴, ∴. ∵,∴. ∵,∴, ∴为等腰直角三角形,∴, ∴, 即点需从上调.(2)如图4,中午12:00时,太阳光线与,地面都垂直,点上调至处, ∴.∵,∴. ∵,∴.∵,得为等腰三角形, ∴. 过点作于点,P 0P 02CP m =65P 1P 190∠=90CAB ∠=1115APE ∠=165CPE ∠=120DPE ∠=145CPF ∠=11CF PF m ==145C CPF ∠=∠=1CP F∆1CP=010120.6P P CP CP m =-=≈P 0P 0.6m PE P 2P 2//P E AB 90CAB ∠=290CP E ∠=220DP E ∠=22270CP F CP E DP E ∠=∠-∠=21CF P F m ==2CP F ∆270C CP F ∠=∠=F 2FG CP ⊥G∴,∴,∴,即点在(1)的基础上还需上调.23.(1)∵点坐标是,∴把代入,得,∴点在直线上.(2)如图1,∵直线与轴交于点为,∴点坐标为.又∵在抛物线上,∴,解得,∴二次函数的表达式为,∴当时,得,,∴.观察图象可得,当时, 的取值范围为或.22cos 7010.340.34CP P F m =⋅=⨯=2220.68CP GP m ==12120.680.7PP CP CP m =-≈P 0.7m M (,41)b b +x b =41y x =+41y b =+M 41y x =+5y mx =+y B B (0,5)(0,5)B 25(0)41b b =--++2b =2(2)9y x =--+0y =15x =21x =-(5,0)A 25()41mx x b b +>--++x 0x <5x>(3)如图2,∵直线与直线交于点,与轴交于点,而直线表达式为,解方程组,得.∴点,. ∵点在内,∴. 当点,关于抛物线对称轴(直线)对称时,,∴. 且二次函数图象的开口向下,顶点在直线上,综上:①当时,; ②当时,; ③当时,.24.(1)∵,,,∴,,∴,,,∴.41y x =+AB E y F AB 5y x =-+415y x y x =+⎧⎨=-+⎩45215x y ⎧=⎪⎪⎨⎪=⎪⎩421(,)55E (0,1)F M AOB ∆405b <<C D x b =1344b b -=-12b =M 41y x =+102b <<12y y >12b =12y y =1425b <<12y y<B C ∠=∠CPE BPF ∠=∠CPE C ∠=∠B BPF CPE ∠=∠=∠BPF C ∠=∠PF BF =//PE AF //PF AE PE AF =∴.(2)猜想:,理由如下:过点作的平行线交的延长线于点,则,∵,∴,又,∴,∴.∵,∴,∴四边形是平行四边形,∴.(3)①设,∵,,∴,又,即,∴,即.PE PF AF BF AB +=+=BD PE PF =+B DC EP G ABC C CBG ∠=∠=∠CPE BPF ∠=∠BPF CPE BPG ∠=∠=∠BP BP =()FBP GBP ASA ∆≅∆PF PG =CBD CPE ∠=∠//PE BD BGED BD EG PG PE PE PF ==+=+CPE BPF x ∠=∠=27C ∠=PA AE =27APE PEA C CPE x ∠=∠=∠+∠=+180BPA APE CPE ∠+∠+∠=27180x x x +++=51x =51CPE ∠=②延长至,使,连结,∵,.∴,∵,∴, ∴,而,∴. ∴, ∴.∵,,,∴, ∴.BA M AM AP =MP 27C ∠=51BPA CPE ∠=∠=180BAP B BPA ∠=-∠-∠102M MPA ==∠+∠AM AP =1512M MPA BAP ∠=∠=∠=M BPA ∠=∠B B ∠=∠ABPPBM ∆∆BP BM AB BP=2BP AB BM =⋅PB a =PA AM b ==AB c =2()a c b c =+22a cb c-=2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .565.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数). 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.过双曲线(0)k y k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 60122)()3--+.(2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P. (2)1(0,0)P ,2(4,0)P ,3(6,6)P .21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=,求此时窗扇与窗框的夹角DFB ∠的度数.(2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ).1.732≈2.449≈)22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围.23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 1514. 30或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2x y x -=≤< 三、解答题17.解:(1)原式132=+=.(2)x =,11x =,21x =.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.19.解:(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12P P ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P,000-=,∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =,∴四边形ACDE 是平行四边形,∴//CA DE ,∴85DFB CAB ∠=∠=.(2)如图,过点C 作CG AB ⊥于点G ,∵60CAB ∠=,∴20cos6010AG ==,20sin 6010CG ==∵40BD =,10CD =,∴30BC =,在Rt BCG ∆中,BG =∴1034.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=,当A ∠为底角,若B ∠为顶角,则20B ∠=,若B ∠为底角,则80B ∠=, ∴50B ∠=或20或80.(2)分两种情况:①当90180x ≤<时,A ∠只能为顶角,∴B ∠的度数只有一个.②当090x <<时,若A ∠为顶角,则1802x B -⎛⎫∠= ⎪⎝⎭, 若A ∠为底角,则B x ∠=或(1802)B x ∠=-, 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数.23.解:(1)如图1,在菱形ABCD 中,180B C ∠+∠=,B D ∠=∠,AB AD =,∵EAF B ∠=∠,∴180C EAF ∠+∠=,∴180AEC AFC ∠+∠=,∵AE BC ⊥,∴90AEB AEC ∠=∠=,∴90AFC ∠=,90AFD ∠=,∴AEB AFD ∆≅∆,∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠,∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠,∵AE BC ⊥,AF CD ⊥,∴90AEP AFQ ∠=∠=,∵AE AF =,∴AEP AFQ ∆≅∆,∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠=.②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠=.③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4.层次2:①求PC CQ +的值.答案:4.②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180.层次3:①求四边形APCQ 的面积.答案:②求ABP ∆与AQD ∆的面积和.答案:③求四边形APCQ 周长的最小值.答案:4+.④求PQ 中点运动的路径长.答案:24.解:(1)第一班上行车到B 站用时51306=小时. 第一班下行车到C 站用时51306=小时.(2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意. ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米, 如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <,510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <,515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.2018年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸.上的“注意事项”。

保送生招生考试数学模拟试卷含答案

保送生招生考试数学模拟试卷含答案

保送生招生考试数学模拟试卷一一、选择题(每小题6分,共30分)1.若直角三角形的两条直角边长为a 、b ,斜边长为c ,斜边上的高为h ,则有( )A 、ab=h ;B 、a 1+b 1=h 1 ;C 、21a +21b =21h; D 、a 2 +b 2=2h 2 2.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A 、B 、C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是A B C D3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点的个数共有…………………………( )A 、35个B 、40个C 、45个D 、50个4.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x 、y 、z ,则zy x 111++的值为( ) (A )1 (B )32 (C )21 (D )31 5.13个小朋友围成一圈做游戏,规则是从某一个小朋友开始按顺时针方向数数,数到第13,该小朋友离开;这样继续下去.,直到最后剩下一个小朋友. 小明是1号,要使最后剩下的是小明自己,他应该建议从( )小朋友开始数起?A 、7号B 、8号C 、13号D 、2号二、填空题(每小题6分, 共36分)6.已知a 、b 、c 均为非零实数,满足:b c a c a b a b c a b c +-+-+-==,则()()()a b b c c a abc+++的值为_____ ___。

