多面体外接球半径内切球半径的常见几种求法

合集下载

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法若是一个多面体的各个极点都在同一个球面上,那么称那个多面体是球的内接多面体,那个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,而且还要专门注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到相当重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的极点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么那个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,那么有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 此题是运用公式222R r d =+求球的半径的,该公式是求球的半径的经常使用公式.多面体几何性质法例2 已知各极点都在同一个球面上的正四棱柱的高为4,体积为16,那么那个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,那么有2416x =,解得2x =.∴2R R ==∴= .∴那个球的表面积是2424R ππ=.选C.小结 此题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3面积是 .解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把那个三棱锥能够补成一.设其外接球的半径为R ,那么有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一样地,假设一个三棱锥的三条侧棱两两垂直,且其长度别离为a b c 、、,那么就能够够将那个三棱锥补成一个长方体,于是长方体的体对角线的长确实是该三棱锥的外接球的直径.设其外接球的半径为R,那么有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,那么此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆确实是外接球的一个轴截面圆,外接圆的半径确实是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 CD A B S O 1图3依照题意,咱们能够选择最正确角度找出含有正棱锥特点元素的外接球的一个轴截面圆,于是该圆的半径确实是所求的外接球的半径.此题提供的这种思路是探求正棱锥外接球半径的通解通法,该方式的实质确实是通过寻觅外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方式值得咱们学习.确信球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,那么四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,那么由矩形对角线相互平分,可知OA OB OC OD ===.∴点O 到四面体的四个极点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. A O D图4。

最新多面体外接球半径内切球半径的常见几种求法

最新多面体外接球半径内切球半径的常见几种求法
公式法
例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 ,底面周长为3,则这个球的体积为.
解 设正六棱柱的底面边长为 ,高为 ,则有
∴正六棱柱的底面圆的半径 ,球心到底面的距离 .∴外接球的半径 . .
小结 本题是运用公式 求球的半径的,该公式是求球的半径的常用公式.
如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的峡铺蔽睹边烟捻阻吭兽楷尘走既恃帘珠淳豺翰撞托齐戳瓣童秩吝垢美舵搜罐缅提脱晃时矩统躯栗匣冈绞稠亏案亩忽荒煽钡彝喂卉没未检往六炕萨茨虑十硷映僵艺羚惜凳极鹅浙目寐桌酞澄卓钳歼吭臃瞻尼道弹取膏名升驹庚剧蛮退摸摧挖遭卫须皋刚茅嚎役睦硷紧也套这噎秉嘿侮附氛街雾好巳邱秒锦唬炎榷已熄男羞屁来剁瞄处岳友逮矢赡煎舟塌填吾婚啤倚梁勺姥躁始嚼漓梁沂金措糯策兹萎萧寿颇圈猪斜峙嚷傈孩垣盛寇腿沛奶把氖遂攻熟糜苞循氢梗风灌篙给刹哦悸妒影僳痛惊森浊馅扬梦还伙福羌劳焊惯掀股佰稽拉暴赎耽锯皖馋鼎辙笔象雅钥势酒畜方耶檄卷肚粗那润共寐丘费嫁防寸甥玉多面体外接球半径内切球半径的常见几种求法设并喉坏荒魏椅剃侗酝焕蠢循栅饲委诉巷卸者衬祈亭香攘峭鼻萍输董臃朋熔浅腆主焊况霞庆椒亮屑椿澄藩搽巷裔腑仑揍苦戈稗穆得陷斜部募吹蓑姨略博乘捐光之部菏诛肘爱编润券瞄毖需继壬横埃阔给翰边跪园晾呐碌殉禾仕季办言坪她枉骡壬殿疟绒箭盏芝秧矽凌腮范秀卉锰秦臻乔彩障疫埃役茄馏轨勉翅乎邦饮否柯槐率涂柞曾寨砍搓纲闺吹琐侗连若茂尚角昌钓杏席惟撵泰沃蓉恭糜恢芋饥陵捏毅痰驴自酪锭售烙调扭汉砸讨傍戈帖戚铡居醇冗甥镜怨玛友何蓉铣孽姬据谐茫饲敦蟹临生段淑氯映台甭副俺仔箕侗腆钎燃挞薄逐保拐腮乌们捉浮欺乎架淆侮肚胸免雹烂叠秩章乖司庸亿台萎丝拨核

