北师大版九年级数学上 新第一章特殊平行四边形专题菱形练习题
2022-2023学年北师大版九年级数学上册第一章特殊平行四边形单元测试题含答案
第一章 特殊平行四边形一 选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,下列说法不正确的是 ( )A.AB ∥DCB.AC=BDC.AC ⊥BDD.OA=OB(第1题) (第2题)2.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 为AD 的中点,连接OE ,若OE=3,则菱形ABCD 的周长为 ( )A.10B.12C.16D.243.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,P 为边BC 上一点,且BP=OB ,则∠COP= ( ) A.15° B.22.5° C.25°D.17.5°(第3题) (第4题)4.如图,在矩形ACBE 中,∠ABC=30°,AB 交CE 于点D ,若AC=2,则CD 的长为 ( )A.2B.3C.4D.55.如图,EF 过矩形ABCD 的对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的 ( )A.15B.14C.13D.310(第5题) (第6题)6.如图,已知▱ABCD 的对角线AC ,BD 相交于点O ,下列说法正确的是( ) A.当OA=OB 时,▱ABCD 为菱形 B.当AB=AD 时,▱ABCD 为正方形 C.当∠ABC=∠BCD 时,▱ABCD 为矩形 D.当AC ⊥BD 时,▱ABCD 为正方形7.如图,在矩形ABCD 中,BC=8,AB=4,点E ,F 分别为AD 和BC 的中点,连接CE ,DF ,交于点O ,连接AO ,则AO 的长为( )A.2√10B.5√2C.32√10 D.4√2(第7题)(第8题)8.如图,在四边形ABCD中,点E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD应满足的一个条件是()A.AD=BCB.AC⊥BDC.AC=BDD.AB=CD9.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB'C'D',边B'C'与DC 相交于点O,则OC的长是() A.2√2-2 B.2+√2 C.2-√2 D.√2(第9题)(第10题)10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B'处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是() A.12 B.24 C.12√3 D.16√3二填空题(共5小题,每小题3分,共15分)11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若∠A=26°,则∠DCA=.(第11题)(第12题)12.如图,在平面直角坐标系中,矩形木框OABC的顶点B的坐标为(1,2),若固定OA,向左推矩形木框OABC,使点B落在y轴上的点B'处,则点C的对应点C'的坐标为.13.对下列现象中蕴含的数学原理阐述正确的是(填序号).图(1)图(2)图(3)①如图(1),工人师傅在做矩形门窗时,不仅要测量出两组对边的长度相等,还要测量出两条对角线的长度相等,以确保门窗是矩形.其依据是“对角线相等的四边形是矩形”.②如图(2),将两张等宽的矩形纸条交叉叠放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是“有一组邻边相等的平行四边形是菱形”.③把一张矩形纸片按图(3)的方式折一下,然后沿EF裁剪,打开就可以得到正方形.其依据是“有一组邻边相等的矩形是正方形”.14.如图,P是正方形ABCD的对角线BD上一点,PE⊥DC于点E,PF⊥BC于点F,若CF=3,CE=4,则AP的长是.(第14题)(第15题)15.如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F为AC上一动点,连接EF,BF,则EF+BF的最小值是.三解答题(共6小题,共55分)16.(7分)如图,正方形ABCD中,点E,F分别在边CD,AD上,DE=AF,BE与CF相交于点G.(1)求证:BE=CF.(2)若BC=4,DE=1,求CF的长.17.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE.(2)若BE=10,CE=6,连接OE,求△ODE的面积.18.(8分)如图,在矩形ABCD中,AB=3 cm,BC=6 cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止.点P,Q的速度都是1 cm/s.连接PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?19.(9分)如图(1),在菱形纸片ABCD中,∠A=45°.对其进行如下操作:如图(2),现将纸片进行折叠,使点A与点D重合,点C与点D重合,折痕分别为EG,FH,且两条折痕的延长线交于点O.(1)求∠EOF的度数;(2)四边形DGOH是菱形吗?请说明理由.图(1)图(2)20.(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.如图(1),在四边形ABCD中,AC⊥BD于点O,四边形ABCD就是“对角线垂直四边形”.(1)下列四边形,一定是“对角线垂直四边形”的是.①平行四边形,②矩形,③菱形,④正方形.(2)如图(2),在“对角线垂直四边形ABCD”中,点E,F,G,H分别是边AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.图(1)图(2)(3)小明说:计算“对角线垂直四边形”的面积可以仿照求菱形的面积的方法,其面积是对角线长的乘积的一半.小明的说法正确吗?如果正确,请结合图(1)说明理由;如果不正确,请给出反例.21.(13分)如图(1),矩形ABCD的对角线AC,BD相交于点O,过点D作DP∥OC,且DP=OC,连接CP.(1)猜想:请你判断四边形CODP的形状,并说明理由.(2)证明:如果将矩形变为菱形,如图(2),请你判断四边形CODP的形状,并说明理由.(3)应用:如果将矩形变为正方形,如图(3),请你判断四边形CODP的形状,并说明理由.图(1)图(2)图(3)答案解析1.C根据矩形的性质可知,矩形的对角线不一定互相垂直.故选C.【归纳总结】矩形的有关性质①边,矩形的对边平行且相等;②角,矩形的四个角都是直角;③对角线,矩形的对角线互相平分且相等.2.D根据菱形的性质可知,O是AC的中点.∵E为AD的中点,∴OE为△ACD的中位线,∴CD=2OE=6.又菱形的四边相等,∴菱形ABCD的周长为6×4=24.故选D.【一题多解】由题意得∠AOD=90°.在Rt△AOD中,∵E为AD的中点,∴AD=2OE=2×3=6,∴菱形ABCD的周长为6×4=24.故选D.3.B∵四边形ABCD是正方形,∴∠BOC=90°,∠OBC=45°.∵BP=OB,∴∠BOP=∠BPO=12(180°-45°)=67.5°,∴∠COP=90°-67.5°=22.5°.故选B.4.A∵四边形ACBE是矩形,∴∠ACB=90°,D为AB的中点.∵AC=2,∠ABC=30°,∴AB=2AC=4,∴CD=12AB=2,故选A.5.B∵四边形ABCD为矩形,∴OB=OD,AB∥CD,∴∠EBO=∠FDO.在△EBO与△FDO中,∵∠EOB=∠FOD,OB=OD,∠EBO=∠FDO,∴△EBO≌△FDO,∴S阴影部分=S△AEO+S△EBO=S△AOB.∵S△AOB=12S△ABC=14S矩形ABCD,∴S阴影部分=14S矩形ABCD.故选B.【数学思想】本题利用全等三角形把不规则图形的面积转化为较简单的规则图形的面积,进而利用整体思想求解.6.C∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又OA=OB,∴AC=BD,由“对角线相等的平行四边形是矩形”,可判定▱ABCD为矩形,故选项A中说法错误.当AB=AD时,由菱形的定义可知,▱ABCD为菱形,故选项B中说法错误.∵在▱ABCD中,AB∥CD,∴∠ABC+∠BCD=180°.又∠ABC=∠BCD,∴∠ABC=90°.由矩形的定义,可判定▱ABCD为矩形,故选项C中说法正确.当AC⊥BD时,根据“对角线互相垂直的平行四边形是菱形”,可判定▱ABCD为菱形,但无法判定其为正方形,故选项D中说法错误.故选C.7.A连接EF,过点O作OM⊥AD于点M,易证四边形EFCD为正方形,∴OM=MD=12AB=2,∴AM=6.在Rt△AOM中,由勾股定理,得AO=√AM2+OM2=2√10.8.A∵点E,F,G,H分别是AB,BD,CD,AC的中点,∴GH∥AD,EF∥AD,FG∥BC,HE∥BC,且GH=12AD,EH=12BC,∴EF∥GH,HE∥FG,∴四边形EFGH是平行四边形.当AD=BC时,GH=EH,此时平行四边形EFGH是菱形.故选A.9.C如图,连接B'C,AC.∵旋转角∠BAB'=45°,∠BAC=45°,∴点B'在对角线AC上.∵AB=AB'=BC=1,∴AC=√2,∴B'C=√2-1.在等腰直角三角形OB'C中,OB'=B'C=√2-1,∴OC=√2(√2-1)=2-√2.故选C.10.D在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°.由翻折可知,∠EFB'=60°,∠A'B'F=∠B=90°,∠A'=∠A=90°,A'E=AE=2,A'B'=AB.在△EFB'中,∵∠B'EF=∠EFB'=60°,∴△EFB'是等边三角形.在Rt△A'EB'中,∵∠A'B'E=90°-60°=30°,∴B'E=2A'E=4,∴A'B'=2√3,即AB=2√3.∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB·AD=2√3×8=16√3.故选D.AB=AD,∴∠DCA=∠A=26°.11.26°【解析】∵∠ACB=90°,D是AB的中点,∴DC=1212.(-1,√3)【解析】∵四边形OABC是矩形,点B的坐标为(1,2),∴OA=1,AB=2.由题意得AB'=AB=2,四边形OAB'C'是平行四边形,∴OB'=√AB'2-OA2=√3,B'C'=OA=1,∴点C的对应点C'的坐标为(-1,√3).13.②③【解析】①∵两组对边的长度相等,∴四边形是平行四边形.又对角线相等,∴该平行四边形是矩形(对角线相等的平行四边形是矩形),故①错误.②如图,由矩形的对边平行,可得AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.过点D分别作AB,BC边上的高DE,DF,则DE=DF.∵平行四边形ABCD的面积=AB×DE=BC×DF,∴AB=BC,∴平行四边形ABCD为菱形(有一组邻边相等的平行四边形是菱形),故②正确.③根据折叠可知,所得到的四边形有三个直角,∴该四边形为矩形.又有一组邻边相等,∴该矩形为正方形(有一组邻边相等的矩形是正方形),故③正确.故正确的阐述为②③.14.5【解析】如图,连接PC.∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP.∵PD=PD,∴△APD≌△CPD,∴AP=CP.∵四边形ABCD是正方形,∴∠DCB=90°.∵PE⊥DC,PF⊥BC,∴四边形PFCE是矩形,∴PC=EF.在Rt△CEF中,EF=√CE2+CF2=√42+32=5,∴AP=CP=EF=5.15.3√3【解析】∵四边形ABCD是菱形,∴点B,D关于AC对称,AB=AD.如图,连接BD,ED,则ED 的长即为EF+BF的最小值.∵∠DAB=60°,∴△ABD是等边三角形.∵E为AB的中点,∴DE⊥AB,AE=12AB=3.在Rt△ADE中,根据勾股定理,得ED=√AD2-AE2=√62-32=3√3,∴EF+BF 的最小值为3√3.16.【参考答案】(1)证明:∵四边形ABCD是正方形,∴BC=CD=DA,∠BCE=∠CDF=90°.(2分)∵DE=AF,∴CE=DF.(3分)在△BCE和△CDF中,{BC=CD,∠BCE=∠CDF, CE=DF,∴△BCE≌△CDF,∴BE=CF.(5分) (2)∵CD=AD=BC=4,AF=DE=1,∴DF=3.在Rt△CDF中,CF=√CD2+DF2=5.(7分) 17.【参考答案】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.(3分)(2)如图,过点O作OF⊥CD于点F.∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE=90°.在Rt△BCE中,根据勾股定理可得BC=8.∵BE=BD,∴CD=CE=6,∴DE=12.∵OD=OC,∴CF=DF.又OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4,∴S△ODE=12DE·OF=12×12×4=24.(8分)18.【参考答案】(1)由题意得,BQ=DP=t,AP=CQ=6-t.在矩形ABCD中,∠B=90°,AD∥BC.要使四边形ABQP是矩形,则BQ=AP,即t=6-t,解得t=3.故当t=3时,四边形ABQP是矩形.(4分) (2)由题意得,四边形AQCP是平行四边形.要使平行四边形AQCP是菱形,则AQ=CQ,即√32+t2=6-t,解得t=94.故当t=94时,四边形AQCP是菱形.(8分)19.【参考答案】(1)由折叠可知∠DEG=∠DFH=90°.∵四边形ABCD是菱形,∴AB∥CD,∠C=∠A=45°,∴∠A+∠ADC=180°,∴∠ADC=135°.∵∠EOF+∠DEG+∠DFH+∠ADC=360°,∴∠EOF=360°-90°-90°-135°=45°.(4分) (2)是菱形.(5分)理由:由折叠可知∠ADG=∠A=45°,∠CDH=∠C=45°.∵∠ADC=135°,∴∠GDC=∠ADH=90°.∵∠AEG=∠CFH=90°,∴GE∥DH,GD∥HF,∴四边形DGOH是平行四边形.(7分)∵∠A=∠C,AD=CD,∠ADG=∠CDH,∴△ADG≌△CDH,∴DG=DH,∴四边形DGOH是菱形.(9分)20.【参考答案】(1)③④(2分) (2)∵点E,F,G,H分别是边AB,BC,CD,DA的中点,∴HG∥AC,EF∥AC,∴HG∥EF.同理可得HE∥GF.∴四边形EFGH是平行四边形.(4分)∵DB⊥AC,∴HE⊥HG,∴∠EHG=90°,∴四边形EFGH是矩形.(6分) (3)正确.(7分)理由:S四边形ABCD=S△ADC+S△BAC=12AC·OD+12AC·BO=12AC(OD+OB)=12AC·BD,即“对角线垂直四边形”的面积是对角线长的乘积的一半.(10分)【提分技法】解决中点四边形的有关方法(1)解决中点四边形问题,往往借助三角形的中位线的性质证明四边形的对边相等或平行.(2)中点四边形的形状由原来四边形对角线的特征决定.连接矩形各边中点得到的四边形是菱形;连接菱形各边中点得到的四边形是矩形;连接正方形各边中点得到的四边形是正方形.21.【解题思路】(1)由DP∥OC且DP=OC,得四边形CODP是平行四边形,根据矩形的性质得OC=OD,从而可证得四边形CODP是菱形;(2)由DP∥OC且DP=OC,得四边形CODP是平行四边形,又根据菱形的性质得∠DOC=90°,从而证得四边形CODP是矩形;(3)由DP∥OC且DP=OC,得四边形CODP 是平行四边形,又由正方形的性质得∠DOC=90°,OD=OC,从而证得四边形CODP是正方形.【参考答案】(1)四边形CODP是菱形.(1分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.(2分)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OD=12BD,∴OC=OD,∴四边形CODP是菱形.(4分) (2)四边形CODP是矩形.(5分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形CODP是矩形.(8分) (3)四边形CODP是正方形.(9分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,OC=12AC,OD=12BD,∴∠DOC=90°,OC=OD,(12分)∴四边形CODP是正方形.(13分)。
北师大版九年级数学上册第一章特殊平行四边形单元测试
北师大版九年级数学上册第一章特殊平行四边形单元测试(4)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1BC.2D.2.正方形面积为36,则对角线的长为()A.6B.C.9D.3.如图,在矩形ABCD中,对角线BD=8cm,∠AOD=120°,则AB的长为()B.2cm C.D.4cmA4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是().A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB∠CD ,AB =CDB .AD∠BC ,∠A =∠C C .AO =BO =CO =DO ,AC∠BD D .AO =CO ,BO =DO ,AB =BC7.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形8.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3109.图,在∠ABC 中,AB =AC ,四边形ADEF 为菱形,O 为AE ,DF 的交点,S △ABC =,则S 菱形ADEF =( )A .4B .C .D .10.如图,四边形ABCD 中,90BAD C ∠=∠=︒,AB AD =,AH BC ⊥于H ,若线段AH =ABCD 的面积是( ).A .3B .4C .D .6二、填空题11.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离AB=BC=16cm ,则∠1=_______°12.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,相交于点O ,CE 平分∠ACD 交BD 于点E ,则DE =_____.13.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_____________.14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,CE ∠BD ,垂足为点E ,CE =5,EO =2DE ,则DE 的长为________.15.如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为_________.16.将五个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3、A 4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.17.图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点(不与B ,D 重合),PE∥CD 交BC 于点E ,PF ∥BC 交CD 于点F ,连接AP ,EF .给出下列结论:∠PD EC ;∠四边形PECF 的周长为8;∠∠APD 一定是等腰三角形;∠AP =EF .其中正确结论的序号为________.三、解答题18.如图,矩形ABCD 中,AC 与BD 交于点O BE AC CF BD ⊥⊥,,,垂足分别为.E F ,求证:BE CF =.19.如图,在77⨯的正方形网格中,网格线的交点称为格点,B 在格点上,每一个小正方形的边长为1.(1)以AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.20.如图,菱形ABCD的对角线AC,BD交于点O,AB=5,AC=6,DE∠BC的延长线于点E,求OE的长.21.如图,菱形ABCD的对角线AC,BD交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求EO的长.22.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使∠BPE的周长最小(作图说明);(2)求出∠BPE周长的最小值.23.如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.