7..三角形的三边为,,,10,,,c b a c a b c b a ≤≤=为整数,且若则该三角形是等边三角形的概率是 。

8.等腰三角形的一条腰上的高线等于该三角形某一条边的长度的一半,则其顶角的度数等于 。

9.已知点A ,B 的坐标分别为(1,0),(2,0).若二次函数3)3(2+-+=x a x y 的图像与线段AB 只有一个交点,则a 的取值范围是 。

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。

在上,顶点C在。

的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。

以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

2018浙江省各市数学中考试卷真题合集+答案解析(共10套)

浙江省舟山市2018年中考数学试题卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.下列几何体中,俯视图...为三角形的是( )A .B .C .D .2.2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日2L 点,它距离地球约.数1500000用科学记数法表示为( )A .B .C .D . 3.2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是( )A .1月份销售为2.2万辆B .从2月到3月的月销售增长最快C .4月份销售比3月份增加了1万辆D .1~4月新能源乘用车销售逐月增加4.不等式的解在数轴上表示正确的是( )A .B .C .D .1500000km 51510⨯61.510⨯70.1510⨯51.510⨯12x -≥5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )A .B .C .D .6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A .点在圆内 B .点在圆上 C .点在圆心上 D .点在圆上或圆内7.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )A .的长B .的长C .的长D .的长 8.用尺规在一个平行四边形内作菱形,下列作法中错误..的是( )22x ax b +=Rt ABC ∆90ACB ∠=2a BC =AC b =AB 2aBD=AC AD BC CDABCDA .B .C .D . 9.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为1,则的值为( )A .1B .2C .3D .410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙 D .丙与丁卷Ⅱ(非选择题)二、填空题(本题有6小题,每题4分,共24分)11.分解因式: .12.如图,直线,直线交,,于点,,;直线交,,于点,,.已知,则 .13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 ,据此判断该游戏 (填“公平”或“不公平”).14.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量C (0)ky x x=>C x y A B AB BC =AOB ∆k 23m m -=123////l l l AC 1l 2l 3l A B C DF 1l 2l 3l D E F 13AB AC =EFDE=AB角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程: . 16.如图,在矩形中,,,点在上,,点在边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是 .三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(1)计算:;(2)化简并求值:,其中,. 18.用消元法解方程组时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”. (2)请选择一种你喜欢的方法,完成解答.C AD 10AD cm =D 60cm 10%x ABCD 4AB =2AD =E CD 1DE =F AB EF Rt EFP ∆P ABCDAF 01)31)+--a b abb a a b ⎛⎫-⋅⎪+⎝⎭1a =2b =35,43 2.x y x y -=⎧⎨-=⎩①②19.如图,等边的顶点,在矩形的边,上,且. 求证:矩形是正方形.20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为的产品为合格),随机各抽取了20个样品进行检测,过程如下: 收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183. 整理数据:甲车间 245621乙车间 122 0分析数据: 车间 平均数 众数 中位数 方差 甲车间 180 185 180 43.1 乙车间18018018022.6AEF ∆E F ABCD BC CD 45CEF ∠=ABCD 176185mm mm mm 165.5170.5170.5175.5175.5180.5180.5185.5185.5190.5190.5195.5a b 组别频 数应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度与摆动时间之间的关系如图2所示.(1)根据函数的定义,请判断变量是否为关于的函数? (2)结合图象回答:①当时,的值是多少?并说明它的实际意义. ②秋千摆动第一个来回需多少时间?22.如图1,滑动调节式遮阳伞的立柱垂直于地面,为立柱上的滑动调节点,伞体的截面示意图为,为中点,,,,.当点位于初始位置时,点与重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从()h m ()ts h t 0.7t s =h AC AB P PDE ∆F PD 2.8AC m =2PD m =1CF m =20DPE ∠=P 0P D CPE 65P 0P上调多少距离?(结果精确到)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离?(结果精确到)(参考数据:,,) 23.已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点,.(1)判断顶点是否在直线上,并说明理由.(2)如图1,若二次函数图象也经过点,,且,根据图象,写出的取值范围.(3)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.24.已知,中,,是边上一点,作,分别交边,于点,.(1)若(如图1),求证:.(2)若,过点作,交(或的延长线)于点.试猜想:线段,和之间的数量关系,并就情形(如图2)说明理由.0.1m P 0.1m sin 700.94≈cos700.34≈tan 70 2.75≈ 1.41≈ 1.73≈M 2()41y x b b =--++5y mx =+x y A B M 41y x =+A B 25()41mx x b b +>--++x A (5,0)M AOB ∆11(,)4C y 23(,)4D y 1y 2y ABC ∆B C ∠=∠P BC CPE BPF ∠=∠AC AB E F CPE C ∠=∠PE PF AB +=CPE C ∠≠∠B CBD CPE ∠=∠CA CA D PE PF BD CPE C ∠>∠(3)若点与重合(如图3),,且. ①求的度数;②设,,,试证明:.数学参考答案一、选择题1-5: CBDAA 6-10: DBCDB二、填空题11. 12. 2 13.;不公平 14.15. 16. 0或或4 三、解答题17.(1)原式(2)原式. 当,时,原式. 18.(1)解法一中的计算有误(标记略). (2)由①-②,得,解得, 把代入①,得,解得,所以原方程组的解是.18.用消元法解方程组时,两位同学的解法如下:19.(方法一)∵四边形是矩形, ∴,F A 27C ∠=PA AE =CPE ∠PB a =PA b =AB c =22a c b c-=(3)m m -14300200(110%)20x x =⨯--1113AF <<231=+-=22a b aba b ab a b-=⋅=-+1a =2b =121=-=-33x -=1x =-1x =-135y --=2y =-12x y =-⎧⎨=-⎩35,43 2.x y x y -=⎧⎨-=⎩①②ABCD 90B D C ∠=∠=∠=∵是等边三角形,∴,, 又,∴,∴, ∴, ∴, ∴矩形是正方形.(方法二)(连结,利用轴对称证明,表述正确也可)20.(1)甲车间样品的合格率为. (2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为. ∴乙车间的合格产品数为(个).(3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好. ②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.21.(1)∵对于每一个摆动时间,都有一个唯一的的值与其对应, ∴变量是关于的函数.