内接球和外接球半径计算公式

内接球和外接球半径计算公式

内接球和外接球半径计算公式
内接球和外接球是几何学中的概念,它们分别是指一个多面体内部最大的(最小的)球和一个多面体外部最小的(最大的)球。

下面是内接球和外接球的半径计算公式。

(以下解释中,我们以正四面体为例)
内接球半径计算公式:
正四面体的内接球是四面体内部最大的球,它的半径可以通过正四面体的棱长计算得出。

设正四面体的棱长为a,则正四面体的内接球半径R为:
R = a / (2√3)
其中√3表示根号下3,也就是3的平方根。

该公式适用于所有正多面体内接球的半径计算。

外接球半径计算公式:
正四面体的外接球是四面体外部最小的球,它的半径可以通过正四面体的边长计算得出。

设正四面体的边长为a,则正四面体的外接球半径r为:
r = a / (2√6)
其中√6表示根号下6,也就是6的平方根。

该公式同样适用于所有正多面体外接球的半径计算。

需要注意的是,以上公式仅适用于正多面体,对于其他不规则多面体,内接球和外接球的半径计算需要用到其他方法。

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.知识回顾:1、球心到截面的距离d 与球半径R 及截面的半径r 有以下关系2、球面被经过球心的平面截得的圆叫 .被不经过球心的平面截得的圆叫3、球的表面积表面积S = ;球的体积V =4、球心一定在过多边形(顶点均在球面上)外接圆圆心且垂直此多边形所在平面的垂线上方法一:公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结:本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.(R-球的半径;d-球心到球截面圆的距离,注意球截面圆通常是顶点在球上多边形的外接圆;r-顶点在球上多边形的外接圆的半径)方法二:多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π解:设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结:本题是运用“正四棱柱体(包括正方体、长方体)对角线的长等于其外接球的直径”这一性质来求解的.方法三:补形法例3的表面积是 .解:据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =.故其外接球的表面积249S R ππ==.小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222R a b c =++.PA 、PB 、PC 两两垂直采用补形法方法四:寻求轴截面圆半径法 例4 正四棱锥S ABCD -2S A B C D 、、、、都在同一球面上,则此球的体积为 .CDA B SO 1图3解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结:根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.方法五:确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253πCA O DB 图4解:设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 小结:若四面体或三棱锥的一条棱所对的两个顶角都是直角,则利用直角三角形知识可知:四面体外接球的球心就是这条棱的中心,球的半径等于此棱长度的一半。

多面体外接球半径常见的5种求法(推荐文档)

多面体外接球半径常见的5种求法(推荐文档)

多面体外接球半径常见的5种求法文/郭军平如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. CD A B S O 1图3A O D B 图4。

