参数估计教程
华东师范大学茆诗松《概率论与数理统计教程》第6章 参数估计.

ˆ (a , , a ), j j 1 k
其中
1 n j a j xi n i1
j 1, , k ,
25 November 2018
华东师范大学
第六章 参数估计
第7页
例6.1.2 设总体服从指数分布,由于EX=1/, 即 =1/ EX,故 的矩法估计为
ˆ 1/ x
华东师范大学
第六章 参数估计
第8页
例 6.1.3 x1, x2, …, xn 是来自 (a,b) 上的均匀分布 U(a,b) 的样本, a 与 b 均是未知参数,这里 k=2 , 由于
ab EX , 2 (b a ) 2 Var( X ) , 12
不难推出
a EX 3Var( X ), b EX 3Var( X ),
L( ) ( ) [2 (1 )] [(1 ) ]
2 n1 n2 2 n3
2
n2
2 n1 n 2
(1 )
2 n3 n2
其对数似然函数为
ln L( ) (2n1 n2 ) ln (2n3 n2 ) ln(1 ) n2 ln 2
1 n n n 2 2 ln L( , ) 2 ( xi ) ln ln(2) 2 i 1 2 2
2
25 November 2018
华东师范大学
第六章 参数估计
第14页
将 lnL(, 2) 分别关于两个分量求偏导并令 其为0, 即得到似然方程组
ln L( , 2 ) 1 n 2 ( xi ) 0 i 1 ln L( , 2 ) 1 n n 2 4 ( xi ) 2 0 2 2 i 1 2
参数估计步骤

参数估计步骤
参数估计是统计学中的一个关键任务,用于从收集到的数据中推断未知的参数值。
以下是一般的参数估计步骤:
1.明确问题和目标:
确定需要估计的参数是什么。
明确估计的目标,例如点估计还是区间估计。
2.选择合适的概率分布:
基于问题的性质和数据的特征,选择一个合适的概率分布,如正态分布、泊松分布等。
3.建立统计模型:
建立描述数据生成过程的统计模型,包括参数和概率分布。
4.收集数据:
收集与问题相关的数据样本。
5.选择估计方法:
选择合适的估计方法,如最大似然估计、最小二乘法、贝叶斯估计等,取决于问题和模型。
6.构建估计统计量:
基于所选的估计方法,构建相应的估计统计量。
7.计算估计值:
使用收集到的数据计算估计统计量的具体值。
8.评估估计的性能:
评估估计的精确性和效果,考虑估计的方差、置信区间等。
9.进行假设检验(可选):
如果需要,进行假设检验以验证估计的显著性。
10.解释和报告结果:
将估计结果进行解释,并报告估计的点值或区间。
11.敏感性分析:
进行敏感性分析,考虑不同假设和参数值对估计的影响。
12.持续监测和更新:
定期监测估计的性能,如果有新数据可用,可以更新估计。
这些步骤的具体实施取决于问题的性质、数据的特点以及所选择的统计方法。
在实际应用中,研究人员需要根据具体情况灵活运用这些步骤。
统计学教程(含spss)四参数估计

从一批灌装产品中,随机抽取20灌,得样本方差为0.0025。试以95%的置 信度,估计总体方差的存在区间。
n 1 s2 2 n 1 s2
2 2
2 1 2
n 1 s2
2 0.025
2
n 1 s2
2 0.975
19 0.0025 2 19 0.0025
32.8523
8.90655
自正态总体抽样时,总体均值与总体中位数相同,而中位数的 标准误差大约比均值的标准误差大25%。因此,样本均值更有效。
x 的抽样分布
M e的抽样分布
____
X
有效性
一致性
如果 lim
P
1(为任意小数,n
为样本容量)
n
则称 为的满足一致性标准的点估计量
ˆ1的抽样分布 ˆ2的抽样分布
x s 2 p 均为一致性估计量
X~N, 2
x__
~
N
, 2 n
__
Z x ~N 0,1
n
P Z
Z Z
1
2
2
P Z
2
__
x n
Z
1
2
显著性水平
22
2
Z 2
置信度
1
0
P_x_ Z
2
n
__
x Z 2
1
n
2
Z 2
显著性水平α下,μ在1- α置信水平下的置信区间:
__
x
Z
2
__
n , x Z 2
f x
x
n
x 2
f x
1
e 2 2 x
2
x
抽样分布
E(x)
参数估计的一般步骤

参数估计的一般步骤引言:参数估计是统计学中一项重要的任务,它用于根据样本数据来推断总体参数的值。
参数估计的一般步骤包括确定估计方法、选择样本、计算估计值和进行推断。
本文将详细介绍参数估计的一般步骤,并以人类的视角进行描述,使读者更好地理解和应用这些步骤。
一、确定估计方法在参数估计中,首先需要确定合适的估计方法。
估计方法可以分为点估计和区间估计两种。
点估计方法通过单个数值来估计参数的值,例如最大似然估计和矩估计。
区间估计方法则通过一个区间来估计参数的范围,例如置信区间估计。
选择合适的估计方法是参数估计的第一步。
二、选择样本在确定了估计方法后,接下来需要选择合适的样本进行参数估计。
样本应当具有代表性,能够反映总体的特征。
为了保证样本的代表性,可以使用随机抽样方法来选择样本。
通过合理选择样本,可以减小估计误差,提高参数估计的准确性。
三、计算估计值在选择好样本后,需要计算参数的估计值。
对于点估计方法,可以使用最大似然估计或矩估计等方法来计算参数的估计值。
对于区间估计方法,可以使用置信区间估计来计算参数的范围。
计算估计值时,需要根据样本数据和估计方法进行相应的计算,确保估计结果的准确性。
四、进行推断在计算得到估计值后,需要进行推断,即根据估计值对总体参数进行推断。
对于点估计方法,可以直接使用估计值作为总体参数的估计值。
对于区间估计方法,可以使用置信区间来表示总体参数的范围。
通过推断可以了解总体参数的可能取值范围,帮助做出正确的决策和预测。
总结:参数估计的一般步骤包括确定估计方法、选择样本、计算估计值和进行推断。
在进行参数估计时,需要选择合适的估计方法和样本,计算出估计值,并进行相应的推断。
参数估计在统计学中扮演着重要的角色,它帮助我们根据样本数据来推断总体参数的值,从而更好地了解和应用统计学。
通过本文的介绍,希望读者能够更好地理解和应用参数估计的一般步骤。
《参数估计方法》课件

目录
• 参数估计方法概述 • 点估计 • 区间估计 • 最大似然估计法 • 最小二乘估计法 • 贝叶斯估计法
01
参数估计方法概述
参数估计方法的定义
参数估计方法的定
义
参数估计方法是一种统计学中的 方法,它通过分析样本数据来估 计未知的参数值。这些参数可以 描述总体特性的程度,如平均值 、方差等。
使得它容易进行统计推断。
最小二乘估计法的应用场景
线性回归分析
最小二乘估计法是线性回归分析中最常用的 参数估计方法,用于预测一个因变量与一个 或多个自变量之间的关系。
时间序列分析
在时间序列分析中,最小二乘估计法可用于拟合和 预测时间序列数据,例如ARIMA模型。
质量控制
在质量控制中,最小二乘估计法可用于拟合 控制图,以监测过程的稳定性和预测异常情 况。
区间估计
区间估计是一种更精确的参数估计方法,它给出未知参数的一个置信区间,即有较大的把握认为未知参数落在这个区 间内。例如,用样本均值和标准差来估计总体均值的置信区间。
贝叶斯估计
贝叶斯估计是一种基于贝叶斯定理的参数估计方法,它根据先验信息和样本数据来推断未知参数的后验 概率分布。贝叶斯估计能够综合考虑先验信息和样本数据,给出更加准确的参数估计结果。
贝叶斯估计法的性质
01
02
03
贝叶斯估计法是一种主观概率估 计方法,因为它依赖于先验信息 的可信度和准确性。
先验信息的不确定性可以通过引 入一个先验分布来表达,该分布 描述了先验信息中未知参数的可 能取值及其概率。
贝叶斯估计法的后验概率分布可 以用于推断未知参数的估计值和 不确定性程度。
贝叶斯估计法的应用场景
3
matlab教程参数估计及假设检验

[muratio,sgmratio]=fugailv(0,1,1000,200,0.05) [muratio,sgmratio]=fugailv(10,2,2000,500,0.01) [muratio,sgmratio]=fugailv(4,6,5000,400,0.025)
2、其它分布的参数估计
要依据该g( ).
参数估计
点估计 区间估计
点估计 —— 估计未知参数的值。 区间估计—— 根据样本构造出适当的区间, 使它以一定的概率包含未知参数或未知参 数的已知函数的真值。
(一)点估计的求法 1、矩估计法 基本思想是用样本矩估计总体矩 .
(1). 取容量充分大的样本(n>50),按中心极限定理, 它近似地服从正态分布; (2).使用Matlab工具箱中具有特定分布总体的估计命令. 10[muhat, muci] = expfit(X,alpha)----- 在显著性水平 alpha下,求指数分布的数据X的均值的点估计及其区间 估计. 20 [lambdahat, lambdaci] = poissfit(X,alpha)----- 在显 著性水平alpha下,求泊松分布的数据X 的参数的点估 计及其区间估计. 30[phat, pci] = weibfit(X,alpha)----- 在显著性水平alpha 下,求Weibull分布的数据X 的参数的点估计及其区间 估计.
的无约束最优化问题。
方法: ①最速下降法 ②Newton(牛顿)法及其修正的方法。 ③共轭方向法和共轭梯度法 ④变尺度法(拟牛顿法) 等等 详见北京大学出版社 高惠璇编著《统计计算》 P359------P379
二、假设检验
统计推断的另一类重要问题是假设检验问题。 在总体的分布函数完全未知或只知其形式,但 不知其参数的情况,为了推断总体的某些未知 特性,提出某些关于总体的假设。 对总体X的分布律或分布参数作某种假设,根据 抽取的样本观察值,运用数理统计的分析方法, 检验这种假设是否正确,从而决定接受假设或拒 绝假设.
Eviews_教程