(2)①,它的实际意义是秋千摆动时,离地面的高度为. ②.AEF ∆AE AF =60AEF AFE ∠=∠=45CEF ∠=45CFE CEF ∠=∠=180456075AFD AEB ∠=∠=--=()AEB AFD AAS ∆≅∆AB AD =ABCDAC 56100%55%20+⨯=20(122)15-++=15100%75%20⨯=100075%750⨯=t h h t 0.5h m =0.7s 0.5m 2.8s22.(1)如图2,当点位于初始位置时,.如图3,10:00时,太阳光线与地面的夹角为,点上调至处,,,∴, ∴. ∵,∴. ∵,∴, ∴为等腰直角三角形,∴, ∴, 即点需从上调.(2)如图4,中午12:00时,太阳光线与,地面都垂直,点上调至处, ∴.∵,∴. ∵,∴.∵,得为等腰三角形, ∴. 过点作于点,P 0P 02CP m =65P 1P 190∠=90CAB ∠=1115APE ∠=165CPE ∠=120DPE ∠=145CPF ∠=11CF PF m ==145C CPF ∠=∠=1CP F∆1CP=010120.6P P CP CP m =-=≈P 0P 0.6m PE P 2P 2//P E AB 90CAB ∠=290CP E ∠=220DP E ∠=22270CP F CP E DP E ∠=∠-∠=21CF P F m ==2CP F ∆270C CP F ∠=∠=F 2FG CP ⊥G∴,∴,∴,即点在(1)的基础上还需上调.23.(1)∵点坐标是,∴把代入,得,∴点在直线上.(2)如图1,∵直线与轴交于点为,∴点坐标为.又∵在抛物线上,∴,解得,∴二次函数的表达式为,∴当时,得,,∴.观察图象可得,当时, 的取值范围为或.22cos 7010.340.34CP P F m =⋅=⨯=2220.68CP GP m ==12120.680.7PP CP CP m =-≈P 0.7m M (,41)b b +x b =41y x =+41y b =+M 41y x =+5y mx =+y B B (0,5)(0,5)B 25(0)41b b =--++2b =2(2)9y x =--+0y =15x =21x =-(5,0)A 25()41mx x b b +>--++x 0x <5x>(3)如图2,∵直线与直线交于点,与轴交于点,而直线表达式为,解方程组,得.∴点,. ∵点在内,∴. 当点,关于抛物线对称轴(直线)对称时,,∴. 且二次函数图象的开口向下,顶点在直线上,综上:①当时,; ②当时,; ③当时,.24.(1)∵,,,∴,,∴,,,∴.41y x =+AB E y F AB 5y x =-+415y x y x =+⎧⎨=-+⎩45215x y ⎧=⎪⎪⎨⎪=⎪⎩421(,)55E (0,1)F M AOB ∆405b <<C D x b =1344b b -=-12b =M 41y x =+102b <<12y y >12b =12y y =1425b <<12y y<B C ∠=∠CPE BPF ∠=∠CPE C ∠=∠B BPF CPE ∠=∠=∠BPF C ∠=∠PF BF =//PE AF //PF AE PE AF =∴.(2)猜想:,理由如下:过点作的平行线交的延长线于点,则,∵,∴,又,∴,∴.∵,∴,∴四边形是平行四边形,∴.(3)①设,∵,,∴,又,即,∴,即.PE PF AF BF AB +=+=BD PE PF =+B DC EP G ABC C CBG ∠=∠=∠CPE BPF ∠=∠BPF CPE BPG ∠=∠=∠BP BP =()FBP GBP ASA ∆≅∆PF PG =CBD CPE ∠=∠//PE BD BGED BD EG PG PE PE PF ==+=+CPE BPF x ∠=∠=27C ∠=PA AE =27APE PEA C CPE x ∠=∠=∠+∠=+180BPA APE CPE ∠+∠+∠=27180x x x +++=51x =51CPE ∠=②延长至,使,连结,∵,.∴,∵,∴, ∴,而,∴. ∴, ∴.∵,,,∴, ∴.BA M AM AP =MP 27C ∠=51BPA CPE ∠=∠=180BAP B BPA ∠=-∠-∠102M MPA ==∠+∠AM AP =1512M MPA BAP ∠=∠=∠=M BPA ∠=∠B B ∠=∠ABPPBM ∆∆BP BM AB BP=2BP AB BM =⋅PB a =PA AM b ==AB c =2()a c b c =+22a cb c-=2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .565.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数). 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.过双曲线(0)k y k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 60122)()3--+.(2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P. (2)1(0,0)P ,2(4,0)P ,3(6,6)P .21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=,求此时窗扇与窗框的夹角DFB ∠的度数.(2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ).1.732≈2.449≈)22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围.23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 1514. 30或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2x y x -=≤< 三、解答题17.解:(1)原式132=+=.(2)x =,11x =,21x =.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.19.解:(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12P P ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P,000-=,∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =,∴四边形ACDE 是平行四边形,∴//CA DE ,∴85DFB CAB ∠=∠=.(2)如图,过点C 作CG AB ⊥于点G ,∵60CAB ∠=,∴20cos6010AG ==,20sin 6010CG ==∵40BD =,10CD =,∴30BC =,在Rt BCG ∆中,BG =∴1034.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=,当A ∠为底角,若B ∠为顶角,则20B ∠=,若B ∠为底角,则80B ∠=, ∴50B ∠=或20或80.(2)分两种情况:①当90180x ≤<时,A ∠只能为顶角,∴B ∠的度数只有一个.②当090x <<时,若A ∠为顶角,则1802x B -⎛⎫∠= ⎪⎝⎭, 若A ∠为底角,则B x ∠=或(1802)B x ∠=-, 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数.23.解:(1)如图1,在菱形ABCD 中,180B C ∠+∠=,B D ∠=∠,AB AD =,∵EAF B ∠=∠,∴180C EAF ∠+∠=,∴180AEC AFC ∠+∠=,∵AE BC ⊥,∴90AEB AEC ∠=∠=,∴90AFC ∠=,90AFD ∠=,∴AEB AFD ∆≅∆,∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠,∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠,∵AE BC ⊥,AF CD ⊥,∴90AEP AFQ ∠=∠=,∵AE AF =,∴AEP AFQ ∆≅∆,∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠=.②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠=.③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4.层次2:①求PC CQ +的值.答案:4.②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180.层次3:①求四边形APCQ 的面积.答案:②求ABP ∆与AQD ∆的面积和.答案:③求四边形APCQ 周长的最小值.答案:4+.④求PQ 中点运动的路径长.答案:24.解:(1)第一班上行车到B 站用时51306=小时. 第一班下行车到C 站用时51306=小时.(2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意. ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米, 如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <,510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <,515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.2018年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸.上的“注意事项”。

