2018年上海市宝山区初三数学一模及参考答案

合集下载

2018宝山区中考数学一模

2018宝山区中考数学一模

宝山区2017-2018学年第一学期期末考试(一模)九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.符号A tan表示…………………………………………………… ( )A .∠A 的正弦;B .∠A 的余弦;C .∠A 的正切;D .∠A 的余切. 2.如图△ABC 中∠C=90°,如果CD ⊥AB 于D ,那么………( )A .AB CD 21=; B .AD BD 21=; C .BD AD CD⋅=2; D .AB BD AD ⋅=2.3.已知a 、b 为非零向量,下列判断错误的是……… ( )A .如果b a 2=,那么a ∥b ;B .如果b a =,那么b a =或b a -=;C .0的方向不确定,大小为0;D .如果e 为单位向量且e a 2=,那么2=a .4.二次函数322++=x x y 的图像的开口方向为…………………………………… ( )A . 向上;B . 向下;C .向左;D .向右.5.如果从某一高处甲看低处乙的俯角为︒30,那么从乙处看甲处,甲在乙的…… ( )A .俯角︒30方向;B .俯角︒60方向;C .仰角︒30方向;D .仰角︒60方向.CABD第2题6.如图,如果把抛物线2x y =沿直线x y =向上方平移22个单位后,其顶点在直线x y =上的A 处,那么平移后的抛物线解析式是……………………………( )A .22)22(2++=x yB .2)2(2++=x y C .22)22(2+-=x y D .2)2(2+-=x y 二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7. 已知b a32=,那么=b a : ▲ .8.如果两个相似三角形的周长比为1:4,那么它们的某一对对应角的角平分线之比为 ▲ . 9.如图,D 、E 为△ABC 的边AC 、AB 上的点,当 ▲ 时,△ADE ∽△ABC 其中D 、E 分别对应B 、C .(填一个条件) 10.计算:b b a 23)54(21+-= ▲ . 11.如图,在锐角△ABC 中,BC=10,BC 上的高AD=6,正方形EFGH 的顶点E 、F 在BC 边上,G 、H 分别在AC 、AB 边上,则此正方形的边长为 ▲ .12. 如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度=i ▲ .13. 如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则=∠CAF tan ▲ .14.抛物线3)4(52+-=x y 的顶点坐标是 ▲ . 15.二次函数=y 3)1(22+--x 的图像与y 轴的交点坐标是是__▲__.16.如果点A(0,2)和点B(4,2)都在二次函数c bx x y ++=2的图像上,那么此抛物线在直线▲ 的部分是上升的.(填具体某直线的某侧) 17.如图,点D 、E 、F 分别为△ABC 三边的中点, 如果△ABC第13题第11题第9题第6题的面积为S ,那么以AD 、BE 、CF 为边的三角形的面积是 ▲ .18.如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处, 如果E 在旋转过程中曾经交AB 于G ,当EF=BG 时,旋转角∠EAF 的度数是 ▲三、(本大题共7题,第19--22题每题10分;第23、24题每题12分;第25题14分;满分78分)19. (本题满分10分) 计算:10)60(tan 30sin 45cos 60sin -+︒+︒-︒︒π20.(本题满分10分,每小题各5分)如图,AB ∥CD ∥EF ,而且线段AB 、CD 、EF 的长度分别 为5、3、2. (1)求AC :CE 的值;(2)如果AE 记作a ,BF 记作b ,求CD (用a 、b 表示). 21.(本题满分10分)已知在港口A 的南偏东75?方向有一礁石B ,轮船从港口出发,沿正东北方向(北偏东45?方向)前行10里到达C 后测得礁石B 在其南偏西15?处,求轮船行驶过程中离礁石B 的最近距离.22.(本题满分10分,每小题各5分)第18题第21题第17题ACN N如图,在直角坐标系中,已知直线421+-=x y 与y 轴交于A 点,与x 轴交于B 点,C 点的坐标为(-2,0).(1)求经过A ,B ,C 三点的抛物线的解析式; (2)如果M 为抛物线的顶点,联结AM 、BM ,求四边形AOBM 的面积.23.(本题满分12分,每小题各6分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:CGEGAC AE =; (2)若AH 平分∠BAC ,交 BF 于H ,求证:BH 是HG 和HF 的比例中项.24.(本题共12分,每小题各4分)设a ,b 是任意两个不等实数,我们规定:满足不等式b x a≤≤的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当nx m ≤≤时,有n y m ≤≤,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数4+-=x y ,当1=x 时,3=y ;当3=x 时,1=y ,即当31≤≤x 时,恒有31≤≤y ,所以说函数4+-=x y 是闭区间[1,3]上的“闭函数”,同理函数x y =也是闭区间[1,3]上的“闭函数”.(1)反比例函数x y 2018=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数k x x y +-=42是闭区间[2,t ]上的“闭函数”,求k 和t 的值;第23题GE ABCFDH第22题(3)如果(2)所述的二次函数的图像交y 轴于C 点,A 为此二次函数图像的顶点,B 为直线1=x上的一点,当△ABC 为直角三角形时,写出点B 的坐标.25. (本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD ∥BC ,AD =7,AB=CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1) 求sin ∠ABC ; (2) 求∠BAC 的度数;(3) 设BF=x ,CH=y ,求y 与x 的函数关系式及其定义域.宝山区2018中考数学一模参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2.C ; 3. B ; 4.A ; 5. C ; 6. D. 二、填空题(本大题共12题,每题4分,满分48分)7.3:2; 8.1:4; 9.B ADE ∠=∠等; 10.b a -2; 11.415; 12.1:2.4; 13.31; 14.(4,3); 15.23-; 16.2=x 右侧; 17.S 43; 18. 36?.三、简答题(本大题共7题,第19--22题每题10分;第23、24题每题12分.第25题14分;满分78分)第25题xy–1–2–3–4123456–1–2–3–41234567O19.解:原式=131212223++- …………………………………………6分=213)12(3-++=213236-+. …………………10(3+1)分20.解:过E 作EG ∥BF 分别交AB 、CD 于G 、H ,………………………1分∵AB ∥CD ∥EF , AB=5、CD=3、EF=2,∴ BG=DH=EF=2, …………………………2分在△EAG 中,CH ∥AG ,CH=3-2=1,AG=5-2=3…………………………3分∴31==AG CH EA EC , ∴AC :CE=2:1 …………………………5分 ∵BF AE EG AE AG -=+=,AG CD =, …………………………9分∴b a CD -= …………………………10分21. 解:联结AB 、BC ,∵B 在A 南偏东75?方向,C 在A 北偏东45?方向,B 在C 南偏西15?方向,AC =10里∴∠CAB =45?+(90?-75?)=60?, ∠ACB =45?-15?=30? …………4分∴∠ABC =90?过B 作BH ⊥AC 于H ……………………6分∴ACB ACB AC BCA BC BH ∠⋅∠⋅=∠⋅=sin cos sin ……………………8分=212310⨯⨯=325, ……………………10分∴轮船行驶过程中离礁石B 的最近距离为325. 22.解:∵直线421+-=x y 与y 轴交于A 点,与x 轴交于B 点,∴A (0,4),B (8,0), ……………………2分设过A 、B 、C (-2,0)的抛物线为:)8)(2(-+=x x a y将A (0,4)代入得:41-=a, ……………………4分过A ,B ,C 三点的抛物线的解析式为:423412++-=x x y …………5分经配方得:425)3(412+--=x y ……………………6分抛物线的顶点M )425,3( ……………………7分 过M 作MH ⊥x 轴于H , ……………………8分四边形AOBM 的面积=梯形AOHM 的面积+△MHB 的面积………………9分=5425213)4254(21⨯⨯+⨯+=31……………………10分 23. (1)∵ DE 是△ABC 的中位线,∴AE =CE ,DE ∥BC 且DE=21BC , …………………………2分 ∵CF ∥AB ,∴1==CEAEDE EF ,即EF=DE ,…………………………4分 ∴BC EF CG EG BC DE AC AE ==, ∴CGEGAC AE =…………………………6分 (2)∵AB=AC ,AH 平分∠BAC∴∠ ABC =∠ACB ,AH 是BC 的垂直平分线 …………………………7分 联结CH ,CH =BH .∴∠HBC =HCB , ∠ABH =ACH …………………………8分∵CF ∥AB ,∴∠CFG =∠ABH ∠CFG =∠HCG ………………………9分 ∵∠FHC =∠CHG ∴△ FHC ∽△CHG …………………………10分 ∴HGCH HC FH =∴HG FH CH ⋅=2 ∴HG FH BH ⋅=2………11分 ∴BH 是HG 和HF 的比例中项. …………………………12分24. (1)∵xy2018=在20181≤≤x 时,y 随着x 增大而减小…………1分 ∵当1=x 时,2018=y ;当2018=x 时,1=y即当20181≤≤x 时有20181≤≤y , ……………………3分∴反比例函数xy 2018=是闭区间[1,2018]上的“闭函数”………4分 (2) ∵易知二次函数k x x y +-=42的开口向上,对称轴是直线2=x ,∴当t x ≤≤2 时,y 随着x 增大而增大. ……………………5分∵二次函数k x x y +-=42是闭区间[2,t ]上的“闭函数”, ∴24)2(=-=k f , ∴6=k , ……………………6分t t t t f =+-=64)(2 ∴2=t (舍去),3=t ,………………8分即642+-=x x y 是闭区间[]3,2上的“闭函数”. (3) ∵2)2(6422+-=+-=x x x y , ∴此二次函数图像的顶点A (2,2),和y 轴的交点C (0,6).…………9分设B (1,y ),分类讨论当∠C =90?时根据AB 2=AC 2+BC 2得:B )213,1(1 当∠A =90?时,同理易得:B )23,1(2 当∠B =90?时,同理易得:B )54,1(3+,B )54,1(4- …………12分综上所述:当△ABC 为直角三角形时,点B 的坐标分别为B )213,1(1、B )23,1(2、B )54,1(3+,B )54,1(4-.25.解:(1)过A 作AL ⊥BC 于L ,∵等腰梯形ABCD 中,AD ∥BC ,AD =7,AB=CD =15,BC =25, ∴根据等腰梯形的对称性易得:BL=9,CL=16 在直角△ABL 中根据勾股定理易得:AL=12 ∴ABC ∠sin =541512==AB AL (2)∵34912==AL BL ,341216==BL CL ∴BLCL ALBL=,90=∠=∠CLA ALB ? ……………………………4分 ∴△ALB ∽△CLA , ∴∠ABL=∠CAL ……………………………5分 ∵∠ABL+∠BAL=90? ∴∠CAL+∠BAL=90?,即∠BAC=90?……6分(3)∵腰AB 上E 满足AE :BE =1:2, ∴AE=5,BE=10F 为BC 一动点,∠FEG =∠B ,EG 交射线 BC 于G ,直线EG 交射线CA 于H .分类讨论:当G 在F 右侧时当G 在BC 上时,我们只要考虑如图情况 (不需要考虑H 在下方) 过E 作EM ⊥BC 于M , ∵∠HEA=∠BEG=∠BEF+∠FEG ∵∠EFM=∠BEF+∠B∴∠HEA=∠B ∵∠EMF=∠HAE=90?,∴△EMF ∽△HAE ∴HAAEEM FM = ………7分 ∵FM=BM-BF=x -6, EM=8, AH=CH-AC=20-yBCA DHEM F G∴xxx y --=-+=62016064020 ……………………………8分 其中60 x ≤ ……………………………9分当G 在BC 的延长线上时,(如图) 同理易知:∠HEA=∠EFN△ENF ∽△HAE HA AEEN NF =61602064020--=--=x x x y …10分 其中128 x ≤ ……………11分即:616020--=x x y(其中60 x ≤或128 x ≤)当G 在F 左侧时, 易知:△AEH ∽△UEG ∴UEUGAE AH = BG UG 54=, UE=BG 5310-同理易知:△BEF ∽△EGF ∴GF BF EF ⋅=2……………12分∴GF=x x BF FM EM 2222)6(8-+=+,BG=x x GF BF 10012-=-, )25325(150********≤≤++=x x x y ……………14分HGBC A DEF N A DBCH E G FU M。