Eviews 教程(案例介绍)一、单方程计量经济模型参数估计与统计检验例1 为了研究税收(T )发展状况,选择国内生产总值(GDP )、财政支出(GE )为影响因素,建立计量经济模型分析因素之间的经济关系。
选取下表的有关统计数据,模型如下:t t t t GE GDP T μβββ+++=210税收收入等有关统计数据 单位:亿元借助该财政收入模型案例,采用Eviews6.0估计模型中参数,并进行相关的统计检验,确定最终模型。
Eviews软件模型分析过程如下:1.创建工作文件启动Eviews软件,在主菜单上依次单击File→New→Workfile,选择数据类型(时间序列或非时间序列),并输入样本区间和工作文件名,创建工作文件的子窗口如图1-1所示。
图1-1 创建工作文件2.建立变量组Eviews软件建立变量组可采用三种途径:(1)在主菜单上依次单击Quick→Empty Group,在数据编辑窗口中单击Edit+/-,并按上行健↑,这样可依次输入变量名;(2)在主菜单上依次单击Objects→New Objects,在对话框中选择“Group”并定义文件名,在数据编辑窗口中首先按上行健↑,这样可依次输入变量名;(3)在主菜单上Eviews命令框中直接输入命令:Data T GDP GT CPI(命令及变量名之间用空格分隔),将直接出现已定义变量名称的数据编辑窗口。
图1-2 数据编辑窗口3.输入经济变量的样本数据在图1-2所示的数据编辑窗口中,在“NA”的位置可输入各经济变量的样本数据,输入样本数据后及时予以保存。
样本数据也可以从有关Office软件的各类表格中进行数据的复制;也可以通过Eviews 软件本身生产新的变量数据序列,如在主菜单上依次单击Quick→Generate Series、或者在工作文件(Workfile)窗口中单击Generate,在弹出窗口中输入方程式,如图1-3所示。
图1-3 生产新变量数据序列4.估计模型参数在主菜单上依次单击Quick→Estimate Equation,弹出对话框,在“Specification”选项卡中输入模型中被解释变量、常数项、解释变量序列,并选择估计方法及样本区间,如图1-4所示,估计结果如图1-5。
SPSS18教程7章总体参数的估计

§5.3 区间估计
• 1. 样本中的支持率为 90% , 即用样本 样本中的支持率为90 90% 比例作为对总体比例的点估计 • 2. 估计范围为 90%±3%(±3% 的误差 ) , 估计范围为90 90% 的误差) 即区间(93% 87% 即区间(93%,87%)。 • 3. 如用类似的方式 , 重复抽取大量 如用类似的方式, 样本量相同的)样本时, (样本量相同的)样本时,产生的大 量类似区间中有些会覆盖真正的 p , 而有些不会; 但其中大约有95 95% 而有些不会 ; 但其中大约有 95% 会覆 盖真正的总体比例。 盖真正的总体比例。
§5.3 区间估计
• 这样得到的区间被称为总体比例 的 这样得到的区间被称为总体比例p的 置信度(confidence level)为 95%的 置信度 为 的 置信区间(confidence interval)。这 置信区间 。 置信水平或 里的置信度又称置信水平 里的置信度又称 置信水平 或 置信系 数。 • 显然置信度的概念又是大量重复抽 样时的一个渐近概念。 样时的一个渐近概念。
• 如果我们想知道桂林人认可某饮料 的比例, 的比例,人们只有在桂林人中进行 抽样调查以得到样本, 抽样调查以得到样本,并用样本中 认可该饮料的比例来估计真实的比 例。 • 从不同的样本得到的结论也不会完 全一样。 全一样。虽然真实的比例在这种抽 样过程中永远也不知道; 样过程中永远也不知道;但可以知 道估计出来的比例和真实的比例大 致差多少。 致差多少。
描描描统
449.0104 447.4124 450.6084 448.9500 30.287 5.50339 439.60 461.10 21.50 8.18
§5.2 点估计
• 那么,什么是好估计量的标准呢? 那么,什么是好估计量的标准呢? • 一种统计量称为无偏估计量 estimator)。 (unbiased estimator)。 • 所谓的 无偏性 (unbiasedness) 就是 : 所谓的无偏性 (unbiasedness)就是 无偏性(unbiasedness) 就是: 虽然每个样本产生的估计量的取值 不一定等于参数, 不一定等于参数 , 但当抽取大量样 本时, 本时 , 那些样本产生的估计量的均 值会接近真正要估计的参数。 值会接近真正要估计的参数。
参数估计的一般步骤

参数估计的一般步骤
参数估计是统计学中的一种方法,用于根据样本数据估计总体参数的值。
它是一个重要的统计推断技术,可以帮助我们了解和描述总体的特征。
参数估计的一般步骤如下:
1. 确定研究对象和目标参数:首先,我们需要明确研究对象是什么,需要估计的是哪个参数。
例如,我们可能希望估计某个产品的平均寿命,那么研究对象是产品,目标参数是平均寿命。
2. 收集样本数据:为了进行参数估计,我们需要收集一定数量的样本数据。
样本应该能够代表总体,并且必须是随机选择的,以避免抽样偏差。
3. 选择合适的估计方法:根据研究对象和目标参数的不同,我们可以选择不同的估计方法。
常见的估计方法包括点估计和区间估计。
点估计给出一个单一的数值作为参数的估计值,而区间估计给出一个范围,以表明参数估计值的不确定性。
4. 计算估计值:根据选择的估计方法,我们可以使用样本数据计算出参数的估计值。
例如,对于平均寿命的估计,我们可以计算样本的平均值作为总体平均寿命的估计值。
5. 评估估计的准确性:估计值的准确性可以通过计算估计的标准误
差或置信区间来评估。
标准误差反映了估计值与真实参数值之间的差异,而置信区间提供了参数估计值的不确定性范围。
6. 解释和应用估计结果:最后,我们需要解释估计结果并应用于实际问题中。
根据估计结果,我们可以得出结论,做出决策或提出建议。
参数估计是一种重要的统计推断方法,可以帮助我们了解总体特征并做出准确的推断。
通过正确的步骤和方法,我们可以获得可靠的参数估计结果,并将其应用于实际问题中。
参数估计教程

目录参数估计 ________________________________________________________________________________ 3第一节抽样推断的基本概念与原理 ________________________________________________________ 3一、抽样推断的特点和作用 _____________________________________________________________ 3二、重复抽样与不重复抽样 _____________________________________________________________ 4三、抽样误差与抽样平均误差 ___________________________________________________________ 4四、抽样推断的理论基础 _______________________________________________________________ 6五、参数估计的基本步骤 _______________________________________________________________ 7第二节参数估计中的点估计 ______________________________________________________________ 7一、总体参数的点估计 _________________________________________________________________ 7二、点估计量的优良标准 _______________________________________________________________ 7第三节参数估计中的区间估计 ____________________________________________________________ 8一、参数估计的精度与抽样平均误差计算 _________________________________________________ 8二、参数估计的误差范围与概率度 _______________________________________________________11三、总体参数的区间估计 ______________________________________________________________ 12第四节抽样组织方式及其参数估计 _______________________________________________________ 13一、简单随机抽样 ____________________________________________________________________ 13二、分层抽样 ________________________________________________________________________ 14三、机械抽样 ________________________________________________________________________ 16四、整群抽样 ________________________________________________________________________ 16第五节必要样本容量的确定 _____________________________________________________________ 17一、平均数的必要样本容量 ____________________________________________________________ 17二、成数的必要样本容量 ______________________________________________________________ 18三、影响必要样本容量的因素 __________________________________________________________ 19 习题 ___________________________________________________________________ 错误!未定义书签。
第六章《概率论与数理统计教程》课件

1
例5. 设X服从[0,λ]区间上的均匀分布,参数
λ>0,求λ的最大似然估计. 1 解:由题意得: X ~ f ( x; )
1 L( x1 , x 2 ,..., x n ; ) n 0
0 x
0 其它 0 x1 , x 2 ,..., x n
dL n n1 0 d
其它
无解.
应用最大似然估计基本思想: L越大,样本观察值越可能出现 取 max( x1 , x 2 ,..., x n ) 此时,L取值最大, 所以,所求最大似然估计为 max( x1 , x 2 ,..., x n )
考虑L的取值,要使L取值最大,λ应最小, 0 x1 , x 2 ,..., x n
例2 设总体 X ~ N ( , 2 ) ,其中 及 2 都是未知参数,如
果取得样本观测值为 x1 ,, x n , 求 及 2 的矩估计值。
解: 因为总体X的分布中有两个未知参数,所以应考虑一、二阶 原点矩,我们有 v1 ( X ) E ( X )
v 2 ( X ) E( X 2 ) D( X ) [ E( X )]2 2 2
e
e
1 2
2
2
( x )2 2 2
e
L( x1 , x 2 ,..., x n ; , )
2
i 1
1 2
2
( xi )2
(
2
1 2
2
1 2 2
) e
n
i 1
n
( xi )2
1 n 2 n 1 n 2 2 ) 2 ( x i ) ln 2 ln L n ln( ( xi ) 2 i 1 2 2 2 n 2 2 i 1 1 ln L 1 n Xi X 2 ( xi ) 0 n i 1 i 1 1 n 2 1 n n ln L n 1 ( xi )2 ( xi X )2 2 2 4 ( x i ) 0 n i 1 n i 1 2 2 2 i 1
参数估计的一般步骤