2017-2018年浙江省宁波市慈溪市七年级(上)期末数学试卷及参考答案

2017-2018年浙江省宁波市慈溪市七年级(上)期末数学试卷及参考答案

第1页(共11页)页)2017-2018学年浙江省宁波市慈溪市七年级(上)期末数学试卷一、选择题(每小题3分,共36分) 1.(3分)下列实数中的无理数是( ) A .B .﹣C .0D .2.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( ) A .55×106B .0.55×108C .5.5×106D .5.5×1073.(3分)下列各式运算正确的是( ) A .2(a ﹣1)=2a ﹣1 B .a 2b ﹣ab 2=0C .a 2+a 2=2a 2D .2a 3﹣3a 3=a 34.(3分)如果2x +3与5互为相反数,那么x 等于( ) A .﹣4B .﹣1C .1D .45.(3分)如图,已知a ∥b ,小华把三角板的直角顶点放在直线a 上.若∠1=40°,则∠2的度数为( )A .100°B .110°C .120°D .130°6.(3分)根据等式的性质,下列变形正确的是( ) A .如果2x =3,那么B .如果x =y ,那么x ﹣5=5﹣yC .如果x =y ,那么﹣2x =﹣2yD .如果x =6,那么x =37.(3分)如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .两条直线相交只有一点8.(3分)如图,C ,D 是线段AB 上两点.若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm9.(3分)如图,∠1=50°,则下列条件中,能使AB ∥CD 的是( )A .∠A =130°B .∠C =130° C .∠B =50°D .∠D =50°10.(3分)一列火车长m 米,以每秒n 米的速度通过一个长为p 米的桥洞,用代数式表示它刚好全部通过桥洞所需的时间为( ) A .秒B .秒C .秒D .秒11.(3分)已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .ab >0B .a +b <0C .|a |<|b |D .a ﹣b >012.(3分)一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .4000m 3B .2500m 3C .2000m 3D .500m 3二、填空题(每小题3分,共18分)13.(3分)比较大小:﹣3 ﹣2.(用“>”、“=”或“<”填空) 14.(3分)4的平方根与﹣27的立方根的和为 . 15.(3分)若m <0,则|﹣2m |﹣|m |= .16.(3分)某物品的标价为132元,若以9折出售,仍可获利10%,则该物品的进价是 . 17.(3分)如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE的度数为 °.18.(3分)把正整数按如图方法排列,相信你能发现这些数字的排列规律. 现规定:第5列第2行的数“18”记作为(5,2),又如“23”这个数记作(3,5),则这个数表中的数2017记作 .三、解答题(第19题6分,第20、21、22题各7分,第23题8分,第24题9分,第25题10分,第26题12分,共66分)19.(6分)计算:(1)﹣15+3﹣2×(﹣4);(2)﹣12+×.20.(7分)解方程(1)3(x﹣2)=x﹣4(2)﹣1=.21.(7分)如图,平面上有三个点A,O,B.(1)根据下列语句顺次画图.①画射线OA,OB;②画∠AOB的角平分线OC;③在OC上任取一点P(点P不与点O重合),并画出表示点P到直线OB距离的线段PN ;④过点P 画PM ⊥OP ,交射线OA 于点M ; (2)写出所画图中与∠POA 互余的角.22.(7分)先化简,再求值:3(2x 2y ﹣xy 2)﹣(5x 2y +2xy 2),其中x =﹣1,y =2. 23.(8分)如图,AB ∥CD ,EF 分别交AB 、CD 与M 、N ,∠EMB =50°,MG 平分∠BMF ,MG 交CD 于G ,求∠MGC 的度数.24.(9分)某蔬菜公司收购某种蔬菜116吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨. (1)问能否在14天以内完成加工任务?说明理由.(2)现计划用20天正好完成加工任务,则该公司应安排几天精加工,几天粗加工? 25.(10分)如图,数轴上两点A ,B 所表示的数分别为﹣3,1. (1)写出线段AB 的中点M 所对应的数;(2)若点P 从B 出发以每秒2个单位长度的速度向左运动,运动时间为x 秒. ①用含x 的代数式表示点P 所对应的数; ②当BP =2AP 时,求x 值.26.(12分)一般情况下,“+=”并不成立,但当a ,b 取某些数时,可以使它成立,立,例如例如a =b =0.我们称能使我们称能使““+=”成立的数对a ,b 为“优数对”,记为记为((a ,b ).(1)若(1,b )是一个“优数对”,求b 的值;(2)请你写出一个“优数对”(a,b),其中a≠0,且a≠1;(3)若(a,b)是一个“优数对”,求代数式a+b﹣[3(1﹣b)﹣(17a﹣4)]的值.2017-2018学年浙江省宁波市慈溪市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.【解答】解:A、=3,3是有理数,故A错误;B、﹣是无理数,故B正确;C、0是有理数,故C错误;D、是有理数,故D错误.故选:B.2.【解答】解:55000000=5.5×107,故选:D.3.【解答】解:A、原式=2a﹣2,不符合题意;B、原式不能合并,不符合题意;C、原式=2a2,符合题意;D、原式=﹣a3,不符合题意,故选:C.4.【解答】解:由题意可知:2x+3+5=0,∴x=﹣4故选:A.5.【解答】解:∵∠1+∠3=90°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2+∠3=180°.∴∠2=180°﹣50°=130°.故选:D.6.【解答】解:A、如果2x=3,那么,(a≠0),故此选项错误;B、如果x=y,那么x﹣5=y﹣5,故此选项错误;C、如果x=y,那么﹣2x=﹣2y,正确;D、如果x=6,那么x=12,故此选项错误;故选:C.7.【解答】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是:两点确定一条直线.故选:A.8.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选:B.9.【解答】解:∵AB与CD被AD所截,∴∠1和∠D是内错角,∴当∠1=∠D=50°时,可得AB∥CD,故选:D.10.【解答】解:它通过桥洞所需的时间为秒.故选:C.11.【解答】解:b<0<a,|b|<|a|.A、ab<0,故A不符合题意;B、a+b>0,故B不符合题意;C、|b|<|a|,故C不符合题意;D、a﹣b>0,故D符合题意;故选:D.12.【解答】解:设计划注入水的体积为x立方米,依题意得:﹣=,解得x=2500.即计划注入水的体积为2500立方米.故选:B.二、填空题(每小题3分,共18分)13.【解答】解:两个负数,绝对值大的反而小:﹣3<﹣2.14.【解答】解:∵4的平方根是±2,﹣27的立方根是﹣3,∴2+(﹣3)=﹣1,﹣2+(﹣3)=﹣5,故答案为:﹣1或﹣5.15.【解答】解:当m<0时,|﹣2m|﹣|m|=|2m|﹣|m|=﹣2m+m=﹣m, 故答案为:﹣m.16.【解答】解:设进价是x元,则(1+10%)x=132×0.9,解得x=108.则这件衬衣的进价是108元.故答案为108元.17.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.518.【解答】解:由数列知第n行的第1个数为n2,∵452=2025,∴2025﹣2017+1=9,即2017在第9列、第45行,则这个数表中的数2017记作(9,45),故答案为:(9,45).三、解答题(第19题6分,第20、21、22题各7分,第23题8分,第24题9分,第25题10分,第26题12分,共66分)19.【解答】解:(1)原式=﹣15+3+8=﹣4;(2)原式=﹣1+2×(﹣)=﹣1﹣1=﹣2.20.【解答】解:(1)去括号得:3x﹣6=x﹣4, 移项合并得:2x=2,解得:x=1;(2)去分母得:3x+3﹣6=4﹣2x,移项合并得:5x=7,解得:x=1.4.21.【解答】解:(1)如图,①射线OA、OB为所作;②射线OC为所作;③线段PN为所作;④PM为所作.(2)图中与∠POA互余的角有∠AMP和OPN. 22.【解答】解:原式=6x2y﹣3xy2﹣5x2y﹣2xy2 =x2y﹣5xy2,当x=﹣1、y=2时,原式=(﹣1)2×2﹣5×(﹣1)×22=1×2+5×4=2+20=22.23.【解答】解:∵∠EMB=50°,∴∠BMF=180°﹣50°=130°.∵MG平分∠BMF,∴∠BMG=∠BMF=65°.∵AB∥CD,∴∠MGC=∠BMG=65°.24.【解答】解:(1)由题意可得:8×14=112<116,即使每天安排粗加工也无法完成加工任务;(2)设精加工x天,则粗加工(20﹣x)天,由题意可得:4x+8(20﹣x)=116,解得:x=11,则20﹣x=9,答:精加工11天,则粗加工9天.25.【解答】解:(1)线段AB的中点M所对应的数为=﹣1;(2)①点P对应的数为1﹣2x;②若P运动到A、B之间,则1﹣(1﹣2x)=2[1﹣2x﹣(﹣3)],解得x=;若P运动到BA的延长线上时,则1﹣(1﹣2x)=2[﹣3﹣(1﹣2x)],解得x=4. 综上,当BP=2AP时,x=或x=4.26.【解答】解:(1)由题意知,+=,解得:b=﹣;(2)取a=2,则1+=,解得:b=﹣,第11页(共11页)页)此“优数对”为(2,﹣)(答案不唯一);(3)由(a ,b )是一个“优数对”,得:+=,去分母、化简,得:9a +4b =0,原式=a +b ﹣3+3b +a ﹣2 =9a +4b ﹣5=0﹣5=﹣5.。