中考试题集萃-2018上海一模试题集

中考试题集萃-2018上海一模试题集

6、如图,如果把抛物线 y = x 2 沿直线 y = x 向上平移 2 2 个单位后,其顶点在直 线 y = x 上的 A 处,那么平移后的抛物线解析式是( A. y = x+2 2 C. y = x−2 2 )
(
)
2
+ 2 2 B. y =( x + 2 ) + 2
2
(
)
2
+2 2
D. y =( x − 2 ) + 2
1 AB 2
B. BD =
1 AD 2
2 C. CD = AD ⋅ BD
2 D零向量,下列判断错误的是(

r r r r A.如果 a = 2b ,那么 a / / b ; r C. 0 的方向不确定,大小为 0
r r r r r r B.如果 a = b ,那么 a = b 或 a = −b ; r r r r D. 如果 e 为单位向量且 a = 2e ,那么 a = 2 .

4、二次函数 y = x 2 + 2 x + 3 的图像开口方向为( A.向上 B.向下 C. 向左 D. 向右
5、 如果从某一高处甲看低处乙的俯角为 30o , 那么从乙处看甲处, 甲在乙的 ( A.俯角 30o 方向 B. 俯角 60o 方向 C. 仰角 30o 方向

D. 仰角 60o 方向
中考试题集萃(1)--2018年上海市一模试题集
【数学】 【数学】宝山区2018年一模试卷及答案.pdf 【数学】崇明区2018年一模试卷及答案.pdf 【数学】奉贤区2018年一模试卷及答案.pdf 【数学】虹口区2018年一模试卷及答案.pdf 【数学】黄浦区2018年一模试卷及答案.pdf 【数学】嘉定区2018年一模试卷及大答案.pdf 【数学】金山区2018年一模试卷及答案.pdf 【数学】静安区2018年一模试卷及答案.pdf 【数学】闵行区2018年一模试卷及答案.pdf 【数学】浦东新区2018年一模试卷及答案.pdf 【数学】普陀区2018年一模试卷及答案.pdf 【数学】青浦区2018年一模试卷及答案.pdf 【数学】松江区2018年一模试卷及答案.pdf 【数学】徐汇区2018年一模试卷及答案.pdf 【数学】杨浦区2018年一模试卷及答案.pdf 【数学】长宁区2018年一模试卷及答案.pdf 【英语】 2018宝山区中考英语一模.pdf 2018崇明区中考英语一模.pdf 2018虹口区中考英语一模.pdf 2018黄浦区中考英语一模.pdf 2018金山区中考英语一模.pdf 2018青浦区中考英语一模.pdf 2018松江区中考英语一模.pdf 2018徐汇区中考英语一模.pdf 2018杨浦区中考英语一模.pdf 2018长宁区中考英语一模.pdf 2018静安区中考英语一模.pdf 2018浦东新区中考英语一模.pdf 【化学】 2018届宝山区中考化学一模.pdf 2018届崇明区中考化学一模.pdf 2018届奉贤区中考化学一模.pdf 2018届虹口区中考化学一模.pdf 2018届黄浦区中考化学一模.pdf 2018届嘉定区中考化学一模.pdf 2018届金山区中考化学一模.pdf 2018届静安区中考化学一模.pdf 2018届闵行区中考化学一模.pdf 2018届浦东新区中考化学一模.pdf 2018届普陀区中考化学一模.pdf 2018届青浦区中考化学一模.pdf 2018届松江区中考化学一模.pdf 2018届徐汇区中考化学一模.pdf 2018届杨浦区中考化学一模.pdf 2018届长宁区中考化学一模.pdf

对2018年上海市宝山区初三年级一模第25题的看法

对2018年上海市宝山区初三年级一模第25题的看法

对2018年上海市宝山区初三年级一模第25题的看法大罕上海市宝山区2018年一模第25题的第⑶小题是:如图,等腰梯形ABCD 中,AD ∥BC ,AD=7,AB=CD=15,BC=25,E 为腰AB 上一点,且AE ∶BE=1∶2,F 为BC 上一动点,∠FEG=∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H ,⑶设BF=x ,CH=y ,求y 与x 的函数关系式及其定义域在以下的文字,我把具体的推理或演算过程省略,只突出解题的思路。

这题实际上分两种情形,即: 【情形一】点G 在点F 的右侧.这时首先x ≠6,否则直线FE ∥CA ,它们没有交点从而不符合题意,见图1; 其次x ∉(6,8),否则直线FE 与线段AC 的延长线相交也不符合题意,见图2.因此当x ∈[0,6) ∪ [8,25)时,我们可以推得20640+-=x y , 见图3、4.【情形二】点G 在点F 的左侧。

.这时,若x =25/3,则点G 与B 重合;若x ∈[0,25/3),则点G 在线段CB 的延长线上,这与题意不符合,故不予考虑,见图5.因此,当x ∈[25/3,25) 时,我们可以推得15072000260++=x x y ,见图6.图3图4A C D EF 图1G B GA BDEFHM 图5图6【评论】这道压轴题出得好不好?我认为既好,又不好。