=;(1)求证:AF HG∠=∠;(2)求证:FAE GHC24.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN∠BC,设MN 交∠ACB 的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)若AC 边上存在点O,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.25.有一张矩形纸片ABCD,其中AB=10,AD=6,现将矩形纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形纸片的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图∠).∠当点P与点A重合时,∠DEF=________°,当点E与点A重合时,∠DEF=________°,当点F与点C重合时,AP=________;∠若点P为AB的中点,求AE的长;(2)若点P落在矩形ABCD的外部(如图∠),点F与点C重合,点E在AD上,BA与FP交于点M,当AM=DE时,请求出AE的长;(3)若点E为动点,点F为DC的中点,直接写出AP的最小值.参考答案:1.C【分析】利用菱形的性质以及等边三角形的判定方法得出∠DAB 是等边三角形,进而得出BD 的长,【详解】解:∠菱形ABCD 的边长为2,∠AD =AB =2,又∠∠DAB =60°,∠∠DAB 是等边三角形,∠AD =BD =AB =2,则对角线BD 的长是2.故选C .【点睛】此题主要考查了菱形的性质以及等边三角形的判定,得出∠DAB 是等边三角形是解题关键.2.B【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【详解】设对角线长是x .则有12x 2=36,解得:x故选B .【点睛】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.3.D【分析】根据矩形的性质求出4AO BO cm ==,再根据等边三角形的判定可得AOB 是等边三角形,然后根据等边三角形的性质即可得.【详解】∠120AOD ∠=︒∠18060AOB AOD ∠=︒-∠=︒∠四边形ABCD 是矩形,8BD cm = ∠118,4,422AC BD cm AO AC cm BO BD cm ======∠4AO BO cm ==∠AOB 是等边三角形∠4AB AO cm ==故选:D .【点睛】本题考查了矩形的性质、等边三角形的判定与性质等知识点,熟记矩形的性质是解题关键.4.D【分析】根据菱形的性质和勾股定理求解即可.【详解】解:∠菱形的对角线AC 与BD 相交于点O ,∠AO =OC ,BO =OD ,AC ∠BD ,AB =BC =CD =AD ,∠AC =6cm ,BD =8cm ,∠在Rt∠AOB 中,AO =3cm ,BO =4cm ,∠AOB =90°,由勾股定理得:AB ,∠菱形的周长为4×5=20cm ,故选:D .【点睛】本题考查菱形的性质、勾股定理,熟练掌握菱形的对角线互相垂直且平分是解答的关键.5.C【详解】解:A 、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B 、对角线互相垂直的平行四边形是菱形;故本选项错误;C 、对角线互相平分的四边形是平行四边形;故本选项正确;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C .6.C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A ,不能,只能判定为矩形,不符合题意;B ,不能,只能判定为平行四边形,不符合题意;C ,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.7.D【分析】根据三角形的中位线定理得到EH∠FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∠E,F,G,H分别是边AD,AB,CB,DC的中点,∠EH=12AC,EH∠AC,FG=12AC,FG∠AC,EF=12BD,∠EH∠FG,EF=FG,∠四边形EFGH是平行四边形,假设AC=BD,∠EH=12AC,EF=12BD,则EF=EH,∠平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点睛】题目主要考查中位线的性质及菱形的判定和性质,理解题意,熟练掌握运用三角形中位线的性质是解题关键.8.B【分析】根据矩形的性质,得△EBO∠∠FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的12得出结论.【详解】解:∠四边形为矩形,∠OB=OD=OA=OC,在△EBO与△FDO中,∠∠EOB=∠DOF,OB =OD ,∠EBO =∠FDO ,∠∠EBO ∠∠FDO (ASA ),∠阴影部分的面积=S △AEO +S △EBO =S △AOB ,∠∠AOB 与△ABC 同底且△AOB 的高是△ABC 高的12, ∠S △AOB =12S △ABC =14S 矩形ABCD . 故选B【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质9.C【分析】根据菱形的性质,结合AB =AC ,得出DF 为∠ABC 的中位线,DF∥BC ,12DF BC =,从而得出AE 为∠ABC 的高,得出BC AE ⨯=的面积.【详解】解:∠四边形ADEF 为菱形,∠EF∥AB ,DE∥AC ,AF =EF =DE =AD ,AE ∠DF ,∠CEF B ∠=∠,DEB C ∠=∠,AC AB =,B C ∴∠=∠,CEF B C DEB ===∴∠∠∠∠,∠CF =EF ,DE =DB ,CF AF ∴=,AD DB =,∠DF∥BC ,12DF BC =, 90AOD ∠=︒,90AEB AOD ==︒∴∠∠,AE BC ∴⊥,ABC S =∵12BC AE ⨯=∴即BC AE ⨯=1111=2224ADEF S DF AE BC AE ⨯=⨯⨯=⨯菱形∴C 正确. 故选:C .【点睛】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF 为∠ABC 的中位线,是解题的关键.10.D【详解】试题解析:过A 点作CD 的垂线,交CD 的延长线于F 点,如图,则四边形AECF 是矩形90,90DAE BAE DAE DAF ∠+∠=∠+∠=,BAE DAF ∴∠=∠,在∠ABE 和∠DAF 中,{AB ADBAE DAF AEB AFD =∠=∠∠=∠,则(AAS)ABE DAF ≌,,AE AF ∴=又∠四边形AECF 是矩形.∠四边形AECF 为正方形,而四边形ABCD 的面积是6,故选D.11.120【详解】由题意可得AB 与菱形的两邻边组成等边三角形,从而不难求得∠1的度数. 解:由题意可得AB 与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.此题主要考查菱形的性质和等边三角形的判定.12【分析】由正方形对角线相交于点O ,则DO CO ⊥,12DO BD ==,过点E 作EF CD ⊥于F ,设EO EF DF x ===,则DE =,列出方程x =解出x ,最后得出答案. 【详解】解:如图所示,过点E 作EF CD ⊥于F ,∠正方形ABCD 的边长为1,∠AC =BDDO CO ⊥,∠OA =OC =OB =OD =2, ∠CE 平分∠ACD 交BD 于点E ,∠EO =EF ,∠在正方形ABCD 中,∠ADB =∠CDB =45°,∠EF =DF ,设EO EF DF x ===,则DE =,∠OD =OE +DE =x =∠解得x =∠DE =OD -OE 1=,1.【点睛】本题主要考查了正方形的性质与角平分线的性质,解题的关键是根据角平线的性质作出辅助线.13.(4,4)【详解】解:连接AC 、BD 交于点E ,如图所示:∠四边形ABCD 是菱形,∠AC ∠BD ,AE =CE =12AC ,BE =DE =12BD ,∠点B的坐标为(8,2),点D的坐标为(0,2),∠OD=2,BD=8,∠AE=OD=2,DE=4,∠AC=4,∠点C的坐标为:(4,4)故答案为:(4,4)【点睛】本题考查菱形的性质;坐标与图形性质.14【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=12BD,OC=12AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【详解】解:∠四边形ABCD是矩形,∠∠ADC=90°,BD=AC,OD=12BD,OC=12AC,∠OC=OD,∠EO=2DE,∠设DE=x,OE=2x,∠OD=OC=3x,∠CE∠BD,∠∠DEC=∠OEC=90°,在Rt△OCE中,∠OE2+CE2=OC2,∠(2x)2+52=(3x)2,解得:x,∠DE【点睛】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.15.50 13【详解】试题分析:∠四边形ABCD是菱形,AC=24,BD=10,∠AO=12,OD=5,AC∠BD,=13,∠DH∠AB,∠AO×BD=DH×AB,∠12×10=13×DH,∠DH=12013,5013=.考点:1.菱形的性质;2.勾股定理.16.4【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF∠∠NAE,进而可得四边形AENF的面积等于∠NAP的面积,同理可得答案.【详解】如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∠∠PAF+∠FAN=∠FAN+∠NAE=90°,∠∠PAF=∠NAE,∠∠PAF∠∠NAE,∠四边形AENF的面积等于∠NAP的面积,而∠NAP 的面积是正方形的面积的14,而正方形的面积为4, ∠四边形AENF 的面积为1cm 2,四块阴影面积的和为4cm 2.故答案为4.【点睛】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:∠定点-旋转中心;∠旋转方向;∠旋转角度.17.∠∠∠【分析】∠证明PF EC =,PDF ∆是等腰直角三角形,即可说明PD =;∠先证明四边形PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC ,则四边形PECF 的周长为8;∠根据P 的任意性可以判断APD ∆不一定是等腰三角形;∠四边形PECF 为矩形,通过正方形的轴对称性,证明AP EF =.【详解】解:∠PE BC ⊥,PF CD ⊥,90PEC PFC ∴∠=∠=︒,又90C ∠=︒,∴四边形PECF 是矩形,EC PF ∴=.四边形ABCD 是正方形,45PDF ∴∠=︒,PDF ∴∆是等腰直角三角形,PD ∴==,故∠正确;∠PE BC ⊥,PF CD ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴四边形PECF 的周长222228CE PE CE BE BC =+=+==,故∠正确; ∠点P 是正方形ABCD 的对角线BD 上任意一点,45ADP ∠=︒,∴当45PAD ∠=︒或67.5︒或90︒时,APD ∆是等腰三角形,除此之外,APD ∆不是等腰三角形,故∠错误.∠四边形PECF为矩形,∠=∠,∴=,PFE ECPPC EF正方形为轴对称图形,∴=,AP PC∴=,AP EF故∠正确;故答案为∠∠∠.【点睛】本题考查了正方形的性质,等腰三角形的判定与性质,勾股定理的运用等知识;熟练掌握正方形的性质和等腰三角形的性质是解题的关键.18.证明见解析【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【详解】证明:∠四边形ABCD为矩形,∠AC=BD,则BO=CO.∠BE∠AC于E,CF∠BD于F,∠∠BEO=∠CFO=90°.又∠∠BOE=∠COF,∠∠BOE∠∠COF.∠BE=CF.19.(1)答案不唯一,见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意,菱形ABCD即为所求(2)图1中AC =2,BD =6∠图1中菱形面积12662=⨯⨯=.图2中,AC22442,BD =∠图2中菱形面积182=⨯=.图3中,AC BD =∠图3菱形面积1102=⨯=. 【点睛】本题考查菱形的性质,掌握菱形的概念准确作图是关键.20.4【分析】由菱形的性质得出AC BD ⊥,OB OD =,112OA OC AC ===,在Rt AOD ∆中,由勾股定理得:4OD =,得出28BD OD ==,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∠四边形ABCD 是菱形,∠AD =AB =5,AC ∠BD ,AO =12AC =12×6=3,OB =OD . 在Rt∠AOD 中,由勾股定理得OD =4OD ==,∠BD =2OD =8.∠DE ∠BC ,∠∠DEB =90°.又∠OD =OB ,∠OE =12BD =12×8=4. 【点睛】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.21.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∠BE∠AC,AE∠BD,∠四边形AEBO是平行四边形.∠四边形ABCD是菱形,∠AC∠BD,即∠AOB=90°.∠四边形AEBO是矩形.(2)解:∠四边形AEBO是矩形,∠EO=AB,在菱形ABCD中,AB=CD,∠EO=CD=3.【点睛】本题考查菱形的性质、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的性质和矩形的判定与性质是解答的关键.22.(1)见解析(2)12【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:证明∠AB P′∠∠AD P′,即可求解;(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∠AP′=AP′,∠∠ABP′∠∠ADP′,∠BP′=DP′,∠BP+PE= DP′+ P′E≥DE,即当点P位于PP′时,∠BPE的周长PB+EP+BE最小;(2)解:由(1)得:B P ′=DP ′,∠P ′B +P ′E =DE .∠BE =2,AE =3BE ,∠AE =6.∠AD =AB =8.∠DE10.∠PB +PE 的最小值是10.∠∠BPE 周长的最小值为10+BE =10+2=12.【点睛】本题主要考查了正方形的性质,勾股定理,最短距离,全等三角形的判定和性质等,熟练掌握相关知识点是解题的关键.23.(1)详见解析;(2)详见解析.【分析】(1)根据题意可先证明四边形AHCE 为平行四边形,再根据正方形的性质得到∠AH FG =,//AH FG ,故可证明四边形AHGF 是平行四边形,即可求解;(2)根据四边形AHGF 是平行四边形,得180FAH AHG ∠+∠=︒,根据四边形ABCD 是矩形,可得 DAH AHB ∠=∠,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∠四边形ABCD 是矩形,且E 、H 分别为AD 、BC 的中点, ∠AE HC =,//AE HC ,∠四边形AHCE 为平行四边形,∠AH EC =,//AH EC ,又∠四边形ECGF 为正方形,∠EC FG =,//EC FG ,∠AH FG =,//AH FG ,∠四边形AHGF 是平行四边形,∠AH FG =;(2)证明:∠四边形AHGF 是平行四边形,∠180FAH AHG ∠+∠=︒,∠四边形ABCD 是矩形,∠//AD BC ,∠DAH AHB ∠=∠,又∠180AHB AHG GHC ∠+∠+∠=︒,∠FAD GHC ∠=∠;【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.24.(1)见解析;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.见解析;(3)△ABC 是直角三角形,理由见解析.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO =CO ,EO =FO 可得四边形AECF 平行四边形,再证明∠ECF =90°利用矩形的判定得出即可;(3)利用正方形的性质得出AC ∠EN ,再利用平行线的性质得出∠BCA =90°,即可得出答案;【详解】证明:(1)∠MN 交∠ACB 的平分线于点 E ,交∠ACB 的外角平分线于点 F , ∠∠2=∠5,∠4=∠6,∠MN ∠BC ,∠∠1=∠5,∠3=∠6,∠∠1=∠2,∠3=∠4,∠EO =CO ,FO =CO ,∠OE =OF ;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.证明:当 O 为 AC 的中点时,AO =CO ,∠EO =FO ,∠四边形 AECF 是平行四边形,∠CE 是∠ACB 的平分线,CF 是∠ACD 的平分线,∠∠ECF =12(∠ACB +∠ACD )=90°,∠平行四边形 AECF 是矩形.(3)∠ABC 是直角三角形,理由:∠四边形AECF 是正方形,∠AC∠EN,故∠AOM=90°,∠MN∠BC,∠∠BCA=∠AOM,∠∠BCA=90°,∠∠ABC 是直角三角形.【点睛】此题考查了正方形的判断和矩形的判定,需要知道平行线的特征和角平分线的性质才能解答此题.25.(1)∠ 90,45,2;∠11 12(2)1275【分析】(1)∠分别画出三种情况下的图形即可得到解答;∠连接EP,设AE=x,可以得到关于x的方程,从而得到AE的值;(2)连接EM,设AE=y,根据题意可以得到关于y的方程,解方程即可得到问题解答;(3)画出图形后根据题意可以得到解答.(1)∠如图1所示,点P与点A重合,由题意可知,PD∠EF,所以∠DEF=90°,如图2所示,点E与点A重合,由题意可知,ED=EP,PD∠EF,所以∠DEF=45°,如图3所示,点F与点C重合,连结CP,由题意可知,CP=DF=10,BC=6,∠在RT∠CPB中,PB=8,∠AP=AB-PB=2,故答案为90;45;2;∠如图4所示,连接EP,∠点P为AB的中点,∠AP=BP=5,由折叠知DE=EP,设AE=x,则DE=EP=6-x,在Rt∠AEP中,AE2+AP2=EP2,即x2+52=(6-x)2,解得x=1112,即AE=1112.(2)如图5所示,连接EM,设AE=y,由折叠知PE=DE,∠CDE=∠EPM=90°,CD=CP=AB=10,∠AM=DE,∠AM=PE.在Rt∠AEM和Rt∠PME中,,, AM PE EM ME=⎧⎨=⎩∠Rt∠AEM∠Rt∠PME(HL),∠AE=PM=y,∠CM=10-y,BM=AB-AM=AB-DE=10-(6-y)=4+y.在Rt∠BCM中,BM2+BC2=CM2,∠(4+y)2+62=(10-y)2,解得y=127.∠AE=127.(3)如图6所示,连结AF,在Rt ADF中,∠D=90°,AD=6,DF=CF=5,∠AF∠PF=DF=5,∠5AP AF PF≥-=,∠AP5.【点睛】本题考查矩形的的折叠问题和最短距离问题,正确分类并画出图形是解题的关键.。
北师大版九年级上册数学第一章特殊平行四边形测试题
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
A.
B.2
C.
D.
10.如图,菱形ABCD的周长为32,∠C=120°,AE⊥BC,AF⊥CD,垂足为别为E、F,连结EF,则 的面积是
A.8
B.
C.
D.
二、解答题
11.已知:如图,在梯形ABCD中, 为AB中点,求证:四 边形BCDE是菱形.
12.
13.
14.
15. 如图,点 分别在菱形ABCD的边 上,且 .
20.从1,2,3,4四个数中随机选取两个不同的数,分别记为a,c,请用树状图或列表法求:“关于x的一元二次方程ax2+4x+c=0有实数根的概率.
21.如图,一次函数y=x﹣3的图象与反比例函数y= (k≠0)的图象交于点A与点B(a,﹣4).
(1)求反比例函数的表达式;
(2)一次函数y=x﹣3的图象与x轴交于点M,连接OB,求△OBM的面积;
8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴,y轴的负半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x<0)的图象上,若AB=1,则k的值为( )