浙江省慈溪中学初中保送生招生考试数学试卷及参考答案

浙江省慈溪中学初中保送生招生考试数学试卷及参考答案

浙江省慈溪中学20XX 年初中保送生招生考试数学试卷(本卷考试时间90分钟,满分130分.)一、选择题(每题6分,共30分)1.将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G(如图). 如果DM :MC=3:2,则DE :DM :EM=()(A)7:24:25 (B)3:4:5 (C)5:12:13(D)8:15:172.假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学 需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()(A)8分钟 (B)7分钟 (C)6分钟. (D)5分钟3.已知:二次函数y=2x +2x+a(a 为大于0的常数),当x=m 时的函数值y 1<0; 则当x=m+2时的函数值y 1与0的大小关系为()(A)y 2>0 (B)y 2<0 (C)y 2=O (D)不能确定4.记S=121221121212008200720072007-++++++则S 所在的范围为()(A)0<S<1 (B)1<S<2 (C)2<S<3 (D)3<S<45.如图,点A 是函数y=x 1的图象上的点,点B 、 C的坐标分别为B(-2,-2)、C(2,2).试利用性质:“函数y=x1的图象上任意一点A 都满足|AB-AC|=22”求解下面问题:“作∠BAC 的内角平分线AE ,过B 作AE 的垂线交AE 于F ,已知当点A 在函数y=x1的图象上运动时,点F 总在一条曲线上运动,则这条曲线为() (A)直线 (B)抛物线 (C)圆 (D)反比例函数的曲线6.已知关于x 的不等式(2a-b)x≥a -2b 的解是x>25, 则关于x 的不等式ax+b<0的解为.7.已知右边方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图所示.在小方格的顶点上确定一点C ,连结AB 、AC 、BC ,使△ABC 的面积为3个平方单位.则这样的点C 共有个.8.直角坐标系中,点A(0,0),B(2,0),C(0,23),若有一三角形与△AB C 全等,且有一条边与BC 重合,那么这个三角形的另一个顶点坐标是________.9.n 个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n 的最大值与最小值的和是_______.10.对大于或等于2的自然数m 的n 次幂进行如右图方式的“分裂”,仿此,36的“分裂”中最大的数是.11.甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_____.12.△ABC 和△DEF 是两个等腰直角三角形,∠A=∠D =90°,△DEF 的顶点E 位于边BC 的中点上.(1)如图1,设DE 与AB 交手点M ,EF 与AC 交于点N ,求证:△BEM∽△CNE;(2)如图2,将△DEF 绕点E 旋转,使得DE 与BA 的延长线交于点M ,EF 与AC 交于点N ,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形?并证明你的结论.13.已知函数y=2x +(b-1)x+c(b ,c 为常数),这个函数的图象与x 轴交于两个不同的点A(1x ,0)和B(2x ,0).若x 1,x 2满足12x x >1(1)求证: 2b ≥2(b+2c);(2)若t<1x ,试比较2t +bt+c 与1x 的大小,并加以证明。

最新-2018中考慈溪中学2018年保送生招生考试 精品

最新-2018中考慈溪中学2018年保送生招生考试 精品

慈溪中学2018年保送生招生考试英语说明:I.本卷考试时间80分钟,满分100分。

II.本卷分为试题(共7页)和答卷(共3页),答案必须做在答题卷上。

试题Ⅰ、单项选择(共15小题,计15分)从A、B、C、D四个选项中,选出可以填人空白处的最佳答案。

1.--This is _________ film I’ve told you about several times.--It’s great. I’ve never seen _______ more moving one.A. a; aB. the; aC. the; theD. a; the2.-- Linda, the new term is coming. Do you think you need a new school bag?--Yes. I’m going to buy ________ this afternoon.A. oneB. thisC. itD. that3.--What does the radio say?--It says there _______ this afternoon.A. is rainyB. is going to rainC. is going to have rainD. is going to be rain4.The little boy will not go to sleep _________________.A. until his mother comes backB. when his mother is coming backC. before his mother will come backD. whether his mother comes back5.He couldn’t _________ an answer when I asked him why he was late.A. open upB. try outC. look overD. come up with6.Do you know _____________ in a hundred years?A. what life will be likeB. what will life be likeC. how life will be likeD. how will life be like7.--How often do you have history lessons?--__________, Monday, Wednesday and Friday.A. Every dayB. Every other dayC. Every three daysD. Every a few days8.--I called you at eight o’clock yesterday evening, but there was no answer.--Oh, I’m sorry. I __________ dinner at my friend’s.A. haveB. hadC. was havingD. have had9.--Is England one of the members of APEC?--_________. And neither is France.A. Let me seeB. Yes, it isC. I hope soD. Of course not10.Great changes ________ in Zhejiang since 1979.A. have been taken placeB. have taken placeC. had been taken placeD. were taken place11._________ the man looks at his son! He thinks his son is getting more and more__________.A. How angry; carelesslyB. What angry; carelesslyC. How angrily; carelessD.What angrily; careless12.Day by day, the UN officials _______ discussing about Iran issue. But they wonder whatto do with it.A. are busy withB. are interested inC. are excited atD. are amazed at13.The TV set _______ has gone wrong.A. I bought it last weekB. which I bought it last weekC. what I bought last weekD. I bought last week14.Today the forests have almost gone. People must _______ down too many trees.A. stop from cuttingB. be stopped from cuttingC. stop to cutD. be stopped to cut15.--You teach me English and I teach you Chinese.--_________.A. The same to youB. That’s a dealC. It’s a pityD. So do IⅡ、完形填空(共15小题,计15分)阅读下面短文,掌握其大意,然后从A、B、C、D四个选项中选出可以填入空白处的最佳答案。

2018年浙江省宁波市慈溪市七年级上学期数学期中试卷带解析答案

2018年浙江省宁波市慈溪市七年级上学期数学期中试卷带解析答案

学年浙江省宁波市慈溪市七年级(上)期中数学试卷2017-2018分)30分,共3一、选择题(每小题)分)数轴上的点表示的数是(3(.1 D .有理数C .负数B .正数A.实数分)在3(.2)个.中无理数有( 2 .B1 .A4.D3 .C )分)下列计算中错误的是(3(.3 324(﹣×)2﹣(.D .C16 ﹣=)2.﹣(﹣B32 ﹣=)2(﹣4•.A2)3=36 )精确到千分位的近似值是(0.85569分)3(.4 .D0.8556 .C0.856 .B0.855 .A0.8557 5)分)下列各式正确的是(3(..D .C .B .A 分)3(.6)的平方根是( 3 .C9 .±B9 .﹣A3.±D 表示的数的绝对值相等,C,B如果点.1图中数轴的单位长度为如图,分)3(.7)表示的数是(A那么点 A2.﹣D6 .﹣C5 .﹣B4 .﹣ 4﹣3+2﹣1分)3(.8)的值为(100﹣99+…+ 50.﹣D50 .C100 .B5050 .A 20172的值是()b+a,则(=0|3+b+|)2﹣a分)若(3(.9)2017.D1 .﹣C1 .B0 .A 则表示两个非零的有理数,b、a已知分)3(10.)(的值不可能是+ 0.D1 .C2 .﹣B2 .A 分)30分,共3二、填空题(每小题的数4绝对值等于的绝对值是3﹣的相反数是分)3(.11.是:连接)“=”或”<“、”>“分)比较下列各对数的大小(用3(.12 ;10﹣ 2 ;0.00001﹣0 .32.=)2(﹣÷8;4==)4(﹣;﹣3+2﹣计算:分)3(.13 .=;的平方根是0;的平方根是9分)3(.14 .=;的立方根是1;﹣的立方根是1分)3(.15 是实数;③2是3(.16是无理数;②的判断:①分)给出下列关于.2<<1的算术平方根;④.(请填序号)其中正确的是1游戏,其游戏规则是:任取”点“24分)有一种3(.17个自然数,4之间的13~,24个数(每个数且只能用一次)进行加减乘除四则运算,使运算结果为4将这.现有数4=24)×3+2+1(可作运算:4,3,2,1例如,对,请10,6,﹣4,3果结其使,子式算运种一出写,则规述上用运如子式算运.24于等(只需写出算式).下:中,…瑞士的一位中学教师巴尔末从光谱数据分)3(.18成功请你根继而打开了光谱奥妙的大门.从而得到了巴尔末公式,地发现了其规律,.个数为6据这个规律写出第a,⊗,规定一种新运算b、a分)对于正整数3(.19个b开始的连续a等于由b⊗3⊗1(⊗1,则6=30×2=5⊗5,4=24×3×3=2⊗2正整数的积,例如.=)行第所在的位置是第2017分)将自然数按以下规律排列,则3(.20列.分)60小题,共6三、解答题(本题有。