参数估计的一般步骤参数估计是统计学中的一种方法,用于根据样本数据估计总体参数的取值。
它在各个领域都有广泛的应用,例如经济学、医学、社会学等。
本文将介绍参数估计的一般步骤,帮助读者了解如何进行参数估计。
一、确定参数类型在进行参数估计之前,首先需要确定要估计的参数类型。
参数可以是总体均值、总体比例、总体方差等,根据具体问题来确定。
二、选择抽样方法接下来,需要选择合适的抽样方法来获取样本数据。
常用的抽样方法有简单随机抽样、系统抽样、分层抽样等。
选择合适的抽样方法可以保证样本的代表性,从而提高参数估计的准确性。
三、收集样本数据在进行参数估计之前,需要收集样本数据。
收集样本数据时要注意数据的准确性和完整性,避免数据采集过程中的偏差。
四、计算点估计量得到样本数据后,可以计算点估计量来估计总体参数的取值。
点估计量是根据样本数据计算得出的一个具体数值,用来估计总体参数的未知值。
常见的点估计量有样本均值、样本比例等。
五、构建置信区间除了点估计量,还可以构建置信区间来估计总体参数的取值范围。
置信区间是一个区间估计,表示总体参数的真值有一定的概率落在该区间内。
置信区间的计算方法与具体的参数类型有关,可以利用统计学中的分布理论或抽样分布来计算。
六、进行假设检验除了估计总体参数的取值,参数估计还可以用于假设检验。
假设检验是根据样本数据来判断总体参数是否符合某个特定的假设。
在假设检验中,需要先提出原假设和备择假设,然后计算检验统计量,最后根据统计显著性水平来判断是否拒绝原假设。
七、解释结果需要对参数估计的结果进行解释和说明。
解释结果时要清楚、简洁,避免使用过于专业的术语,以便读者能够理解和接受。
参数估计是统计学中重要的内容之一,它可以帮助我们从有限的样本数据中推断总体的特征。
通过合理选择抽样方法、收集准确的样本数据,并运用适当的统计方法,我们可以得到准确可靠的参数估计结果,为实际问题的决策提供科学依据。
概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程

估计 θ ,故称这种估计为点估计.
5 6
,σ 2未知,
… 随机抽查100个婴儿 得100个体重数据 10,7,6,6.5,5,5.2, …
而全部信息就由这100个数组成. 据此,我们应如何估计 和 σ 呢?
我们知道,服从正态分布N ( , σ 2 )的r.v. X , E ( X ) = , 由大数定律, 样本体重的平均值 1 → ∑ X i P n i =1 自然想到把样本体重的平均值作为总体平均 体重的一个估计. X= 用样本体重的均值 X估计 , 类似地,用样本体重的方差 S 2估计 σ 2 . 1 n 1 n 2 X = ∑ Xi, S = ∑ ( X i X )2 n 1 i =1 n i =1
(一)矩估计法
基本思想:用样本矩估计总体矩
(二)最大似然估计法
基本思想:
15
16
最大似然估计法 (最大似然法)
它首先是由德国数学家 高斯在1821年提出的 , 然而,这个方法常归功于 英国统计学家费希尔(Fisher) . 费希尔在1922年重新发现了 这一方法,并首先研究了这 种 方法的一些性质 . Fisher
1. 矩估计法 2. 最大似然法 3. 最小二乘法 4. 贝叶斯方法 ……
(一) 矩估计法(简称"矩法")
它是基于一种简单的"替换"思想 建立起来的一种估计方法 . 英国统计学家 K. 皮尔逊 最早提出的 . 基本思想: 用样本矩估计总体矩 . 理论依据: 大数定律
Ak = 1 n k P ∑ X i → k = E ( X k ) n i =1
4
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.
茆诗松《概率论与数理统计教程》(第2版)(课后习题 参数估计)【圣才出品】

第6章 参数估计一、点估计的概念与无偏性1.设x 1,x 2,x 3是取自某总体的容量为3的样本,试证下列统计量都是该总体均值μ的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)1123111=236x x x μ∧++(2)2123111=333x x x μ∧++(3)3123112=663x x x μ∧++解:先求三个统计量的数学期望,1123111111()=()()()236222E E x E x E x μμμμμ∧++=++=2123111111()=()()()333333E E x E x E x μμμμμ∧++=++=3123112112()=()()()663663E E x E x E x μμμμμ∧++=++=这说明它们都是总体均值μ的无偏估计,下面求它们的方差,不妨设总体的方差为σ2,则222211231111117()=()()()4936493618Var Var x Var x Var x μσσσσ∧++=++=222221231111111()=()()()9999993Var Var x Var x Var x μσσσσ∧++=++=222231231141141()=()()()36369363692Var Var x Var x Var x μσσσσ∧++=++=不难看出,从而的有效性最差.123()<()<()Var Var Var μμμ∧∧∧3μ∧由此可推测。
当用样本的凸组合估计总体均值时,样本均值是最有效的。
1ni ii a x =∑x 2.x 1,x 2,…,x n 是来自Exp(λ)的样本,已知为1/λ的无偏估计,试说明1/是x x 否为λ的无偏估计.解:因为x 1,x 2,…,x n 服从Exp(λ),所以y =~Ga (n ,λ),相应的密度函数1ni i x =∑为1()exp()y 0()n n p y n y y n λλλ-=->Γ,,,于是20(1/)e y ()n n y E y yn λλ∞--=Γ⎰d所以,.即不是λ的无偏估计,但它是λ的渐近无偏估计,经修偏,是λ的无偏估计.3.设是参数θ的无偏估计,且有,试证不是θ2的无偏估计.证:由方差的定义可知,由于是参数θ的无偏估计,即.因而所以不是θ2的无偏估计.4.设总体,是来自该总体的一个样本.试确定常数c 使为σ2的无偏估计.解:由于总体,这给出,于是若要使为σ2的无偏估计,即,这给出5.设总体为,为样本,证明样本均值和样本中程都是θ的无偏估计,并比较它们的有效性.解:由总体,得,,因而,这首先说明样本均值是θ的无偏估计,且为求样本中程的均值与方差,注意到,令则由于,故,从而这就证明了样本中程是θ的无偏估计.又注意到(参见第五章5.3节习题33)所以从而于是在n>2时,,这说明作为0的无偏估计,在n>2时,样本中程比样本均值有效.6.设x 1,x2,x3服从均匀分布,试证及都是θ的无偏估计量,哪个更有效?证:由可知x(1),x(3)的密度函数分别为从而故,由知两者均为θ的无偏估计.又可算得,从而故,即更有效.事实上,这里x(3)是充分统计量,这个结果与充分性原则是一致的.7.设从均值为μ,方差为的总体中,分别抽取容量为n1和n2的两独立样本,和分别是这两个样本的均值.试证,对于任意常数a,b(a+b=1),都是μ的无偏估计,并确定常数a,b使Var(Y)达到最小.证:由于和是容量分别为n1和n2的两独立样本的均值,故,,,因而这证明了是μ的无偏估计.又由a+b=1知,,从而由求导知,当时,Var(Y)达到最小,此时这个结果表明,来自同一总体的两个容量为n1和n2的样本的合样本(样本量为n1+n2)的均值是线性无偏估计类中方差最小的.8.设总体X的均值为μ,方差为σ2,是来自该总体的一个样本,为μ的任一凸线性无偏估计量.证明:与T的相关系数为.证:由于为μ的线性无偏估计量,故,其中,于是而,故有,从而9.设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,k).用这些仪器独立地对某一物理量θ各观察一次,分别得到设仪器都没有系统误差.问应取何值,方能使成为θ的无偏估计,且方差达到最小?解:若要使为θ的无偏估计,即则必须有,此时,。
参数估计的方法

参数估计的方法
1 参数估计的概念
参数估计(Parameter Estimation)是指基于样本观测数据,构
建统计模型,用来估计未观测总体参数得出最有效的模型解释参数结
果的过程。
参数估计是统计学里研究重要问题的一个根本步骤,它先
假设一个统计模型,然后求解模型的参数,从而最能满足观测数据的
条件。
2 参数估计的方法
1.参数最大似然估计(Maximum Likelihood Estimation):最大
似然估计的基础是独立,同分布的随机变量的概率密度函数或概率分
布函数必须可知。
该方法下只需估计一个参数,则把样本数据的似然
函数定义为θ;如果需要估计多个参数,则把样本数据的似然函数定
义为$L(θ)=\prod\limits_i^nf(x_i;θ)$,其中f(x;θ)是关于未知
参数θ 的概率密度函数。
2.方差最小估计(Minimum Variance Estimation):该方法的基
本思想是选择一种损失函数,把参数估计估计结果误差的.期望最小化,从而得出最优参数估计结果。
3.贝叶斯估计(Bayesian Estimation):基于先验知识,建模到
后验知识的过程,利用样本信息改进模型参数和变量之间关系的方法。
3 参数估计的作用
参数估计是统计学里研究重要问题的一个根本步骤,它可以帮助我们识别变量之间的相互影响,从而更好的预测未来的发展趋势,决定合适的策略。
在企业战略决策,市场营销,生产服务运筹控制,经济营商模型分析决策管理,投资事前风险分析,社会环境分析等方面都有重要的作用。
参数估计的一般步骤

参数估计的一般步骤
参数估计是通过从总体中抽取一个样本,利用样本数据对总体未知参数进行估计的过程。
参数估计的一般步骤如下:
1. 确定总体参数:首先需要明确要估计的总体参数,例如总体均值、总体比例、总体方差等。
2. 选择样本:从总体中抽取一个合适的样本。
样本的选择应该具有代表性,能够反映总体的特征。
3. 收集样本数据:对选择的样本进行观测或测量,收集样本数据。
4. 选择估计方法:根据所收集的样本数据和要估计的总体参数,选择合适的估计方法。
常见的估计方法包括点估计和区间估计。
5. 计算估计量:使用所选择的估计方法,根据样本数据计算出估计量。
估计量是用于估计总体参数的统计量。
6. 评估估计量的性质:评估所计算出的估计量的性质,如无偏性、有效性、一致性等。
这些性质可以帮助判断估计量的优劣。
7. 计算置信区间或置信水平:如果进行的是区间估计,根据估计量和置信水平,计算出总体参数的置信区间。
8. 解释估计结果:根据估计量或置信区间,对总体参数进行推断和解释。
同时,需要考虑估计结果的统计显著性和实际意义。
9. 分析误差和不确定性:考虑样本大小、抽样方法等因素对估计结果的影响,分析可能存在的误差和不确定性。
10. 结论和应用:根据参数估计的结果,得出结论并将其应用于实际问题中,例如进行决策、预测或进一步的研究。
需要注意的是,参数估计的具体步骤和方法会根据不同的统计问题和数据类型而有所差异。
在进行参数估计时,应根据实际情况选择合适的方法,并结合统计学原理和专业知识进行分析和解释。
6-5非正态总体参数的区间估计