难度足够了,加上两种情形下的讨论,很够呛了。

即便不讨论,找出两个直角三角形证明其相似也非易。

两种情形源于点F 与点G 的左右相对位置。

两种情形下的计算途径却迥然不同。

这样安排无疑是雪上加霜。

如此“节外生枝”,无非是想“考倒”学生。

其实并不必要。

同时,可惜的是,就是在第一种情形下(即点G 在点F 的右侧),有一个绝妙的设问被遗弃了,即当BF=x ∈(6,8)时,直线FE 与线段AC 的延长线相交。

此时的结果与另两种情况的结果仅一个符号之差别,即20640--=x y 。

上海市2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案

上海市2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案

上海2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案宝山区19.(本题满分10分) 计算:01sin 60tan60cos 45sin 30π︒︒︒︒-+(+)- 长宁区19.(本题满分10分) 计算:︒-︒-︒︒30cos 60tan 45sin 445cot 2. 崇明区19.(本题满分10分) 计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒奉贤区虹口区19.(本题满分10分) 计算:22sin 60sin 30cot 30cos30°°°°+-. 黄浦区19.(本题满分10分) 计算:2cot452cos 30sin60tan301︒︒+-︒︒+. 嘉定区19. (本题满分10分,每小题5分)计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot金山区19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒︒⋅︒+︒. 静安区19.(本题满分10分)计算: 60sin 60tan 160cos 2130cos 45cot 3⨯-++. 20.(本题满分10分)解方程组: . 闵行区浦东新区普陀区19.(本题满分10分)计算: 21tan60sin 452cos30cot 45-⋅- . 青浦区19.(本题满分10分)计算:()021--+- .20.(本题满分10分) 解方程:21421242x x x x +-=+--. 松江区徐汇区① ② ⎩⎨⎧=----=+03)(2)(52y x y x y x杨浦区19.(本题满分10分) 计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒参考答案 宝山区长宁区19. (本题满分10分)解:原式= 233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+ (2分) 崇明区19、解:原式322-⨯ …………………………………………5分=………………………………………………3分= ………………………………………………………2分 虹口区黄浦区19.解:原式=2222⎛⨯+- ⎝⎭4分)=33222+-————————————————————————(4分)=3(2分)嘉定区19. (本题满分10分,每小题5分)计算: 【解答】金山区︒-︒+︒-︒45tan 30cos 2260sin 30cot 12331232223345tan 30cos 2260sin 30cot +=-⋅+-=︒-︒+︒-︒静安区三、解答题:19.解:原式=…………………………………(5分)=23212-+……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---yxyx, ……………………………………(2分)得03=--yx或01=+-yx, ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5yxyx⎩⎨⎧-=-=+;1,5yxyx…………………………………(2分)解得,原方程组的解为⎩⎨⎧==;1,411yx⎩⎨⎧==3222yx…………………………………(4分)∴原方程组的解为⎩⎨⎧==;1,411yx⎩⎨⎧==3222yx.闵行区浦东新区普陀区19.解:原式2=·····································································(4分)=··················································································(4分)12=. ·····························································································(2分)青浦区19.解:原式=1+22⨯.…………………………………………………………233121212313⨯-+⨯+⨯(8分)=2.………………………………………………………………………(2分)20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分)解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)松江区徐汇区杨浦区19.(本题满分10分)解:原式=12231122⋅+⨯ --------------------------------------------------(6分)=1222-----------------------------------------------------------------(2分)=14. --------------------------------------------------------------(2分)。

【数学】上海市16区2018届中考一模数学试卷分类汇编平面向量含答案

【数学】上海市16区2018届中考一模数学试卷分类汇编平面向量含答案

【关键字】数学上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编平面向量专题宝山区20.(本题满分10分,每小题各5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).长宁区20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在ABC中,点D在边AB上,DE//BC,DF//AC,DE、DF分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设,,用含、的式子表示.崇明区20.(本题满分10分,每小题各5分)如图,在中,BE平分交AC于点E,过点E作交AB于点D,已知,.(1)求BC的长度;(2)如果,,那么请用、表示向量.奉贤区20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在平行四边形ABCD中,AD=2,点E是边BC的中点,AE、BD想交于点F,过点F作FG∥BC,交边DC于点G.(1)求FG的长;(2)设,,用的线性组合表示.虹口区如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.(1)若,,用向量表示向量;(2)若∠B=∠ACE,AB=6,,BC=9,求EG的长.黄浦区嘉定区金山区如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设,,求向量关于、的分解式.静安区闵行区浦东新区20.(本题满分10分,每小题5分)如图,已知△ABC 中,点D 、E 分别在边AB 和AC 上,DE ∥BC ,且DE 经过△ABC 的重心,设.(1) ▲ (用向量表示);(2)设,在图中求作.(不要求写作法,但要指出所作图中表示结论的向量.)普陀区22.(本题满分10分)下面是一位同学做的一道作图题:已知线段、、(如图),求作线段,使.他的作法如下:1.以点为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作∥,交于点.所以:线段____________就是所求的线段.(1)试将结论补完整:线段 ▲ 就是所求的线段x .(2)这位同学作图的依据是 ▲ ;(3)如果4OA =,5AB =,AC m =,试用向量m 表示向量DB .松江区20.(本题满分10分,每小题各5分)如图,已知△ABC 中,D 、E 、F 分别是边AB 、BC 、CA 上的点,且EF //AB ,2CF AD FA DB==. (1)设AB a =,AC b =.试用、表示AE(2)如果△ABC 的面积是9,求四边形ADEF 的面积. 徐汇区19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在△ABC 中,∠ACD =∠B ,AD =4,DB =5.(1)求AC 的长(2)若设,CA a CB b ==,试用、的线性组合表示向量CD . 杨浦区20.(本题满分10分,第(1)、(2)小题各5分)已知:如图,Rt △ABC 中,∠ACB =90°,sin B =3,点D 、E 分别在边AB 、BC (第20题图) C E F BA D上,且AD ∶DB =2∶3,DE ⊥BC .(1)求∠DCE 的正切值;(2)如果设AB a =,CD b =,试用a 、b 表示AC .参考答案 宝山区长宁区20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE //BC ∴52==AC EC AB BD (2分) 又∵DF //AC ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴53-= (2分) 同理:b EC 52= (2分) 又∵→+=CF EC EF ∴→-=a b EF 5352 (1分) 崇明区20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分∴4BD DE ==∵ED BC ∥ ∴DE AD BC AB= ……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC = ………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BC AB = ∴95BC DE = …………………………………………………………1分 又∵ED 与CB 同向 ∴95CB ED = ………………………………1分 (第20题图)∵AD a =,AE b = ∴ED a b =- ……………………………1分∴9955CB a b =- …………………………………………………………2分 奉贤区虹口区黄浦区金山区静安区闵行区20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图,已知向量a 、b 和p ,求作:(1)向量132a b -+. (2)向量p 分别在a 、b 方向上的分向量.20.解:(1)作图.…………………………………………………………………………(3分)结论. …………………………………………………………………………(1分)(2)作图.…………………………………………………………………………(4分)结论. …………………………………………………………………………(2分)浦东新区20.解:(1)=23a .……………………………(5分) (2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).普陀区22.解: (1)CD ; ·························································································································· (2分) (2)平行线分线段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或:三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例). ··············································································································································· (2分)(3)∵BD ∥AC ,∴AC OA BD OB=. ················································································ (1分) ∵4OA =,5AB =,∴49AC BD =. ········································································· (2分) 得94BD AC =. ········································································································· (1分) (第20题图)(第20题图)B∵94BD AC =,AC m =,DB 与AC 反向, ∴94DB m =-. ·········································································································· (2分) 青浦区松江区20.解:(1)∵EF //AB∴CF CE FA EB= 又CF AD FA DB= ∴CE AD EB DB=…………………………………………(1分) ∴DE ∥AC , ………………………………………(1分)∴四边形ADEF 是平行四边形………………………(1分)AE AF AD =+ ……………………………………(1分)∵2CF AD FA DB ==,AB a =,AC b = ∴13AF b =, 23AD a = 2133AE a b =+………………………………………(1分) (2)∵EF //AB ,2CF FA = ∴9:4:=∆∆ABC CEF S S ………………………………(1分)∵△ABC 的面积是9,∴4=∆CEF S ……………………………………………(1分)由(1)得DE ∥AC ,且2AD DB= ∴9:1:=∆∆ABC BDE S S ………………………………(1分)∴1=∆BDE S …………………………………………(1分)∴四边形ADEF 的面积=9-4-1=4……………………(1分)徐汇区19.(1)在△ABC 中,∠ACD =∠B ,∠A =∠A ,∴ ACDABC ∆. ……………………………………………………(2分) ∴AD AC AC AB=,即2AC AD AB = ∴249AC =⨯, 6.AC = ……………………………………………(2分)(2) 49CD CA AD a AB =+=+ ……………………………………………(2分) 4()9a AC CB =++4()9a ab =+-+ ………………………………(2分) 5499a b =+ ………………………………………………………(2分) 杨浦区20.(本题满分10分,第(1)、(2)小题各5分)解:(1)∵∠ACB =90°,sin B =35,∴35AC AB =. -------------------------(1分) ∴设AC =3a ,AB =5a . 则BC =4a .∵AD :DB =2:3,∴AD =2a ,DB =3a .∵∠ACB =90°即AC ⊥BC ,又DE ⊥BC ,∴AC//DE. ∴DE BD AC AB =, CE AD CB AB=. ∴335DE a a a =, 245CE a a a =. ∴95DE a =,85CE a =.----------(2分) ∵DE ⊥BC ,∴9tan 8DE DCE CE ∠==.-----------------------------(2分) (2)∵AD :DB =2:3,∴AD :AB =2:5. ------------------------------------------------(1分) ∵AB a =,CD b =,∴25AD a =. DC b =-.--------------------(2分) ∵AC AD DC =+,∴25AC a b =-.-----------------------------------(2分)此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