最新-浙江省慈溪市2018年初中数学毕业生学业考试模拟

最新-浙江省慈溪市2018年初中数学毕业生学业考试模拟

(第3题)2018年初中毕业生学业考试模拟试卷数学试题(育才初中命题)考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满 分为120分,考试时间为120分钟.2.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为24()24--b ac b a a,. 试 题 卷 Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.2018的相反数是( ) (A) 2011 (B) 2011- (C) 12011(D) 12011-2.下列运算正确的是( )(A) 235a a a ∙= (B) 32x x x -= (C)225454+=+ (D) 22(1)1a a -=-3.如图,下列关于该图案的说法,其中正确的是( )(A)既是轴对称图形,又是中心对称图形;(B) 既不是轴对称图形,也不是中心对称图形 (C)是中心对称图形,但不是轴对称图形; (D) 是轴对称图形,但不是中心对称图形 4.在16开杂志上见到的跨页中国地图,其图上1cm 相当于实际的160km .这种地图的 比例尺是( )(A)1:16万 (B) 1:160万 (C) 1:1600万 (D) 1:16000万 5.从长度分别为3、5、7、9的4条线段中任取3条作边,能组成三角形的概率为( ) (A )34(B )12 (C )13(D )146.经初步核算,2018年我国内生产总值为397983亿元(不包括港澳台地区),已经超越日本正式成为仅次于美国的全球第二大经济体.“397983亿元”用科学记数法表示为( )(A) 3.9798313元 (B) 3.9798314元 (C) 3.97983×1013元 (D) 3.97983×1014元7.如图,A 、B 在直线l 上,⊙A 、⊙B 的半径分别为 1cm 和2cm .现保持⊙B 不动,使⊙A 向右移动(开始时AB =4cm),若移动后的⊙A 与⊙B 没有公共点,则⊙A移动的距离可能是( ) (A)4cm (B)5cm (C)6cm(D)7cm8.某羽绒服生产厂从10000件同类产品中随机抽取了100件进行质检,发现其中有4件不合格,那么估计该厂这10000件产品中合格品约为( ) (A)4件 (B) 9996件 (C) 400件 (D) 9600件 9.关于函数1(0)y x x=-≠,下列说法不正确的是( ) (A)当x >0时,y 随x 的增大而增大 (B) 当x <0时,y 随x 的增大而增大 (C) 当0x ≠时,若x 越大,则对应的y 值也越大(D) 若1()x y ,、2(1)x y +,是其图象上两点,则不一定有12y y <10.有两个命题:①有一组对角互补的梯形是等腰梯形;②有一组邻角相等的梯形是等腰梯形.下列判断正确的是( )(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①、②都是真命题 (D) ①、②都是假命题11.据日本地震厅测定,今年3月11日发生在日本东北地区的特大地震震级为里氏9.0级,为世界观测史.....上最高震级.另据美国地质勘探局统计,自1900年以来的最强地震当数1960年发生在智利的里氏9.5级特大地震.里氏震级代表释放能量的大小,有一个形象的对比:震级每增加2级,释放能量是原来的1000倍;震级每增加0.1级,释放能量是原来的约1.41254倍(1000≈1.4125420). 根据上述信息推断:1960年智利特大地震释放能量大约是2018年日本特大地震释放能量的( ) (A) 3.18倍 (B)5.62倍 (C)7.18倍 (D)250倍 12.已知△ABC 中,AC =BC ,∠C =Rt∠.如图,将△ABC 进行折叠,使点A 落在线段BC 上(包括点B 和点C ),设点A 的落点为D , 折痕为EF ,当△DEF 是等腰三角形时,点D 可能的位置共有( ) (A)2种 (B)3种 (C)4种 (D)5种试 题 卷 Ⅱ(第12题)FE DC BAlBA(第7题)二、填空题(每小题3分,共18分) 13.1的平方根是 ▲ . 14.方程324x ++2x x +=21的根是x = ▲ .15.经初步核算,2018年宁波市实现地区生产总值(GDP)5125.82亿元,按常住人口计算人均GDP 为68162元.根据上述数据,估计2018年宁波市常住人口有 ▲ 万人(保留3个有效数字).16.因式分解:22(23)m m +-= ▲ .17.如图,这是一个铅皮做成的无盖半圆锥状....容器,它 是由半个圆锥侧面和一个等 腰三角形围成的.若不考虑容器厚度、接缝以及余料等因素,则根据图中给出的尺寸,制造这样一个容器需要铅皮 ▲ cm 2. 18.如图,点B 是函数2(0)y x x=>图象上一点,点A 是线段OB 上一点,以AB 为半径作 ⊙A 恰好与x 轴、y 轴分别切于点C 和点D ,则点A 的坐标是 ▲ .三、解答题(第19、20题各6分,第21~24题各8分,第25题10分,第26题12分,共66分)19.(6分) (1)计算:11aa a+-+(2)解不等式组3(2)4122x x x +≥+⎧⎪⎨-<⎪⎩(第17题)20cm26cm2(0)y x x=>(第18题)D CBxyA O20.(6分)设n 是正整数,则n 、3n按整数部分的大小可以这样分组:整数部分为1:1,2,3;31,32, (37)整数部分为2:4,5,......,8;38,39, (326)整数部分为3:9,10,......,15;327,328, (363)…………(1) 若3n的整数部分4,则n的最小值、最大值分别是多少?(2) 若n的整数部分5,则n可能的值有几种?21.(8分)已知△ABC(如图),∠B=∠C=30°。

浙江省宁波市慈溪中学2018-2019年精品自主招生数学试卷(含答案)

浙江省宁波市慈溪中学2018-2019年精品自主招生数学试卷(含答案)