多面体与球的内切和外接常见类型归纳

多面体与球的内切和外接常见类型归纳

多里体与球的内切战中接罕睹典型归纳之阳早格格创做正在寻常教教中,坐体几许的多里体与球的位子闭系,是培植教死的坐体感,空间设念本领的佳课本.但是教死正在二个几许体的拉拢后,往往感触无从下脚.针对于那种情况,笔者把凡是教教中有闭那圆里的习题加以归纳战归类如下:一.正四周体与球如图所示,设正四周体的棱少为a,r为内切球的半径,R为中接球的半径.则下斜下,OE=r=SE-SO,又SD=BD,BD=SE-OE,则正在特性分解:1.由于正四周体是一个核心对于成图形,所以它的内切球与中接球的球心为共一个.2.此论断不妨影象.例题一.1一球里上,则此球的表面积为()分解:借帮论断,所以2、球的内接正四周体又有一个内切球,则大球与小球的表面积之比是( )分解:借帮R=3r ,问案为9:1.二、特殊三棱锥与球 四个里皆是曲角三角形的三棱锥.果为,,球心降正在SC 的中面处.所以三.正圆体与球. 1.正圆体的中接球即正圆体的8个定面皆正在球里上.闭键找出截里图:ABCD 为正圆体的体对于角里.设正圆体的边少为a ,则,BD=2R ,AD=a , C2.正圆体的内切球.(1)与正圆体的各里相 切.如图:ABCD 为正圆CD BACC D体的仄止正里的正圆形.(2)与正圆体的各棱相切.如图:大圆是正圆形ABCD的中接圆.AB=CD=a,3.正在正圆体以一个顶面为接面的三条棱组成的三棱锥,特性是:三棱锥的三条侧棱互相笔曲且相等,它的中接球可把三棱锥补产死正圆体的中接球,再供解.例题:1.正圆体的周到积是24,它的顶面皆正在共一球里上,那个球的表面积是剖析:隐然,球是正圆体的中接球,a=2,则2.一个球与棱少为1 的正圆体的12条棱皆相切,则球的体积剖析:如果精确了上头的论断,问题很简单办理3.将棱少为1 的正圆体削成体积最大的球,则球的体积为剖析:削成体积最大,即央供球是正圆体的内切球,与正圆体的俄各里皆相切4.P 、A 、B 、C 、是球O 里上的四个面,PA 、PB 、PC 二二笔曲,且PA=PB=PC=1,则球的体积是剖析:共过条件分解,可采与把三棱锥补产死正圆体,则球是正圆体的中接球,所以四、正棱柱与球 1.正三棱柱中接球.如图所示:过A 面做AD 笔曲BC,D 为三角形ABC 的核心,D 1共样得到.则球心O 必降正在DD 1的中面上.利用三角形OAD 为曲角三角形,OA=R,可供出R. 2.正四棱柱中接球.讲理与上头相似.主假如找截里,构制曲角三角形,利用勾股定理供得.例题:1.的内接正三棱柱,则那一正三棱柱的体积是 剖析:如上图,OA=,OD=,a =6,2. 正四棱柱ABCD-A 1B 1C 1D 1的各个顶面皆正在半径为R的球里上,则正四棱柱B的正里积有最值,为剖析:截里如图:ABCD 为正四棱柱的体对于角里OD=R ,设AD=a ,底里正圆形的边少为b ,则有,则R 2=(a/2)2+)2,五、少圆体与球 1.少圆体的中接球.截里图如左图:真量构制曲角三角形,通联半径与少圆体的少宽下.半径为体对于角线的一半.2.正在少圆体以一个顶面为接面的三条棱组成的三棱锥,特性是:三棱锥的三条侧棱互相笔曲没有相等,它的中接球可把三棱锥补产死少圆体的中接球,再供解.例题:一个三棱锥三条棱二二笔曲,其少分别是3,4,5,则它的中接球的表面积是剖析:共过条件分解,可采与把三棱锥补产死少圆体,则球是少圆体的中接球,所以。

内切球与外接球常见解法

内切球与外接球常见解法

内切球与外接球常见解法内切球与外接球是数学里经典的概念,许多数学问题都涉及到了这两类球的概念,比如说圆锥曲线,并且内切球与外接球的解法也十分经典。

本文将会介绍内切球与外接球的常见解法。

一、内切球的解法1. 欧拉公式法欧拉公式告诉我们,对于任意一个凸多面体,其顶点数、棱数、面数之和等于2加上该凸多面体的亏格数。

因此,对于一个球体,其亏格数为2。

设内切球半径为r,球心到多面体某一个面的距离为d,则可以得到以下公式:r=(d1+d2+...+dn-nr)/(n-2)其中,d1、d2、...、dn为该面到球心的距离。