版上海市16区届中考一模数学试卷分类汇编:平面向量含答案

版上海市16区届中考一模数学试卷分类汇编:平面向量含答案

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编平面向量专题宝山区20.(此题满分10分,每题各5分)如图,AB∥CD∥EF,并且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;uuurruuurr uuurrr(2)假如AE记作a,BF记作b,求CD(用a、b表示).长宁区20.(此题满分10分,第(1)小题5分,第(2)小题5分)如图,在ABC中,点D在边AB上,DE//BC,DF//AC,DE、DF分别交边AC、BCA于点E、F,且AE3.EC2(1)求BF的值;D E BC(2)联络EF,设BC a,AC b,用含a、b的式子表示EF.BF C崇明区第20题图20.(此题满分10分,每题各5分)如图,在△ABC中,BE均分ABC交AC于点E,过点E作ED∥BC交AB于点D,已知AD5,BD4.(1)求BC的长度;r rr uuuruuur ruuurA (2)假如AD a,AE b,那么请用a、b表示向量CB.D EB C(第20题图)奉贤区20.(此题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在平行四边形ABCD中,AD=2,点E是边BC的中点,AE、BD想交于点F,过点F作FG∥BC,交边DC于点G.(1)求FG的长;uuur ruuur rrr uuur(2)设AD a ,DC b,用a、b的线性组合表示AF.第20题图虹口区如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联络AG并延伸交BC于点D.(1uuur ruuur r rr uuur)若AB a,AC b,用向量a、b表示向量AG;(2)若∠B=∠ACE,AB=6,AC26,BC=9,求EG的长.黄浦区嘉定区金山区如图,已知平行四边形uuurruuurr ABCD,点M、N分别是边DC、BC的中点,设AB=a,AD=b,uuuur r r求向量MN对于a、b的分解式.静安区闵行区浦东新区20.(此题满分10分,每题5分)A 如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,uuur r且DE经过△ABC的重心,设BC a.(1)DErD E▲(用向量a表示);uuur r r rB C(2)设AB b,在图中求作b1a.2(第20题图)(不要求写作法,但要指出所作图中表示结论的向量.)普陀区22.(此题满分10分)下边是一位同学做的一道作图题:已知线段a、b、(如图),求作线段x,使a:b c:x.aMb Bc Aba他的作法以下:OcC D N以点O为端点画射线OM,ON.2.在OM上挨次截取OA a,ABb.3.在ON上截取OCc.联络AC ,过点B 作BD ∥AC ,交ON 于点D . 因此:线段____________就是所求的线段x . (1)试将结论补完好:线段 ▲ 就是所求的线段x . (2)这位同学作图的依照是▲;(3)假如OA 4,ABuuur ur uruuur 5,AC m ,试用向量 m 表示向量DB .松江区20.(此题满分 10分,每题各5分)如图,已知△ABC 中,D 、E 、F 分别是边AB 、BC 、CA 上的点,且EF//AB ,CFAD 2.uuur r uuur vuuurFADBC(1)设AB a ,AC b.试用a 、b 表示AE(2)假如△ABC 的面积是9,求四边形ADEF 的面积.FE ADB (第20题图) 徐汇区 19.(此题满分 10分,第(1)小题满分4分,第(2)小题满分 6分)如图,在△ABC 中,∠ACD=∠B ,AD=4,DB=5.(1)求AC 的长ruur ruur (2)若设CA a,CB b ,试用a 、b 的线性组合uuur表示向量CD .杨浦区20.(此题满分10分,第(1)、(2)小题各 5分)已知:如图, Rt △ABC 中,∠ACB=90°,sinB=3,点D 、E 分别在边AB 、BC5上,且AD ∶DB=2∶3,DE ⊥BC. A D(1)求∠DCE 的正切值;r rruuuruuurruuur(2)假如设ABa ,CDb ,试用a 、b 表示AC .CEB(第20题图)参照答案宝山区长宁区20.(此题满分 10分,第(1)小题5分,第(2)小题5分)解:(1)∵AE3 ∴ EC 2EC 2 AC 5∵DE//BCBD EC 2∴AC 5AB又∵DF//ACBFBD 2∴AB 5BC(2)∵BF2 ∴FC 3BC5 BC53a ∵BCa ,CF 与BC 方向相反∴CF2b5同理:EC5 2b 3a又∵EFEC CF ∴EF55(1分) 2分) 2分)2分) 2分) 1分)崇明区20、(1)∵BE 均分∠ABC∴∠ABE ∠CBE ∵ED ∥BC∴∠DEB ∠CBE∴∠ABE∠DEB⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分BDDE4∵ED ∥BC∴DEAD⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1分BCAB又∵AD 5,BD4∴AB9∴45∴BC36 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2分BC95(2)∵ED ∥BC∴DE AD = 59 BC AB 9∴BC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分DE5uuur uuuruuur 9 uuur1分又∵ED 与CB 同向∴CB 5 ED ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯uuur r uuur r uuur r r∵AD a , AE b ∴ED a b⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1分uuur 9r9r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴CBa b5 5奉贤区虹口区黄浦区金山区静安区闵行区20.(本共2小,第(1)小4分,第(2)小6分,分 10分)rrur如,已知向量 a 、b 和p ,求作:r 1r(1)向量3ab .ur 2rr(2)向量p 分在a 、b 方向上的分向量.ur pr a r b(第20题图)20.解:(1)作.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分) (2)作.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)浦东新区2r20.解:(1)DEAa .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)3(2)正确得4分,:AF 就是所要求作的向量.⋯(1分).DEBFC(第20题图)普陀区22.解:(1)CD ;·(2分)(2)平行分段成比率定理(两条直被三条平行的直所截,截得的段成比率);或:三角形一的平行性定理(平行于三角形一的直截其余两所在的直,截得的段成比率).·(2分)(3)∵BD ∥AC ,∴ACOA .·(1分)BD OB∵OA4,AB 5,∴AC 4·(2分)BD.9得BD9·(1分)AC .4uuuruuur uuur uruuur uuur∵BD9AC ,ACm ,DB 与AC 反向,4uuur9ur·(2分)∴DBm .4青浦区松江区20.解:(1)∵EF//ABCF CEFAEB又CFADFADB∴CEAD⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分) EBDB∴DE ∥AC ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分) ∴四形ADEF 是平行四形⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)uuur uuur uuurAE AF AD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1分)∵CFADuuur ruuur v2,AB a ,ACbFADBuuur 1ruuur 2r∴AFb ,ADa3 1r3uuur 2 r AE3ab ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)3(2)∵EF//AB ,CF2FA∴S CEF:SABC 4:9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1分)∵△ABC 的面是9,∴SCEF4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)由(1)得DE ∥AC ,且AD 2DB∴S BDE :S ABC 1:9 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)∴S BDE1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)∴四形ADEF 的面=9-4-1=4⋯⋯⋯⋯⋯⋯⋯⋯(1分)徐汇区19.(1)在△ABC 中,∠ACD=∠B ,∠A=∠A ,∴ACD:VABC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分). ∴ADAC,即AC 2ADgABAC AB∴AC 2 4 9,AC6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)uuur uur uuur r 4uuur2分)(2)CDCA ADa 9 AB ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(r4 uuur uur r 4 rr 2分)a9(AC CB)a( a b)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(95 r 4r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)9 a b9杨浦区20.(安分10分,第(1)、(2)小各 5分)解:(1)∵∠ACB=90°,sinB=3,∴AC 3 . -------------------------(1分)5AB5∴AC=3a ,AB=5a. BC=4a.AD:DB=2:3,∴AD=2a ,DB=3a.∵∠ACB=90°即AC ⊥BC ,又DE ⊥BC ,∴AC//DE.∴DEBD , CE AD .ACAB CB AB∴DE3a , CE 2a .∴DE9 a ,CE 8 a .---------- (2分)3a 5a 4a 5a5 5 ∵DE ⊥BC ,∴tan DCE DE9 .----------------------------- (2分)CE8(2)∵AD:DB=2:3,∴AD:AB=2:5.------------------------------------------------(1分)uuur ruuurr uuur 2 ruuurr --------------------(2分)∵ABa ,CDb ,∴AD 5 a .DC b .uuur uuur uuuruuur 2rr----------------------------------- (2分)∵ACAD DC ,∴AC a b .5。

上海市16区2018届中考一模数学试卷分类汇编:计算题(Word版_含答案)

上海市16区2018届中考一模数学试卷分类汇编:计算题(Word版_含答案)

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题宝山区19.(本题满分10分)计算:01sin 60tan60cos 45sin 30π︒︒︒︒-+(+)-长宁区19.(本题满分10分)计算:︒-︒-︒︒30cos 60tan 45sin 445cot 2.崇明区19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒奉贤区 虹口区19.(本题满分10分)计算:22sin 60sin 30cot 30cos30°°°°+-.黄浦区19.(本题满分10分)计算:2cot452cos 30sin60tan301︒︒+-︒︒+.嘉定区19. (本题满分10分,每小题5分) 计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot金山区19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒︒⋅︒+︒.静安区19.(本题满分10分)计算:οοοοο60sin 60tan 160cos 2130cos 45cot 3⨯-++.20.(本题满分10分)解方程组: . 闵行区 浦东新区 普陀区19.(本题满分10分)计算: 21tan60sin 452cos30cot 45-⋅-o o o o. 青浦区19.(本题满分10分)计算:()021--+-o .20.(本题满分10分)解方程:21421242x x x x +-=+--. 松江区 徐汇区①② ⎩⎨⎧=----=+03)(2)(52y x y x y x杨浦区19.(本题满分10分)计算:cos45tan45sin60cot60cot452sin30︒⋅︒-︒⋅︒︒+︒参考答案宝山区长宁区19. (本题满分10分)解:原式=233)22(412--⨯(4分)=23321--(2分)=2332-+(2分)=232+(2分) 崇明区19、解:原式=32 3232-⨯+⨯-…………………………………………5分332322=+-+………………………………………………3分12232=-………………………………………………………2分虹口区黄浦区19.解:原式=233231⨯+⎝⎭+4分)=3333222+-————————————————————————(4分)=33(2分)嘉定区19. (本题满分10分,每小题5分)计算:︒-︒+︒-︒45tan30cos2260sin30cot【解答】12331232223345tan30cos2260sin30cot+=-⋅+-=︒-︒+︒-︒金山区静安区三、解答题:19.解:原式= …………………………………(5分)=23212-+ ……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---y x y x , ……………………………………(2分)得03=--y x 或01=+-y x , ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5y x y x ⎩⎨⎧-=-=+;1,5y x y x…………………………………(2分) 解得,原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x…………………………………(4分) ∴原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x.闵行区浦东新区 普陀区19.解: 原式223()321=⨯- ····································································· (4分) 313+=·················································································· (4分) 233121212313⨯-+⨯+⨯12=. ····························································································· (2分) 青浦区19. 解:原式=1+2⨯(8分)=2-.………………………………………………………………………(2分) 20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分)解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)松江区 徐汇区 杨浦区19.(本题满分10分)解:原式=12231122+⨯--------------------------------------------------(6分)=1222----------------------------------------------------------------(2分). --------------------------------------------------------------(2分)。