2019届浙江省宁波市慈溪中学自主招生数学试卷一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.D.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.43.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.84.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.305.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且=m,=n,则+=.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有个.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=.11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.2019届浙江省宁波市慈溪中学自主招生数学试卷参考答案与试题解析一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.D.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.4【分析】连接O′C,O′B,O′D,OO′,则O′D⊥BC.因为O′D=O′B,O′C平分∠ACB,可得∠O′CB=∠ACB=×60°=30°,由勾股定理得BC=2.【解答】解:当滚动到⊙O′与CA也相切时,切点为D,连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选:C.【点评】此题主要考查切线及角平分线的性质,勾股定理等知识点,属中等难度题.3.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.8【分析】先把12分成2个因数的积的形式,共有6总情况,所以对应的p值也有6种情况.【解答】解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选C.【点评】主要考查了分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.4.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.5.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6【分析】根据题中所给的条件,在直角三角形中解题.根据角的正切值与三角形边的关系,结合勾股定理求解.【解答】解:过点B作BE⊥AC交AC于点E.如下图设BE=x,∵∠BDA=45°,∠C=30°,∴DE=x,BC=2x,∵tan∠C=,∴=tan30°,∴3x=(3+x),解得x=,在Rt△ABE中,AE=DE﹣AD=﹣3=,由勾股定理得:AB2=BE2+AE2,AB==3.故选C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为﹣.【分析】解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.【解答】解:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.所以m最小值=﹣.故本题答案为:﹣.【点评】本题考查了三元一次方程组和一元一次不等式的解法.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且=m,=n,则+=1.【分析】根据三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.可以分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,根据平行线等分线段定理和梯形中位线定理可得到两个等式,代入所求代数式整理即可得到答案.【解答】解:分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,则BE∥AD∥CF,∵点D是BC的中点,∴MD是梯形的中位线,∴BE+CF=2MD,∴+==+===1.【点评】此题考查了重心的概念和性质,能够熟练运用平行线分线段成比例定理、平行线等分线段定理以及梯形的中位线定理.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有25个.【分析】找到函数图象与x轴的交点,那么就找到了相应的x的整数值,代入函数求得y的值,那么就求得了y的范围.【解答】解:将该二次函数化简得,y=﹣[(x﹣4)2﹣],令y=0得,x=或.则在红色区域内部及其边界上的整点为(2,0),(3,0),(4,0),(5,0),(6,0),(2,1),(2,2),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2)共25个,故答案为:25.【点评】本题涉及二次函数的图象性质,解决本题的关键是得到相对应的x的值.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC 的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.【点评】本题考查的是矩形的定理以及垂径的性质,考生应注意运用勾股定理来求得边长继而才能求出周长.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班【分析】本题可以通过设出内环、中环、外环射中的枪数为x,y,z;设脱靶数为t,根据等量关系“总得分=内环得分+中环得分+外环得分”列出函数方程进行分析,从而确定出各中枪数.【解答】解:填表如下:班级内环中环外环(1)班 1 3 4(2)班 2 3 2(3)班 3 3 0理由如下:可设t枪脱靶,x枪射中内环,y枪射中中环,则有(8﹣x﹣y﹣t)枪射中外环,所以50x+35y+25(8﹣x﹣y﹣t)=255化简得y=5+2(t﹣x)+(1+t﹣x)对于(1)班,t=0,y=5﹣2x+(1﹣x),x为奇数,只能取x=1,得y=3;对于(2)班,t=1,y=7﹣2x+(2﹣x),x为偶数,只能取x=2,得y=3;对于(3)班,t=2,y=9﹣2x+(3﹣x),x为奇数,只能取x=3,得y=3;【点评】此题考查的是学生对函数方程的分析讨论并对某些值确定,同学们要注意细心分析.13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.【分析】(1)根据抛物线的开口向下判断a的符号,再根据第二象限点的坐标特点及二次函数的顶点坐标列出不等式组,确定出解答a,b,b2﹣4ac的符号即可.(2)根据抛物线过原点及顶点在直线x+y=0上求出其顶点坐标及一次项系数,再根据顶点与原点的距离为3求出二次项系数,进而求出其解析式.【解答】解:(1)∵抛物线开口向下,∴a<0;∵顶点在第二象限,∴,∴b<0,b2﹣4ac>0.(2)由题意可得c=0,此时顶点坐标为(﹣,﹣),因顶点在直线x+y=0上,所以﹣﹣=0,b=﹣2.此时顶点坐标为(,﹣),由+=18,a=﹣,则抛物线的解析式为y=﹣x2﹣2x.【点评】本题考查的是二次函数的图象与系数的关系及用待定系数法求二次函数的解析式,掌握二次函数的特点是解题的关键.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).【分析】(1)根据圆内接四边形的性质和三角形的内角和定理进行证明;(2)根据三角形的外心到三角形的三个顶点的距离相等的性质只需证明AB=AF=AE,根据等腰三角形的性质和判定进行证明.【解答】证明:(1)∠ABF=∠ADC=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,(4分)而∠F=60°﹣∠ACF,(6分)因为∠ACF=∠ADE,(7分)所以∠ABF=∠F,所以AB=AF.(8分)(2)四边形ABCD内接于圆,所以∠ABD=∠ACD,(10分)又DE=DC,所以∠DCE=∠DEC=∠AEB,(12分)所以∠ABD=∠AEB,所以AB=AE.(14分)∵AB=AF,∴AB=AF=AE,即A是三角形BEF的外心.(16分)【点评】综合运用了圆内接四边形的性质、三角形的内角和定理以及三角形的外心的性质.15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.【分析】(1)S阴=S△OAB+S扇形OBB′﹣S△OAA′﹣S扇形OAA′,根据公式即可求解.(2)延长BA交y轴于E点,可以证明:△OAE≌△OCN,△OME≌△OMN证得:OE=ON,AE=CN,MN=ME=AM+AE=AM+CN.从而求得:P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.即可求解.(3)Rt△BMN中,BM2+BN2=MN2,所以(1﹣n)2+(1﹣m+n)2=m2⇒m2﹣mn+2﹣m=0.把这个方程看作关于n的方程,根据一元二次方程有解得条件,即可求得.【解答】解:(1)如图,S阴=S△OAB+S扇形OBB'﹣S△OA'B′﹣S扇形OAA'=S扇形OBB′﹣S扇形OAA′=π﹣π×12=(2)p值无变化证明:延长BA交y轴于E点,在△OAE与△OCN中,∴△OAE≌△OCN(AAS)∴OE=ON,AE=CN在△OME与△OMN中,∴△OME≌△OMN(SAS)∴MN=ME=AM+AE=AM+CN∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2;(3)设AM=n,则BM=1﹣n,CN=m﹣n,BN=1﹣m+n,∵△OME≌△OMN,∴S△MON=S△MOE=OA×EM=m在Rt△BMN中,BM2+BN2=MN2∴(1﹣n)2+(1﹣m+n)2=m2⇒n2﹣mn+1﹣m=0∴△=m2﹣4(1﹣m)≥0⇒m≥2﹣2或m≤﹣2﹣2,∴当m=2﹣2时,△OMN的面积最小,为﹣1.此时n=﹣1,则BM=1﹣n=2﹣,BN=1﹣m+n=2﹣,∴Rt△BMN的内切圆半径为=3﹣2.【点评】本题综合运用了扇形的面积公式,全等三角形的判定,三角形的面积公式以及勾股定理的综合应用,难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省慈溪中学2018年初中保送生招生考试数学试卷 (本卷考试时间90分钟,满分130分.)一、选择题(每题6分,共30分)1.将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G(如图). 如果DM :MC=3:2,则DE :DM :EM=( )(A)7:24:25 (B)3:4:5 (C)5:12:13 (D)8:15:172.假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学 需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为( )(A)8分钟 (B)7分钟 (C)6分钟. (D)5分钟3.已知:二次函数y=2x +2x+a(a 为大于0的常数),当x=m 时的函数值y 1<0;则当x=m+2时的函数值y 1与0的大小关系为( )(A)y 2>0 (B)y 2<0 (C)y 2=O (D)不能确定4.记S=121221121212008200720072007-++++++则S 所在的范围为( )(A)0<S<1 (B)1<S<2 (C)2<S<3 (D)3<S<45.如图,点A 是函数y=x 1的图象上的点,点B 、 C的坐标分别为B(-2,-2)、C(2,2).试利用性质:“函数y=x 1的图象上任意一点A都满足|AB-AC|=22”求解下面问题:“作∠BAC 的内角平分线AE ,过B 作AE 的垂线交AE 于F ,已知当点A 在函数y=x 1的图象上运动时,点F 总在一条曲线上运动,则这条曲线为( )(A)直线 (B)抛物线 (C)圆 (D)反比例函数的曲线6.已知关于x 的不等式(2a-b)x≥a -2b 的解是x>25, 则关于x 的不等式ax+b<0的解为 .7.已知右边方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图所示.在小方格的顶点上确定一点C ,连结AB 、AC 、BC ,使△ABC 的面积为3个平方单位.则这样的点C 共有 个.8.直角坐标系中,点A(0,0),B(2,0),C(0,23),若有一三角形与△ABC 全等,且有一条边与BC 重合,那么这个三角形的另一个顶点坐标是 ________.9.n 个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n 的最大值与最小值的和是 _______ .10.对大于或等于2的自然数m 的n 次幂进行如右图方式的“分 裂”,仿此,36的“分裂”中最大的数是 .11.甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是 _____ .12.△ABC 和△DEF 是两个等腰直角三角形,∠A=∠D =90°,△DEF 的顶点E 位于边BC 的中点上.(1)如图1,设DE 与AB 交手点M ,EF 与AC 交于点N ,求证:△BEM∽△CNE;(2)如图2,将△DEF 绕点E 旋转,使得DE 与BA 的延长线交于点M ,EF 与AC 交于点N ,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形?并证明你的结论.13.已知函数y=2x +(b-1)x+c(b ,c 为常数),这个函数的图象与x 轴交于两个不同的点A(1x ,0)和B(2x ,0).若x 1,x 2满足12x x >1(1)求证: 2b ≥2(b+2c);(2)若t<1x ,试比较2t +bt+c 与1x 的大小,并加以证明。