2 a n u ,
2
2 b (2nX u ) ,
2
总体服从指数分布 未知参数 的置信水平为1 的置信区间是 1 1 1 1 ˆ ˆ ( 1 , 2 ) ( (1 u ) , (1 u ) ).
X n
2
c nX 2 .
X
n
2
概率论与数理统计教程(第四版)
[例2] 从一批电子元件中,抽取 50个样品,测得它们 设电子元件的使用寿命 的使用寿命的均值为1200小时, 服从指数分布e( ) , 求未知参数 的置信水平为 0.99 的置信区间.
解:由题设有 n 50 , x 1200. 已给置信水平1 0.99 ,
0.01 , 查附表得 u2 u0.005 t0.005 () 2.58. 由此得
目录
上一页
下一页
返回
结束
[例1]从一批产品中抽取 200个样品, 发现其中 9 个次品, 求这批产品的次品率 p 的置信水平为90%的置信区间. 解: 设随机变量 0 , 若取得正品; X 1 , 若取得次品. p ( x ; p ) p x (1 p )1 x , 概率函数为 则 X 服从 "0 1" 分布, x 0或1, 其中 p 是这批产品的次品率. 按题意, 样本容量 n 200 ,样本观测值 x1 , x2 ,, x200 中恰有 9 个 1 与 191个 0 , 所以 1 200 9 x xi 200 0.045. 200 i 1
则未知参数 p 的置信水平为1 的置信区间是
b b 2 4ac b b 2 4ac ( p1 , p2 ) ( ˆ ˆ , ). 2a 2a
概率统计简明教程 第七章 参数估计