上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编押轴题专题宝山区25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD //BC ,AD =7,AB =CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC 一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1)求sin ∠ABC ; (2)求∠BAC 的度数;(3)设BF =x ,CH =y ,求y 与x 的函数关系式及其定义域.长宁区25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求 ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图备用图图1DCBA DCA F EP D CB A崇明区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCD FE BD FE CA(第25题图2) BD F ECA(第25题图3)奉贤区25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x . (1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作△CAE C ,△BAF 的周长记作△BAF C ,设△△CAEBAFC y C =,求y 关于x 的函数关系式,并写出它的定义域;(3)当∠ABE 的正切值是35时,求AB 的长.虹口区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB =5,AD =4,AD ∥BM ,3cos 5B =(如图),点C 、E 分别为射线BM 上的动点(点C 、E 都不与点B重合),联结AC 、AE ,使得∠DAE =∠BAC ,射线EA 交射线CD 于点F .设BC =x ,AFy AC=. (1)如图1,当x =4时,求AF 的长;(2)当点E 在点C 的右侧时,求y 关于x 的函数关系式,并写出函数的定义域; (3)联结BD 交AE 于点P ,若△ADP 是等腰三角形,直接写出x 的值.黄浦区25.(本题满分14分)如图,线段AB =5,AD =4,∠A =90°,DP ∥AB ,点C 为射线DP 上一点,BE 平分∠ABC 交线段AD 于点E (不与端点A 、D 重合).(1)当∠ABC 为锐角,且tan ∠ABC =2时,求四边形ABCD 的面积; (2)当△ABE 与△BCE 相似时,求线段CD 的长;(3)设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出定义域.嘉定区25. 在正方形ABCD 中,AB =8,点P 在边CD 上,tan ∠PBC =43,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直。

上海市宝山区2018年中考数学一模试题及答案

上海市宝山区2018年中考数学一模试题及答案

2018年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA表示()A.∠A的正弦B.∠A的余弦C.∠A的正切D.∠A的余切2.(4分)如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A.CD=AB B.BD=AD C.CD2=AD•BD D.AD2=BD•AB3.(4分)已知、为非零向量,下列判断错误的是()A.如果=2,那么∥B.如果||=||,那么=或=﹣C.的方向不确定,大小为0D.如果为单位向量且=2,那么||=24.(4分)二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A.俯角30°方向B.俯角60°方向C.仰角30°方向D.仰角60°方向6.(4分)如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).10.(4分)计算:(4)=.11.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是.15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是.16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线的部分是上升的.(填具体某直线的某侧)17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.23.(12分)如图,△ABC中,AB=AC,过点C作CF∥AB交△ABC的中位线DE 的延长线于F,联结BF,交AC于点G.(1)求证:;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.2018年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA表示()A.∠A的正弦B.∠A的余弦C.∠A的正切D.∠A的余切【解答】解:符号tanA表示∠A的正切.故选:C.2.(4分)如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A.CD=AB B.BD=AD C.CD2=AD•BD D.AD2=BD•AB【解答】解:∵△ABC中∠C=90°,CD⊥AB于D,∴∠CDB=∠ADC,∠B=∠ACD,∴△CDB∽△ACD,∴,即CD2=AD•BD,故选:C.3.(4分)已知、为非零向量,下列判断错误的是()A.如果=2,那么∥B.如果||=||,那么=或=﹣C.的方向不确定,大小为0D.如果为单位向量且=2,那么||=2【解答】解:A、如果=2,那么∥,正确;B、如果||=||,没法判断与的关系;故错误.C、的方向不确定,大小为0,正确;D、如果为单位向量且=2,那么||=2,正确;故选:B.4.(4分)二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右【解答】解:∵二次函数y=x2+2x+3中a=1>0,∴二次函数y=x2+2x+3的图象的开口向上,故选:A.5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A.俯角30°方向B.俯角60°方向C.仰角30°方向D.仰角60°方向【解答】解:如图所示:∵甲处看乙处为俯角30°,∴乙处看甲处为:仰角为30°.故选:C.6.(4分)如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2【解答】解:如图,过点A作AB⊥x轴于B,∵直线y=x与x轴夹角为45°,OA=2,∴OB=AB=2×=2,∴点A的坐标为(2,2),∴平移后的抛物线解析式是y=(x﹣2)2+2.故选:D.二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=3:2.【解答】解:两边都除以2b,得a:b=3:2,故答案为:3:2.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为1:4.【解答】解:∵两个相似三角形的周长之比1:4,∴它们的相似比是1:4,∴它们的某一对对应角的角平分线之比为1:4.故答案为:1:4.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当∠ADE=∠B时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).【解答】解:当∠ADE=∠B,∵∠EAD=∠CAB,∴△ADE∽△ABC.故答案为∠ADE=∠B.10.(4分)计算:(4)=2.【解答】解:(4)=2﹣+=2﹣故答案为211.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.【解答】解:设正方形EFGH的边长为x,则HG=HE=QK=x,∵HG∥BC,∴,且AK=AQ﹣x,又∵AQ=6,BC=10,∴,解得x=,故答案为:12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=1:2.4.【解答】解:如图,根据题意知AB=13米、AC=5米,则BC===12(米),∴斜坡的坡度i=tanB===1:2.4,故答案为:1:2.4.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.【解答】解:连接AG,设正方形的边长为a,AC=,∵,,∴,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=,故答案为:14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是(4,3).【解答】解:∵y=5(x﹣4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).【解答】解:当x=0时,y=﹣(x﹣1)2+=﹣×(0﹣1)2+=﹣.∴二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).故答案为:(0,﹣).16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线x=2右侧的部分是上升的.(填具体某直线的某侧)【解答】解:∵点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,∴,解得:,∴该二次函数的表达式为y=x2﹣4x+2;∵y=x2﹣4x+2=(x﹣2)2﹣2,∴对称轴为直线x=2,∵a=1>0,∴抛物线在直线x=2的右侧的部分是上升;故答案为:x=2右侧.17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是S.【解答】解:如图所示,延长AD至G,使得DG=AD,连接BG,CG,则△ACD ≌△GBD,△ABD≌△GCD,四边形ABGC为平行四边形,∴四边形ABGC的面积=2S,取BG的中点H,连接CH,FH,则BH∥CE,BH=CE,故四边形BHCE是平行四边形,∴BE=CH,由题可得,FH是△ABG的中位线,∴FH=AG=AD,∴△CFH即为以AD、BE、CF为边的三角形,∵△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF的面积=S,∴△CFH的面积=2S﹣S﹣S﹣S=S,故答案为:S.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是36°.【解答】解:设BM=a,则AB=2a,∴Rt△ABM中,AM=a,由题可得,EM=BM=a,∴AE=(﹣1)a=AG=AF,∴BG=AB﹣AG=(3﹣)a,又∵EF=BG,∴,∴△AEF为黄金三角形,即∠EAF=36°,故答案为:36°三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.【解答】解:原式=+=+﹣.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).【解答】解:(1)过点E作EH∥BF交CD,AB于G,H,∴CG=1,AH=3,∴=,∴=2;(2)===,且AH∥CD,AH=CD,∴=.21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.【解答】解:如图,在Rt△ABC中,∠BAC=60°,∠ACB=30°,AC=10,∴AB=AC=5,过B作BD⊥AC于D,则Rt△ABD中,BD=sin60°×AB=×5=(里),∴轮船行驶过程中离礁石B的最近距离为里.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.【解答】解:(1)当x=0时,y=x+4=4,则A(0,4),当y=0时,x+4=0,解得x=8,则B(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把A (0,4)代入得a•2•(﹣8)=4,解得x=﹣, ∴抛物线解析式为y=﹣(x +2)(x ﹣8), 即y=﹣x 2+x +4; (2)∵y=﹣(x ﹣3)2+,∴M (3,),作MD ⊥x 轴于D ,如图,四边形AOBM 的面积=S 梯形AODM +S △BDM =×(4+)×3+×5×=31.23.(12分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:;(2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.【解答】证明:(1)∵CF ∥AB ,DE 是中位线, ∴四边形BCFD 是平行四边形,∴DE=EF,∴,即;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴,∴HC2=HG•HF,∵BH=HC,∴BH2=HG•HF,即BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.【解答】解:(1)∵k=2018,∴当1≤x≤2018时,y随x的增大而减小.∴当x=1时,y=2018,x=2018时,y=1.∴1≤y≤2108.∴反比例函数y=是闭区间[1,2018]上的“闭函数”.(2)∵x=﹣=2,a=1>0,∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.,解得k=6,t=3,t=﹣2,因为t>2,∴t=2舍去,∴t=3.(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得A(2,2),C(0,6)设B(1,t),由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,①当∠ABC=90°时,AB2+BC2=AC2,即(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,化简,得t2﹣8t+11=0,解得t=4+或t=4﹣,B(1,4+),(1,4﹣);②当∠BAC=90°是,AB2+AC2=BC2,即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,化简,得8t=12,解得t=,B(1,),③当∠ACB=90°时,AC2+CB2=AB2,即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,化简,得2t=13,解得t=,B(1,),综上所述:当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.【解答】解:(1)如图1,过点A作AP⊥BC于P,∵四边形ABCD是等腰梯形,∴BP=(BC﹣AD)=9,在Rt△ABP中,根据勾股定理得,AP=12,∴sin∠ABC===;(2)如图1,在Rt△ACP中,CP=BC﹣BP=16,根据勾股定理得,AC2=AP2+CP2=144+256=400,∵AB=15,BC=25,∴AB2+AC2=225+400=625=252=BC2,∴△ABC是直角三角形,∴∠BAC=90°;(3)过点E作EM⊥BC于M,∵AB=15,AE:BE=1:2,∴AE=5,BE=10,在Rt△BEM中,sin∠ABC=,∴EM=8,BM=6,CM=BC﹣BM=25﹣6=19,当点G和点C重合时,如图4,在Rt△EMC中,CE==∵∠B=∠EFC,∠BCE=∠ECF,∴△BCE∽△ECF,∴=,∴,∴x=8,当EG∥AC时,如图5,∴∠ACB=∠EGB,∵∠B+∠ACB=90°,∴∠FEG+∠EGB=90°,∴EF⊥BC,即:点F和点M重合,∴BF=BM=6,∴当6≤x≤8时,EG和AC的延长线相交,不符合题意,Ⅰ、当点G在BC的延长线上时,如图2,∴FM=BF﹣BM=x﹣6,由(1)知,AC=20,∴AH=AC﹣CH=20﹣y∵∠FEG=∠B∴∠EFG=180°﹣∠G﹣∠FEG=180°﹣∠G﹣∠B,∵∠BEG=180°﹣∠G﹣∠B,∴∠EFG=∠BEG,∴∠EFM=∠AEH,∵∠EMF=∠HAE=90°,∴△EFM∽△HEA,∴,∴,∴y=20﹣(8<x<25),Ⅱ、当点G在边BC上时,如图3,∴FM=BM﹣BF=6﹣x,AH=CH﹣AC=y﹣20,∵同①的方法得,∠EFG=∠BEG,∵∠AEH=∠BEG,∴∠AEH=∠EFG,∵∠EAH=∠FME,∴△AEH∽△MFE,∴,∴,∴y=20+=20﹣(0<x<6).∴y=20﹣(8<x<25).。