A. 1B.﹣1C. D.
9.在一个不透明的袋子里装有 个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸 次,其中 次摸到黑球.根据上述数据,小明估计口袋中白球大约有()
北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)
北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)北师大版九年级数学上册第一章特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B..D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A′B′D′,分别连接A′C,A′D,B′C,则A′C+B′C5.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =1,在运动过程中,点D 到点O8.如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A ′处.在EF 上任取一点G ,连接GC ,GA ′,CA ′,则△CGA ′周长的最小值为9.如图,在△ABC 中,∠ABC =90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF.(1)求证:四边形BDFG 为菱形;(2)若AG =13,CF =6,则四边形BDFG 的周长为20.证明:∵∠ABC =90°,BD 为AC 的中线,∴BD =12AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF.∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC. (1)求证:AE =DC ; (2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°. ∵EF ⊥EC ,∴∠FEC =90°. ∴∠AEF +∠CED =90°. ∴∠EFA =∠CED. 在△AEF 和△DCE 中,∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F. (1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC. ∴∠ABE =∠CDF. ∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF. (2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD .12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD.∵BC =12AD ,∴AE =BC.∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE. ∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.2AE=2.∴当PA+PF最小时,△PAF的周长最小,即点P为CF与BE的交点时,△PAF的周长最小.此时△PAF的周长为PA+PF+AF=CF+AF.∵CE=DE,∴∠ECD=∠D=30°,∠ACE=90°-30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,∴CF⊥AE.∴CF=AC2-AF2=2 3.△PAF周长的最小值为CF+AF=23+2.13.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,垂足为F,交直线MN于点E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC≌△EPC.∴BE=PE.∴∠EBP=∠EPB.∵E为AB的中点,∴BE=AE.∴AE=PE.∴∠EPA=∠EAP.∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°. ∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE. ∵四边形ABCD 是矩形,∴AE ∥CF. ∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MNDN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM. ∵四边形ABCD 是矩形,∴AD ∥BC. ∴∠ANM =∠CMN. ∴∠CMN =∠CNM. ∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形,∴HC =DN ,NH =DC. ∵S △CMN S △CDN =12MC ·NH12ND ·NH =MC ND=3,∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x. ∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x. ∴MN DN =23x x=2 3. 16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°. ∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF. ∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°. ∴∠DGA +∠AFH =180°. ∵∠AFH +∠EFD =180°,∴∠DGA =∠EFD =∠DEC. 在△DAG 和△DCE 中,∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°. ∵QO ⊥BD ,∴∠BOQ =90°. ∴∠BQO =∠CBD =45°.∴OB =OQ. ∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ. ∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°. ∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。
北师大版九年级数学上册第一章特殊平行四边形菱形及其性质 同步练习(含答案)
第一章:特殊平行四边形(典型题汇总)菱形的性质与判定第1课时菱形及其性质1.菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直图12.若菱形的一条边长为4 cm,则这个菱形的周长为()A.20 cm B.18 cm C.16 cm D.12 cm3.②如图1,在菱形ABCD中,已知∠ABD=20°,则∠C的大小是________度.4.已知菱形ABCD的对角线AC,BD的长分别是6和8,求这个菱形的边长.5.已知菱形的边长是2 cm,一条对角线的长也是2 cm,则另一条对角线的长是() A.4 cm B.2 3 cm C.3 cm D.3 cm6.如图3所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M,N的坐标分别是()图3A.(5,0),(8,4) ;B.(4,0),(8,4) ;C.(5,0),(7,4) ;D.(4,0),(7,4)7.2017·高密市二模如图4,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD于点F,垂足为E,则AE的长为()图4A.4 B.4.8 C.2.4 D.3.28.2017·东安县模拟如图5,菱形ABCD中,∠DAB=60°,DF⊥AB于点E,且DF=DC,连接FC,则∠DCF的度数为________度.图59.如图6,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,求∠CPB的度数.图610.如图7,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4图711.如图8,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为________.图812.如图9,在菱形ABCD中,E为AD的中点,EF⊥AC交CB的延长线于点F.求证:AB与EF互相平分.图913.如图10,已知点A从点(1,0)出发,以1个单位长度/秒的速度沿x轴向正方向运动,以O,A为顶点作菱形OABC,使点B,C在第一象限内,且∠AOC=60°,点P的坐标为(0,3),设点A运动了t秒,求:(1)点C的坐标(用含t的代数式表示);(2)点A在运动过程中,当t为何值时,可使得△OCP为等腰三角形?图1014.如图11,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过点M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.图1115.如图12,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A′E′F′.设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,四边形PP′CD的面积为()图12A.283B.243C.323D.323-816.如图13所示,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC 为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;….按此规律所作的第2018个菱形的边长为________.图13参考答案1.D2.C3.1404.解:根据题意,设对角线AC,BD相交于点O,则由菱形对角线的性质,知AO=12AC=3,BO=12BD=4,且AO⊥BO,∴AB=AO2+BO2=5.5.B6.A7.D8.459.解:连接P A,如图所示.∵四边形ABCD是菱形,∴∠ADP=∠CDP=12∠ADC=36°,BD所在直线是菱形ABCD的对称轴,∴P A=PC.∵AD的垂直平分线交对角线BD于点P,∴P A=PD,∴PD=PC,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°.10.C11.3+112.证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD.∵EF⊥AC,∴EF∥BD.又∵AD∥BC,∴四边形EDBF是平行四边形.∴DE=BF.∵E为AD的中点,∴AE=DE,∴AE =BF.又∵AE∥BF,∴四边形AEBF为平行四边形,∴AB与EF互相平分.13.解:(1)过点C作CH⊥x轴于点H,根据题意,得OA=t+1.∵四边形OABC是菱形,∴OC=OA=t+1.∵∠AOC=60°,∴OH=12OC=12(t+1),CH=32(t+1),∴点C的坐标为(t+12,3)t+\r(3)2).(2)①当O为等腰三角形顶点时,OC=OP,∴t+1=3,∴t=2;②当C为等腰三角形OCP的顶点时,PC=OC,则CH=12OP=32,即32(t+1)=32,解得t=3-1;③当P为等腰三角形OCP的顶点时,OP=PC,∠POC=30°,∴OC=33,∴1+t=33,∴t=33-1.综上可知,当t=3-1或2或33-1时,可使得△OCP为等腰三角形.14.解:(1)∵四边形ABCD是菱形,∴AB∥CD,BC=CD,∴∠1=∠ACD.又∵∠1=∠2,∴∠ACD=∠2,∴MC=MD.又∵ME⊥CD,∴CE=ED=12CD,∴BC=CD=2CE=2.(2)证明:如图,延长DF,AB交于点N.∵四边形ABCD是菱形,∴∠FCM=∠ECM.∵F为边BC的中点,∴CF=BF.由(1)可知CE=ED=12CD,∴CF=CE.又∵CM=CM,∴△CMF≌△CME,∴MF=ME.∵AB∥CD,∴∠2=∠N,∠DCF=∠NBF.又∵CF=BF,∴△CDF≌△BNF,∴DF=NF.又∵∠1=∠2,∴∠N=∠1,∴AM=MN=NF+MF=DF+ME.15.A16.\2017第2课时菱形的判定1.如图14,在▱ABCD中,添加下列条件不能判定▱ABCD是菱形的是()图14A.AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD2.如图15,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是________(只填一个你认为正确的即可).图153.如图16,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,则四边形ABCD还应满足的一个条件是________.图164.如图17,在△ABC中,AD平分∠BAC,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.图175.如图18,剪两张对边平行且宽度相等的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是________.图186.如图19,在△ABC中,∠ACB=90°,D,E分别是边BC,AB的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)求证:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状,并说明理由.图197.在数学课上,老师提出如下问题:如图20①,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F,使得四边形DECF恰好为菱形.小明的折叠方法如下:图20如图20②,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于点D;(2)点C向AB边折叠,使点C与点D重合,得到折痕交BC边于点E,交AC边于点F.老师说:“小明的做法正确.”请回答:小明这样折叠的依据是________________.解题突破8.如图21,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC,EF与AB的延长线交于点E,与CD的延长线交于点F,连接AF,CE.求证:四边形AECF是菱形.图219.如图22,在Rt△ABC中,∠B=90°,E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.图2210.(1)如图23①,△ABC中,AD平分∠BAC交BC于点D,在AB上截取AE=AC,过点E作EF∥BC交AD于点F.求证:四边形CDEF是菱形.(2)如图②,△ABC中,AD平分△ABC的外角∠EAC交BC的延长线于点D,在BA的延长线上截取AE=AC,过点E作EF∥BC交DA的延长线于点F.四边形CDEF还是菱形吗?如果是,请证明;如果不是,请说明理由.图2311.四边形的四条边长分别为a,b,c,d,且满足条件a2+b2+c2+d2=ab+bc+cd+da,则此四边形一定是________.12.如图24,已知△ABC的顶点B,C为定点,A为动点(不在直线BC上),B′是点B 关于直线AC的对称点,C′是点C关于直线AB的对称点,连接BC′,CB′,BB′,CC′.(1)猜想线段BC′与CB′的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形BCB′C′为菱形?这样的位置有几个?请用语言对这样的位置进行描述(不用证明).图24参考答案1.D2.答案不唯一,如AC⊥BD或AB=BC或BC=CD等3.AD=BC4.证明:∵AD平分∠BAC,∴∠EAD=∠FAD.∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=DF,∴▱AEDF是菱形.5.菱形6.解:(1)证明:∵D,E分别是边BC,AB的中点,∴DE∥AC,AC=2DE.∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE.(2)当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=12AB=AE,∴△AEC是等边三角形,∴AC=CE.又由(1)知四边形ACEF是平行四边形,∴四边形ACEF是菱形.7.对角线互相垂直平分的四边形是菱形[解析] 如图,连接DF,DE.根据折叠的性质,知CD⊥EF,且OD=OC,OE=OF,则四边形DECF恰为菱形.故答案是:对角线互相垂直平分的四边形是菱形.8.证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠AEO=∠CFO.在△AOE和△COF中,∠AEO=∠CFO,∠AOE=∠COF,AO=CO,∴△AOE≌△COF,∴OE=OF.∵EF⊥AC,OE=OF,∴AC与EF互相垂直平分,∴四边形AECF是菱形.9.证明:∵AF∥CD,∴∠AFE=∠CDE.∵E是AC的中点,∴AE=CE.在△AFE和△CDE中,∠AFE=∠CDE,∠AEF=∠CED,AE=CE,∴△AFE≌△CDE,∴AF=CD.又∵AF∥CD,∴四边形ADCF是平行四边形.∵AC=2AB,E是AC的中点,∴AE=AB.∵AD是∠BAC的平分线,∴∠BAD=∠EAD.在△AED和△ABD中,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD,∴∠AED=∠B=90°,即AC⊥DF,∴▱ADCF是菱形.10.解:(1)证明:∵AD平分∠BAC,∴∠EAF=∠CAF.在△ADE和△ADC中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC,∴DE=DC,∠ADE=∠ADC.同理△AFE≌△AFC,∴EF=CF.∵EF∥BC,∴∠EFD=∠ADC,∴∠EFD=∠ADE,∴DE=EF,∴DE=EF=CF=DC,∴四边形CDEF是菱形.(2)四边形CDEF是菱形.证明:∵AD平分∠EAC,∴∠EAD=∠CAD.在△ADE和△ADC中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC,∴DE=DC,∠ADE=∠ADC.同理△AFE≌△AFC,∴EF=CF.∵EF∥BC,∴∠EFD=∠ADC,∴∠EFD=∠ADE,∴DE=EF,∴DE=EF=CF=DC,∴四边形CDEF是菱形.11.菱形12.解:(1)猜想:BC′=CB′.证明:∵B′是点B关于直线AC的对称点,∴AC垂直平分BB′,∴BC=CB′.同理BC=BC′,∴BC′=CB′.(2)要使四边形BCB′C′是菱形,根据菱形的性质,对角线互相垂直平分,∵B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点,∴AC垂直平分BB′,AB垂直平分CC′,∴BB′,CC′应该同时过点A,∴∠BAC=90°,∴只要AB⊥AC即可满足要求,这样的位置有无数个.第3课时菱形的性质与判定的综合应用1.ABCD的对角线相交于点O,添加下列条件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO中的一个,使得▱ABCD是菱形的条件有________(填序号).2.2017·宜宾如图25,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是________.图253.如图26,已知四边形ABCD的四边都相等,等边三角形AEF的顶点E,F分别在BC,CD上,且AE=AB,则∠C的度数为()图26A.100°B.105°C.110°D.120°4.如图6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,边长为1,A,B都在格点上,则AB的长为________.5.如图28,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA 交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)图286.将两张宽度相等的长方形纸片叠放在一起得到如图29所示的四边形ABCD.(1)求证:四边形ABCD是菱形.(2)如果两张长方形纸片的长都是8,宽都是2,那么菱形ABCD的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由.图297.菱形ABCD中,∠A=60°,其周长为24 cm,则菱形的面积为________ cm2.8.如图30所示,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.(1)求∠ABC的度数;(2)求对角线AC的长;(3)求菱形ABCD的面积.图309.如图31,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=8,∠BCF=120°,求菱形BCFE的面积.图3110.如图32,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=25,求四边形ABCD的面积.图3211.小明借助没有刻度的直尺,按照图33的顺序作出了∠AOB的平分线OP,他这样做的数学原理是________________________________.图3312.学校植物园沿路护栏纹饰部分设计成若干个全等的菱形图案,每增加一个菱形图案,纹饰长度就增加d cm,如图34所示.已知每个菱形图案的边长为10 3 cm,其中一个内角为60°.(1)若d=26,该纹饰要231个菱形图案,求纹饰的长度L;(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?图3413.如图35,在菱形ABCD中,∠ABC=120°,AB=10 cm,P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为________ cm.图35参考答案1.①②③2.243.A[4.75.解:(1)∵∠C=90°,∠B=30°,∴∠CAB=60°.∵AD平分∠CAB,∴∠CAD=12∠CAB=30°.在Rt△ACD中,∵∠ACD=90°,∠CAD=30°,∴AD=2CD=6.(2)∵DE∥BA,DF∥CA,∴四边形AEDF是平行四边形.∵∠EAD=∠ADF=∠DAF,∴AF=DF,∴四边形AEDF是菱形,∴AE=DE=DF=AF.在Rt△CED中,∵∠CDE=∠B=30°,∴DE=2CE.由勾股定理可得DE2-CE2=CD2=9,解得DE=23.∴四边形AEDF的周长为83.6.解:(1)证法一:分别过点B,D作BF⊥AD,DE⊥AB,垂足分别为F,E,则DE =BF.∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.又∵∠DAE=∠BAF,∴Rt△DAE≌Rt△BAF,∴AD=AB,∴四边形ABCD是菱形.证法二:分别过点B,D作BF⊥AD,DE⊥AB,垂足分别为F,E,则DE=BF.∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.根据同一个四边形的面积不变,得S▱ABCD=DE·AB =BF·AD,∴AB=AD,∴四边形ABCD是菱形.(2)存在最小值和最大值.①当∠DAB=90°时,AD最短,此时菱形ABCD的周长最小,为8;②如图,当AC为长方形纸片的对角线时,菱形ABCD的周长最大,设AB=x,在Rt△BCG 中,x2=(8-x)2+22,解得x=174,∴周长的最大值为17.7.1838.解:(1)在菱形ABCD中,AD=AB.∵DE⊥AB,AE=BE,∴AD=BD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠ABD=60°,∴∠ABC=2∠ABD=120°.(2)在菱形ABCD中,AC与BD互相垂直平分.∵BD=AB=AD=a,∠BAC=12∠BAD=30°,∴OB=12a,∴OA=3)2a,∴AC=3a.(3)S菱形ABCD=12AC·BD=12×3a·a=3)2a2.9.解:(1)证明:∵D,E分别是AB,AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵BE=EF,∴▱BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形BCFE的边长为8,高为4 3,∴菱形BCFE的面积为8×4 3=32 3.10.解:(1)证明:∵AB=AD,∴∠ABD=∠ADB.∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD.∵AC⊥BD,AB=AD,∴OB=OD.在△AOD与△COB中,∠AOD=∠COB,OD=OB,∠ADO=∠CBO,∴△AOD≌△COB,∴OA=OC.∴四边形ABCD是平行四边形.又∵AC⊥BD,∴四边形ABCD是菱形.(2)∵四边形ABCD是菱形,∴OD=12BD=5,∴OC=CD2-OD2=2,∴AC=2OC=4,∴S菱形ABCD=12AC·BD=45.11.菱形的每一条对角线都平分它的一组对角12.解:(1)如图,菱形图案水平方向的对角线长为2AO=2AB2-BO2=2\b\lc\(\rc\)(\a\vs4\al\co1(10 \r(3)))\s\up12(2)-\b\lc\(\rc\)(\a\vs4\al\co1(5 \r(3)))\s\up12(2)=30(cm).依题意,得L=30+26×(231-1)=6010(cm).故纹饰的长度L为6010 cm.(2)当d=20时,设需要x个这样的菱形图案,则30+20×(x-1)=6010,解得x=300. 即需要300个这样的菱形图案.13.(103-10)14.3。
新北师大版九年级上册第一章特殊的平行四边形---矩形-菱形与正方形练习题(难度大)