222第七章 参数估计统计推断是数理统计的重要内容,它是指在总体的分布完全未知或形式已知而参数未知的情况下,通过抽取样本对总体的分布或性质作出推断.大致可以分为估计问题和假设检验问题两大类. 本章重点介绍参数估计问题,即根据样本对总体分布中所包含的未知参数或总体的数字特征作出数值上的估计.主要内容包括:点估计和区间估计.§1 点估计概述1.1 点估计在许多实际问题中,可以认为总体X 分布的形式是已知的,它只依赖于一个或几个未知参数.如果能对分布中所含的参数作出推断,那么就可以确定总体分布.例如, 已知总体服从正态分布(),1N μ,μ未知,我们的目的是通过样本提供的信息对未知参数μ作出估计,也就是借助于样本对总体作出推断,这类问题就是参数估计问题.点估计问题的一般提法是:设总体X 的分布函数();F x θ类型已知,θ为未知参数,它的可能取值范围Θ是已知的,称Θ为参数空间,即θ∈Θ.这样,我们有一族分布函数(){};:F x θθ∈Θ.如果(){}2;,:,0F x μσμσ-∞<<+∞>是正态分布的分布函数族,其中()2,θμσ=.设12,,,n XX X 是X 的一个样本, 12,,,n x x x 为相应的样本值.我们构造一个统计量()12,,,n X X X θ ,以()12,,,n X X X θ 的值()12,,,n x x x θ 作为参数θ的真实值的估计.习惯上,称223()12,,,n X X X θ 为参数θ的估计量()12ˆ,,,n X X X θ ,称()12,,,n x x x θ 为θ的估计值为()12ˆ,,,n x x x θ .在不致混淆的情况下,估计量与估计值都简称为估计,简记为ˆθ.容易看出,对于不同的样本值来说,由同一个估计量得出的估计值一般是不相同的.在几何上一个数值是数轴上的一个点,用θ的估计值ˆθ作为θ的近似值就像用一个点来估计θ,故称为点估计.如果总体分布中含有k 个未知参数1,,k θθ ,则需要构造k 个统计量()()11212ˆˆ,,,,,,,,n k n X X X X X X θθ 分别作为1,,k θθ 的估计量.例1.1 设总体X 服从参数为λ的泊松分布, 0λ>为未知参数,现有以下样本值3,4,1,5,6,3,8,7,2,0,1,5,7,9,8试求未知参数λ的估计值.解:由于()E X λ=,自然地想到用样本均值11ni i X X n==∑作为λ的估计量,利用样本值得()1341563872015798 4.615x =++++++++++++++=.这样,我们获得了参数λ的估计量ˆX λ=与估计值ˆ 4.6x λ==. 在本例中,对于总体X 的一个样本12,,,n X X X ,()1i X i n ≤≤亦可以作为λ的估计量;同样地,()1X 和()n X 都应该可作为λ的估计量.这样,对于同一个参数,可以有许多不同的点估计;在这些估计中,我们自然地希望挑选一个最“优”的点估计.因此,有必要建立评价估计量优劣的标准.下面介绍几个常用的标准:无偏性、有效性和一致性.1.2 评价估计量的标准1. 无偏性224对于不同的样本值来说,由估计量()12ˆˆ,,,n X X X θθ= 得出的估计值一般是不相同的,这些估计只是在参数θ真实值的两旁随机地摆动.要确定估计量ˆθ的好坏,要求某一次抽样所得的估计值等于参数θ的真实值是没有意义的,但我们希望()ˆE θθ=,这是估计量所应该具有的一种良好性质,称之为无偏性,它是衡量一个估计量好坏的一个标准.定义 1.1 如果未知参数θ的估计量()12ˆˆ,,,n X X X θθ= 的数学期望()ˆE θ存在,且对任意θ∈Θ,都有()ˆE θθ= (1.1) 则称ˆθ是θ的无偏估计量.在科学技术中,称()ˆE θθ-是以ˆθ作为θ估计的系统误差. 无偏估计的实际意义就是无系统误差.例 1.2 设12,,,n X X X 是总体X 的一个样本, 总体X 的k 阶原点矩记为()kk E X μ=,样本原点k 阶矩记为11nkk i i A X n==∑,证明:k A 是k μ的无偏估计量.证明: 12,,,n X X X 是总体X 的一个样本,即12,,,n X X X 与X同分布,因此 ()(),1,2,,k ki k E X E X i n μ=== .即 11()()nk k ik i E A E X nμ===∑ .例1.3 设总体X 的均值μ和方差2σ都存在,证明:未修正样本方差2252211()nii S X X n==-∑不是2σ的无偏估计量.证明: 在第六章第二节中,我们证明了()22E S σ=,因此,修正的样本方差2S =211()1nii X X n =--∑是2σ的无偏估计量,也就是说20S 不是2σ的无偏估计量.我们以后一般取2S 作为2σ的估计量.例 1.4 设总体()X P λ ,12,,,n X X X 是X 的一个样本, 2S 为样本方差,01α≤≤,证明:()21L X S αα=+-是参数λ的无偏估计量.证明:易见()()()2,()E X E X E S D X λλ====,()()()()()211,E L E X E Sαααλαλλ=+-=+-=因此,估计量()21L X S αα=+-是λ的无偏估计.2. 有效性同一个参数可以有多个无偏估计量,那么用哪一个为好呢?设参数θ有两个无偏估计量1ˆθ和2ˆθ,在样本容量n 相同的情况下, 1ˆθ的观测值都集中在θ的真值附近,而2ˆθ的观测值较远离θ的真值,即1ˆθ的方差较2ˆθ的方差小,我们认为1ˆθ较2ˆθ好,由此有如下的定义:定义 1.2 设()1112ˆˆ,,,n X X X θθ= 和()2212ˆˆ,,,n X X X θθ= 都是参数θ的无偏估计量,若对任意θ∈Θ,都有12ˆˆ()()D D θθ≤ (1.2)226且至少存在一个0θ∈Θ使得上式中的不等号成立,则称1ˆθ较2ˆθ有效.例1.5 设12,,,n X X X 是总体X 的一个样本, X 的均值 μ和方差2σ都存在,且20σ>,记11ˆkk i i X kθ==∑,1,,k n = .易见,111ˆ()()kk i i E E X k kkθμμ===⋅=∑,1,,k n = .因此, 这些估计量都是μ的无偏估计量.由于 2222111ˆ()()kk ii D D Xk kkkσθσ===⋅=∑,从而ˆn X θ=最有效.3.一致性无偏性和有效性都是在假设样本容量n 固定的条件下讨论的.由于估计量是样本的函数,它依赖样本容量n ,自然地,我们希望一个好的估计量,当n 越来越大时,它与参数的真值几乎一致,这就是估计量的一致性或称之为相合性.定义1.3 设()12ˆˆ,,,n n X X X θθ= 为参数θ的一个估计量, n 为样本容量,如果对任意θ∈Θ,ˆn θ依概率收敛于θ,即对任意0ε>,有{}ˆlim 1n n P θθε→∞-<= (1.3)则称ˆn θ为参数θ的一致估计量.例 1.6 设总体X 的均值μ和方差2σ都存在,证明:样本均值11ni i X X n==∑是μ的一致估计量.证明:由切比雪夫大数定律可知,对任意0ε>,有22711lim 1ni n i P X nμε→∞=⎧⎫-<=⎨⎬⎩⎭∑因此,11ni i X X n==∑是μ的一致估计量.例1.7 设总体()2,X N μσ ,12,,,n X X X 是总体X 的一个样本,证明: 样本方差2S =211()1nii X X n =--∑是2σ的一致估计量.证明:由于()22211n S n χσ-- ,有 2212(1)n DS n σ-⎡⎤=-⎢⎥⎣⎦,因此, 22422212()11n D S D S n n σσσ⎛⎫-⎡⎤==⎪⎢⎥--⎣⎦⎝⎭.由切比雪夫不等式可知,对任意0ε>,有{}{}42222222120()()(1)P S E S P S D S n σεσεεε≤-≥=-≥≤=-.这样 {}22lim ()0n P S E S ε→∞-≥=,即 {}22lim 1n P S σε→∞-<=, 2S是2σ的一致估计量.§2 矩估计与最大似然估计本节我们介绍两种常用的构造估计量的方法,即矩估计法和最大似然估计法.2.1矩估计法228许多总体的未知参数与总体矩之间存在着函数关系,如在泊松总体()P λ中,它的参数λ就是总体的一阶矩,又如在正态总体()2,X N μσ中(),E X μ=()()222E XE X σ=-⎡⎤⎣⎦.若总体矩存在,我们很自然地想到用样本矩来估计相应的总体矩,从而可以获得未知参数的估计量,这种方法称之为矩估计法.设12,,,n X X X 是总体X 的一个样本,若X 是连续型随机变量,则其概率密度函数为();f x θ;若X 是离散型随机变量,则其分布律为();p x θ,()12,,,k θθθθ= ,θ∈Θ.假设总体X 的k 阶原点矩存在,记()ll E Xμ=,11nlli i AX n==∑,()1,2,,l k = .由辛钦大数定律可知,l A 依概率收敛于l μ,即可以用样本矩替换同阶的总体矩,我们称之为替换原则.替换原则是矩估计法的思想实质,这种方法只需假设总体矩存在,无需知道总体的分布类型.由于l μ依赖于参数12,,,k θθθ ,可设 1121212212(,,,),(,,,),(,,,).k k k k k μθθθμμθθθμμθθθμ=⎧⎪=⎪⎨⎪⎪=⎩将此方程组的解记为1112221212(,,,),(,,,),(,,,).k k kk k θθμμμθθμμμθθμμμ=⎧⎪=⎪⎨⎪⎪=⎩用l A 替换l μ()1,2,,l k = ,得到2291112221212ˆ(,,,),ˆ(,,,),ˆ(,,,).k k k k k A A A A A A A A A θθθθθθ⎧=⎪=⎪⎨⎪⎪=⎩并把它们分别作为参数12,,,k θθθ 的估计量,称之为矩估计量, 矩估计量的观测值称为矩估计值.例2.1 设总体X 的概率密度函数为()()101,;0x x f x θθθ⎧+<<=⎨⎩,,其他.1,θ>-求参数θ的矩估计量.解: ()()111011d 2E X xx θθμθθ++==+=+⎰,解得 11211μθμ-=-,因此, θ的矩估计量为 21ˆ1X Xθ-=-.如果我们获得一组样本观测值,其样本均值为0.65x =,则参数θ的矩估计值为20.651ˆ0.8610.65θ⨯-==-.例2.2 设总体X 的均值μ和方差2σ都存在,且20σ>,又设12,,,n X X X 是总体X 的一个样本,求μ和2σ的矩估计量.解:注意到()()()22E XD XE X =+⎡⎤⎣⎦,由方程组()()12222,.E X E X μμμσμ==⎧⎪⎨==+⎪⎩230解得1μμ=,2221σμμ=-.因此,μ和2σ的矩估计量分别为1ˆA X μ==, 22222211111()nniii i A A X XX X nnσ===-=-=-∑∑.此例表明, 总体X 均值和方差的矩估计量分别是样本均值与样本的二阶中心矩,而不依赖总体X 的分布.2.2 最大似然估计法由于矩估计法只需假设总体矩存在,没有充分利用总体分布提供的信息,为获得更理想的估计,需要引入最大似然估计法,它的一个直观想法是某个随机试验有若干个结果,,A B C 等,如果在一次试验中,出现结果A ,则认为事件A 发生的概率是最大的.例如,一只袋子里有黑白两种外形相同的球,这两种球的数量不详,只知道它们占总数的比例:一种球为10%,另一种球占90%.今从中任抽取一只球,取得白球,一种比较合理的想法是认为袋子里白球的数量较多, 占总数的90%,这就是最大似然估计法的基本思想.我们通过下面的例子说明最大似然估计法的原理.某工厂加工一批产品,现需要估计其不合格品率p ,今从中抽取一个容量为n 的样本值12,,,n x x x ,令1,0,i i X i ⎧=⎨⎩第次取到次品第次取到正品1,2,,i n = ,总体X 的分布律为()()1;1,0,1xxp x p pp x -=-=.取得样本获得观测值的概率为{}()()()1111111122,,,111==---====--∑∑=- nnnniii i x x x x n n x n x P X x X x X x pp pp pp ,()0,11,2,,i x i n == .显然{}1122,,,n n P X x X x X x === 是p 的函231数,记为()L p ,即()()111nnii i i x n x L p pp ==-∑∑=-.由于在一次取样中,样本值12,,,n x x x 出现,我们认为概率()L p 是最大的,选取使得()L p 达到最大的ˆp 作为参数p 的一个估计值,即()(){}ˆm ax p L pL p ∈Θ=.由微积分中求极大点的方法, p 可从方程()d 0d L p p=求出,又由于ln x 是x 的单调增函数,()ln L p 与()L p 在同一个p 处取极大值,p 也可从方程()d ln L p 0dp=求出,()()()11ln ln ln 1nni i i i L p x p n x p ===⋅+--∑∑,()11d ln 0d 1nniii i x n x L p ppp==-=-=-∑∑,解得: 1ˆn ii x pn==∑.