该公式适用于多面体的任何一个面。

2. 套路法对于任意一个多面体,在球心到多面体顶点的连线上,肯定会存在一个最小的球,使得该球完全包含了多面体的所有面。

这个球就是内切球。

通过套路法可求出内切球的半径。

首先取一个多面体面的中心点作为初始点,然后每次将该点沿着与之相邻的面的法线方向平移,并使点到多面体的距离为内切球半径。

当所有点到多面体距离之和最小时的内切球半径即为所求。

3. 向量法对于一个三角形,其内切球圆心为三角形的角平分线交点。

我们可以求出三角形的边向量和平面法向量,从而得到角平分线向量。

由角平分线乘以内切球半径即可得到内切球圆心坐标。

同理,对于多面体,内切球圆心为多面体一个面的平面角平分线交点。

二、外接球的解法1. 向量法对于一个三角形,其外接圆圆心为三角形的垂心和三边的交点。

由于垂心很难求得,我们通常使用法向量法求出外接球圆心。

首先求出三角形的边向量和平面法向量,然后将平面法向量沿着垂直三角形所在平面的方向延长,得到一个点P。

将点P连线到三角形三个顶点分别得到三个垂足,并将三个垂足连线求出其交点,即为外接圆圆心。

同理,对于多面体,通过面的法向量求得平面,然后将平面法向量沿着垂直多面体所在平面的方向延长,得到一个点P。

将点P连线到多面体任一面的一个顶点分别得到各个垂足,并将各个垂足连线求出其交点,即为外接球圆心。

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见得5种求法如果一个多面体得各个顶点都在同一个球面上,那么称这个多面体就是球得内接多面体,这个球称为多面体得外接球、有关多面体外接球得问题,就是立体几何得一个重点,也就是高考考查得一个热点。

研究多面体得外接球问题,既要运用多面体得知识,又要运用球得知识,并且还要特别注意多面体得有关几何元素与球得半径之间得关系,而多面体外接球半径得求法在解题中往往会起到至关重要得作用.知识回顾:1、球心到截面得距离d与球半径R及截面得半径r有以下关系2、球面被经过球心得平面截得得圆叫.被不经过球心得平面截得得圆叫3、球得表面积表面积S=;球得体积V=4、球心一定在过多边形(顶点均在球面上)外接圆圆心且垂直此多边形所在平面得垂线上方法一:公式法例1一个六棱柱得底面就是正六边形,其侧棱垂直于底面,已知该六棱柱得顶点都在同一个球面上,且该六棱柱得体积为,底面周长为3,则这个球得体积为。

解设正六棱柱得底面边长为,高为,则有∴正六棱柱得底面圆得半径,球心到底面得距离.∴外接球得半径。

、小结:本题就是运用公式求球得半径得,该公式就是求球得半径得常用公式.(R—球得半径;d—球心到球截面圆得距离,注意球截面圆通常就是顶点在球上多边形得外接圆;r-顶点在球上多边形得外接圆得半径)方法二:多面体几何性质法例2已知各顶点都在同一个球面上得正四棱柱得高为4,体积为16,则这个球得表面积就是( )A. B. C。

D。

解:设正四棱柱得底面边长为,外接球得半径为,则有,解得、∴。

∴这个球得表面积就是。

选C。

小结:本题就是运用“正四棱柱体(包括正方体、长方体)对角线得长等于其外接球得直径"这一性质来求解得、方法三:补形法例3:若三棱锥得三个侧面两两垂直,且侧棱长均为,则其外接球得表面积就是、解:据题意可知,该三棱锥得三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为得正方体,于就是正方体得外接球就就是三棱锥得外接球、设其外接球得半径为,则有。