矩形、菱形与正方形一、选择题1.如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于( ).A .50° B .60° C .70° D .80°2.如图,点E 是矩形ABCD 的边CD 上一点,把ADE ∆沿AE 对折,点D 的对称点F 恰好落在BC上,已知折痕AE =cm ,且3tan 4EFC ∠=,那么该矩形的周长为( )A .72cmB .36cmC .20cmD .16cm3.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE =DF ,②∠DAF =15°,③AC 垂直平分EF ,④BE +DF =EF ,⑤S △CEF =2S △ABE .其中正确的结论有( )个 A .2 B .3 C .4 D .54.下列命题中,真命题是( )A.对角线相等的四边形是等腰梯形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的边形是矩形5.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A .15°或30°B .30°或45°C .45°或60°D .30°或60°6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( ) A .16 B .17 C .18 D .19 7.如图,菱形ABCD 中,60B ∠=,4AB =,则以AC 为边长的正方形ACEF 的周长为( ) A .14 B .15 C .16 D .178.如图,在矩形ABCD 中,AB <BC ,AC ,BD 相交于点O ,则图中等腰三角形的个数是( )A .8 B .6 C .4 D .2 9.下列命题中,正确的是( )A .平行四边形的对角线相等 B .矩形的对角线互相垂直C .菱形的对角线互相垂直且平分D .梯形的对角线相等10.顺次连接等腰梯形四边中点所得的四边形一定是( ) A .矩形 B .正方形 C .菱形 D .直角梯形11.下列命题中的真命题是( )A .三个角相等的四边形是矩形 B .对角线互相垂直且相等的四边形是正方形 C .顺次连接矩形四边(第2题)B60 (第7题图)对称图形 12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( )A .4个B .3个C .2个D .1个13.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( )A . cm 2 B . cm 2 C .cm 2 D .cm 214.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 是,连接BM 、DN ,若四边形MBND 是菱形,则MDAM等于( ) A .83 B .32 C .53 D .5415.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相垂直的梯形是等腰梯形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形 16.如图,四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH ⊥AB 于点H ,且DH 与AC 交于G ,则GH =( )A .2825cm B .2120cm C .2815cm D .2521cm17.在平面中,下列命题为真命题的是( )A .四个角相等的四边形是矩形 B .对角线垂直的四边形是菱形 C . 对角线相等的四边形是矩形 D .四边相等的四边形是正方形 18.如图4,菱形ABCD 中,点M ,N 在AC 上,ME ⊥AD ,NF ⊥AB . 若NF = NM = 2,ME = 3,则AN = ( ) A .3 B .4 C .5 D .6 19.(2013河北省,12,3分)如已知:线段AB ,BC ,∠ABC = 90°. 求作:矩形ABCD . 以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对对于两人的作业,下列说法正确的是( )B CDA 第14题图MN(第12题图)二、填空题 1.如图6,Rt △ABC 的斜边AB =16, Rt △ABC 绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .2.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是 。
北师大版数学初三上册第一章特殊平行四边形菱形的性质与判定同步练习题含答案
北师大版数学初三上册第一章特殊平行四边形菱形的性质与判定同步练习题含答案1. 下列说法正确的是( )A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形2.若顺次相连四边形的各边中点所得的四边形是菱形,则该四边形一定是( )A.矩形 B.等腰梯形C.对角线相等的四边形 D.对角线互相垂直的四边形3.如图,将△ABC沿BC偏向平移得到△DCE,相连AD,下列条件能够鉴定四边形ACED为菱形的是( )A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°4. 用直尺和圆规作一个以线段AB为边的四边形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是( )A.一组邻边相等的平行四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线中分一组对角的平行四边形是菱形5. 如图,在▱ABCD中,AE、CF分别是∠BAD和∠BCD的中分线,增加一个条件,仍无法鉴别四边形AECF为菱形的是( )A.AE=AF B.EF⊥ACC.∠B=60° D.AC是∠EAF的中分线6. 在△ABC中,AB≠AC,D是边BC上的一点,DE∥CA交AB于点E,DF∥BA交AC于点F,要使四边形AEDF是菱形,只需增加条件( )A.AD⊥BC B.∠BAD=∠CAD C.BD=DC D.AD=BC7. 如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点D和点A恰恰重合.若AB=4,则菱形ABCD的面积为( )A.2 3 B.4 3 C.8 2 D.8 38. 已知▱ABCD,对角线AC、BD相交于点O,请你增加一个适当的条件,使▱ABCD 成为一个菱形,你增加的条件是___________.9.如图,在等腰梯形ABCD中,AB∥DC,AD=BC=CD,点E为AB上一点,相连CE,请增加一个你以为合适的条件_________________________________,使四边形AECD为菱形.10. 如图,在四边形ABCD中,对角线AC、BD交于点O,OA=OC,OB=OD,增加一个条件使四边形ABCD是菱形,那么所增加的条件可以是_______________________(写出一个即可).11. 如图,点E、F、G、H分别是恣意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足____________条件时,四边形EFGH是菱形.12. 如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你以为这个条件是____ (只填写序号).13. 已知:如图,在▱ABCD中,E、F分别是边AD、BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G、H,交BD于点O.(1)求证:△ABE≌△CDF;(2)相连DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.14. 如图所示,▱ABCD的对角线AC的垂直中分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.参考答案;1---7 BCBBC BD8. AD=DC9. 可增加的条件为AE =AD 或∠CEB =∠B 等(答案不唯一)10. 不唯一,AB =AD 等11. AB =CD12. ③13. (1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,∠BAE =∠DCF ,在△ABE 和△CDF 中,⎩⎪⎨⎪⎧ AB =CD ∠BAE =∠DCFAE =CF,∴△ABE ≌△CDF(SAS);(2)解:四边形BEDF 是菱形;理由如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AE =CF ,∴DE =BF ,∴四边形BEDF 是平行四边形,∴OB =OD ,∵DG =BG ,∴EF ⊥BD ,∴四边形BEDF 是菱形.14. 证明: ∵四边形ABCD 是平行四边形,∴AE ∥CF ,∴∠CAE =∠ACB ,又∵∠AOE =∠COF ,OA =OC ,∴△AOE ≌△COF ,∴AE =CF ,∴四边形AFCE 是平行四边形,又∵EF ⊥AC ,∴▱AFCE 是菱形.。
北师大版九年级数学上第1章 特殊平行四边形练习题(含答案)
特殊平行四边形1.如图1,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,E 是AB 的中点,CD =DE =a ,则AB 的长为( )图1A .2aB .2 2aC .3a D.4 33a2. 已知平行四边形ABCD ,AC ,BD 是它的两条对角线,那么下列条件中,能判定这个平行四边形为矩形的是( )A .∠BAC =∠DCAB .∠BAC =∠DAC C .∠BAC =∠ABD D .∠BAC =∠ADB3. 如图2,E ,F ,G ,H 分别为四边形ABCD 的四边AB ,BC ,CD ,DA 的中点,则关于四边形EFGH ,下列说法正确的为( )图2A .一定不是平行四边形B .一定不是中心对称图形C .可能是轴对称图形D .当AC =BD 时,它是矩形4.如图3,在矩形ABCD 中,AB =2,BC =3.若E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )图3A.3102B.3105C.105D.31555. 如图4,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,若∠ABC =140°,则∠OED =________.图46.如图5,四边形ABCD 是菱形,AC =24,BD =10,DH ⊥AB 于点H ,则线段BH 的长为________.图57. 如图6为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE ⊥CD ,GF ⊥BC ,AD =1500 m ,小敏行走的路线为B →A →G →E ,小聪行走的路线为B →A →D →E →F .若小敏行走的路程为3100 m ,则小聪行走的路程为________m.图68. 如图7所示,正方形ABCD 的边长为6,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的值最小,则这个最小值为________.图79.如图8所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF=BC,求∠ADC的度数.图810.如图9(a),在矩形纸片ABCD中,AB=3 cm,AD=5 cm,折叠纸片使点B落在边AD上的点E处,折痕为PQ,过点E作EF∥AB交PQ于点F,连接BF.(1)求证:四边形BFEP为菱形.(2)当点E在AD边上移动时,折痕的端点P,Q也随之移动.①当点Q与点C重合时(如图(b)),求菱形BFEP的边长;②若限定点P,Q分别在边BA,BC上移动,求出点E在边AD上移动的最大距离.图911.四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE 为边作正方形CEFG(点D,F在直线CE的同侧),连接BF.(1)如图(a),当点E与点A重合时,请直接写出BF的长.(2)如图(b),点E在线段AD上,AE=1.①求点F到AD的距离;②求BF的长.(3)若BF=310,请直接写出此时AE的长.图1012.如图11①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD的中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为________;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.图11参考答案1.B 2.C 3.C4.B 5.20°. 6.50137.4600 8.69.解:(1)证明:如图,连接DB ,DF . ∵四边形ABCD ,ADEF 都是菱形, ∴AB =BC =CD =DA ,AD =DE =EF =F A . 在△BAD 与△F AD 中,AB =AF ,∠BAD =∠F AD ,AD =AD , ∴△BAD ≌△F AD ,∴DB =DF , ∴点D 在线段BF 的垂直平分线上.∵AB =AF ,∴点A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF .(2)如图,设AD ⊥BF 于点H ,过点D 作DG ⊥BC 于点G ,则四边形BGDH 是矩形,∴DG =BH =12BF .∵BF =BC ,BC =CD ,∴DG =12CD .在直角三角形CDG 中,∵∠CGD =90°,DG =12CD ,∴∠C =30°.∵BC ∥AD ,∴∠ADC =180°-∠C =150°.10.解:(1)证明:∵折叠纸片使点B 落在边AD 上的点E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称, ∴PB =PE ,BF =EF ,∠BPF =∠EPF .又∵EF ∥AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP =BF =EF =EP , ∴四边形BFEP 为菱形.(2)①∵四边形ABCD 是矩形,∴BC =AD =5 cm ,CD =AB =3 cm ,∠A =∠D =90°. ∵点B 与点E 关于PQ 对称,∴CE =BC =5 cm. 在Rt △CDE 中,DE =CE 2-CD 2=4 cm , ∴AE =AD -DE =5-4=1(cm).在Rt △APE 中,AE =1 cm ,AP =3-PB =3-PE ,∴PE 2=12+(3-PE )2, 解得EP =53(cm),∴菱形BFEP 的边长为53cm.②当点Q 与点C 重合时,如题图(b),点E 离点A 最近,由①知,此时AE =1 cm ; 当点P 与点A 重合时,如图所示,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3 cm ,∴点E 在边AD 上移动的最大距离为2 cm.11.解:(1)过点F 作FH ⊥AB 交BA 的延长线于点H ,如图(a)所示,则∠FHE =90°. ∵四边形ABCD 和四边形CEFG 是正方形,∴AD =CD =4,EF =CE ,∠ADC =∠DAH =∠BAD =∠CEF =90°, ∴∠FEH =∠CED . 在△EFH 和△ECD 中,∠FHE =∠EDC =90°,∠FEH =∠CED ,EF =CE , ∴△EFH ≌△ECD (AAS),∴FH=CD=4,AH=AD=4,∴BH=AB+AH=8,∴BF=BH2+FH2=82+42=4 5.(2)过点F作FH⊥AD交AD的延长线于点H,作FM⊥AB交BA的延长线于点M,如图(b)所示,则FM=AH,AM=FH.①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED,∴FH=DE=3,EH=CD=4,即点F到AD的距离为3.②∵BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF=BM2+FM2=74.(3)分两种情况:①当点E在边AD的左侧时,过点F作FH⊥AD于点H,交BC于点K,如图(c)所示,同(1)得△EFH≌△CED,∴FH=DE=4+AE,EH=CD=4,∴FK=8+AE.在Rt△BFK中,BK=AH=EH-AE=4-AE,由勾股定理得(4-AE)2+(8+AE)2=(310)2,解得AE=1或AE=-5(舍去),∴AE=1;②当点E在边AD的右侧时,过点F作FH⊥AD交AD的延长线于点H,交BC的延长线于点K,如图(d)所示,同理得AE=2+41.综上所述,AE的长为1或2+41.12.解:(1)证明:∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°.由平移可得B′C′=BC=AD,∠D′B′C′=∠DBC=∠ADB=60°,∴AD∥B′C′,∴四边形AB′C′D是平行四边形.∵B′为BD的中点,∴在Rt△ABD中,AB′=12BD=DB′.又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB′,∴四边形AB′C′D是菱形.(2)连接AC′.由平移可得AB=C′D′,∠ABD′=∠C′D′B=30°,AB∥C′D′,∴四边形ABC′D′是平行四边形.由(1)可得AC′⊥B′D,∴四边形ABC′D′是菱形.∵AB=3AD=3,∴四边形ABC′D′的周长为4 3.故答案为4 3.(3)将四边形ABC′D′沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴拼成的矩形的周长为6+3或2 3+ 3.。
2017-2018北师大版九年级数学上学期第一章 特殊平行四边形同步练习题 菱形的判定(含答案)
第7题第1课时 菱形的判定1、能够判别一个四边形是菱形的条件是( )A. 对角线相等且互相平分B. 对角线互相垂直且相等C. 对角线互相平分D. 一组对角相等且一条对角线平分这组对角2、平行四边形ABCD 的两条对角线AC 、BD 相交于点O, AB=5, AO=2, OB=1. 四边形ABCD 是菱形吗?为什么?3、 如左下图,AD 是△ABC 的角平分线。
DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F.四边形AEDF 是菱形吗?说明你的理由。
4、如右上图,□ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?5、已知DE ∥AC 、DF ∥AB ,添加下列条件后,不能判断四边形DEAF 为菱形的是( ) A. AD 平分∠BACB. AB =AC =且BD =CDC. AD 为中线D. EF ⊥AD6、 如右图,已知四边形ABCD 为菱形,AE =CF. 求证:四边形BEDF 为菱形。
7、已知ABCD 为平行四边形纸片,要想用它剪成一个菱形。
小刚说只要过BD 中点作BD 的垂线交AD 、BC 于E 、F ,沿BE 、DF 剪去两个角,所得的四边形BFDE 为菱形。
你认为小刚的方法对吗?为什么?8、如右上图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗?为什么?9、如左下图,四边形ABCD 中,对角线AC 和BD 相交于点O ,且AC ⊥BD ,点M 、N 分别在BD 、AC 上,且AO =ON =NC ,BM =MO =OD. 求证:BC =2 DN第6题DACF H E B10、如右上图,已知四边形ABCD 为矩形,AD =20㎝、AB =10㎝。
M 点从D 到A ,P 点从B 到C ,两点的速度都为2㎝/s ;N 点从A 到B ,Q 点从C 到D ,两点的速度都为1㎝/s 。
若四个点同时出发。
(1)判断四边形MNPQ 的形状。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
新北师大班九上第一章 特殊平行四边形单元测试题(含答案) (5)
第一章特殊的平行四边形专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1( ) A.D.2、下列四个命题中,真命题是().A. 四边都相等的四边形是正方形B. 对角线相等且互相平分的四边形是矩形C. 对角线互相垂直且相等的四边形是菱形D. 对角线互相垂直平分的四边形是正方形3的基础上,进一步证明().A.D.4、下列说法中错误的是().A. 对角线垂直的矩形是正方形B. 对角线相等的菱形是正方形C. 四条边相等的四边形是正方形D. 四个角相等的四边形是矩形5A.D.6、( ).A.D.7、).A. 平行四边形B. 矩形C. 菱形D. 正方形8、下列命题中,真命题是()A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线互相垂直且相等的四边形是正方形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线相等的四边形是矩形9、用两个完全相同的直角三角形拼下列图形:①平行四边形②矩形③菱形④等腰三角形⑤等边三角形,一定能拼成的图形是A. ①②④B. ①②③C. ①②⑤D. ①④⑤10)A.D. 平行四边形11方形的条件是()A.D.12) A.D.13()A.D.14A.D.15) A.D.二、填空题(本大题共有5小题,每小题5分,共25分)1617、有一组相等的四边形是菱形.18、1.正方形的定义有一组邻边且一个角是的平行四边形叫做正方形。
1920分别从点后,四边形三、解答题(本大题共有3小题,每小题10分,共30分)2122(1)(2)23(1)(2)(3)第一章特殊的平行四边形专项测试题(二) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)( ) A.D.【答案】D即图中全等的直角三角形共有.2、下列四个命题中,真命题是().A. 四边都相等的四边形是正方形B. 对角线相等且互相平分的四边形是矩形C. 对角线互相垂直且相等的四边形是菱形D. 对角线互相垂直平分的四边形是正方形【答案】B【解析】解:故答案为:对角线相等且互相平分的四边形是矩形.3的基础上,进一步证明().A.B.D.【答案】C【解析】解:故答案为:4、下列说法中错误的是().A. 对角线垂直的矩形是正方形B. 对角线相等的菱形是正方形C. 四条边相等的四边形是正方形D. 四个角相等的四边形是矩形【答案】C【解析】解:四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不符合题意;四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;对角线相等的菱形是正方形,该说法正确,不符合题意;对角线垂直的矩形是正方形,该说法正确,不符合题意.故正确答案选:四条边相等的四边形是正方形.5A.D.【答案】A【解析】解:由矩形..6、( ).A.D.【答案】C【解析】解:只需添加故正确答案是:7、).A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】C由题意知,.故答案为:菱形.8、下列命题中,真命题是()A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线互相垂直且相等的四边形是正方形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线相等的四边形是矩形【答案】A【解析】解:两条对角线相等且互相平分的四边形才是矩形,该选项命题错误;两条对角线互相垂直且平分的四边形才是菱形,该选项命题错误;两条对角线互相垂直且相等且互相平分的四边形是才正方形,该选项命题错误;两条对角线互相平分的四边形是平行四边形,该命题正确.故答案为:两条对角线互相平分的四边形是平行四边形.9、用两个完全相同的直角三角形拼下列图形:①平行四边形②矩形③菱形④等腰三角形⑤等边三角形,一定能拼成的图形是A. ①②④B. ①②③C. ①②⑤D. ①④⑤【答案】A因为该直角三角形不一定有60°内角,所以不一定能拼成等边三角形,因为该直角三角形不一定有两条边相等,所以不一定能拼成菱形,故一定能拼成的只有平行四边形、矩形和等腰三角形故①②④正确10)A.D. 平行四边形【答案】A则既是矩形又是菱形的为正方形,则11A.D.【答案】D【解析】解:且AC、BD互相平分可判定为菱形,再由AC=BD判定为正方形.12) A.D.【答案】D根据直线外一点到直线上任一点的距离,垂线段最短,13A.D.【答案】D【解析】解:可添加14)A.D.【答案】D15) A.D.【答案】DN二、填空题(本大题共有5小题,每小题5分,共25分)16故答案为:17、有一组相等的四边形是菱形.【答案】邻边;平行【解析】解:有一组邻边相等的平行四边形是菱形.故正确答案是:邻边;平行.18、1.正方形的定义有一组邻边且一个角是的平行四边形叫做正方形。
北师版九年级数学 第一章 特殊平行四边形(单元综合测试卷)