容易验证, 1ˆn ii x pn==∑能使得()L p 达到最大,称之为参数p 的最大似然估计值,其对应的统计量称为参数p 的最大似然估计量.下面我们讨论最大似然估计法.设12,,,n X X X 是取自总体X 的一个样本, 12,,,n x x x 为样本值.如果总体X 是离散型的,其分布律为();p x θ,θ为未知参数,θ∈Θ. 样本12,,,n X X X 的联合分布律为232{}()11221,,,;nn n ii P X x X x X x p x θ=====∏ ,容易看出,当样本值12,,,n x x x 固定时上式是参数θ的函数,当θ取固定值时,上式是事件{}1122,,,n n X x X x X x === 发生的概率,记()()()121;,,,;nn ii L L x x x p x θθθ===∏ , (2.1)并称()L θ为样本的似然函数.若样本值12,,,n x x x 的函数()12ˆˆ,,,n x x x θθ=∈Θ 满足()(){}ˆm ax L L θθθ∈Θ=, (2.2)则称()12ˆˆ,,,n x x x θθ= 为θ的最大似然估计值,其相应的统计量()12ˆ,,,n X X X θ 称为θ的最大似然估计量.如果总体X 是连续型的,X 的概率密度为();f x θ,θ为未知参数,θ∈Θ.随机点12(,,,)n X X X 落在点12(,,,)n x x x 的边长为12,,,n x x x ∆∆∆ 的邻域内的概率近似为()1;ni i i fx x θ=∆∏.我们寻找使()1;ni i i f x x θ=∆∏达到最大的()12ˆˆ,,,n x x x θθ= ,但1ni i x =∆∏与它无关,故可取样本的似然函数为()()()121;,,,;nn ii L L x x x f x θθθ===∏ . (2.3)类似地, 若样本值12,,,n x x x 的函数()12ˆˆ,,,n x x x θθ=∈Θ 满足233()(){}ˆm ax L L θθθ∈Θ=则称()12ˆˆ,,,n x x x θθ= 为θ的最大似然估计值,其相应的统计量()12ˆ,,,n X X X θ 称为θ的最大似然估计量.获得样本的似然函数后,为求出未知参数θ的最大似然估计量,可以利用微积分中求函数极值的方法.假设();f x θ或();p x θ关于θ可微,由下面的似然方程()d 0d L θθ=,或对数似然方程()d ln 0d L θθ=,可求出最大似然估计θ.例2.3 设总体(),X P λ 求λ的最大似然估计量.解:似然函数为 ()1!ix ni i eL x λλλ-==∏,对数似然函数为 ()11ln ln ln(!)nni i i i L x n x λλλ===--∑∑ ,令()1d ln 0d nii xL n λλλ==-=∑,求得λ的最大似然估计值为 11nii xx n λ===∑,最大似然估计量为 11ni i X X nλ===∑.234例2.4 总体(),X E λ 求λ的最大似然估计量. 解: 总体X 的概率密度为(),0,0,x e x f x x λλλ-⎧>=⎨≤⎩.似然函数为 ()11niii nx x ni L eeλλλλλ=-=∑==∏,对数似然函数为()1ln ln ni i L n x λλλ==-∑,令()d ln 0d L λλ=,有10nii xnλ=-=∑,因此,λ的最大似然估计值为 11nii nxxλ===∑,最大似然估计量为 1Xλ=.假设总体的分布中含有k 个未知参数12,,,k θθθ ,类似地,写出似然函数()12,,,k L L θθθ= ,求解方程组()01,2,,iL i k θ∂==∂或()ln 01,2,,iL i k θ∂==∂可获得未知参数12,,,k θθθ 的最大似然估计.例2.5 总体()2,,X N μσ 求2,μσ的最大似然估计量.解: 似然函数为 ()()22212211,exp ()22n i n i L x μσμσπσ=⎧⎫=--⎨⎬⎩⎭∑235对数似然函数为()()222211ln ,ln 2ln ()222nii n nL xμσπσμσ==----∑分别求关于2μσ和的偏导数,得以下对数似然方程组()()221222241ln ,1()0,ln ,1()0.22n ii nii L xL n xμσμμσμσμσσσ==⎧∂⎪=-=∂⎪⎨∂⎪=-+-=⎪∂⎩∑∑解上述方程组得2μσ和的最大似然估计值分别为11ˆnii xx nμ===∑ ,2211(),nii x x nσ==-∑因此2μσ和的最大似然估计量分别为ˆX μ=和 2211()nii XX nσ==-∑.最大似然估计具有一个性质:如果ˆθ为总体X 未知参数θ的最大似然估计,函数()μμθ=具有单值反函数()θθμ=,则()ˆˆμμθ=为()μμθ=的最大似然估计.利用此性质,我们可获得例2.5中σ的最大似然估计量为ˆσ==例 2.6 设总体X 服从[]0,θ上的均匀分布,0θ>,求θ的最大似然估计值.解:记()()()()111min ,,,max ,,n n n x x x x x x == .236似然函数为 ()()()11,0,0,n n x x L θθθ⎧<<⎪=⎨⎪⎩其他注意到对于()()10,n x x θ≤≤有 ()()110nnn L x θθ<=≤.因此,取θ的最大似然估计值为()ˆn x θ=.最后我们给出求最大似然估计的一般步骤(有时候它并不适用,如上例):1、写出似然函数)(θL ,即由总体分布导出样本的联合分布律(或联合概率密度);2、令()d 0d L θθ=或()01,2,,iL i k θ∂==∂ ,求出驻点(常转化为求对数似然函数ln ()L θ的驻点:令()d ln 0d L θθ=或()ln 01,2,,iL i k θ∂==∂ );3、求出最大值点;4、求得参数的最大似然估计.§3 区间估计参数的点估计实质是用一个估计值来估计未知参数θ的真值,但估计值只是θ的一个近似值,它本身既没有反映这种近似的精度又没有给出误差的范围,因此,在实际问题的应用中意义有限.例如在一大批产品中,任意取出60件产品,经检验有3件为次品,按点估计的方法,我们获得次品率p的一个估计值为ˆp=0.05,但ˆp 与次品率p 的真值是有误差的,这个误差有237多大,点估计无法给予回答.我们希望给出一个区间()ˆˆ,pp -∆+∆,用它来估计次品率p 的真值,这样就产生了误差∆的大小及用区间()ˆˆ,pp -∆+∆估计次品率p 真值的可靠程度的问题.区间估计解决了上述问题,我们将介绍在区间估计理论中被广泛接受的置信区间.3.1 置信区间定义3.1设1,,n X X 是取自总体X 的一个样本, θ为总体分布中所含的未知参数, θ∈Θ.对于给定的α,01α<<,若存在两个统计量()1,,n X X θθ= 和()1,,n X X θθ= ,使得{}1P θθθα<<=- (3.1)则称随机区间(),θθ是θ的臵信水平为1α-的臵信区间,θ和θ分别称为θ的臵信下限和臵信上限.定义3.1表明置信区间(),θθ包含θ的真值的概率为1α-,它的两个端点是只依赖12,,,n X X X 的随机变量.设12,,,n x x x 为一个样本值,我们获得一个普通的区间()()1212(,,,,,,,)n n x x x x x x θθ 称之为置信区间(),θθ的一个实现,在不致引起误解的情形下,也简称为置信区间.对于一个实现,只有两种可能, 它要么包含θ的真值,要么不包含θ的真值.在重复取样下(各次取样的样本容量均为n ),我们获得许多不同的实现,根据伯努利大数定律,这些不同的实现中大约有100(1α-)%的实现包含θ的真值,而有100α%的实现不包含θ的真值.例 3.1 已知某产品的重量(单位:克)()2,X N μσ,其中8σ=,μ未知,现从中随机抽取9个样品,其平均重量为575.2x =克,试238求该产品的均值μ的臵信水平为95%的臵信区间.解:样本均值11ni i X X n==∑是未知参数μ的较优的点估计,同时有2,X N n σμ⎛⎫ ⎪⎝⎭ , 或()0,1N . 因此,我们构造一个枢轴量U =,选取区间()/2/2,u u αα-,使得/2/21P u u ααα⎧⎫-<<=-⎨⎬⎩⎭,即/2/21P X u X u ααμα⎧-<<+=-⎨⎩.这样我们得到μ的置信水平为1α-的置信区间为/2/2X u X u αα⎛-+ ⎝.由575.2x =,9n =,8σ=,1α-=95%,0.05α=,/2u α=1.96算得/2575.2 1.96569.976x u α-=-⨯=/2575.2 1.96580.424x u α+=+⨯=所以,μ的一个置信区间为()569.976,580.424.从此例可以看出, 寻求未知参数θ的置信区间的步骤为:(1) 选取θ的一个较优的点估计()12ˆˆ,,,n X X X θθ= ,一般是通过239最大似然估计法获得.(2) 以()1ˆˆ,,n X X θθ= 为基础, 寻求未知参数θ的一个枢轴量W ,即()1,,;n W W X X θ= 且W 的分布已知.(3)对于给定的置信水平(与θ无关)1α-,确定两个分位点,a b ,使得(){}1,,;1n P a W X X b θα<<=- .,a b 可通过(){}(){}11,,;,,;2n n P WX X a P W X X b αθθ≤=≥=确定.(4)求出θ的置信区间.3.2 单个正态总体均值与方差的置信区间以下我们将讨论正态总体的均值与方差的置信区间.设()2,X N μσ,12,,,n XX X 是取自总体X 的一个样本.1. 参数μ的置信区间关于参数μ的置信区间,我们分方差2σ已知和2σ未知两种情形. (1) 方差2σ已知的情形例3.1中,我们已经获得了在方差2σ已知的条件下, μ的置信区间为/2/2X u X u αα⎛-+ ⎝,简记为/2X u α⎛± ⎝.(2) 方差2σ未知的情形由于U =σ,又2S 是2σ的无偏估计量,因此,选取240随机变量X T -=.由第六章定理4.1可知(1)T t n - ,对于给定的置信水平1α-,有/2/2(1)(1)1P t n t n ααα⎧⎫--<<-=-⎨⎬⎩⎭,即/2/2(1)(1)1S S P X t n X t n ααμα⎧--<<+-=-⎨⎩,因此,μ的置信水平为1α-的置信区间为/2/2(1)(1)X t n X t n αα⎛--+- ⎝,(3.2)简记为/2(X t n α⎛±- ⎝. 例3.2 假设轮胎的寿命2(,)X N μσ .为估计它的平均寿命,现随机抽取12只,测得它们的寿命为(单位:万千米)4.68 4.85 4.32 4.85 4.615.02 5.20 4.60 4.58 4.72 4.38 4.70 求μ的臵信水平为0.95的臵信区间.解:12n =, 4.7092,x =20.0615s =,1α-=95%,0.05α=,()0.02511 2.2010t =算得μ的置信水平为0.95的置信区间为(()()0.0250.0251111 4.5516,4.8668x t x t ⎛-+= ⎝.2. 参数2σ的置信区间 (1) 均值μ已知的情形 由于()()2,1,2,,i X N i n μσ= ,即()0,1i X N μσ- ,241所以 ()()2221ni i X n μχσ=-∑.我们选取随机变量()2211ni i X μσ=-∑作为枢轴量, 对于给定的置信水平1α-,有()2221/2/2211()()1ni i P n X n ααχμχασ-=⎧⎫<-<=-⎨⎬⎩⎭∑,即()()2221122/21/21.()()n ni i i i X X P n n ααμμσαχχ==-⎧⎫--⎪⎪⎪⎪<<=-⎨⎬⎪⎪⎪⎪⎩⎭∑∑ 因此,2σ的置信水平为1α-的置信区间为()()221122/21/2,()()nnii i i XXn n ααμμχχ==-⎛⎫-- ⎪⎪ ⎪⎪⎝⎭∑∑. (3.3) 我们也得到σ的置信水平为1α-的置信区间为⎝⎭. (3.4) (2) 均值μ未知的情形 由于()()()2222221111nii n S XXn χχσσ=-=-=-∑ ,选取随机变量2χ作为枢轴量,类似地, 我们得到2σ的置信水平为1α-的置信区间为242()()221122/21/2,(1)(1)nn ii i i X X X X n n ααχχ==-⎛⎫-- ⎪ ⎪-- ⎪ ⎪⎝⎭∑∑,即()()2222/21/211,(1)(1)n S n S n n ααχχ-⎛⎫-- ⎪--⎝⎭, 和σ的置信水平为1α-的置信区间为⎛ ⎝⎭, (3.5) 即⎛ ⎝.例3.3 在例3.2中,求2σ的臵信水平为0.95的臵信区间. 