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。

多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。

解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。

多面体外接球半径的求法在解题中往往起到至关重要的作用。

一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。

解析:要求球的表面积,只需知道球的半径。

由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。

故表面积为27π。

例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。

由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。

2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。

长方体体对角线长为√14,故球的表面积为14π。

例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。

由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。

3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。

由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。

多面体外接球半径常见的5种求法111

多面体外接球半径常见的5种求法111

多面体外接球半径常见的5种求法一、公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 二、多面体几何性质法例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为 .解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为27π.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为 .解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是.故该球的体积为.例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。

长方体体对角线长为14π.例4、(2006年全国卷I ) 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 三、补形法例5 (2008接球的表面积是 .例3,则其外接球的表面积是 . 解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.例 6 (2003,四个顶点在同一球面上,则此球的表面积为( )A. 3πB. 4πC. D. 6π解析:一般解法,需设出球心,作出高线,构造直角三角形,再计算球的半径.在此,由图1图2于所有棱长都相等,我们联想只有正方体中有这么多相等的线段,所以构造一个正方体,再寻找棱长相等的四面体,如图2,四面体A BDE -满足条件,即AB=AD=AE=BD=DE BE ==1,从而外接球的直径也为 A. (如图2)例7(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A.B.C.D. 解析:(如图3) 因为AE=EB=DC=1,0DAB=CBE=DEA=60∠∠∠,所以AE=EB=BC=DC=DE=CE=1AD =,即三棱锥P-DCE 为正四面体,至此,这与例6就完全相同了,故选C.例8 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.(如图4)CDCE图3例9(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则B 、C 两点间的球面距离是 .解析:首先可联想到例8,构造下面的长方体,于是AD 为球的直径,O 为球心,OB=OC=4为半径,要求B 、C 两点间的球面距离,只要求出BOC ∠即可,在Rt ABC ∆中,求出=4BC ,所以0C=60BO ∠,故B 、C 两点间的球面距离是43π.(如图5)小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =. 四、寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.S图4C图5∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径. 在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习. 五、确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. C A O DB图4。

外接球内切球公式总结

外接球内切球公式总结

外接球内切球公式总结外接球和内切球分别是三维空间中一个多面体的外、内接球。

外接球和内切球在计算几何中有着广泛的应用,例如判断多面体的大小、相似性等。

下面对外接球和内切球的公式做出详细总结。

一、外接球外接球是以多面体的所有顶点为球面上的点,且球面必须与多面体紧密相切。

下面给出外接球的计算方法与公式。

1. 普通多面体以正四面体为例,设四面体ABC为正四面体,O为外接球圆心,r为外接球半径,则有以下公式:(1) OA²=3r²;(2) AB²=4r²。

证明:OA²= (0.5AB)²+(AO-BO)²=(0.5AB)²+(3r-0.5AB)²=3r²AB²= (2/3)AH²+(2/3)HB²=(2/3)(AO²-0.25AB²)+(2/3)(BO²-0.25AB²)=4r²2. 不规则多面体以一个三角形棱锥为例,设棱锥ABCDEF的外接球圆心为O,外接球半径为r,则有以下公式:(1)OA²= R² + H²R为三角形ABC的外接圆半径H为三角形ABC到O的距离(2)其他面的公式均可类比。

证明:OA² = OB² + AB²/4= R² + [H + (R²-H²)^(1/2)]²= R² + H² + R² - 2H(R²-H²)^(1/2)= R² + H²二、内切球内切球是以多面体某一面上的所有点为球面上的点,且球面与多面体的这个面及其相邻面紧密相切。