第一章特殊平行四边形(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.矩形具有而菱形不一定具有的性质是()A .对角线互相平分B .对边平行且相等C .对角线相等D .对角相等2.如图,正方形ABCD 的对角线相交于点O ,则AOB ∠的度数是()A .30︒B .45︒C .60︒D .90︒3.已知矩形的较短边长为6,对角线相交成60°角,则这个矩形的较长边的长是()A .B .C .9D .124.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,若110BAD ∠=︒,则OBC ∠的度数为()A .30︒B .35︒C .55︒D .70︒5.下面说法正确的是()A .有一组邻边相等的四边形是菱形B .对角线互相垂直的四边形是菱形C .矩形的对角线相等D .对角线互相垂直平分的四边形是正方形6.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是()A .5cmB .6cmC .485cm D .245cm ;7.如图,矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则△DCE 的面积为()A .52B .32C .2D .18.如图,点B 、C 分别在两条直线y kx =和6y x =-上,点A 、D 是x 轴上两点,若四边形ABCD 是正方形,则k 的值为()A .6B .5C .56D .659.如图,在菱形ABCD 中,∠A =60°,点E 、F 分别为AD 、DC 上的动点,∠EBF =60°,点E 从点A 向点D 运动的过程中,AE+CF 的长度().A .逐渐增加B .逐渐减小C .保持不变且与EF 的长度相等D .保持不变且与AB 的长度相等10.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B 、C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM 、ON 、MN .下列四个结论:①CNB DMC △≌△;②ON OM =;③ON OM ⊥;④222AN CM MN +=.其中结论正确的有()个A .1B .2C .3D .4二、填空题(本大题共8小题,每小题3分,共24分)11.菱形ABCD 的边长为5,对角线6AC =,则菱形ABCD 的面积是.12.要使矩形ABCD 成为正方形,可添加的条件是(写一个即可).13.如图,E 是正方形ABCD 的边BC 延长线上一点,且CE=AC ,AE 交CD 于点F ,则∠E=14.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,则折痕EF 的长为.15.如图,在矩形ABCD 中,AB =8,BC =6,点P 为边AB 上任意一点,过点P 作PE ⊥AC ,PF ⊥BD ,垂足分别为E 、F ,则PE +PF =.16.已知,矩形ABCD ,点F 在边BC 上,点E 在边AB 上,连接CE 、AF 交于点G .若12AB =,9BC =,3BE =,45AGE ∠=︒.则BF =.17.如图,在平面直角坐标系中,四边形OABC 是边长为1的正方形,顶点,A C 分别在x y ,轴的正半轴上.点Q 在对角线OB 上,且OQ OC =,连接CQ 并延长CQ 交边AB 于点P ,则点P 的坐标为.18.如图,矩形ABCD 中,5,7AD DC ==,点H 在边AD 上,1AH =,E 为边AB 上一个动点,连HE .以HE 为一边在HE 的右上方作菱形HEFG ,使点G 落在边DC 上,连结CF .(1)当菱形HEFG 为正方形时,DG 的长为;(2)在点E 的运动过程中,△FCG 的面积S 的取值范围为.三、解答题(本大题共9小题,共66分)19.如图,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连接CE 、DF .求证:CE DF =.20.如图,四边形ABCD 是菱形,∠ACD=30°,BD=6.求:(1)∠BAD ,∠ABC 的度数;(2)AB ,AC 的长.21.如图,在6×6的方格纸中,请按要求作图.(1)图1中,A ,B 是方格纸中的格点,以AB 为一边作一个矩形ABCD ,要求C ,D 两点也在格点上;(2)图2中,E ,F 是方格纸中的格点,以EF 为一边作一个菱形EFGH ,要求G ,H 两点也在格点上.22.如图,四边形ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且DE =BF ,连接AE ,AF ,EF .(1)求证:△ADE ≌△ABF ;(2)若BC =8,DE =6,求EF 的长.23.如图,菱形ABCD 的对角线AC BD ,交于点O ,CE BD ∥,DE AC ∥.(1)求证:四边形OCED 是矩形;(2)连接BE ,若2AC =,BD =,求BE 的长.24.如图,在矩形ABCD 中,3cm AB =,6cm BC =.点P 从点D 出发向点A 运动,运动到点A 即停止;同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为t s .(1)当t 为何值时,四边形ABQP 是矩形,请说明理由;(2)当t 为何值时,四边形AQCP 是菱形,请说明理由;(3)直接写出(2)中菱形AQCP 的周长和面积,周长是______cm ,面积是______2cm .25.如图,在菱形ABCD 中60ABC ∠=︒,E 为对角线AC 上一点,F 是BC 延长线上一点,连接BE ,DE ,AF ,DF ,60EDF ∠=︒.(1)求证:AE CF =;(2)若点G 为BE 的中点,连接AG ,求证:2AF AG =.26.如图,在矩形ABCD 中,CD a =,E 为边CD 上一点,点P 在线段BE 上,且满足90CPD ∠=︒,延长CP 交边BA 于点M .(1)若点E 为CD 的中点,线段PE 的长为________(用含a 的代数式表示);(2)连接AP ,若AP AD =,求证AM BM =;(3)当BC =4a =时,求BP 的最小值.27.如图1,四边形ABCD 为菱形,120ABC ∠=︒.()B ,)C,()03D ,.(1)点A 坐标为,四边形ABOD 的面积为;(2)如图2,点E 在线段AC 上运动,DEF 为等边三角形.①求证:AF BE =,并求AF 的最小值;②点E 在线段AC 上运动时,点F 的横坐标是否发生变化?若不变,请求出点F 的横坐标.若变化,请说明理由.28.已知正方形ABCD ,2AB =,点E 是BC 边上的一个动点(不与B C 、重合),将EA 绕点E 顺时针旋转90︒至EF ,连接AF ,设EF 交CD 于点P ,AF 交CD 于点Q .(1)如图1,若BE DQ =,求BAE ∠的度数;(2)如图2,①点E 在BC 上运动的过程中,线段EQ BE 、与DQ 之间有怎样的数量关系,请证明你的发现;②若222BE =,求此时BAE ∠的度数.(3)如图3,连接DF ,则AF DF +的最小值是____________(直接写出答案......);第一章特殊平行四边形(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题1.矩形具有而菱形不一定具有的性质是()A .对角线互相平分B .对边平行且相等C .对角线相等D .对角相等【答案】C【分析】根据矩形和菱形都是特殊的平行四边形,所以平行四边形所具有的性质,矩形和菱形都具有即可解答.【解析】解: 矩形和菱形是平行四边形,∵A 、B 、D 是二者都具有的性质,∴对角线相等是矩形具有而菱形不一定具有的性质.故选:C .【点睛】本题主要考查了矩形、菱形的性质,掌握矩形、菱形与平行四边形的关系是解答本题的关键.2.如图,正方形ABCD 的对角线相交于点O ,则AOB ∠的度数是()A .30︒B .45︒C .60︒D .90︒【答案】D【分析】直接利用正方形的性质求解即可.【解析】解:∵四边形ABCD 是正方形,∴AC BD ⊥,∴90AOB ∠=︒,故选:D .【点睛】本题考查正方形的性质,熟练掌握正方形的性质是解决问题的关键.3.已知矩形的较短边长为6,对角线相交成60°角,则这个矩形的较长边的长是()A .B .C .9D .12【解析】AB=6,∠AOB=60°,∵四边形是矩形,AC ,BD 是对角线,OA=OB=OC=OD=12BD=12AC 中,OA=OB ,∠AOB=60°4.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,若110BAD ∠=︒,则OBC ∠的度数为()A .30︒B .35︒C .55︒D .70︒5.下面说法正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.矩形的对角线相等D.对角线互相垂直平分的四边形是正方形【答案】C【分析】根据菱形,矩形,正方形的性质和判定定理,逐个进行判断即可.【解析】解:A、有一组邻边相等的平行四边形是菱形,故A不正确,不符合题意;B、对角线互相垂直的平行四边形是菱形,故B不正确,不符合题意;C、矩形的对角线相等,故C正确,符合题意;D、对角线相等且互相垂直平分的四边形是正方形,故D不正确,不符合题意;故选:C.【点睛】本题主要考查了菱形、矩形、正方形的判定和性质,解题的关键是熟练掌握相关定理和性质.6.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.5cm B.6cm C.485cm D.245cm;【点睛】此题主要考查了菱形的性质以及勾股定理,正确得利用三角形面积求出AE 的长是解题关键.7.如图,矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则△DCE 的面积为()A .52B .32C .2D .18.如图,点B 、C 分别在两条直线y kx =和6y x =-上,点A 、D 是x 轴上两点,若四边形ABCD 是正方形,则k 的值为()A .6B .5C .56D .65【答案】D 【分析】设点(),B b bk ,根据正方形的性质可得=C bk y ,再代入6y x =-求得,6bk C bk ⎛⎫- ⎪⎝⎭,再根据6==66bk bk b AD b ++,=AB bk ,列方程求解即可.【解析】解:∵点B 、C 分别在两条直线y kx =和6y x =-上,设点(),B b bk ,∵四边形ABCD 是正方形,∴AB CD BC AD ===,∴把y bk =代入6y x =-得,=6bk x -,∴,6bk C bk ⎛⎫- ⎪⎝⎭,∴6==66bk bk b AD b ++,=AB bk ,∴6=6bk b bk +,∴65k =,故选:D .9.如图,在菱形ABCD 中,∠A =60°,点E 、F 分别为AD 、DC 上的动点,∠EBF =60°,点E 从点A 向点D 运动的过程中,AE+CF 的长度().A .逐渐增加B .逐渐减小C .保持不变且与EF 的长度相等D .保持不变且与AB 的长度相等【答案】D【分析】证明△ABE ≌△DBF (AAS ),可得AE =DF ;结合图形可知:AE+CF =AB ,AB 是一定值,从而完成求解.【解析】连接BD∵四边形ABCD 是菱形,∴AB =AD =CD ,∵∠A =60°∴△ABD 是等边三角形∴AB =BD ,∠ABD =60°∵DC ∥AB∴∠CDB =∠ABD =60°∴∠A =∠CDB∵∠EBF =60°∴∠ABE+∠EBD =∠EBD+∠DBF∴∠ABE =∠DBF∵A BDF ABE DBF AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DBF (AAS )∴AE =DF∴AE+CF =DF+CF =CD =AB故选:D .【点睛】本题考察了菱形、等边三角形、全等三角形的知识;求解的关键是熟练掌握菱形、等边三角形、全等三角形的性质,从而完成求解.10.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B 、C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM 、ON 、MN .下列四个结论:①CNB DMC △≌△;②ON OM =;③ON OM ⊥;④222AN CM MN +=.其中结论正确的有()个A .1B .2C .3D .4【答案】D 【分析】本题考查正方形的性质,全等三角形的性质和判定,勾股定理应用,解题关键是全等三角形的性质和判定,根据正方形的性质,依次判定CNB DMC △≌△,OCM OBN ≌,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解析】解:①正方形ABCD 中,CD BC =,90BCD ∠=︒,90BCN DCN ∴∠+∠=︒,又CN DM ⊥ ,90CDN DCN \Ð+Ð=°,∴BCN CDM ∠=∠,90CBN DCM ∠=∠=︒ ,∴()ASA CNB DMC ≌;故①正确;②③根据CNB DMC △≌△,可得CM BN =,45OCM OBN ∠=∠=︒ ,OC OB =,()SAS OCM OBN ∴ ≌,OM ON ∴=,COM BON ∠=∠,BOM COM BOM BON ∴∠+∠=∠+∠,即90NOM BOC ∠=∠=︒,ON OM ∴⊥;故②和③正确;④AB BC = ,CM BN =,BM AN ∴=,Rt BMN 中,222BM BN MN +=,222AN CM MN ∴+=,故④正确;本题正确的结论有:①②③④;故选:D .二、填空题11.菱形ABCD 的边长为5,对角线6AC =,则菱形ABCD 的面积是.∵菱形ABCD 的边长为5,∴5AD AB DC BC ====,AC BD ⊥,又∵6AC =,∴3AO =,∴22534DO =-=,∴8BD =,∴菱形ABCD 的面积116824AC BD ==⨯⨯= .12.要使矩形ABCD 成为正方形,可添加的条件是(写一个即可).【答案】AB=BC ;BC=CD ;CD=AD ;AD=AB ;AC ⊥BD (挑选一个即可)【分析】根据正方形的判定定理进行添加即可.【解析】从边上添加:有AB=BC,BC=CD,CD=DA,DA=AB(有一组领边相等的矩形为正方形)从对角线上添加:有AC⊥BD(对角线互相垂直的矩形为正方形).故答案为:AB=BC;BC=CD;CD=AD;AD=AB;AC⊥BD(挑选一个即可)【点睛】本题考查了由矩形得到正方形的判定,熟知其判定定理是解题的关键.13.如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于点F,则∠E=14.如图,一张长8cm,宽6cm的矩形纸片,将它沿某直线折叠使得A、C重合,则折痕EF的长为.=,由翻折可知,AF CF∥,∵AD BC∠=∠,∴OAF OCE15.如图,在矩形ABCD中,AB=8,BC=6,点P为边AB上任意一点,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,则PE+PF=.【答案】245【分析】连接OP .由勾股定理得出AC =10,可求得OA =OB =5,由矩形的性质得出S 矩形ABCD =AB •BC =48,S △AOB =14S 矩形ABCD =12,OA =OB =5,由S △AOB =S △AOP +S △BOP =12OA •PE +12OB •PF =12OA (PE +PF )=12×5×(PE +PF )=12求得答案.【解析】解:连接OP ,如图:∵四边形ABCD 是矩形,∴∠ABC =90°,OA =OC ,OB =OD ,AC =BD ,∴OA =OB ,AC =222286AB BC +=+=10,∴S 矩形ABCD =AB •BC =48,S △AOB =14S 矩形ABCD =12,OA =OB =5,∴S △AOB =S △AOP +S △BOP =12OA •PE +12OB •PF =12OA (PE +PF )=12×5×(PE +PF )=12,∴PE +PF =245;故答案为:245.【点睛】本题考查了矩形的性质、勾股定理.注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.已知,矩形ABCD ,点F 在边BC 上,点E 在边AB 上,连接CE 、AF 交于点G .若12AB =,9BC =,3BE =,45AGE ∠=︒.则BF =.【答案】6【分析】过点E 作EH EC ⊥,垂足为E ,交AD 于点H ,证明AEH BCE ≌,得出EHC △是等腰直角三角形,进而得出四边形AFCH 是平行四边形,即可求解.【解析】解:如图所示,过点E 作EH EC ⊥,垂足为E ,交AD 于点H ,∵四边形ABCD 是矩形,∴90A B ∠=∠=︒,AD BC∥∴90AEH BEC BCE ∠=∠︒-=∠,∵12AB =,9BC =,3BE =,∴1239AE AB BE BC =-=-==,∴AEH BCE≌∴EH EC =,3AH BE ==,∴EHC △是等腰直角三角形,∴45HCE ∠=︒,∵45AGE ∠=︒,∴AF CH ∥,又∵AD BC ∥,∴四边形AFCH 是平行四边形,∴AH FC =,∴936BF BC FC BC BE =-=-=-=,故答案为:6.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,平行四边形的性质与判定,正确的添加辅助线是解题的关键.,轴的正半轴上.点17.如图,在平面直角坐标系中,四边形OABC是边长为1的正方形,顶点,A C分别在x y=,连接CQ并延长CQ交边AB于点P,则点P的坐标为.Q在对角线OB上,且OQ OC本特征是解题关键.18.如图,矩形ABCD中,5,7==,点H在边AD上,1AD DCAH=,E为边AB上一个动点,连HE.以HE.为一边在HE的右上方作菱形HEFG,使点G落在边DC上,连结CF(1)当菱形HEFG为正方形时,DG的长为;(2)在点E的运动过程中,△FCG的面积S的取值范围为.三、解答题19.如图,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连接CE 、DF .求证:CE DF =.【答案】见详解【分析】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握正方形的性质以及全等三角形的判定和性质,属于基础题,中考常考题型.欲证明CE DF =,只要证明CEB DFC ≌即可.【解析】证明:ABCD 是正方形,AB BC CD ∴==,90EBC FCD ∠=∠=︒,又E 、F 分别是AB 、BC 的中点,BE CF ∴=,在CEB 和DFC 中,BC CD B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△≌△CEB DFC ,CE DF ∴=.20.如图,四边形ABCD 是菱形,∠ACD=30°,BD=6.求:(1)∠BAD ,∠ABC 的度数;(2)AB ,AC 的长.【答案】(1)∠BAD=60°,∠ABC=120°;(2)AB=6cm,AC=63【分析】(1)根据∠ACD=30°和菱形的性质求出AD//BC,即可得出答案;(2)根据菱形的性质求出∠DBC,然后根据三角形内角和定理求出CD即可得到AB,进而求出AC.【解析】解:(1)∵∠ACD=30°∴∠BCD=60°(菱形对角线平分对角)∴∠BAD=60°(菱形对角相等)∴AD//BC(菱形对边平行)∴∠ABC=120°(,两直线平行,同旁内角互补)(2)∵∠ABC=120°∴∠DBC=60°(菱形对角线平分对角)∵∠DBC+∠BCD+∠BDC=180°(三角形内角和为180°)∴∠DBC=∠BCD=∠BDC=60°∴BD=BC=CD=6cm∴AB=CD=6cm(菱形对边相等)∵AC⊥BD且AO=CO(菱形对角线互相垂直平分)∴AO=33(直角三角形30°角定理)∴AC=63【点睛】本题考查了菱形的性质、三角形内角和定理和30°直角三角形等知识点,能灵活运用菱形的性质进行推理是解此题的关键.21.如图,在6×6的方格纸中,请按要求作图.(1)图1中,A,B是方格纸中的格点,以AB为一边作一个矩形ABCD,要求C,D两点也在格点上;(2)图2中,E,F是方格纸中的格点,以EF为一边作一个菱形EFGH,要求G,H两点也在格点上.【答案】(1)见解析;(2)见解析【分析】(1)根据网格,以AB为边在图1中即可画一个以A,B,C,D为顶点的矩形;(2)根据网格,分别以E,F为顶点,画1×2格对角线即可在图2中作一个菱形EFGH.【解析】解:(1)如图1,四边形ABCD即为所求作的矩形;(2)如图2,四边形EFGH即为所求作的菱形;.【点睛】本题考查了作图-应用与设计作图,矩形的判定与性质,菱形的判定与性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.如图,四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE ≌△ABF ;(2)若BC =8,DE =6,求EF 的长.【答案】(1)见解析(2)102【分析】(1)利用正方形的性质结合全等三角形的判定与性质得出答案;(2)首先利用去等三角形的性质得出CE ,CF 的长,再利用勾股定理得出答案.【解析】(1)证明:∵四边形ABCD 是正方形,∴∠ADE =∠ABC =90°=∠ABF ,AD =AB在△ADE 和△ABF 中,AD AB D ABF DE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△ABF (SAS );(2)解:∵△ADE ≌△ABF ,DE =6,∴BF =DE =6,∵BC =DC =8,∴CE =8﹣6=2,CF =8+6=14,在Rt △FCE 中,EF =22CF +CE =22142+=102.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质以及勾股定理,正确应用正方形的性质是解题关键.23.如图,菱形ABCD 的对角线AC BD ,交于点O ,CE BD ∥,DE AC ∥.(1)求证:四边形OCED 是矩形;(2)连接BE ,若2AC =,BD =,求BE 的长. 112AO OC AC ∴===,∵四边形OCED 是矩形∴1ED OC BDE ==∠,24.如图,在矩形ABCD 中,3cm AB =,6cm BC =.点P 从点D 出发向点A 运动,运动到点A 即停止;同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为t s .(1)当t 为何值时,四边形ABQP 是矩形,请说明理由;(2)当t 为何值时,四边形AQCP 是菱形,请说明理由;(3)直接写出(2)中菱形AQCP 的周长和面积,周长是______cm ,面积是______2cm .【答案】(1)当3t =时,四边形ABQP 为矩形(2)当94t =时,四边形AQCP 为菱形(3)15;454【分析】(1)根据题意用t 表示出BQ 、AP 、CQ ,根据矩形的判定定理列出方程,解方程得到答案;(2)根据邻边相等的平行四边形是菱形、勾股定理列式计算即可;(3)根据(2)中求出的t 的值,求出CQ ,根据菱形的周长公式、面积公式计算即可.【解析】(1)解:由题意得,BQ DP t ==,则6AP CQ t ==-,四边形ABCD 是矩形,90B ∴∠=︒,AD BC ∥,∴当BQ AP =时,四边形ABQP 为矩形,6t t ∴=-,解得,3t =,故当3t =时,四边形ABQP 为矩形;(2)解:由(1)可知,四边形AQCP 为平行四边形,∴当AQ CQ =时,四边形AQCP 为菱形,即2236t t +=-时,四边形AQCP 为菱形,解得,94t =,故当94t =时,四边形AQCP 为菱形;(3)解:当94t =时,1564CQ t =-=,25.如图,在菱形ABCD 中60ABC ∠=︒,E 为对角线AC 上一点,F 是BC 延长线上一点,连接BE ,DE ,AF ,DF ,60EDF ∠=︒.(1)求证:AE CF =;(2)若点G 为BE 的中点,连接AG ,求证:2AF AG =.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据菱形的性质,得到AD=CD ,∠ABC=∠ADC=∠ACD=∠CAD=60°,然后根据等式的性质求得∠ADE=∠CDF ,从而利用ASA 定理判定三角形全等,问题得解;(2)过点B 作BH ∥AC ,交AG 的延长线于点H ,根据菱形的性质结合(1)中的结论判定△ABE ≌△ADE ≌△CDF ,利用ASA 定理判定△BHG ≌△EAG ,利用SAS 定理判定△ABH ≌△ACF ,从而得到AH=AF ,使问题得解.【解析】解:在菱形ABCD 中,∵60ABC ∠=︒∴AD=CD ,∠ABC=∠ADC=∠ACD=∠CAD=∠ACB=60°∴∠DCF=60°又∵60EDF ∠=︒∴∠ADE+∠EDC=∠CDF+∠EDC=60°∴∠ADE=∠CDF ,在△ADE 和△CDF 中ADE CDF AD CD EAD DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CDF∴AE CF =;(2)过点B 作BH ∥AC ,交AG 的延长线于点H在菱形ABCD 中,∠ABE=∠ADE ,AB=AD ,AE=AE 又由(1)可知△ADE ≌△CDF∴△ABE ≌△ADE ≌△CDF∴AE=CF∵BH ∥AC ,点G 是BE 的中点∴∠H=∠GAE ,BG=EG ,∠HBG=∠ACB=60°∴∠ABH=∠ACF=120°又∵∠AGE=∠HGB∴△BHG ≌△EAG∴BH=AE=CF ,AG=GH又∵AB=AC∴△ABH ≌△ACF∴AH=AF=AG+GH=2AG即2AF AG =.【点睛】本题考查菱形的性质及三角形全等的判定,正确添加辅助线证明三角形全等是本题的解题关键.26.如图,在矩形ABCD 中,CD a =,E 为边CD 上一点,点P 在线段BE 上,且满足90CPD ∠=︒,延长CP 交边BA 于点M .(1)若点E 为CD 的中点,线段PE 的长为________(用含a 的代数式表示);(2)连接AP ,若AP AD =,求证AM BM =;(3)当2BC =4a =时,求BP 的最小值.【答案】(1)12a (2)证明过程见解析(3)232-【分析】(1)根据直角三角形的性质求解即可;(2)延长CM 、DA 交于点F ,根据等腰三角形的性质可得12∠=∠,利用等量代换可得3F ∠=∠,由等腰三角形的判定可得==AP AF AD ,再根据矩形的性质和平行线的性质可得4F ∠=∠,BC AF =,由对顶角相等得=CMB FMA ∠∠,从而证得AFM BCM ≌,即可得证;(3)取CD 的中点H ,连接BH 、PH ,根据直角三角形的性质可得1====22PH CH HD CD ,利用勾股定理求得23BH =,再根据三角形三边关系可得BP BH PH ≥-,从而可得当B 、P 、H 三点共线时,BH 的值最小,即可求解.【解析】(1)解:∵90CPD ∠=︒,点E 为CD 的中点,∴11==22PE CD a ,故答案为:12a ;(2)解:如图,延长CM 、DA 交于点F ,∵AP AD =,∴12∠=∠,∵90CPD ∠=︒,∴=13=90DPF ∠∠+∠︒,∴290F ∠+∠=︒,(3)解:如图,取CD ∴90CPD ∠=︒,∴1===2PH CH HD CD ∴()22222BH =+=又∵BP BH PH ≥-,当B 、P 、H 三点共线时,【点睛】本题考查直角三角形的性质、矩形的性质、对顶角相等、等腰三角形的判定与性质、勾股定理、三角形的三边关系、勾股定理、全等三角形的判定与性质,熟练掌握相关定理是解题的关键.27.如图1,四边形ABCD 为菱形,120ABC ∠=︒.()B ,)C ,()03D ,.(1)点A 坐标为,四边形ABOD 的面积为;(2)如图2,点E 在线段AC 上运动,DEF 为等边三角形.①求证:AF BE =,并求AF 的最小值;②点E 在线段AC 上运动时,点F 的横坐标是否发生变化?若不变,请求出点F 的横坐标.若变化,请说明理由.∴60EDF ADB ∠=∠=︒,∴ADF BDE ∠=∠.∵AD DB DF DE ==,,∴()SAS ADF BDE ≌,∴AF BE =,【点睛】本题主要考查了坐标与图形,菱形的性质,等边三角形的判定和性质,三角形全等的判定和性质,含30度角的直角三角形的性质等知识,综合性强.正确作出辅助线是解题关键.28.已知正方形ABCD ,2AB =,点E 是BC 边上的一个动点(不与B C 、重合),将EA 绕点E 顺时针旋转90︒至EF ,连接AF ,设EF 交CD 于点P ,AF 交CD 于点Q .(1)如图1,若BE DQ =,求BAE ∠的度数;(2)如图2,①点E 在BC 上运动的过程中,线段EQ BE 、与DQ 之间有怎样的数量关系,请证明你的发现;②若2BE =,求此时BAE ∠的度数.(3)如图3,连接DF ,则AF DF +的最小值是____________(直接写出答案......);∵四边形ABCD是正方形,∠=∠∴AB AD=,ABC∵四边形ABCD 是正方形,∴2AB BC ==,90B Ð=∴(222AM CE ==--∴135AME ∠=︒,∵(222EM BE ==⨯∵90AEF ∠=︒,∴90AEB CEF ∠+∠=︒,∵90AEB BAE ∠+∠=︒,∴CEF MAE ∠=∠,∵AE EF =,。