解:12n =, 4.7092,x =20.0615s =,()210.6765n s -=1α-=95%,0.05α=,()20.0251121.920χ=,()20.97511 3.816χ=算得2σ的置信水平为0.95的置信区间为(0.03086,0.17728).3.3 两个正态总体均值差与方差比的置信区间设()211,X N μσ ,()222,Y N μσ ,从总体X 和Y 中,分别独立地取出样本12,,,n X X X 和12,,,m Y Y Y ,样本均值依次记为X 和Y ,样本方差依次记为21S 和22S .1. 设21σ和22σ已知,求12μμ-的置信区间243由第六章定理2.2可知()0,1X Y U N μμ---=.对于给定的置信水平1α-,有/2/21X Y P u u ααμμα⎧⎫⎪⎪---⎪⎪-<<=-⎨⎬⎪⎪⎪⎪⎩⎭,即/212/21,P X Y u X Y u ααμμα⎧⎪--<-<-+=-⎨⎪⎩因此,12μμ-的置信水平为1α-的置信区间为//X Y u X Y u αα⎛---+ ⎝. (3.6) 例3.4 分别从()1,4X N μ ,()2,6Y N μ 中独立地取出样本容量为16和24的两样本,已知16.9x =,15.3y =,求12μμ-的臵信水平为0.95的臵信区间.解:16,24n m ==, 16.9x =,15.3y =,1α-=95%,0.05α=, 214σ=22,6σ=,/20.025 1.96u u α==,因此12μμ-的置信水平为0.95的置信区间为()16.915.3 1.9615.3 1.960.214,2.986⎛--⨯-+⨯= ⎝由此可以认为,在置信水平为0.95的情形下12μμ>.2. 设22212σσσ==未知,求12μμ-的置信区间244记()()22122112wn S m S S n m -+-=+-,由第六章定理4.2可知()2X Y T t n m μμ---=+- .以T 为枢轴量,类似地,我们得到12μμ-的置信水平为1α-的置信区间为()()/2/222X Y t n m S X Y t n m S αα⎛--+--++- ⎝(3.7)例3.5 为了估计磷肥对某农作物增产的作用,现选用20块条件大致相同的地块进行对比试验.其中10块地施磷肥,另外10块地不施磷肥,得到单位面积的产量如下(单位:公斤):施磷肥:620, 570, 650, 600, 630, 580, 570, 600, 600, 580; 不施磷肥:560, 590, 560, 570, 580, 570, 600, 550, 570, 550. 设施磷肥的地块的单位面积的产量()21,X N μσ ,不施磷肥的地块的单位面积的产量()22,Y N μσ ,求12μμ-的臵信水平为0.95的臵信区间.解:10n m ==,1α-=95%,0.05α=,600x =,570y =,2164009s =,2224009s =,()()22122211222w n s m s s n m -+-==+-,0.025(18) 2.1010t =.因此,12μμ-的置信水平为0.95的置信区间为60057022 2.101060057022 2.1010⎛--⨯⨯-+⨯⨯⎝(9.23,50.77)=,即我们可以认为磷肥对此农作物增产有作用.2453. 设1μ和2μ已知,求2122σσ的置信区间因为()()212211ni i X n μχσ=-∑,()()222212mi i Y m μχσ=-∑且样本12,,,n X X X 与样本12,,,m Y Y Y 独立,所以有()2211222121(),()nii mii Xm F F n m n Yμσσμ==-=⋅⋅-∑∑ ,对于给定的置信水平1α-,有(){}1/2/2(,),1P F n m F F n m ααα-<<=-,即()22211111222/221/22211()()111,,(,)()()n ni i i i m m i i i i m X m X P F n m F n m n Y n Y ααμμσασμμ==-==⎧⎫--⎪⎪⎪⎪<<=-⎨⎬⎪⎪--⎪⎪⎩⎭∑∑∑∑因此,2122σσ的置信水平为1α-的置信区间为()22111122/21/22211()()11,,(,)()()n ni i i i m mi i i i m X m X F n m F n m n Y n Y ααμμμμ==-==⎛⎫-- ⎪⎪ ⎪--⎪⎝⎭∑∑∑∑. (3.8) 4.设1μ和2μ未知,求2122σσ的置信区间由于()221222211,1S F F n m Sσσ=⋅-- ,对于给定的置信水平1α-,有246(){}1/2/2(1,1)1,11P F n m F F n m ααα---<<--=-,即()222111222/2221/221111,1(1,1)S S P F n m S F n m S αασασ-⎧⎫⎪⎪⋅<<⋅=-⎨⎬----⎪⎪⎩⎭,从而2122σσ的置信水平为1α-的置信区间为()()221122/221/2211,1,11,1S S F n m S F n m S αα-⎛⎫⋅⋅ ⎪ ⎪----⎝⎭. (3.9) 例 3.6 某车间有甲,乙两台机床加工同类零件,假设此类零件直径服从正态分布.现分别从由甲机床和乙机床加工出的产品中取出5个和6个,进行检查,得其直径数据(单位:毫米)为甲: 5.06, 5.08, 5.03, 5.00, 5.07; 乙: 4.98, 5.03, 4.97, 4.99, 5.02, 4.95; 试求22σσ甲乙的臵信水平为0.95的臵信区间.解: 5,6n m ==,1α-=95%,0.05α=,20.00107,s =甲20.00092,s =乙()0.0254,57.39,F =于()()0.9750.025114,50.10685,49.36F F ===,因此22σσ甲乙的置信水平为0.95的置信区间为()0.0010710.001071,0.15738,10.88990.000927.390.000920.1068⎛⎫⋅⋅= ⎪⎝⎭.3.4 单侧置信区间前面讨论的参数θ的置信区间(),θθ是双侧置信区间,即有置信上限247θ和置信下限θ.有时在一些实际问题中,我们只关心参数θ的上限或下限,因此有必要讨论参数θ的单侧置信区间.定义3.2设1,,n X X 是取自总体X 的一个样本, θ为总体分布中所含的未知参数, θ∈Θ.对于给定的α(01α<<),若存在统计量()1,,n X X θθ= 或()1,,n X X θθ= ,使得{}1P θθα>=- (3.10)或{}1P θθα<=- (3.11)则称随机区间(),θ+∞(或(),θ-∞)是θ的臵信水平为1α-的单侧臵信区间,θ称为θ的单侧臵信下限(θ称为θ的单侧臵信上限).求参数θ的单侧置信区间的方法与求θ的置信区间(),θθ的方法是类似的,只需将步骤(3)中的(){}12,,,;n P a W X X X b θ<< 1α=-改为(){}1,,;1n P a W X X θα<=- 或(){}1,,;1n P W X X b θα<=- ,其中,,a b 可通过(){}(){}11,,;,,;n n P W X X a P W X X b θθα≤=≥= 确定.详细的结果看表7.2.例3.7 在例3.2中,求μ的臵信水平为0.95的单侧臵信下限.解:12n =, 4.7092,x =20.0615s =,1α-=95%,0.05α=,()0.0511 1.7960t =算得μ的置信水平为0.95的单侧置信下限为(0.0511 4.5806x t -=.表7.1 正态总体均值,方差的置信区间248表7.2 正态总体均值,方差的单侧置信上、下限249250251习题七( A )1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自X 的一个样本,试求参数p 的矩估计量与极大似然估计量.2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为22,0(;)0,xx f x θθθ⎧<<⎪=⎨⎪⎩其它.其中参数0θ>,求θ的矩估计.3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为⎪⎩⎪⎨⎧≤>=--0,0,0,);(1x x ex x f xαλαλαλ其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计.4、设总体X 服从几何分布 ,10,,2,1,)1()(1<<=-==-p k p p k X P k 试利用样本值n x x x ,,,21 ,求参数p 的矩估计和最大似然估计.5、设总体X 的概率密度为()1;exp ,2x f x σσσ⎧⎫=-⎨⎬⎩⎭0σ>为未知参数, n X X X ,,,21 为总体X 的一样本,求参数σ的最大似然估计.6、证明第5题中σ的最大似然估计量为σ的无偏估计量. 7,、设总体X 的概率密度为()222220;0x x e x f x σσσ-⎧⎪>=⎨⎪⎩,,,其它.,20σ>为未知参数, n X X X ,,,21 为总体X 的一个样本,求参数2σ的的矩估252计量和最大似然估计量.8、设总体),(~2σμN X ,μ已知,σ为未知参数, n X X X ,,,21 为X 的一个样本,∑=∧-=ni i X c 1||μσ, 求参数c ,使∧σ为σ的无偏估计.9、设θˆ是参数θ的无偏估计量,且有0)ˆ(>θD ,试证22)ˆ(ˆθθ=不是2θ的无偏估计量.10、设总体),(~2σμN X ,321,,X X X 是来自X 的样本,试证:估计量32112110351ˆX X X ++=μ;32121254131ˆX XX ++=μ;3213216131ˆX XX ++=μ都是μ的无偏估计,并指出它们中哪一个最有效.11,、设12,,,n X X X 是总体()20,X N σ 的一个样本,20σ>,证明:211ni i X n=∑是2σ的相合估计量.12、设总体X 的数学期望为μ,方差为2σ,分别抽取容量为1n 和2n 的两个独立样本,1X ,2X 分别为两样本均值,试证明:如果,a b 满足1a b +=,则12Y aX bX =+是μ的无偏估计量,并确定,a b ,使得()D Y最小.13、设12,,,n X X X 是总体X 的一个样本, X 的概率密度为();f x θ,0θ>,未知,已知()222nXn χθ,试求θ的置信水平为1α-的置信区间.14、从大批彩色显像管中随机抽取100只,其平均寿命为10000小时,253可以认为显像管的寿命X 服从正态分布.已知均方差40=σ小时,在置信水平0.95下求出这批显像管平均寿命的置信区间.15、设随机地调查26年投资的年利润率(%),得样本标准差(%)15=S ,设投资的年利润率X 服从正态分布,求它的方差的区间估计(置信水平为0.95).16,、从一批钉子中抽取16枚,测得其长度为(单位:厘米)2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10, 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11.设钉子的长度X 服从正态分布,试求总体均值μ的置信水平为0.90的置信区间.17、生产一个零件所需时间(单位:秒)),(~2σμN X ,观察25个零件的生产时间得5.5=x ,73.1=s .试求μ和2σ的置信水平为0.95的置信区间.18、产品的某一指标),(~2σμN X ,已知04.0=σ,μ未知.现从这批产品中抽取n 只对该指标进行测定,问n 需要多大,才能以95%的可靠性保证μ的置信区间长度不大于0.01?19、设A 和B 两批导线是用不同工艺生产的,今随机地从每批导线中抽取5根测量其电阻,算得721007.1-⨯=A s ,62103.5-⨯=B s ,若A 批导线的电阻服从),(211σμN ,B 批导线的电阻服从),(222σμN ,求2221σσ的置信水平为0.90的置信区间.20,、从甲乙两个蓄电池厂的产品中分别抽取6个产品,测得蓄电池的容量(A.h)如下:甲厂 140 , 138 , 143 , 141 , 144 , 137;乙厂135 , 140 , 142 , 136 , 138 , 140设蓄电池的容量服从正态分布,且方差相等,求两个工厂生产的蓄电池的容量均值差的95%置信区间.( B )1、设总体X 的概率分别为254其中102θθ⎛⎫<<⎪⎝⎭是未知参数,利用总体X 的如下样本值: 3, 1, 3, 0, 3, 1, 2, 3 求θ的矩估计值和最大似然估计值.2、设()111ˆˆ ,,n X X θθ= 和()221ˆˆ,,n X X θθ= 是参数θ的两个相 互独立的无偏估计量,且方差()()12ˆˆ2D D θθ=,试确定常数,a b ,使得12ˆˆa b θθ+是θ的无偏估计量,且在一切这样的线性估计类中方差最小.3、在测量反应时间中,一心理学家估计的标准差为0.05秒,为了以0.95的置信水平使他对平均反应时间的估计误差不超过0.01秒,应取多大的样本容量.【提供者:路磊】。
origin非线性参数估计教程