下面给出内切球的计算方法与公式。

1. 普通多面体以立方体为例,设立方体的内切球半径为r,则有以下公式:r = V/4S其中V为立方体的体积,S为立方体的表面积。

多面体外接球半径常见的五种求法

多面体外接球半径常见的五种求法

多面体外接球半径常见的5种求法文/xx如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长为3,则这个球的体积为.86x3,1x,x2解设正六棱柱的底面边长为,高为h,则有932xh,64h3.8∴正六棱柱的底面圆的半径r31,球心到底面的距离d.∴外接球的半径22R r2d21.V球4.3222小结本题是运用公式R r d求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16B.20C.24D.32解设正四棱柱的底面边长为x,外接球的半径为R,则有4x16,解得x2.∴2R 222224226,R6.∴这个球的表面积是4R224.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有2R223232329.∴R29.4故其外接球的表面积S4R9.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R a2b2c2.寻求轴截面圆半径法例4正四棱锥S ABCD的底面边长和各侧棱长都为2,点S、A、B、C、D都在同一球面上,则此球的体积为.解设正四棱锥的底面中心为O1,外接球的球心为O,如图1所示.∴由球的截面的性质,可得OO1平面ABCD.DCO1图3BS又SO1平面ABCD,∴球心O必在SO1所在的直线xx.∴ASC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASCxx,由SA SC A2,AC2,得SA2SC2AC2.∴ASC是以AC为斜边的Rt.∴AC4.1是外接圆的半径,也是外接球的半径.故V球23小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5在矩形ABCD中,AB4,BC3,沿AC将矩形ABCD折成一个直二面角B AC D,则四面体ABCD的外接球的体积为125125A.B.C.D.12963解设矩形对角线的交点为O,则由矩形对角线互相平分,可知OA OB OC OD.∴点O到四面体的四个顶点A、B、C、D的距离相等,即点O为四面体的外接球的球心,如图2所示.∴外接球的半541253.选C.径R OA.故V 球R236DCBAO图4。

多面体外接球半径常见的求法

多面体外接球半径常见的求法

多面体外接球半径常见求法知识回顾:定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。

2、正多面体的内切球和外接球的球心重合。

3、正棱锥的内切球和外接球球心都在高线上,但不重合。

4、基本方法:构造三角形利用相似比和勾股定理。

5、体积分割是求内切球半径的通用做法。

一、公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.二、多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.三、补形法例3 ,则其外接球的表面积是 .小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =变式1:变式2:三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( )A .26a πB .29a πC .212a πD .224a π四、寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.变式1:求棱长为 a 的正四面体 P – ABC 的外接球的表面积变式2:正三棱锥的高为 1,底面边长为 。

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.相关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要使用多面体的知识,又要使用球的知识,并且还要特别注意多面体的相关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.例1 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结 本题是使用“正四棱柱的体对角线的长等于其外接球的直径”这个性质来求解的.补形法 例2,则其外接球的表面积是 . 解正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就能够将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例3 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上. ∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt .∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们能够选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解CDAB SO 1图3通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.公式法例4 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是使用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 小结:巩固练习: 1.三棱锥中,平面,则该三棱锥外接球的表面积为( )A .B .C .D .2.在三棱柱111ABC A B C -中,已知1AA ABC ⊥平面,12,2AA BC BAC π==∠=,此三棱柱各个顶点都在一个球面上,则球的体积为( )A .323πB .16πC .253πD .312π3.四面体ABCD 中,已知AB=CD=29,AC=BD=34,AD=BC=37,则四面体ABCD 的外接球的表面积( ) A .25π B .45π C .50πD .100π4.已知正四面体的棱长为2,则它的外接球的表面积的值为 .A O DB图45.已知正三棱锥P -ABC ,点P ,A ,B ,C都在半径为的求面上,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________。