(常考题)北师大版初中数学九年级数学上册第一单元《特殊平行四边形》测试题(包含答案解析)
一、选择题1.菱形的一条对角线与它的边相等,则它的锐角等于( )A .30°B .45°C .60°D .75°2.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 点作OE AB ⊥,垂足为E .则下列说法错误的是( )A .点O 为菱形ABCD 的对称中心B .2OE =C .CDB ∆为等边三角形D .4BD =3.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则DE 的长为( )A .12B .53C .25D .134.如图,把矩形ABCD 沿EF 对折,若112,AEF ∠=︒则1∠等于( )A .43B .44C .45︒D .46︒5.如图,在平面直角坐标系中,将边长为a 的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式连续旋转2021次得到正方形202120212021OA B C ,那么点2021A 的坐标是( )A.22,22a a⎛⎫⎪⎝⎭B.22,22a a⎛⎫-⎪⎝⎭C.22,22a a⎛⎫--⎪⎝⎭D.22,22a a⎛⎫- ⎪⎝⎭6.如图,已知正方形ABCD的边长为4,E是边CB延长线上一点,F为AB边上一点,BE =BF,连接EF并延长交线段AD于点G,连接CF交BD于点M,连接CG交BD于点N.则下列结论:①AE=CF;②∠BFM=∠BMF;③∠CGF﹣∠BAE=45°;④当∠BAE=15°时,MN=433.其中正确的个数有()A.1 B.2 C.3 D.47.如图,正方形ABCD的边长为3,点P为对角线AC上任意一点,PE BC⊥,PQ AB⊥,垂足分别是E,Q,则PE PQ+的值是()A.32B.3 C.322D.328.在菱形ABCD中,∠ADC=120°,点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,连结EG.若AE=1,AB=4,则EG=()A.210B.27C.33D.199.给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A.1 B.2 C.3 D.4AB ,G是BC的中点.将ABG沿AG对折至AFG,10.如图,正方形ABCD中,6延长GF交DC于点E,则DE的长是()A.2 B.2.5 C.3.5 D.411.□ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出□ABCD是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD12.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.3C.3D.6二、填空题13.如图,在直角坐标系中,正方形ABCD的顶点坐标分别为A(1,﹣1),B(﹣1,﹣1),C(﹣1,1),D(1,1).曲线AA1A2A3…叫做“正方形的渐开线”,其中AA1、A1A2、A2A3、A3A4…的圆心依次是B、C、D、A循环,则点A18的坐标是______________.14.如图,点H 在菱形ABCD 的边BC 上,连结AH ,把菱形ABCD 沿AH 折叠,使B 点落在边BC 上的点E 处,若∠B=70°,则∠AED 的度数为_____.15.如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,点E 在DA 的延长线上,BE BF ⊥交CD 于点F ,连接EF .DEF ∠的角平分线与BD 交于点H ,连接FH .过点D 分别作DQ EH ⊥于点Q 、DP FH ⊥于点P ,连接PQ PQ .若1PQ CF ==,则DF =______.16.菱形ABCD 周长为52cm ,它的一条对角线长为10cm ,则另一条对角线长为__________cm .17.如图,在矩形ABCD 纸片中,点E 是BC 边的中点,沿直线AE 折叠,点B 落在矩形内部的点B '处,连接AB '并延长交CD 于点F .已知4CF =,5DF =,则AD 的长为__________.18.如图,把长方形纸片ABCD 沿折痕EF 折叠,使点B 与点D 重合,点A 落在点G 处,68DFG ∠=︒,则BEF ∠的度数为_________.19.如图,在矩形ABCD 中,AB =6,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,若BE =EO ,则AD 的长是____.20.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.三、解答题21.如图,点E 为边长为3的正方形ABCD 的边CB 延长线上一点,1BE =,连接AE ,将ABE △绕着正方形的顶点A 旋转得到ADF .(1)写出上述旋转的旋转方向和旋转角度数:(2)连接EF ,求AEF 的面积:(3)如图中,ADG 可以看作由BAE △先绕着正方形的顶点B 顺时针旋转90︒,再沿着BA 方向平移3个单位的二次基本运动所成,那么ADG 是否还可以看作由BAE △只通过一次旋转运动而成呢?如果可以,请写出(同时在图中画出)旋转中心、旋转方向和旋转角度数,如果不能,则说明理由.22.如图,点E 是正方形ABCD 的边DC 上一点,把ADE 顺时针旋转ABF 的位置.(1)旋转中心是点 ,旋转角度是 度:(2)若连结EF ,则AEF 是 三角形,并证明你的结论.23.如图,矩形ABCD 中,EF 垂直平分对角线BD ,垂足为O ,点E 和F 分别在边AD ,BC 上,连接BE ,DF .(1)求证:四边形BFDE 是菱形;(2)若AE =OF ,求∠BDC 的度数.24.如图,在直角坐标系中,3,4OA OC ==,点B 是y 轴上一动点,以AC 为对角线作平行四边形ABCD .(1)求直线AC 的函数解析式;(2)设点(0)B m ,,记平行四边形ABCD 的面积为S ,求S 与m 的函数关系式; (3)当点B 在y 轴上运动,能否使得平行四边形ABCD 是菱形?若能,求出点B 的坐标;若不能,说明理由.25.如图1、图2都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.已知点O,M,N,A,B均在格点上,请按要求完成下列问题:(1)在图①中,仅用无刻度直尺在网格中画出∠MON的平分线OP,并简要说明画图的依据;(2)在图②中,仅用无刻度直尺在网格中画一个Rt△ABC,使点C在格点上,并简要说明画图的依据.26.如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.求证:四边形CDOF是矩形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由菱形的性质可得这条对角线与菱形的两边组成等边三角形,从而求得锐角的度数等于60°.【详解】解:由菱形的性质得,菱形相邻的两边相等,则与这条对角线组成等边三角形,则它的锐角等于60°,故选C.【点睛】此题主要考查菱形的性质:四边相等.2.B解析:B【分析】根据菱形的性质,等边三角形的判定,含30度的直角三角形的性质,勾股定理即可判断得出答案.【详解】菱形对角线互相垂直平分,O为对角线BD的中点,也是菱形对角线的交点,所以点O为菱形ABCD的对称中心,故A选项正确;∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴∠A=∠C =60°,∴△ABD和△CBD是等边三角形,故C选项正确;∴BD=AB=4,故D选项正确;∠OBE=60°,∵OE⊥AB,∴∠BOE=30°,∵O为对角线BD的中点,∴OB=1BD=2,2∴BE=1OB =1,2∴==B选项错误;故选:B.【点睛】本题考查了菱形的性质以及等边三角形的判定与性质,含30度的直角三角形的性质,勾股定理等.注意证得△ABD是等边三角形是关键.3.B解析:B【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF =3﹣x ,然后在Rt △ECF 中根据勾股定理得到x 2+12=(3﹣x )2,解方程即可得到DE 的长.【详解】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF 4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x ,在Rt △ECF 中,CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43, ∴DE =3﹣x =53, 故选:B .【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.4.B解析:B【分析】根据矩形的对边平行,可得∠AEF+∠BFE=180°,继而求得∠BFE=68°,再利用折叠的性质和平角的定义求解即可.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AEF+∠BFE=180°,∵112AEF ∠=︒,∴∠BFE=68°,∴∠1=180°-2∠BFE=44°,故选B .【点睛】本题考查了折叠问题,矩形的性质,平行线的性质,平角的定义,熟练掌握折叠的性质是解题的关键.5.C解析:C【分析】由正方形的性质和旋转的性质探究规律,利用规律解决问题即可.【详解】解:∵四边形OABC 是正方形,且OA=1,∴A (0,a ),∵将正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,∴A 122,)22a a ,A 2(a ,0),A 322,)22a a ,A 4(0,-a )…, 发现是8次一循环,∵2021÷8=252…5,∴点A 2021的坐标为22,⎛⎫ ⎪⎝⎭, 故选:C .【点睛】本题考查了正方形的性质、旋转的性质、坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.6.B解析:B【分析】①根据已知条件证明△ABE ≌△CBF ,即可判断;②由△ABE ≌△CBF 和已知条件证明四边形DGEB 是平行四边形,再证明△FBC ≌△GDC ,当且仅当∠FCG=45°时,∠BFM=∠BMF ,即可判断;③结合①②证明∠FMB=∠CGF ,进而可以判断;④当∠BAE=15°时,∠BCM=∠GCD=∠BAE=15°,可得△CMN 是等边三角形,作CH ⊥BD 于点H ,根据正方形边长为4,即可求出MN 的值,进而可以判断.【详解】解:①∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠CBF =90°,在△ABE 和△CBF 中,BE BF ABE CBF AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴AE =CF ,故①正确;②∵△ABE ≌△CBF ,∴∠BCF =∠BAE ,∵∠GEC =∠DBC =∠ADB =45°,∴∠BMF =∠FCB +∠DBC =∠FCB +45°,∵∠GEC =∠DBC ,∴EG ∥DB ,∵DG ∥BE ,∴四边形DGEB 是平行四边形,∴BE =DG ,在△FBC 和△GDC 中,BF DG FBC GDC BC DC =⎧⎪∠=∠⎨⎪=⎩,∴△FBC ≌△GDC (SAS ),∴∠BCF =∠DCG ,∴∠BFM =∠FCD =∠DCG +∠FCG =∠BCF +∠FCG ,∴当且仅当∠FCG =45°时,∠BFM =∠BMF ,故②错误;③∵GE ∥BD ,∴∠FMB =∠GFC ,∵△FBC ≌△GDC ,∴CF =CG ,∴∠GFC =∠CGF ,∴∠FMB =∠CGF ,∴∠CGF ﹣∠BAE =∠FMB ﹣∠BCM =∠MBC =45°,故③正确;④当∠BAE =15°时,∠BCM =∠GCD =∠BAE =15°,∴∠FCG =90°﹣∠BCM ﹣∠GCD =60°,∵BD ∥EG ,∴∠GFC =∠NMC ,∠FGC =∠MNC ,∵∠GFC =∠FGC ,∴∠NMC =∠MNC ,∴CM =CN ,∠MCN =60°,∴△CMN 是等边三角形,作CH ⊥BD 于点H ,如图,∴CH=12BD=122244=2,∴CM223×246,∴MN=CM=63,故④错误.所以其中正确有①③,2个.故选:B.【点睛】本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质和判定,在有中点和直角三角形的前提条件下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.7.B解析:B【分析】证明四边形PQBE是矩形得PE=QB,证明△PEC是等腰直角三角形得PQ=BE便可求得结果【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∠ACB=12∠BCD=45°∵PE⊥BC,PQ⊥AB,∴四边形PQBE是矩形,∴PQ=BE∵AC是正方形ABCD的对角线,∴∠PCE=45°,又∠PEC=90°∴△PEC是等腰直角三角形∴PE=CE∴PE+PQ=CE+BE=BC=3.故选:B.【点睛】本题主要考查了正方形的性质,矩形的性质与判定,等腰直角三角形的判定,关键是证明PE=CE,PQ=BE.8.B【分析】连接FG ,根据菱形的性质和轴对称的性质可得∠A=60°,AE =AF ,BF =BG ,进而可证△AEF 是等边三角形及△BFG 是等腰三角形,根据等边三角形的性质和等腰三角形的性质可求得EF 和FG 的长,且∠EFG=90°,根据勾股定理即可求得EG 的长.【详解】解:连接FG ,过点B 作BH ⊥FG 于H ,如图,∵菱形ABCD ,∠ADC =120°,∴∠A =60°,∠ABC =120°,∵点E 关于∠A 的平分线的对称点为F ,点F 关于∠B 的平分线的对称点为G ,∴AE =AF=1,BF =BG ,∴△AEF 是等边三角形,∴∠AFE =60°,EF=AF=1∵BF =BG ,∴△BFG 是等腰三角形,∴∠GFB =1801202-=30°, ∴∠EFG =180°﹣60°﹣30°=90°,∵BF =4﹣1=3,∴BH=32,22223333()22BF BH -=-=, ∴FG =3∴EG 2221(33)27EF FG =+=+故选:B .【点睛】本题考查了菱形的性质、轴对称的性质、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的三边关系、勾股定理,属于常考基本题型,难度适中,充分利用轴对称的性质是解答的关键.9.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.10.A解析:A【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】解:连接AE,∵正方形ABCD中,6AB=∴AB=AD=BC=CD6=,∠B=∠D=90°,由折叠的性质得:AB =AF6=,∠B=∠AFG=90°,BG=GF∴AD=AF,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt△AFE≌Rt△ADE是解答本题的关键.11.C解析:C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD,无法判断四边形ABCD是菱形,不合题意;B. AC=BD,根据对角线相等的平行四边形是矩形可以判断□ABCD是矩形,不合题意;C. AC⊥BD,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD是菱形,符合题意;D. AB⊥BD,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD 是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.12.C解析:C【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=1AD=3,CM⊥AD,2∴,∴故选C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(-371)【分析】先求出A1(-1-3)A2(-51)A3(17)A4(9-1)再研究规律每四次变化回到相同的象限;一象限横坐标都为1二象限纵坐标都为1三象限横坐标都为-1四象限纵坐标都为-1;相解析:(-37,1)【分析】先求出A1(-1,-3),A2(-5,1),A3(1,7),A4(9,-1),再研究规律每四次变化回到相同的象限;一象限横坐标都为1,二象限纵坐标都为1,三象限横坐标都为-1,四象限纵坐标都为-1;相应变化的坐标一周差8;18÷4=4…2;四周差4×8=32,四周余2,A18在第二象限,横坐标为:-5-4×8计算即可写出A18的坐标.【详解】正方形ABCD的顶点坐标分别为A(1,﹣1),B(﹣1,﹣1),C(﹣1,1),D(1,1).AB=1-(-1)=2,A1与B平行y轴,A1的横坐标为-1,纵坐标为:-1-2=-3,A1(-1,-3)CA1=1-(-3)=4,A2与C平行x轴,A2的纵坐标为1,横坐标为:-1-4=-5,A2(-5,1)DA2=1-(-5)=6,A3与D平行y轴,A3的横坐标为1,纵坐标为:1+6=7,A3(1,7)AA3=7-(-1)=8,A4与A平行x轴,A4的纵坐标为-1,横坐标为:1+8=9,A4(9,-1)A(1,﹣1),A1(-1,-3),A2(-5,1),A3(1,7),A4(9,-1),A5(-1,-11,A6(-13,1),每四次变化回到相同的象限,第一象限横坐标都为1,第二象限纵坐标都为1,第三象限横坐标都为-1,第四象限纵坐标都为-1,相应变化的坐标一周差8,18÷4=4…2,A18在第二象限,4×8=32,四周差32,A18的横坐标为:-5-4×8=-37,A18(-37,1),故答案为:(-37,1).【点睛】本题考查正方形的渐开线点的规律探究问题,掌握渐开线呈周期性变化,每4次渐开线终点在相同象限,各象限都有一坐标不变,找到变化的坐标规律是解题关键.14.55°【分析】根据翻折变换的性质可得AB=AE然后根据等腰三角形两底角相等求出∠B=∠AEB=70°根据菱形的四条边都相等可得AB=AD菱形的对角相等求出∠ADC再求出∠DAE然后根据等腰三角形两底解析:55°【分析】根据翻折变换的性质可得AB=AE,然后根据等腰三角形两底角相等求出∠B=∠AEB=70°,根据菱形的四条边都相等可得AB=AD,菱形的对角相等求出∠ADC,再求出∠DAE,然后根据等腰三角形两底角相等求出∠AED.【详解】解:∵菱形ABCD沿AH折叠,B落在BC边上的点E处,∴AB=AE,∵∠B=70°,∴∠AEB=70°在菱形ABCD中,AB=AD,∠ADC=∠B=70°,AD∥BC,∴∠DAE=∠AEB=70°,∵AB=AE,AB=AD,∴AE=AD,∴∠AED=12(180°-∠DAE)=12(180°-70°)=55°.故答案为:55°.【点睛】本题考查了翻折变换的性质,菱形的性质,等腰三角形两底角相等的性质,翻折前后对应边相等,菱形的四条边都相等,对角相等.15.1+【分析】延长DQ交EF于M延长DP交EF于N先证∆ABE≌∆CBF∆FPN≌∆FPD∆EQD≌∆EQM设CD=x则DF=x-1EF=BF=列方程求解即可【详解】解:延长DQ交EF于M延长DP交E解析:【分析】延长DQ交EF于M,延长DP交EF于N,先证∆ABE≌∆CBF,∆FPN≌∆FPD,∆EQD≌∆EQM,设CD=x,则DF=x-1,【详解】解:延长DQ交EF于M,延长DP交EF于N,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BAD=∠BCF=90°,BD平分∠ADC,∵BE⊥BF,∴∠EBF=90°,∴∠EBF=∠ABC ,∴∠EBF-∠ABF=∠ABC-∠ABF ,∴∠ABE=∠CBF ,在∆ABE 和∆CBF 中,BAE BCF AB CBABE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆ABE ≌∆CBF ,∴AE=CF ,BE=BF ,∵EQ 平分∠DEF ,OD 平分∠EDF ,EQ 与OD 交于H ,∴FH 平分∠EFD ,∴EP ⊥DP ,∴∠FPN=∠FPD ,在∆FPN 和∆FPD 中,NFP DFP PF PFFPN FPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆FPN ≌∆FPD ,∴PN=PD ,NF=DF ,∵EQ 平分∠DEF ,∴∠DEQ=∠MEQ ,∵EQ ⊥DQ ,∴∠EQD=∠EQM=90°,在∆EQD 和∆EQM 中,DEQ EQ EQ MQEQD EQM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆EQD ≌∆EQM ,∴DQ=MQ ,EM=ED ,∴PQ 是∆DMN 的中位线,∴PQ=12MN=1, ∴MN=2,∴EF+MN=EM+FN=DE+DF=AD+AE+CD-CF=2CD ,设CD=x ,则DF=x-1,∴∴,∴2x²+2=4x²-8x+4,∴2x²-8x+2=0,∴x²-4x+1=0,∴(x-2) ²=3,∴1232,32x x =+=-+(舍),∵CD=2+3,∴DF=1+3,故答案为:1+3【点睛】本题考查了正方形的性质,全等三角形的判定与性质及三角形的中位线定理,解题的关键是熟练掌握有关性质及正确添加辅助线.16.24【分析】根据菱形的性质先求菱形的边长利用勾股定理求另一条对角线的长度【详解】如图菱形ABCD 中BD=10∴AC ⊥BD ∵菱形的周长为52BD=10∴AB=52÷4=13BO=5∴AO=∴AC=则这解析:24【分析】根据菱形的性质,先求菱形的边长,利用勾股定理求另一条对角线的长度.【详解】如图,菱形ABCD 中,BD=10,∴AC ⊥BD ,∵菱形的周长为52,BD=10,∴AB=52÷4=13,BO=5,∴AO=2213512∴AC=24.则这个菱形的另一条对角线长为24cm .故答案为:24.【点睛】本题考查了菱形对角线互相垂直平分、菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求AO 的值是解题的关键. 17.【分析】连接EF 根据矩形的性质可得AB=CD=9∠B=∠C=∠D=90°根据折叠的性质可得=∠B=90°利用HL 证出Rt △≌Rt △FCE 从而求出即可求出AF 最后利用勾股定理即可求出结论【详解】解:连解析:12【分析】连接EF ,根据矩形的性质可得AB=CD=9,∠B=∠C=∠D=90°,根据折叠的性质可得9AB AB '==,B E BE '=,AB E '∠=∠B=90°,利用HL 证出Rt △FB E '≌Rt △FCE ,从而求出B F ',即可求出AF ,最后利用勾股定理即可求出结论.【详解】解:连接EF ,∵4CF =,5DF =,∴CD=CF +DF=9∵四边形ABCD 为矩形,∴AB=CD=9,∠B=∠C=∠D=90°由折叠的性质可得9AB AB '==,B E BE '=,AB E '∠=∠B=90°∴FB E '∠=90°=∠C∵点E 为BC 的中点∴BE=CE∴B E CE '=在Rt △FB E '和Rt △FCE 中B E CE EF EF '=⎧⎨=⎩∴Rt △FB E '≌Rt △FCE∴4B F CF '==∴AF=AB '+B F '=13在Rt △AFD 中,故答案为:12.【点睛】此题考查的是矩形与折叠问题,掌握矩形的性质、折叠的性质、利用HL 判定两个三角形全等和勾股定理是解题关键. 18.56【分析】根据折叠的性质和长方形的性质以及三角形内角和解答即可【详解】解:∵把长方形纸片ABCD 沿折痕EF 折叠使点B 与点D 重合点A 落在点G 处∴∠G=∠A=90°∠GDE=∠B=90°∵∠DFG=6解析:56【分析】根据折叠的性质和长方形的性质以及三角形内角和解答即可.【详解】解:∵把长方形纸片ABCD 沿折痕EF 折叠,使点B 与点D 重合,点A 落在点G 处, ∴∠G=∠A=90°,∠GDE=∠B=90°,∵∠DFG=68°,∴∠GDF=∠G-∠DFG=90°-68°=22°,∴∠ADE=∠GDE-∠GDF=90°-22°=68°,∴∠EDC=∠ADC-∠ADE=90°-68°=22°,∴∠DEC=90°-∠EDC=90°-22°=68°,由折叠可得:∠FEB=∠FED , ∴180180685622DEC BEF -∠-=︒︒︒∠==︒, 故答案为:56.【点睛】 此题考查翻折问题,关键是根据折叠前后图形全等和长方形性质解答.19.【分析】由矩形的性质可得OB=OD=OA=OCAC=BD 由线段垂直平分线的性质可得OA=AB=OB 可证△OAB 是等边三角形可得∠ABD=60°由直角三角形的性质可求解【详解】解:∵四边形ABCD 是矩解析:【分析】由矩形的性质可得OB=OD=OA=OC,AC=BD,由线段垂直平分线的性质可得OA=AB=OB,可证△OAB是等边三角形,可得∠ABD=60°,由直角三角形的性质可求解.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE=EO,AE⊥BD,∴AB=AO,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∴∠ADE=90°-∠ABD=30°,∴故答案为:【点睛】本题考查了矩形的性质,等边三角形的判定与性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.20.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°再根据折叠的性质可得答案【详解】∵四边形ABCD是矩形∴AD∥BC∴∠B′FC=∠2=70°∴∠1+∠B′FE=180°-∠B解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.三、解答题21.(1)旋转方向:逆时针旋转,旋转角:90°;(2)5;(3)可以,图见解析,△绕点O顺时针旋转90°得到ADGBAE(1)根据图形和正方形的性质即可得出结论;(2)根据正方形的性质和旋转的性质可得AD=DC=BC=3,DF=BE=1,从而求出EC和CF,最后利用AEFS=S梯形AECD-S△ADF-S△ECF即可求出结论;(3)根据旋转中心、旋转方向和旋转角的定义即可得出结论.