(汇总3份试卷)2018年上海市宝山区中考数学一月一模拟试题

(汇总3份试卷)2018年上海市宝山区中考数学一月一模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13 【答案】D【解析】过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B ′=∠B ,把求tanB′的问题,转化为在Rt △BCD中求tanB .【详解】过C 点作CD ⊥AB ,垂足为D .根据旋转性质可知,∠B′=∠B .在Rt △BCD 中,tanB=13CD BD =, ∴tanB′=tanB=13. 故选D .【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.2.在下列二次函数中,其图象的对称轴为2x =-的是A .()22y x =+B .222y x =-C .222y x =--D .()222y x =- 【答案】A【解析】y=(x+2)2的对称轴为x=–2,A 正确;y=2x 2–2的对称轴为x=0,B 错误;y=–2x 2–2的对称轴为x=0,C 错误;y=2(x –2)2的对称轴为x=2,D 错误.故选A .1.3.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB 的度数是( )A .90°B .60°C .45°D .30°【答案】B 【解析】首先连接AB ,由题意易证得△AOB 是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数. 【详解】连接AB ,根据题意得:OB=OA=AB ,∴△AOB 是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.4.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .4 【答案】C【解析】∵∠ACD=∠B ,∠A=∠A ,∴△ACD ∽△ABC , ∴12AC AD AB AC ==, ∴2ACD ABC S AD S AC ⎛⎫= ⎪⎝⎭,∴2112ABC S ⎛⎫= ⎪⎝⎭, ∴S △ABC =4,∴S △BCD = S △ABC - S △ACD =4-1=1.故选C考点:相似三角形的判定与性质.5.如图,二次函数y=ax 1+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=1,且OA=OC .则下列结论:①abc >0;②9a+3b+c >0;③c >﹣1;④关于x 的方程ax 1+bx+c=0(a≠0)有一个根为﹣1a;⑤抛物线上有两点P (x 1,y 1)和Q (x 1,y 1),若x 1<1<x 1,且x 1+x 1>4,则y 1>y 1.其中正确的结论有( )A .1个B .3个C .4个D .5个【答案】D 【解析】根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2b a->0,∴b >0,∴abc >0,故①正确; 令x=3,y >0,∴9a+3b+c >0,故②正确;∵OA=OC <1,∴c >﹣1,故③正确;∵对称轴为直线x=1,∴﹣2b a=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41a a +-,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1a-,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧,∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确.故选D .【点睛】 本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型.6.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k≠0)的图象可能是( )A .B .C .D .【答案】C【解析】根据一次函数与二次函数的图象的性质,求出k 的取值范围,再逐项判断即可.【详解】解:A 、由一次函数图象可知,k >0,∴﹣k <0,∴二次函数的图象开口应该向下,故A 选项不合题意;B 、由一次函数图象可知,k >0,∴﹣k <0,-22k -=1k >0,∴二次函数的图象开口向下,且对称轴在x 轴的正半轴,故B 选项不合题意;C 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k<0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故C 选项符合题意; D 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k <0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故D 选项不合题意; 故选:C .【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.7.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 【答案】A【解析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确; B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.8.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定【答案】B【解析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=12,设抛物线与x 轴交于点A 、B , ∴AB <1, ∵x 取m 时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A 的左侧,x=m-1时,y >0,故选B .【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.9.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A .3cm ,4cm ,8cmB .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A 、3+4<8,不能组成三角形;B 、8+7=15,不能组成三角形;C 、13+12>20,能够组成三角形;D 、5+5<11,不能组成三角形.故选:C .【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.10.一次函数y=kx+k (k≠0)和反比例函数()0k y k x=≠在同一直角坐标系中的图象大致是( ) A . B . C . D .【答案】C【解析】A 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象过二、四象限可知k <0,两结论相矛盾,故选项错误; B 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象与y 轴交点在y 轴的正半轴可知k >0,两结论相矛盾,故选项错误;C 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象过二、三、四象限可知k <0,两结论一致,故选项正确;D 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象与y 轴交点在y 轴的负半轴可知k <0,两结论相矛盾,故选项错误,故选C .二、填空题(本题包括8个小题)11.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于________.【答案】70°【解析】试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b ,所以∠4=∠1=70°.故答案为70°.考点:角的计算;平行线的性质.12.已知圆锥的底面半径为40cm , 母线长为90cm , 则它的侧面展开图的圆心角为_______.【答案】160︒.【解析】圆锥的底面半径为40cm ,则底面圆的周长是80πcm ,圆锥的底面周长等于侧面展开图的扇形弧长,即侧面展开图的扇形弧长是80πcm ,母线长为90cm 即侧面展开图的扇形的半径长是90cm .根据弧长公式即可计算.【详解】根据弧长的公式l=180n r π得到: 80π=•90180n π, 解得n=160度.侧面展开图的圆心角为160度.故答案为160°.13.将一个含45°角的三角板ABC ,如图摆放在平面直角坐标系中,将其绕点C 顺时针旋转75°,点B 的对应点'B 恰好落在轴上,若点C 的坐标为(1,0),则点'B 的坐标为____________.【答案】()12,0+【解析】先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=22,从而求出B′的坐标.【详解】解:∵∠ACB=45°,∠BCB′=75°,∴∠ACB′=120°,∴∠ACO=60°,∴∠OAC=30°,∴AC=2OC ,∵点C 的坐标为(1,0),∴OC=1,∴AC=2OC=2, ∵△ABC 是等腰直角三角形, 2AB BC ∴==2B C A B '''∴==12OB '∴=+∴B′点的坐标为(12,0)+【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.14.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为1003米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)【答案】100(1+3)【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=1003,然后计算AD+BD即可.详解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=CD AD,∴AD=1003=100,在Rt△BCD中,BD=CD=1003,∴AB=AD+BD=100+1003=100(1+3).答:A、B两点间的距离为100(1+3)米.故答案为100(1+3).点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.15.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.【答案】10°【解析】根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE 的度数即可得到答案.【详解】∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案为10°【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.16.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.【答案】8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等17的算术平方根为______.,再求2的算术平方根即可.【详解】∵=2,∴【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.18.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.【答案】(2,0)【解析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.三、解答题(本题包括8个小题)19.某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:该公司“高级技工”有名;所有员工月工资的平均数x为2500元,中位数为元,众数为元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.【答案】(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y⨯--⨯=≈(元).y 能反映该公司员工的月工资实际水平. 20.关于x 的一元二次方程mx 2﹣(2m ﹣3)x+(m ﹣1)=0有两个实数根.求m 的取值范围;若m 为正整数,求此方程的根.【答案】(1)98m 且0m ≠;(2)10x =,21x =-. 【解析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+.解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.21.如图,AC ⊥BD ,DE 交AC 于E ,AB =DE ,∠A =∠D .求证:AC =AE+BC .【答案】见解析.【解析】由“SAS”可证△ABC ≌△DEC ,可得BC =CE ,即可得结论.【详解】证明:∵AB =DE ,∠A =∠D ,∠ACB =∠DCE =90°∴△ABC ≌△DEC (SAS )∴BC =CE ,∵AC =AE+CE∴AC =AE+BC【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.22.为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A 、B 、C 、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.七年级英语口语测试成绩统计表 成绩x(分) 等级人数 x 90≥ A12 75x 90≤< B m 60x 75≤< C n x 60<D 9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B 级以上(包括B 级)的学生人数.【答案】 (1)60人;(2)144°;(3)288人.【解析】()1D 等级人数除以其所占百分比即可得;()2先求出A 等级对应的百分比,再由百分比之和为1得出C 等级的百分比,继而乘以360即可得; ()3总人数乘以A 、B 等级百分比之和即可得.【详解】解:()1本次被抽取参加英语口语测试的学生共有915%60÷=人;()2A 级所占百分比为12100%20%60⨯=, C ∴级对应的百分比为()120%25%15%40%-++=,则扇形统计图中 C 级的圆心角度数为36040%144⨯=;()()⨯+=人),364020%25%288(答:估计英语口语达到 B级以上(包括B 级)的学生人数为288人.【点睛】.利用统计图获取信息时,必须认真观察、本题考查读频数分布直方图的能力和利用统计图获取信息的能力.也考查了样本估计总体.分析、研究统计图,才能作出正确的判断和解决问题23.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.【答案】见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.试题解析:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.24.如图,已知▱ABCD.作∠B的平分线交AD于E点。