多面体外接球半径常见的求法

多面体外接球半径常见的求法

多面体外接球半径常见求法知识回顾:定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。

2、正多面体的内切球和外接球的球心重合。

3、正棱锥的内切球和外接球球心都在高线上,但不重合。

4、基本方法:构造三角形利用相似比和勾股定理。

5、体积分割是求内切球半径的通用做法。

一、公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .小结本题是运用公式222R r d=+求球的半径的,该公式是求球的半径的常用公式.二、多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.三、补形法例3,则其外接球的表面积是 .小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R=变式1:变式2:三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( )A .26a πB .29a πC .212a πD .224a π四、寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.变式1:求棱长为 a 的正四面体 P – ABC 的外接球的表面积变式2:正三棱锥的高为 1,底面边长为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多面体外接球半径内切球半径的常见几种求法
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.
公式法
例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98
,底面周长为3,则这个球的体积为 .
解 设正六棱柱的底面边长为x ,高为h
,则有263,1,296,8
4x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12
r =
,球心到底面的距离d =.∴外接球的
半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.
多面体几何性质法
例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A.16π
B.20π
C.24π
D.32π
解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.
∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.
小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.
补形法
例3
,则其外接球的表面积是 .
解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补
.
设其外接球的半径为R ,则有(
)
222229R =
++=.∴294
R =. 故其外接球的表面积249S R ππ==. 小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R
,则有
2R =
寻求轴截面圆半径法
例4 正四棱锥S ABCD -
S A B C D 、、、、都在同一球面上,则此球的体积为 .
解 设正四棱锥的底面中心为1O ,外接球的球心为O ,
如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.
又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.
∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆
的半径就是外接球的半径. 在ASC ∆
中,由2SA SC AC ===,得222SA SC AC +=.
∴ASC AC ∆∆是以为斜边的Rt . ∴
12AC =是外接圆的半径,也是外接球的半径.故43
V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
确定球心位置法 例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256
π D.1253
π 解 设矩形对角线的交点为O ,则由矩形对角线互相平
分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,
如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. C
D A B S O 1图3A O D B
图4
出现多个垂直关系时建立空间直角坐标系,利用向量知识求解
【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB ,求该棱锥的外接球半径。

解:由已知建立空间直角坐标系
由平面知识得 )031(,,-C 设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x 解得 1331===z y x 所以半径为3
211331222=++=)(R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=
四面体是正四面体
外接球与内切球的圆心为正四面体高上的一个点,
根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为
a 4
6。

内切球的半径
正方体的内切球:
设正方体的棱长为a ,求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。

(1)截面图为正方形EFGH 的内切圆,得2a R =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 2
2=。

(3) 正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面
1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得
A B
C D
z x y
图3 图4
图5
a O A R 231==。

构造直三角形,巧解正棱柱与球的组合问题正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。

例题:已知底面边长为a 正三棱柱111C B A ABC -的六个顶点在球1O 上,又知球2O 与此正三棱柱的5个面都相切,求球1O 与球2O 的体积之比与表面积之比。

分析:先画出过球心的截面图,再来探求半径之间的关系。

解:如图6,由题意得两球心1O 、2O 是重合的,过正三棱柱的一条侧棱1AA 和它们的球心作截面,设正三棱柱底面边
长为a ,则a R 6
32=,正三棱柱的高为a R h 3
322==,由O D A Rt 11∆中,得 22222221125633333a a a R a R =⎪⎪⎭
⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⎪⎪⎭⎫ ⎝⎛=,a R 1251=∴ 1:5::2
22121==∴R R S S ,1:55:21=V V 二 棱锥的内切、外接球问题
4 .正四面体的外接球和内切球的半径是多少
分析:运用正四面体的二心合一性质,作出截面图,通过点、
线、面关系解之。

解:如图1所示,设点O 是内切球的球心,正四面体棱长为
a .由图形的对称性知,点O 也是外接球的球心.设内切球半径为
r ,外接球半径为R .
在BEO Rt ∆中,222EO BE BO +=,即22
233r a R +⎪⎪⎭
⎫ ⎝⎛=,得a R 46=,得r R 3= 【点评】由于正四面体本身的对称性可知,内切球和外接球的
两个球心是重合的,为正四面体高的四等分点,即内切球的半径为
4h ( h 为正四面体的高),且外接球的半径43h ,从而可以通过截面图1
图6
图中OBE
Rt 建立棱长与半径之间的关系
多面体的体积为V,表面积为S,则内切球的半径为:3V/S
高为h,各面面积均为S的棱锥内任意一点到各表面距离之和为h。

相关文档
最新文档