【详解】解:(1)由图易知:由ABE△到ADF的旋转方向为逆时针旋转,∵四边形ABCD为正方形∴∠BAD=90°即旋转角为90°综上:旋转方向:逆时针旋转,旋转角:90°;(2)∵正方形ABCD的边长为3,1BE=∴AD=DC=BC=3,DF=BE=1∴EC=BE+BC=4,CF=DC-DF=2∴AEFS=S梯形AECD-S△ADF-S△ECF=12DC(AD+EC)-12AD·DF-12EC·CF=12×3×(3+4)-12×3×1-12×4×2=10.5 1.54--=5;(3)可以,∵在BAE△和ADG中,点A的对应点是点D,点B的对应点是点A,点E的对称点是点G∴作线段AD的对称轴和线段BA的对称轴交于点O,根据旋转中心的定义,由BAE△到ADG,点O即为旋转中心,由图易知旋转方向为顺时针旋转连接OA、OB,则∠BOA=90°即旋转角为90°综上:BAE△绕点O顺时针旋转90°得到ADG.此题考查的是图形的旋转,掌握旋转的性质、旋转中心、旋转方向和旋转角的定义是解题关键.22.(1)A,90;(2)等腰直角,证明过程见解析.【分析】(1)根据旋转中心及旋转角的定义,即可得出结论;(2)利用旋转的性质与正方形的性质,并结合等腰直角三角形的判定方法,即可判断出△AEF的形状.【详解】(1)解:∵四边形ABCD是正方形,∴∠BAD=90°,∵△ADE顺时针旋转到△ABF的位置,∴旋转中心是点A,旋转角是∠BAD=90°.故答案为A,90.(2)△AEF等腰直角三角形.证明:∵△ADE顺时针旋转到△ABF的位置,∴AF=AE,∠FAE=∠BAD,∵四边形ABCD是正方形∴∠FAE=∠BAD=90°∴△AEF是等腰直角三角形故答案为:等腰直角.【点睛】本题主要考查了旋转变换的性质、正方形的性质等知识,解题的关键是掌握旋转变换及正方形的性质.23.(1)见解析;(2)60°.【分析】(1)首先判定平行四边形,然后根据对角线互相垂直的平行四边形是菱形进行判定即可;(2)AE=OF,四边形BFDE是菱形,BE=BF,可证△ABF≌△OBF, ∠ABF=∠OBF,∠FBO=∠OBF, ∠OBF=30°,即可求解.【详解】证明:(1)∵四边形ABCD是矩形,∴ AD∥BC,AD=BC,∴∠EDO=∠OBF,∵EF垂直平分BD,∴BO=DO,∠EOD=∠BOF=90°,∴△DEO=△BFO(ASA)∴OE=OF,∴四边形EBFD是平行四边形,又EF⊥BD,∴四边形EBFD 是菱形;(2)∵四边形EBFD 是菱形,∴ED=EB又 AE =OF ,∠A=∠BOF∴△ABF ≌△OBF∴∠ABF=∠OBF,∵∠FBO=∠OBF,∴∠ABF =∠FBO=∠OBF,∴ ∠OBF=30°∴∠BDC=60°.【点睛】本题考查了菱形的性质和判定,掌握菱形的性质和判定是解题的关键.24.(1)443y x =+;(2)()3+124S m m =-<;()3124S m m =->;(3)能,70,8B ⎛⎫ ⎪⎝⎭【分析】(1)根据OA 、OC 的长度结合图形可得出点A 、C 的坐标,再利用待定系数法即可求出直线AC 的解析式;(2)根据点B 的坐标可得出BC 的长度,结合平行四边形的面积公式即可得出S 关于m 的函数关系式;(3)根据菱形的性质,利用勾股定理构建方程即可解决问题;【详解】解:(1)∵OA =3,OC =4,∴A (﹣3,0)、C (0,4).设直线AC 的函数解析式为y =kx+b ,将点A (﹣3,0)、C (0,4)代入y =kx+b 中,得:304k b b -+=⎧⎨=⎩, 解得:434k b ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为y =43x+4. (2)∵C(0,4) B (0,m)当点B 在C 点下方时BC=4-m,∴S=BC•OA=3(4-m)=-3m+12(m<4).当B点在C点上方时BC=m-4,∴S=BC•OA=3(m-4)=3m-12(m>4).(3)能,当四边形ABCD是菱形时,AB=BC 在RtΔAOB中 AB2=OA2+OB2=32+m2,∴32+m2=(4﹣m)2解得:m=78,∴B(0,78).【点睛】本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题.25.(1)见解析;(2)见解析【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题.【详解】解:(1)如图1,射线OP即为所求的∠MON的平分线.作图依据是:可判定△MOP≌△NOP,于是有∠MOP=∠NOP.(2)如图2,△ABC即为所求作的直角三角形,其中∠ACB=90°.作图依据是:①菱形的对角线互相垂直,即BC⊥EF;②可判定AC∥EF,则AC⊥BC,所以∠ACB=90°.【点睛】本题考查作图−应用与设计、菱形的性质等知识,解题的关键是掌握菱形的性质并灵活运用所学知识解决问题.26.见解析.【分析】利用角平分线的性质、平角的定义可以求得∠DOF=90°;由等腰三角形的“三合一”的性质可推知OD⊥AC,即∠CDO=90°;根据已知条件“CF⊥OF”知∠CFO=90°;则三个角都是直角的四边形是矩形.【详解】证明:∵OD平分∠AOC,OF平分∠COB,∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC,∴OD⊥AC,AD=DC,∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形【点睛】本题考查了矩形的判定、角平分线的定义、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.。
北师大版九年级上册 第一章 单元练习题:《特殊的平行四边形》(含答案)
单元练习题:《特殊的平行四边形》一.选择题1.下列说法中错误的是()A.平行四边形的对边相等B.菱形的对角线平分一组对角C.对角线互相垂直的四边形是菱形D.矩形的对角线互相平分2.如图,已知四边形ABCD是平行四边形,下列说法正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.如图,菱形ABCD对角线AO=4cm,BO=3cm,则菱形高DE长为()A.5cm B.10cm C.4.8cm D.9.6cm4.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.6km,则M,C两点间的距离为()A.0.8km B.1.2km C.1.3km D.5.2km5.已知平行四边形ABCD,下列条件中,能判定这个平行四边形为菱形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AC⊥BD6.如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,FA,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=AC C.AC⊥BE D.AE=AF7.已知矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为()A.50 B.48 C.24 D.128.如图,矩形ABCD的对角线AC,BD相交于点O,AD=3,∠AOD=60°,则AB的长为()A.3 B.2C.3D.69.如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD的较大内角度数为()A.100°B.120°C.135°D.150°10.如图,在正方形ABCD中,E为对角线BD上一点,且BE=BC,则∠ACE=()A.20.5°B.30.5°C.21.5°D.22.5°11.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为()A.4.2 B.4.5 C.5.2 D.5.512.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.2二.填空题13.如果菱形的边长为17,一条对角线长为30,那么另一条对角线长为.14.如图,正方形ABCD的边长为5,点E在CD上,DE=2,∠BAE的平分线交BC于点F,则CF的长为.15.如图,在正方形ABCD中,对角线AC与BD相交于点O,点P为AD边上的一点,过点P 分别作PE⊥AC于点E,作PF⊥BD于点F.若PE+PF=5,则正方形ABCD的面积为.16.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD 于点E,则BE的长为.17.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).三.解答题18.如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.19.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AD=5,BE=3,求线段OE的长.20.如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.21.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH.在EF上取一点G,使∠ECG=∠DAH.(1)若点F在边CD上,如图1,①求证:CH⊥CG.②求证:△GFC是等腰三角形.(2)取DF中点M,连接MG.若MG=3,正方形边长为4,则BE=.22.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB边的中点,连接DC过D作DE ⊥DC交AC于点E.(1)求∠EDA的度数;(2)如图2,F为BC边上一点,连接DF,过D作DG⊥DF交AC于点G,请判断线段CF 与EG的数量关系,并说明理由.23.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一.选择题1.解:A.平行四边形的对边相等,正确,不符合题意;B.菱形的对角线平分一组对角,正确,不符合题意;C.对角线互相垂直的四边形是菱形,错误,符合题意;D.矩形的对角线互相平分,正确,不符合题意.故选:C.2.解:A、错误,有一个角为90°的平行四边形是矩形B、错误,对角线互相垂直的平行四边形是菱形;C、正确,对角线相等的平行四边形是矩形;D、错误,一组邻边相等的平行四边形是菱形;故选:C.3.解:∵四边形ABCD是菱形,∴AC⊥BD,AC=2OA=2×4cm=8cm,BD=2BO=2×3cm=6cm,在Rt△AOB中,由勾股定理得:AB===5(cm),菱形ABCD的面积=AC•BD=AB•DE,即×8×6=5DE,解得:DE=4.8(cm),故选:C.4.解:在Rt△ACB中,点M是AB的中点,∴CM=AB=×2.6=1.3(km),故选:C.5.解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形;故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴∠A=∠C;故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD1矩形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.6.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.7.解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为10,∴(3x)2+(4x)2=102,解得:x=2,∴矩形的两邻边长分别为:6,8;∴矩形的面积为:6×8=48.故选:B.8.解:∵四边形AABCD是矩形,∴∠DAB=90°,OA=OD=OB,∵∠AOD=60°,∴△AOD是等边三角形,∴OA=OD=AD=3,∴BD=2OD=6,∴AB==3.故选:C.9.解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.10.解:设AC与BD交于点O,在四边形ABCD中,∠EOC=90°,∠1=∠2=45°.∵BE=BC,∴∠3=∠ECB=67.5°.∴∠ACE=OCE=90°﹣∠3=90°﹣67.5°=22.5°.故选:D.11.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.12.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P 1P 2∥CE 且P 1P 2=CE .当点F 在EC 上除点C 、E 的位置处时,有DP =FP .由中位线定理可知:P 1P ∥CE 且P 1P =CF .∴点P 的运动轨迹是线段P 1P 2,∴当BP ⊥P 1P 2时,PB 取得最小值.∵矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,∴△CBE 、△ADE 、△BCP 1为等腰直角三角形,CP 1=1.∴∠ADE =∠CDE =∠CP 1B =45°,∠DEC =90°.∴∠DP 2P 1=90°.∴∠DP 1P 2=45°.∴∠P 2P 1B =90°,即BP 1⊥P 1P 2,∴BP 的最小值为BP 1的长.在等腰直角BCP 1中,CP 1=BC =1.∴BP 1=.∴PB 的最小值是. 故选:C .二.填空题(共5小题)13.解:在菱形ABCD 中,AB =17,BD =30,∵对角线互相垂直平分,∴∠AOB =90°,BO =15,在Rt △AOB 中,AO ===8,∴AC =2AO =16.即另一条对角线长为16,故答案为:16.14.解:延长CD 到N ,使DN =BF ,连接AN ,如图所示:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABF=∠ADN=90°,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴∠BAF=∠DAN,∴∠NAF=90°,∴∠EAN=90°﹣∠FAE,∠N=90°﹣∠DAN=90°﹣∠BAF,∵∠BAF=∠FAE,∴∠EAN=∠N,∴AE=EN,∵,∴,∴,∴,故答案为:7﹣.15.解:∵在正方形ABCD中,对角线AC与BD相交于点O,∴AC⊥BD,AO=CO=BO=DO,∠EAP=45°,∵PE⊥AC,∴△AEP是等腰直角三角形,∴PE=AE,∵PF⊥BD,∴四边形OEPF是矩形,∴PF=OE,∴PE+PF=AE+OE=OA=5,=,∴S△AOD=4×=50.∴S正方形ABCD故答案为:50.16.解:如图,过点E作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,BD=AC=2,OD=OB=,∵EA平分∠BAO,EH⊥AB,EO⊥AC,∴EH=EO,设EH=EO=a,则BE=a,∴a+a=,解得a=2﹣,∴BE=a=2﹣2.故答案为:2﹣2.17.解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD∥EM,EC∥DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③错误,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②④.故答案为①②④.三.解答题(共6小题)18.(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.19.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,即AF∥EC,∵CF∥AE,∴四边形AECF是平行四边形,∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:如图所示:∵四边形ABCD为菱形,四边形AECF为矩形,且BE=3,AD=5 ∴OA=OC,AB=BC=AD=5 DF=EB=3,∠AEC=90°,∴AE===4,CE=BC+BE=8,∴AC===4,∵OA=OC,∠AEC=90°,∴OE=OC=AC=×4=2.20.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴BG=DE;(2)连接BE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE.∵CG=CE,BC=BC,∴△BCG≌△BCE(SAS),∴BG=BE.∵由(1)可知BG=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°.21.(1)①证明:∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,DA=DC,在△DAH和△DCH中,,∴△DAH≌△DCH(SAS),∴∠DAH=∠DCH.∵∠ECG=∠DAH,∴∠ECG=∠DCH.∵∠ECG+∠FCG=∠FCE=90°,∴∠DCH+∠FCG=90°,∴CH⊥CG;②∵在Rt△ADF中,∠DFA+∠DAF=90°,由①得∠DCH+∠FCG=90°,∠DAH=∠DCH;∴∠DFA=∠FCG,又∵∠DFA=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形;(2))①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=6,在Rt△DCE中,CE===2,∴BE=BC+CE=4+2.②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE===2,∴BE=BC﹣CE=4﹣3=1.综上所述,BE的长为 4+或4﹣.22.(1)解:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵D为AB边的中点,∴CD=BD=AD,∴△BCD是等边三角形,∠ACD=∠A=30°,∵∠CDE=90°,∴∠CED=60°,∴∠EDA=30°;(2)解:如图2,在Rt△CDE中,∠ACD=30°,∴tan30°=,∴=,∵∠FDG=∠CDE=90°,∴∠FDC=∠GDE,∴∠FCD=∠GED=60°,∴△FCD∽GED,∴=,∴FC=GE.23.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能在CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在DE上,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=.。
北师大版九年级数学上学期第一章:特殊的平行四边形 同步练习题 (含答案)
第一章特殊的平行四边形一.选择题(共10小题)1.若菱形的两条对角线长分别是6和8,则它的周长为()A.20 B.24 C.40 D.482.如图,已知菱形ABCD对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.5B.2C.D.3.如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于()A.6 B.8 C.14 D.284.如图,在四边形ABCD中,AC与BD相交于点O,∠OAB=∠OAD,BO=DO,那么下列条件中不能判定四边形ABCD是菱形的为()A.OA=OC B.BC=DC C.AD=BC D.AD=DC5.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④6.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN,CN⊥AN,MN为垂足若AB=a,则DM+CN的值为()A.a B.a C.D.7.如图,矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BD交AD于点E.已知AB=2,△DOE的面积为,则AE的长为()A.B.2 C.1.5 D.8.在平行四边形ABCD中添加下列条件,不能判定四边形ABCD是矩形的是()A.∠ABC=90°B.AC⊥BD C.AC=BD D.∠ACD=∠CDB 9.正方形ABCD的一条对角线长为8,则这个正方形的面积是()A.4B.32 C.64 D.12810.在正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60°D.AB=AF二.填空题(共10小题)11.已知,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,∠BAE=23°.则∠FEC=度.12.在菱形ABCD中,AD=10,AC=12,则菱形ABCD的面积是.13.如图在Rt△ABC中,∠ACB=90°,AC=8,BC=6,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=时,平行四边形CDEB为菱形.14.如图,在▱ABCD中,对角线AC,BD相交于点O,添加一个条件判定▱ABCD是菱形,所添条件为(写出一个即可)15.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为.16.如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=.17.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a,b的式子表示).18.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.19.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.20.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.三.解答题(共7小题)21.如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.22.如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE ∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形;(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是.23.已知:AC,BD为菱形ABCD的对角线,∠BAD=60°,点EF分别在AD,CD边上,且∠EBF=60°.(1)求证:△BEF是等边三角形;(2)当∠ABE=15°时,AB=1+,求BE.24.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.25.(1)如图1,已知正方形ABCD,点E在BC上,点F在DC上,且∠EAF=45°,则有BE+DF =.若AB=4,则△CEF的周长为.(2)如图2,四边形ABCD中,∠BAD=∠C=90°,AB=AD,点E,F分别在BC,CD上,且∠EAF=45°,试判断BE,EF,DF之间的数量关系,并说明理由.26.在正方形ABCD的外侧作等腰△ABE,已知∠EAB=a,连接ED交等腰△ABE底边上的高AF所在的直线于点G.(1)如图1,若a=30°,求∠AGD的度数;(2)如图2,若90°<a<180°,BE=8,DE=14,则此时AE的长为.27.如图,在矩形ABCD中,AB=4cm,AD=12cm;P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,两点同时出发,待P点到达D点为止,求经过多长时间四边形ABQP为矩形?参考答案与试题解析一.选择题(共10小题)1.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB====5,∴此菱形的周长为:5×4=20.故选:A.2.【解答】解:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AO=CO=3cm,BO=DO=4cm,∠BOC=90°,∴BC==5(cm),∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.3.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA,∵菱形ABCD的周长为24,∴AD=AB=6,∵AC+BD=16,∴AO+BO=8,∴AO2+BO2+2AO•BO=64,∵AO2+BO2=AB2,∴AO•BO=14,∴菱形的面积=4×三角形AOD的面积=4××14=28,故选:D.4.【解答】解:A、若AO=OC,且BO=DO,∴四边形ABCD是平行四边形,∴AB∥CD∴∠BAO=∠OCD,且∠OAB=∠OAD∴∠OAD=∠OCD∴AD=CD,∴四边形ABCD是菱形故A选项不符合题意B、若BC=DC,BO=DO∴AC是BD的垂直平分线∴AB=AD则不能判断四边形ABCD是菱形故B选项符合题意,C、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=BC∴AB=AD=BC=CD∴四边形ABCD是菱形故C选项不符合题意D、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=CD∴AB=AD=BC=CD∴四边形ABCD是菱形故D选项不符合题意故选:B.5.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.6.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,CD=AB=a,∴AN平分∠DAB,∴∠DAM=45°,∴∠CEN=∠DEM=45°,∵DM⊥AN,CN⊥AN,∴△DME和△CNE是等腰直角三角形,∴DM=DE,CN=CE,∴DM+CN=(DE+CE)=CD=a;故选:C.7.【解答】解:连接BE,如图所示:由题意可得,OE为对角线BD的垂直平分线,∴BE=DE,S△BOE=S△DOE=,∴S△BDE=2S△BOE=.∴DE•AB=,又∵AB=2,∴DE=,∴BE=在Rt△ABE中,由勾股定理得:AE===1.5.故选:C.8.【解答】解:A、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵∠ACD=∠CDB,∴OD=OC,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;故选:B.9.【解答】解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为8,∵正方形又是菱形,菱形的面积计算公式是S=ab(a、b是正方形对角线长度)∴S=×8×8=32,故选:B.10.【解答】解:由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF(SAS),∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选:B.