上海市宝山区2018年中考数学一模试卷(解析版)

上海市宝山区2018年中考数学一模试卷(解析版)

2018年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1. 符号tanA表示()A. ∠A的正弦B. ∠A的余弦C. ∠A的正切D. ∠A的余切【答案】C【解析】分析:根据锐角三角形的符号所表示的意义可得:tan表示的正切.详解:符号tanA表示∠A的正切.故选:C.点睛:考查了锐角三角函数的定义:在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2. 如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A. CD=ABB. BD=ADC. CD2=AD•BDD. AD2=BD•AB【答案】C【解析】分析:利用相似三角形的判定得出△CDB∽△ACD,进而利用相似三角形的性质判断即可.详解:∵△ABC中∠C=90°,CD⊥AB于D,∴∠CDB=∠ADC,∠B=∠ACD,∴△CDB∽△ACD,∴,即CD2=AD•BD,故选:C.点睛:考查了相似三角形的判定和性质,解题关键是利用相似三角形的判定得出△CDB∽△ACD.3. 已知、为非零向量,下列判断错误的是()A. 如果=2,那么∥B. 如果||=||,那么=或=﹣C. 的方向不确定,大小为0D. 如果为单位向量且=2,那么||=2【答案】B【解析】分析:根据单位向量、平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.详解:A、如果=2,那么∥,正确;B、如果||=||,没法判断与的关系;故错误.C、的方向不确定,大小为0,正确;D、如果为单位向量且=2,那么||=2,正确;故选:B.点睛:考查了平面向量的知识,注意熟记定义是解此题的关键.4. 二次函数y=x2+2x+3的图象的开口方向为()A. 向上B. 向下C. 向左D. 向右【答案】A【解析】分析:根据二次函数y=ax2+bx+c(a≠0,a 、b、c为常数)中的系数与函数图象间的关系(其中a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下)解答.详解:∵二次函数y=x2+2x+3中a=1>0,∴二次函数y=x2+2x+3的图象的开口向上,故选:A.点睛:熟记二次函数y=ax2+bx+c(a≠0,a 、b、c为常数)中的系数与函数图象间的关系:其中a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下.5. 如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A. 俯角30°方向B. 俯角60°方向C. 仰角30°方向D. 仰角60°方向【答案】C【解析】分析:根据仰角以及俯角的定义,画出图形进而分析,求出即可.详解:如图所示:∵甲处看乙处为俯角30°,∴乙处看甲处为:仰角为30°.故选:C.点睛:考查了仰角以及俯角的定义,仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角,正确理解它们的定义是解题关键.6. 如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A. y=(x+2)2+2B. y=(x+2)2+2C. y=(x﹣2)2+2D. y=(x﹣2)2+2【答案】D【解析】分析:过点A作AB⊥x轴于B,求出OB、AB,然后写出点A的坐标,再利用顶点式解析式写出即可.详解:如图所示,过点A作AB⊥x轴于B,∵直线y=x与x轴夹角为45°,OA=2,∴OB=AB=2×=2,∴点A的坐标为(2,2),∴平移后的抛物线解析式是y=(x﹣2)2+2.故选:D.点睛:考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,解此类题目,利用顶点的变化求解更简便.二、填空题(每小题4分,共48分)7. 如果2a=3b,那么a:b=_____.【答案】3:2【解析】分析:根据比例的基本性质:两内项之积等于两外项之积.把2a当做比例的外项,3b当做比例的内项写出比例即可.详解:根据比例的基本性质,2a=3b可以写出比例为:a:b=3:2.故答案为:3,2.点睛:考查用比例的基本性质写比例,解题关键是根据比例的基本性质(两内项之积等于两外项之积),把2a 当做比例的外项,3b当做比例的内项,再写出比例.8. 如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为_____.【答案】1:4【解析】分析:根据相似三角形周长的比等于相似比求出相似比,再根据对应角平分线的比等于相似比解答.详解:∵两个相似三角形的周长之比1:4,∴它们的相似比是1:4,∴它们的某一对对应角的角平分线之比为1:4.故答案为:1:4.点睛:考查对相似三角形性质的理解:请理解和熟记以下知识点:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.9. 如图,D、E为△ABC的边AC、AB上的点,当_____时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).【答案】∠ADE=∠B详解:当∠ADE=∠B,∵∠EAD=∠CAB,∴△ADE∽△ABC.故答案为∠ADE=∠B.点睛:考查了相似三角形的判定:解题关键是运用相似三角形的判(两组对应角相等的两个三角形相似).10. 计算:(4-5)+=_____.【答案】【解析】分析:先根据乘法分配律去括号后,再进行加减运算.详解:(4-5)+=2﹣+=2﹣故答案为:2﹣.点睛:考查了向量的计算,实数的运算法则也适用向量的运算.11. 如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为_____.【答案】【解析】分析:设正方形EFGH的边长为x,根据相似三角形的判定和性质得出方程解答即可.详解:设正方形EFGH的边长为x,则HG=HE=QK=x,∵HG∥BC,∴,且AK=AQ﹣x,又∵AQ=6,BC=10,∴,解得x=,故答案为:.点睛:主要考查平行线分线段成比例的性质,掌握平行线分线段中的线段对应成比例是解题的关键.12. 如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=_____.【答案】1:2.4【解析】分析:根据题意建立图形,利用勾股定理求得另一直角边的长度,再根据坡度的概念求解可得.详解:如图,根据题意知AB=13米、AC=5米,则BC=(米),∴斜坡的坡度i=tanB==1:2.4,故答案为:1:2.4.点睛:主要考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握勾股定理及坡度的概念.13. 如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=_____.【答案】..............................详解:如图所示:连接AG,设正方形的边长为a,AC=,∵,∴,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=,故答案为: .点睛:主要运用了两边对应成比例、夹角相等两三角形相似的判定和相似三角形对应角相等的性质,求出两三角形的对应边的比值相等是解本题的关键.14. 抛物线y=5(x﹣4)2+3的顶点坐标是_____.【答案】(4,3)【解析】抛物线y=5(x﹣4)2+3,∴顶点坐标是(4,3)15. 二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是_____.【答案】(0,)【解析】分析:把x=0代入函数解析式中,求得y的值,则可求得与y轴交点坐标.详解:当x=0时,y=﹣(x﹣1)2+=﹣×(0﹣1)2+=﹣.∴二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).故答案为:(0,﹣).点睛:求函数与坐标轴交点坐标问题可以转换成求代数式值和解方程问题:具体如下:当求函数与y轴交点坐标,则把x=0代入函数解析式中,求得y的值即可;当求函数与x轴交点坐标,则把y=0代入函数解析式中,解方程,求得x的值即可.16. 如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线_____的部分是上升的.(填具体某直线的某侧)【答案】x=2右侧【解析】分析:利用待定系数法,把点A、B的坐标代入解析式,根据待定系数法求得解析式,利用配方法把二次函数解析式的一般式写成顶点式,求出抛物线对称轴,然后根据二次函数的性质即可求得答案.详解:∵点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,∴,解得:,∴该二次函数的表达式为y=x2﹣4x+2;∵y=x2﹣4x+2=(x﹣2)2﹣2,∴对称轴为直线x=2,∵a=1>0,∴抛物线在直线x=2的右侧的部分是上升;故答案为:x=2右侧.点睛:考查了二次函数图象上点坐标特征、二次函数的性质,熟练掌握二次函数的性质是解题的关键.17. 如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是_____.【答案】【解析】分析:延长AD至G,使得DG=AD,连接BG,CG,取BG的中点H,连接CH,FH,依据三角形中线、中位线的性质以及平行四边形的性质,即可得到△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF 的面积=S,进而得出△CFH的面积=2S﹣S﹣S﹣S=S.详解:如图所示,延长AD至G,使得DG=AD,连接BG,CG,则△ACD≌△GBD,△ABD≌△GCD,四边形ABGC为平行四边形,∴四边形ABGC的面积=2S,取BG的中点H,连接CH,FH,则BH∥CE,BH=CE,故四边形BHCE是平行四边形,∴BE=CH,由题可得,FH是△ABG的中位线,∴FH=AG=AD,∴△CFH即为以AD、BE、CF为边的三角形,∵△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF的面积=S,∴△CFH的面积=2S﹣S﹣S﹣S=S,故答案为:S.点睛:主要考查了三角形的重心的运用,三角形的重心是三角形三边中线的交点.解决问题的关键是作辅助线构造平行四边形以及以AD、BE、CF为边的三角形,利用基本图形的性质求解.18. 如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E 处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是_____.【答案】36°【解析】分析:设BM=a,则AB=2a,依据题意得到,进而得出△AEF为黄金三角形,即可得到∠EAF=36°.详解:设BM=a,则AB=2a,∴Rt△ABM中,AM=a,由题可得,EM=BM=a,∴AE=(﹣1)a=AG=AF,∴BG=AB﹣AG=(3﹣)a,又∵EF=BG,∴,∴△AEF为黄金三角形,即∠EAF=36°,故答案为:36°点睛:主要考查了正方形的性质以及旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19. 