自定义函数拟合这方面的资料比较多;这里还是详细跟你说一下:
1. 自定义函数的建立
a.首先打开拟合功能窗口:
向左转|向右转
b.建立自定义拟合函数:①~⑤
向左转|向右转
进入编译窗口后;点击compile
向左转|向右转
2.调用函数
a.输入你的数据;XY形式;选中数据;打开非线性拟合窗口向左转|向右转
a.找到自定义函数位置
向左转|向右转
c.设置参数初始值
向左转|向右转
比如a的值大概是47左右x=0时y=47.498;其他两个值大概设置一下;估计1不行;拟合不成功是可以自己多修改
d.拟合
向左转|向右转
e.查看结果
向左转|向右转
在数据表的后边会有拟合数据表根据拟合时的设置不同;位置也不同f.拟合结果下部有拟合图片
向左转|向右转。
电力系统中的线路参数估计方法教程

电力系统中的线路参数估计方法教程在电力系统中,线路参数估计是一项重要的任务,它能够帮助电力工程师更好地了解电网的运行状态和性能。
电力线路的参数包括电阻、电感和电容等,它们的准确估计对于电力系统的稳定运行至关重要。
本文将介绍线路参数估计的基本概念、常用方法以及应用领域。
一、线路参数估计的基本概念线路参数估计是指通过测量或其他手段,对电力线路中的电阻、电感和电容等参数进行估计和计算的过程。
这些参数能够准确反映线路的特性和性能,对电网的稳定性、电能传输能力以及故障检测与排除等方面起着重要的作用。
线路参数估计的基本原理是基于线路的电压和电流之间的关系进行计算。
通过测量电流和电压的大小、相位差以及频率等信息,可以建立电压和电流之间的数学模型,从而推导出线路的参数。
二、线路参数估计的常用方法1. 滑动窗口最小二乘法(SWLS)滑动窗口最小二乘法(SWLS)是一种常用的线路参数估计方法。
它基于最小二乘法的思想,通过将测量数据划分成滑动窗口的形式,计算出每个窗口内的线路参数估计值。
随着窗口的滑动,可以得到连续的线路参数估计结果,从而对线路的特性进行准确的描述。
2. 卡尔曼滤波法(KF)卡尔曼滤波法(KF)是一种基于状态估计的线路参数估计方法。
它采用递推的方式,通过将当前时刻的状态估计和测量结果进行更新,得到下一时刻的状态估计。
卡尔曼滤波法能够有效地利用历史数据和测量结果,对线路参数进行实时的估计和修正,提高了估计的精度和稳定性。
3. 灰色系统理论(GST)灰色系统理论(GST)是一种基于数据分析的线路参数估计方法。
它利用有限的历史数据,通过建立灰色模型和灰色预测方程,对线路参数进行估计。
灰色系统理论具有较强的适应性和预测能力,在电力系统中被广泛应用于线路参数估计和预测分析等方面。
三、线路参数估计的应用领域1. 电力系统故障检测与排除线路参数估计可以帮助电力工程师及时发现和定位电力系统中的故障,例如线路的接地、断线和短路等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录参数估计 ________________________________________________________________________________ 3第一节抽样推断的基本概念与原理 ________________________________________________________ 3一、抽样推断的特点和作用 _____________________________________________________________ 3二、重复抽样与不重复抽样 _____________________________________________________________ 4三、抽样误差与抽样平均误差 ___________________________________________________________ 4四、抽样推断的理论基础 _______________________________________________________________ 6五、参数估计的基本步骤 _______________________________________________________________ 7第二节参数估计中的点估计 ______________________________________________________________ 7一、总体参数的点估计 _________________________________________________________________ 7二、点估计量的优良标准 _______________________________________________________________ 7第三节参数估计中的区间估计 ____________________________________________________________ 8一、参数估计的精度与抽样平均误差计算 _________________________________________________ 8二、参数估计的误差范围与概率度 _______________________________________________________11三、总体参数的区间估计 ______________________________________________________________ 12第四节抽样组织方式及其参数估计 _______________________________________________________ 13一、简单随机抽样 ____________________________________________________________________ 13二、分层抽样 ________________________________________________________________________ 14三、机械抽样 ________________________________________________________________________ 16四、整群抽样 ________________________________________________________________________ 16第五节必要样本容量的确定 _____________________________________________________________ 17一、平均数的必要样本容量 ____________________________________________________________ 17二、成数的必要样本容量 ______________________________________________________________ 18三、影响必要样本容量的因素 __________________________________________________________ 19 习题 ___________________________________________________________________ 错误!未定义书签。
第六章参数估计统计抽样推断是统计学研究的重要内容,它包括两大核心内容:参数估计(Parameter Estimation)和假设检验(Hypothesis Testing)。
两者都是根据样本资料,运用科学的统计理论和方法,参数估计对所要研究的总体参数,进行合乎数理逻辑的推断;假设检验对先前提出的某个陈述,进行检验判断真伪。
2005年中国消费者协会的主题是“健康·维权”。
想象你是中国消费者协会的官员,负责治理缺斤少两的不法行为。
假如你知道可口可乐公司,他们生产的一种瓶装雪碧,包装上标明其净含量是500ml,在市场上随机抽取了50瓶,测得到其平均含量为499.5ml,标准差为2.63ml。
你拿着这些数据可能做两件事:一是你做一个估计:该种包装的雪碧平均含量在498.77-500.23ml之间,然后向消协写份报告;二是你做一个裁决:说“可口可乐公司有欺骗消费者的行为”的证据不足。
前者是参数估计;后者是假设检验。
学习参数估计和假设检验要注意:(1)明确要研究的问题,并给出正确的提法;(2)确定合适的统计量,统计量也可以认为是统计推断模型,不论是参数估计还是假设检验,都要通过统计量来进行,构造的统计量是否可行,直接关系到统计推断的效果,因此要仔细研究和比较统计量的性质;(3)统计参数估计和假设检验是根据样本资料对总体进行认识的,这就要求样本资料必须要有代表性,否则不可能客观反映总体的情况;(4)参数统计与非参数统计方法的主要区别,在于前者在处理问题的时候总是从已确知的分布出发,所以在进行统计参数推断时,要能够掌握统计量的精确分布即统计量的抽样分布;(5)给出推断结果的合理解释。
本章首先集中说明抽样推断中的常用术语,然后主要介绍参数估计的基本原理,点估计和区间估计的方法,以及必要样本容量的测算。
第一节抽样推断的基本概念与原理抽样推断是按照随机性原则,从研究对象中抽取一部分进行观察,并根据所得到的观察数据,对研究对象的数量特征作出具有一定可靠程度的估计和推断,以达到认识总体的一种统计方法。
例如,要检验某种工业产品的质量,我们只需从中抽取一小部分产品进行检验,并用计算出来的合格率来估计全部产品的合格率,或是根据合格率的变化来判断生产线是否出现了异常。
一、抽样推断的特点和作用(一)抽样推断的特点抽样推断方法与其它统计调查方法相比,具有省时、省力、快捷的特点,从而能以较小的代价及时获得总体的有关信息。
1. 根据样本资料对总体的数量特征作出具有一定可靠性的估计和推断。
我们可以用样本的平均数或成数来估计总体的平均数或成数。
抽样调查与全面调查相比,虽然目的一致,都是为了达到对总体数量的认识,但是达到目的的手段和途径完全不同:抽样推断是通过科学的推断达到目的的,全面调查是通过综合汇总达到目的的。
2. 按照随机性原则从全部总体中抽取样本单位。
所谓随机性原则,就是在抽选样本单位时,总体中每一个单位都有相等被抽中的机会,样本单位的抽中与否完全是偶然的。
遵循随机性原则抽取样本是为了保证样本对总体具有充分的代表性,避免人为的误差。
也只有按随机性原则抽样,才能根据样本的数量特征对总体的数量特征进行科学的估计,从而达到推断总体的目的。
3. 抽样推断必然会产生抽样误差,这是抽样推断方法本身所决定的。
抽样误差是可以事先通过一定的资料加以计算的,并在抽样过程中可以采取一定的措施来控制误差的范围,从而保证抽样推断的结果达到一定的可靠程度,但抽样误差是不可能消灭的。
(二)抽样推断的作用1. 某些现象不可能进行全面调查,为了解其全面资料就必须采用抽样推断方法。
如对那些有破坏性或消耗性的产品进行质量检验,象炮弹的杀伤半径的检验、灯泡的使用寿命的检验、人体的白血球的检验等,都是不可能进行全面调查的,而只能采用抽样推断的方法。
另外,对于无限总体或总体的范围过大时,就很难进行全面调查了。
例如,对江河湖海中的鱼尾数、大气或海洋的污染情况等,都属于这种情况。
2. 某些理论上可以进行全面调查的现象,采用抽样推断可以达到事半功倍的效果。
如要了解全国城乡居民的家庭收入状况,从理论上讲可以挨门逐户进行全面调查,但是调查范围太大,调查单位太多,实际上难以办到,也没有必要。
采用抽样推断既可以节省人力、物力、费用和时间,提高调查结果的时效性,又能达到和全面调查同样的目的和效果。
3. 抽样推断可以对全面调查的结果进行评价和修正。
全面调查涉及范围广,调查单位多,工作量大,参加人员多,因而发生登记性和计算性的误差就多。
所以,在全面调查后,还可以再抽取一部分单位重新调查一次,计算其差错比率,并以此为依据对全面调查的资料进行修正,这样就可以进一步提高全面调查资料的准确性。
由于抽样推断中调查的范围小,可以多调查一些项目,或从事某项更深入的专题调查,以补充全面调查的不足。
全国人口普查就是有短表和长表之分,短表用于全面调查,长表用于抽样调查。
4. 抽样推断可用于工业生产过程中的质量控制。
在工业产品成批或大量连续生产过程中,采用抽样推断方法可以检验生产工艺过程是否正常,及时提供有关信息,便于采取相应措施,进行质量控制,保证生产质量稳定,防止损失。
5. 利用抽样推断的原理,可以对某些总体的假设进行检验,来判断假设的真伪,为决策提供依据。
如某地上一年度居民家庭年收入35000元,本年度抽样调查结果显示居民家庭年收入33000元,这是否意味着该地居民家庭收入水平下降了呢?我们还不能下这个结论,最好通过假设检验,检验这两年居民家庭收入是否存在显著性统计差异,才能判断该地本年度居民家庭收入是否低于上年度水平。
总之,抽样推断是一种科学实用的统计方法,在自然科学与社会科学领域都有着广泛的应用。
二、重复抽样与不重复抽样抽样推断首先要抽取样本,就具体方法而言有重复抽样与不重复抽样之分。
1. 重复抽样重复抽样又叫有放还抽样或重置抽样。
它是每抽出一个样本单位后,把结果记录下来,随即将该单位放回到总体中去,使它和其余的单位在下一次抽选中具有同等被抽中的机会。
在重复抽样过程中,总体单位数始终保持不变,并且同一个单位有多次被抽中的可能性。
2. 不重复抽样不重复抽样又叫无放还抽样或不重置抽样。
它是每抽出一个样本单位后,把结果记录下来,该单位就不再放回到总体中去参加以后的抽选。