14.有A 、B 、C 、D 、E 5位同学依次站在某圆周上,每人手上分别拿有小旗16、8、12、4、15面,现要使每人手中的小旗数相等.要求相邻的同学之间相互调整(不相邻的不作相互调整),设A 给B 有x 1面(x 1>0时即为A 给B 有x 1面;x 1<O 时即为B 给A 有x 1面.以下同),B 给C 有x 2面:C 给D 有x 3面,D 给E 有x 4面,E 给A 有x 5面,问x 1、x 2、x 3、x 4、x 5分别为多少时才能使调动的小旗总数|x 1|+|x 2|+|x 3|+|x 4|+|x 5|最小?如图:已知a 为正常数,F 1(-202+a ,0),F 2(202+a ,0),过F 2作直线l ,点A ,B 在直线l 上,且满足AF 1-AF 2=BF 1-BF 2=2a ,M ,N 分别为△AF 1F 2,△B F 1F 2的内切圆的圆心.(1)设⊙M 与F 1F 2相切于点P 1,⊙N 与F 1F 2切于点P 2,试判断P 1与P 2的位置关系,并加以证明;(2)已知sin ∠BF 2F 1=8/9,且MN=9/2,试求a 的值[参考答案]一、选择题(每题6分,共30分)1.D 2.C .3.A 4.A 5.C二、填空题(每题6分:共36分)6.x>-8 7.6 8.(2,23)或(3,3)或(-1,3)(全部正确才给分)9.23 10.41 11.甲三、解答题(共64分)12.(16分)证:(1)△ABC 是等腰直角三角形,∴∠MBE=45°.∴∠BME+∠MEB=135°(2分)又∵△DEF 是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠ME B=135°,∴∠BME=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE (6分)(2)与(1)同理△BEM∽△CNE,BE /CN=EM/NE (10分)又∵BE=EC .(12分)∴EC/CN=EM/NE 则△ECN 与△MEN 中EC/CN =ME/EN ,又∠ECN=∠MEN=45°∴△ECN∽△MEN (16分)(如给出答案△MBE∽△MEN,同样给相应的分值)13.(16分).证:(1):由已知:x 1,2=24)1()1(2c b b --±--,又x 2-x 1>1,(3分) ∴14)1(2>--c b ,∴b 2-2b+1-4c>1即b 2>2(b+2c)。

(5分) (2)由已知x 2+(b-1)x+c=(x-x 1)(x-x 2) (8分)∴x 2+bx+c=(x-x 1)(x-x 2)+x ,∴t 2+bt+c=(t-x 1)(t-x 2)+t(12分)t 2+bt+c-x 1=(t-x 1)(t-x 2)+t-x 1=(t-x 1)(t-x 2+1) ,∵t<x 1 ∴ t-x 1<0 又x 2-x 1>1∴t<x 1<x 2-1,∴t-x 2+1<0,∴(t-x 1)(t-x 2+1)>0 (15分),即t 2+bt+c>x 1(16分)14.(16分)解:∵共有小旗面数;16+8+12+4+15=55面,要使每人手中的小旗面数相等,每人均为11面. 由题意:⎪⎪⎩⎪⎪⎨⎧=+=+=+=+11x -x 1511x -x 4 1 1x -x 121 1x -x 854433221 ∴⎪⎪⎩⎪⎪⎨⎧==+=+=2-x x 6-x x 1x x 3x x 25242321∴|x 1|+|x 2|+|x 3|+x 4|+|x 5|=|x 2+3|+|x 2|+|x 2+1|+|x 2-6|+|x 2-2|=|x 2+3|+|x 2+1|+|x 2|+|x 2-2|+| x 2-6|(6分)设实数x 2在数轴上的对应点为P实数-3,-1,0,2,6在数轴上的对应点分别为P 1,P 2,P 3,P 4,P 5∴|x 1|+|x 2|+|x 3|+x 4|+|x 5|=|PP 1|+|PP 2|+|PP 3|+|PP 4|+|PP 5|(10分)当且仅当P 在线段P 1P 5上时|PP 1|+|PP 5|有最小值9:当且仅当P 在线段P 2P 4上时|PP 2|+|PP 4|有最小值3:当且仅当P 与点P 3重合时|PP 3|有最小值0(14分)即当且仅当P 与点P 3重合(x 2=0)时x 1+x 2+x 3+x 4+x 5=|PP 1|+|PP 2|+|PP 3|+|PP 4|+|PP 5|有最小值12。

当x 1=3,x 2=0,x 3=1,x 4=-6,x 5=-2时|x 1|+|x 2|+|x 3|+|x 4|+|x 5 |有最小值12(16分)15.(16分)证:(1)由题意:AC=AD ,∵AF 1-AF 2=2a ,∴CF 1-DF 2=2a ,又F 1C=F 1P 1 F 2D=F 2P 1 ∴P 1F 1-P 1F 2=2a (2分),同理P 2F 1-P 2F 2=2a ,∴P 1与P 2重合(3分)(2)由(1)知:MP 1⊥F 1F 2,NP 2⊥F 1F 2,P 1,P 2重合. ∴M ,P 1,N 共线,且MN⊥F 1F 2(5分).连接MN ,NE ,MD ,则∠NED=∠MDE=90° 过N 作NH⊥MD,H 为垂足,∵∠M P 1F 2=∠MD F 2=90°.∠HMN=∠B F 2F 1(9分) ∴sin∠HMN=sin∠B F 2F 1=8/9又MN=9/2∴NH=MNs in∠HMN=4∴ED=4.(11分).而DF 2=F 2P 1=F 2E∴F 2P 1=2(14分)又由(1)P 1F 1-P 1F 2=2a .∴P 1F 1=2+2a∴P 1F 1+P 1F 2=2+2+2a=2202 a (15分) 解得:a=4……(16分)。

相关文档
最新文档