计算:+(tan60°+π0)﹣1.【答案】【解析】分析:将特殊角的三角函数值代入后,再按实数运算顺序和法则求解;详解:+(tan60°+π0)﹣1==点睛:考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值,具体如下表:20. 如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).【答案】(1)2(2)【解析】分析:(1)根据平行线分线段成比例定理列出比例式,计算即可;(2)表示出,利用AH∥CD,AH=CD,可得结果.详解:(1)过点E作EH∥BF交CD,AB于G,H,如图所示:∴CG=1,AH=3,∴,∴;(2),且AH∥CD,AH=CD,∴.点睛:考查的是平行线分线段成比例定理和向量的运算,灵活运用定理、找准对应关系是解题的关键.21. 已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.【答案】里【解析】分析:根据题意,得到点B的位置,利用30度所对的直角边等于斜边的一半求出AB的长,进而得到轮船行驶过程中离礁石B的最近距离为里.详解:如图,在Rt△ABC中,∠BAC=60°,∠ACB=30°,AC=10,∴AB=AC=5,过B作BD⊥AC于D,则Rt△ABD中,BD=sin60°×AB=×5=(里),∴轮船行驶过程中离礁石B的最近距离为里.点睛:考查的是解直角三角形的知识的应用,掌握锐角三角函数的概念、选择正确的三角函数是解题的关22. 如图,在直角坐标系中,已知直线y=-x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.【答案】(1)y=-(2)31【解析】分析:(1)先利用一次函数解析式确定A(0,4),B(8,0),再设交点式y=a(x+2)(x-8),然后把A点坐标代入求出a即可得到抛物线解析式;(2)先利用配方法得到y=-(x-3)2+,则M(3,),作MD⊥x轴于D,如图,然后根据梯形面积公式和三角形面积公式,利用四边形AOBM的面积=S梯形AODM+S△BDM进行计算即可.详解:(1)当x=0时,y=-x+4=4,则A(0,4),当y=0时,-x+4=0,解得x=8,则B(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把A(0,4)代入得a•2•(﹣8)=4,解得x=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)∵y=﹣(x﹣3)2+,∴M(3,),作MD⊥x轴于D,如图,四边形AOBM的面积=S梯形AODM+S△BDM=×(4+)×3+×5×点睛:考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.23. 如图,△ABC中,AB=AC,过点C作CF∥AB交△ABC的中位线DE的延长线于F,联结BF,交AC于点G.(1)求证:;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.【答案】证明见解析【解析】分析:(1)根据平行四边形的判定得出四边形BCFD是平行四边形,进而利用相似比解答即可;(2)根据全等三角形的判定得出△ABH≌△ACH,进而利用全等三角形的性质证明△GHC∽△C HF,再根据相似三角形的性质证明即可.详解:(1)∵CF∥AB,DE是中位线,∴四边形BCFD是平行四边形,∴DE=EF,∴,即;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴,∴HC2=HG•HF,∵BH=HC,∴BH2=HG•HF,即BH是HG和HF的比例中项.点睛:主要考查相似三角形的判定与性质,熟练掌握三角形相似判定方法(两组对应角相等的两个三角相似)是解题的关键.24. 设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.【答案】(1)反比例函数y=是闭区间[1,2018]上的“闭函数”(2)t=3(3)当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,)【解析】分析:(1)由k>0可知反比例函数y=在闭区间[1,2016]上y随x的增大而减小,然后将x=1,x=2018别代入反比例解析式的解析式,从而可求得y的范围,于是可做出判断;(2)先求得二次函数的对称轴为x=1,a=1>0,根据二次函数的性质可知y=x2-4x+k在闭区间[2,t]上y随x的增大而增大,然后将x=2,y=k-4,x=t,y=t2-4t+k分别代入二次函数的解析式,从而可求得k的值;(3)根据勾股定理的逆定理,可得方程,根据解方程,可得答案.详解:(1)∵k=2018,∴当1≤x≤2018时,y随x的增大而减小.∴当x=1时,y=2018,x=2018时,y=1.∴1≤y≤2108.∴反比例函数y=是闭区间[1,2018]上的“闭函数”.(2)∵x=﹣=2,a=1>0,∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.,解得k=6,t=3,t=﹣2,因为t>2,∴t=2舍去,∴t=3.(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得A(2,2),C(0,6)设B(1,t),由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,①当∠ABC=90°时,AB2+BC2=AC2,即(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,化简,得t2﹣8t+11=0,解得t=4+或t=4﹣,B(1,4+),(1,4﹣);②当∠BAC=90°是,AB2+AC2=BC2,即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,化简,得8t=12,解得t=,B(1,),③当∠ACB=90°时,AC2+CB2=AB2,即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,化简,得2t=13,解得t=,B(1,),综上所述:当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).点睛:二次函数综合题型:解(1)的关键是利用闭函数的定义,解(2)的关键是利用闭函数的定义得出方程组,解(3)的关键是利用勾股定理的逆定理得出方程,要分类讨论,以防遗漏.25. 如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E为腰AB上一点且AE:BE=1:2,F为BC 一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.【答案】(1)sin∠ABC=;(2)∠BAC=90°;(3)y=20﹣(8<x<25)【解析】分析:(1)先求出BP=9,再根据勾股定理得,AP=12,即可得出结论,(2)先求出CP=16,再根据勾股定理得,AC2=400,进而判断出△ABC是直角三角形,即可得出结论;(3)先求出AE=5,BE=10,进而求出EM=8,BM=6,再分两种情况讨论,Ⅰ、当点G在BC的延长线上时,判断出△EFM∽△HEA,得出,即可得出结论;Ⅱ、当点G在边BC上时,同Ⅰ的方法即可得出结论.详解:(1)如图1,过点A作AP⊥BC于P,∵四边形ABCD是等腰梯形,∴BP=(BC﹣AD)=9,在Rt△ABP中,根据勾股定理得,AP=12,∴sin∠ABC=;(2)如图1,在Rt△ACP中,CP=BC﹣BP=16,根据勾股定理得,AC2=AP2+CP2=144+256=400,∵AB=15,BC=25,∴AB2+AC2=225+400=625=252=BC2,∴△ABC是直角三角形,∴∠BAC=90°;(3)过点E作EM⊥BC于M,∵AB=15,AE:BE=1:2,∴AE=5,BE=10,在Rt△BEM中,sin∠ABC=,∴EM=8,BM=6,CM=BC﹣BM=25﹣6=19,当点G和点C重合时,如图4,在Rt△EMC中,CE=∵∠B=∠EFC,∠BCE=∠ECF,∴△BCE∽△ECF,∴,∴,∴x=8,当EG∥AC时,如图5,∴∠ACB=∠EGB,∵∠B+∠ACB=90°,∴∠FEG+∠EGB=90°,∴EF⊥BC,即:点F和点M重合,∴BF=BM=6,∴当6≤x≤8时,EG和AC的延长线相交,不符合题意,Ⅰ、当点G在BC的延长线上时,如图2,∴FM=BF﹣BM=x﹣6,由(1)知,AC=20,∴AH=AC﹣CH=20﹣y∵∠FEG=∠B∴∠EFG=180°﹣∠G﹣∠FEG=180°﹣∠G﹣∠B,∵∠BEG=180°﹣∠G﹣∠B,∴∠EFG=∠BEG,∴∠EFM=∠AEH,∵∠EMF=∠HAE=90°,∴△EFM∽△HEA,∴,∴,∴y=20﹣(8<x<25),Ⅱ、当点G在边BC上时,如图3,∴FM=BM﹣BF=6﹣x,AH=CH﹣AC=y﹣20,∵同①的方法得,∠EFG=∠BEG,∵∠AEH=∠BEG,∴∠AEH=∠EFG,∵∠EAH=∠FME,∴△AEH∽△MFE,∴,∴,∴y=20+=20﹣(0<x<6).∴y=20﹣(8<x<25).点睛:四边形综合题:主要考查了等腰梯形的性质、勾股定理、锐角三角形函数、直角三角形的判定和性质和相似三角形的判定和性质,解本题的关键是判断出△AEH∽△MFE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级中考数学(模拟一) 2018年宝山区初三一模
一、选择题(本大题共6题,每题4分,满分24分)
1、符号表示()
、的正弦、的余弦、的正切、的余切
2、如图,在中,,如果于,那么()
、、、、
、如果,那么、如果,那么或
、的方向不确定,大小为、如果为单位向量且,那么
4、二次函数的图像的开口方向为()
、向上、向下、向左、向右
5、如果从某一高处甲看低处乙的俯角为,那么从乙处看甲处,甲在乙的()
、俯角方向、俯角方向、仰角方向、仰角方向
6、如图,如果把抛物线沿直线向上平移个单位后,其顶点在直线上的处,那么平移后的抛物线解析式为()
、、
、、
二、填空题(本大题共12题,每题4分,满分48分)
7、已知,那么
8、如果两个相似三角形的周长之比,那么它们的某一对对应角的角平分线之比为
9、如图,、为的边、上的点,当时,其中、分别对应、(填一个条件)
10、计算:
11、如图,在锐角中,,上的高,正方形的顶点、在边上,、分别在、边上,则此正方形的边长为
12、如果一个滚筒沿斜坡向下滚动米后,其垂直高度下降了米,那么该斜坡的坡度
13、如图,四边形、、都是正方形,则
2018年宝山区初三一模参考答案
一、选择题
1
2
3
4
5
6
二、填空题
7
8
9
10
11
12
13
14
15
16
17
18
右侧
三、解答题
19、
20、(1)(2)
21、
22、(1)(2)
23、(1)略(2)略
24、(1)是(2),(3)或或或
25、(1)(2)(3)(或)或()。

相关文档
最新文档