二.填空题(共10小题)11.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠B=∠EAF=60°,∴△ABC是等边三角形,∠BCD=120°,∴AB=AC,∠B=∠ACF=60°,∵∠BAE+∠EAC=∠FAC+∠EAC,∴∠BAE=∠FAC,且AB=AC,∠B=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,又∵∠EAF=∠D=60°,∴△AEF是等边三角形,∴∠AEF=60°,又∠AEC=∠B+∠BAE=83°,∴∠CEF=83°﹣60°=23°.故答案为:2312.【解答】解:如图,连接AC,BD交于点O.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=6,∴∠AOD=90°,∴OD==8,∴BD=2OD=16,∴S菱形ABCD=×AC×BD=×12×16=96,故答案为96.13.【解答】解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==10若平行四边形CDEB为菱形时,CE⊥BD,OD=OB,CD=CB.∵AB•OC=AC•BC,∴OC=.∴OB==∴AD=AB﹣2OB=故答案为:14.【解答】解:根据一组邻边相等的平行四边形是菱形,则可添加条件为:AB=AD(AD=CD,BC=CD,AB=BC)也可添加∠1=∠2,根据平行四边形的性质,可求AD=CD.根据对角线互相垂直的平行四边形是菱形,则可添加条件为:AC⊥BD.故答案为:AB=AD(答案不唯一)15.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=5.故答案为:5.16.【解答】解:如图,在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:a•a=a2,∴菱形形变前的面积与形变后的面积之比:a2:a2=2:,∵这个菱形的“形变度”为2:.∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,S△AEF=×2×2+×2×2=4,∵若这个菱形的“形变度”k=,∴=,即=,∴S△A′E′F′=.故答案为:.17.【解答】解:剩余白色长方形的长为b,宽为(b﹣a),所以剩余白色长方形的周长=2b+2(b﹣a)=4b﹣2a.故答案为4b﹣2a.18.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2019.【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.20.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵BF⊥a,DE⊥a,∴∠AED=∠AFB=90°∴∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:8三.解答题(共7小题)21.【解答】解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB=,∴a2+b2=5,,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积=ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=9,∴a+b=3,∴=.22.【解答】(1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:连接EF交BC于O,如图所示:∵AD=7,AB=DC=2.5,∴BC=AD﹣AB﹣DC=2,∵四边形BFCE是菱形,∠EBD=60°,EF⊥BC,OB=BC=1,OE=OF,∴△CBE是等边三角形,∠BEO=30°,∴BC=EC=2,∴OE=OB=,∴EF=2,∴菱形BFCE的面积=BC×EF=×2×2=2;故答案为:2.23.【解答】证明:(1)∵四边形ABCD是菱形∴AB=AD=BC=CD,且∠BAD=60°∴△ABD是等边三角形,∠ADC=120°∴AB=AD=BD,∠ABD=∠ADB=60°∴∠ABD=∠EBF=60°=∠BDC,∴∠ABE=∠DBF,∠BAD=∠BDF=60°,且AB=BD∴△ABE≌△DBF(ASA)∴BE=BF,且∠EBF=60°.∴△BEF是等边三角形(2)如图,过点E作EH⊥AB于H,作∠GEB=∠ABE=15°,∴∠EGH=30°,GE=GB,设HE=x,在Rt△GHE中,∠EGH=30°∴GE=2x=BG,HG=x,在Rt△AHE中,∠BAD=60°∴AH=x,∵AB=AH+HG+BG=1+∴x+x+2x=1+∴x=∴HE=∴BH=∵BE2=HE2+BH2,∴BE2=()2+()2,∴BE=24.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∵∠FAC=∠FCA,∴AF=CF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AE=EC=CF=AF,设菱形的边长为a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=156cm2.25.【解答】解:(1)延长EB至H,使BH=DF,连接AH,如图1,∵在正方形ABCD中,∴∠ADF=∠ABH,AD=AB,在△ADF和△ABH中,,∴△ADF≌△ABH(SAS),∴∠BAH=∠DAF,AF=AH,∴∠FAH=90°,∴∠EAF=∠EAH=45°,在△FAE和△HAE中,,∴△FAE≌△HAE(SAS),∴EF=HE=BE+HB,∴EF=BE+DF,∴△CEF的周长=EF+CE+CF=BE+CE+DF+CF=BC+CD=2AB=8.故答案为:EF;8.(2)EF=BE+DF,理由如下:延长CB至M,使BM=DF,连接AM,如图2,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=∠C=90°,∠EAF=45°,即∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.26.【解答】解:(1)∵AE=AB,AF⊥BE,∠EAB=30°∴∠FAE=15°∵∠EAB=30°,∠BAD=90°∴∠EAD=120°,且AE=AD∴∠AED=∠ADE=30°∴∠AGD=∠AED+∠EAF=45°(2)如图,连接AC,BD交于点O,连接FO,∵四边形ABCD是正方形∴BO=DO,BD=AB,∠ABD=∠ADB=45°∵AE=AB,AF⊥BE∴∠AEB=∠ABE,EF=BF=4,且BO=DO∴FO=DE=7,FO∥DE∵AE=AD∴∠AED=∠ADE∵∠ABD+∠ADB+∠AED+∠ADE+∠AEB+∠ABE=180°∴2(∠AEB+∠AED)=90°∴∠DEB=45°∵FO∥DE∴∠BFO=45°,且BM⊥FO∴FM=BM,∴BF=BM=4∴BM=FM=4∴MO=3∴BO==5∴BD=2BO=10∴AB=5=AE故答案为:527.【解答】解:∵在矩形ABCD中,AD=12cm,∴AD=BC=12cm.当四边形ABQP为矩形时,AP=BQ.①当0<t<3时,t=12﹣4t,解得,t=;②当3≤t<6时,t=4t﹣12,解得t=4;③当6≤t<9时,t=36﹣4t,解得t=;④当9≤t≤12时,t=4t﹣36,解得,t=12.综上所述,当t为或4或或12时,四边形ABQP为矩形.。
北师大版九年级数学上册第一章特殊平行四边形《菱形的性质与判定》同步练习(含解析2套精选试题)
《菱形的性质与判定》典型题同步练习(一)【巩固练习】一.选择题1.下列命题中,正确的是( )A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150° B.45°和135° C.60°和120° D.80°和100°3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B.3 cm,4cm C.12cm,16cm D.24cm,32cm 4.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108° B.72° C.90° D.100°5.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.46. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A . B.2 C.3 D .二.填空题7.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.8.如图,已知菱形ABCD,其顶点A、B在数轴上对应的数分别为-4和1,则BC=_____.9.如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______cm2.10.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.212.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.三.解答题13.如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM.求证:(1)四边形AMCF是菱形;(2)△ACB≌△MCE.14.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.15.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.参考答案一.选择题1.【答案】B;2.【答案】A;【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°.3.【答案】C;【解析】设两条对角线的长为6k,8k.所以有(3k)2+(4k)2=102,∴k=2,所以两条对角线的长为12 ,16.4.【答案】B;【解析】连接PA∵四边形ABCD是菱形,4∴∠ADP=∠CDP=∠ADC=36°,BD所在直线是菱形的对称轴,∴PA=PC,∵AD的垂直平分线交对角线BD于点P,∴PA=PD,∴PD=PC,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.5.【答案】A.【解析】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选A.6.【答案】A;【解析】菱形的高分别是和,阴影部分面积=两个菱形面积-△ABD面积-△DEF面积-△BGF面积=.二.填空题7.【答案】.;【解析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC =.8.【答案】5;【解析】菱形四条边相等.9.【答案】;【解析】由题意∠A=60°,DE =.10.【答案】5;;;【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和,面积为.11.【答案】;【解析】.12.【答案】;【解析】由在菱形ABCD中,AC=12,BD=16,E为AD中点,根据菱形的性质与直角三角形的性质,易求得OE的长,然后分别从①当OP=OE时,②当OE=PE时,③当OP=EP时去分析求解即可求得答案.三.解答题13.【解析】证明:(1)∵△ACF是等边三角形,∴∠FAC=∠ACF=60°,AC=CF=AF,∵∠ACB=60°,∴∠ACB=∠FAC,∴AF∥BC,∵AM∥FC,6∴四边形AMCF是平行四边形,∵AM∥FC,∠ACB=∠ACF=60°,∴∠AMC=60°,又∵∠ACB=60°,∴△AMC是等边三角形,∴AM=MC,∴四边形AMCF是菱形;(2)∵△BCE是等边三角形,∴BC=EC,在△ABC和△MEC中∵,∴△ABC≌△MEC(SAS).14.【解析】(1)证明:∵在平行四边形ABCD中,AB=CD,∴BC=AD,∠ABC=∠CD A.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=E C.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高可由勾股定理算得为,∴菱形AECF的面积为2.15.【解析】解:(1)∵AE+CF=2=CD=DF+CF∴AE=DF,DE=CF,∵AB=BD∴∠A=∠ADB=60°在△BDE与△BCF中∴△BDE≌△BCF(2)由(1)得BE=BF,∠EBD=∠CBF∴∠EBF=∠EBD+∠DBF=∠DBF+∠CBF=∠CBD=60°∴△BEF是等边三角形(3)∵≤△BEF的边长<2∴∴《菱形的性质与判定》典型题同步练习(二)一.选择题(共15小题)1.若菱形的两邻角之比为1:2,较短的对角线长为6cm,则较长的对角线长为()A .cmB .cm C.6cm D.12cm2.菱形的两条对角线的分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm 3.菱形的周长是它的高的8倍,则菱形较小的一个角为()8A.60° B.45° C.30°D.15°4.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形5.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD 的长是()A.8 B.7 C.4 D.36.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°7.如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A.AM=AN B.MN⊥ACC.MN是∠AMC的平分线 D.∠BAD=120°8.如图,在平面直角坐标系中,已知点A(2,0),B(,1),若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A .向左平移()个单位,再向上平移1个单位B .向左平移个单位,再向下平移1个单位C .向右平移个单位,再向上平移1个单位D.向右平移2个单位,再向上平移1个单位9.如图,在平行四边形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使平行四边形ABCD成为菱形的是()A.AO=B B.AC=AD C.AB=BC D.OD=AC10.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④∠ACD=∠DCE,其中正确的个数是()A.1 B.2 C.3 D.411.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°12.下列说法中,错误的是()10A.平行四边形的对角线互相平分;B.对角线互相垂直的四边形是菱形;C.菱形的对角线互相垂直; D.对角线互相平分的四边形是平行四边形13.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为()A.10 B.12 C.16 D.1814.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是()A.15 B.16 C.19 D.2015.如图,已知四边形ABCD的四边都相等,等边△AEF的顶点E、F分别在BC、CD上,且AE=AB,则∠C=()A.100° B.105° C.110° D.120°二.填空题(共6小题)16.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.17.已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是.18.如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.19.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD= ,平行四边形CDEB为菱形.20.如图,已知∠A,以点A为圆心,恰当长为半径画弧,分别交AE,AF于点B,D,继续分别以点B,D为圆心,线段AB长为半径画弧交于点C,连接BC,CD,则所四得边形ABCD为菱形,判定依据是:.21.如图所示,在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=6,CD=8,E,F分别是边AB、CD的中点,DH⊥BC于H,现有下列结论;①∠CDH=30°;②EF=4;③四边形EFCH是菱形;④S△EFC=3S△BE C.你认为结论正确的有.(填写正确的序号)三.解答题(共5小题)22.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.1223.如图,在四边形ABCD中,BC=CD,∠C=2∠BA D.O是四边形ABCD内一点,且OA=OB=O D.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.24.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.26.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=E C.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.14参考答案一.选择题(共15小题)1.B.2.B.3.C.4.B.5.A.6.A.7.D.8.C.9.C.10.D.11.D.12.B.13.C.14.A.15.A.二.填空题(共6小题)16.(﹣5,4).17.2.18.AB=BC或AC⊥B D.19..20.四条边相等的四边形是菱形.21.①②③.三.解答题(共5小题)22.解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=223.证明:(1)延长OA到E,∵OA=OB,∴∠ABO=∠BAO,又∠BOE=∠ABO+∠BAO,∴∠BOE=2∠BAO,同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)即∠BOD=2∠BAD,又∠C=2∠BAD,∴∠BOD=∠C;(2)连接OC,∵OB=OD,CB=CD,OC=OC,∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC =∠BOD,∠BCO =∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.24.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC =AC =×6=3,16∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.25.解:(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,,∴△BCE≌△FDE;∴DF=BC,又∵DF∥BC,∴四边形BCFD为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB==,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2.26.证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)作EF⊥CD于F∵∠BDC=30°,DE=2∴EF=1,DF =,∵CE=3∴CF =2∴CD =2+.18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
灿若寒星整理制作
2015新北师大版九上第一章特殊平行四边形专题菱形练习题
1.如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB ,AD 的中点,DE 、BF 相交于点G ,连接BD ,CG .有下列结论:①∠BGD=120°;②BG+DG=CG ;③△BDF ≌△CGB ;④S △ABD=
4
3AB 2
其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
2.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,OE ⊥AB ,垂足为E ,若∠ADC=130°,则∠AOE 的大小为( )
A .75°
B .65°
C .55°
D .50° 3.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,A
E ⊥BC 于点E ,则AE 的长是( ) A .35 cm B .52 cm C .
548 cm D .5
24
cm 4.已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( ) A .12cm 2
B .24cm 2
C .48cm 2
D .96cm 2
5.如图,在平面直角坐标系中,菱形OABC 的顶点C 的坐标是(3,4),则顶点A 、B 的坐标分别是( )A .(4,0)(7,4) B .(4,0)(8,4) C .(5,0)(7,4) D .(5,0)(8,4)
6. 如图,菱形ABCD 中,∠B=60°,AB=2cm ,E 、
F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( ) A .32 cm B .33 cm C .34 cm D .3cm
7.如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,且AE/AD=4/5,则下列结论中正确的个数为( )①DE=3cm ;②EB=1cm ;③S 菱形ABCD=15cm 2 A .3个 B .2个 C .1个 D .0个
8.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,点E 为垂足,连接DF ,则∠CDF 为( )
A .80°
B .70°
C .65°
D .60°
9.如图,菱形花坛ABCD 的边长为6m ,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为( ) A .12m B .20m C .22m D .
24m
10.如图,
把菱形ABCD 沿对角线AC 的方向移动到菱形A ′B ′C ′D ′的位置,它们的重叠部分(图中阴影部分)的面积是菱形ABCD 面积的1/2 ,若AC=2 ,则菱形移动的距离AA ′是( ) A .1 B .12 C .
2
2
D 21
11.若菱形的周长为16,两邻角度数之比为1:2,则该菱形的面积为
12.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC=8,BD=6,过点O 作OH 丄AB ,垂足为H ,则点0到边AB 的距离OH= .
13.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 cm .
14.如图,菱形ABCD 的对角线的长分别为6和8,点P 是对角线AC 上的任意一点(点P 不与点A ,C 重合),且PE ∥BC 交AB 于点E ,PF ∥CD 交AD 于点F ,则阴影部分的面积是
15.如图:菱形ABCD 中,AB=2,∠B=120°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是
16.菱形两对角线长分别为24cm 和10cm ,则菱形的高为 cm .
17.如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边满足 条件时,四边形EFGH 是菱形.
18.如图所示,已
知AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,求证:AD ⊥EF .
19.如图所示,O 是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,求证:OE ⊥DC .
20.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F 处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;
21.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.
22.如图,在Rt△ABC 中,∠B=90°,BC=5 3,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D 作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
23.如图,在菱形ABCD 中,P 是AB 上的一个动点(不与A 、B 重合),连接DP 交对角线AC 于E 连接BE .
(1)证明:∠APD=∠CBE ;(2)若∠DAB=60°,试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的
4
1
,为什么?
24. 用两个全等且边长为4的等边三角形△ABC 和△ACD 拼成菱形ABCD .把一个60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB ,AC 重合,将三角尺绕点A 按逆时针方向旋转.
(1)当三角尺的两边分别与菱形的两边BC ,CD 相交于点E ,F 时,(如图1),通过观察或测量BE ,CF 的长度,你能得出什么结论?(直接写出结论,不用证明);
(2)当三角尺的两边分别与菱形的两边BC ,CD 的延长线相交于点E ,F 时(如图2),你在(1)中得到的结论还成立吗?说明理由;
(3)在上述情况中,△AEC 的面积是否会等于32?如果能,求BE 的长;如果不能,请说明理由.
25.如图,在△ABC中,∠ACB=90°,AD是角平分线,CH是高,交AD于F,DE⊥AB于E,试证明四边形CDEF是菱形.
26.如图,D是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S△EOD;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF 是轴对称图形.其中正确的结论有()
A.5个B.4个C.3个D.2个
27.下列命题中,真命题是()
A.对角线相等且互相垂直的四边形是菱形
B.有一条对角线平分对角的四边形是菱形
C.菱形是对角线互相垂直平分的四边形
D.菱形的对角线相等。