利用X射线衍射测材料中的微观应力-X射线衍射分析

合集下载

材料力学性能的微观表征与分析

材料力学性能的微观表征与分析

材料力学性能的微观表征与分析材料力学性能的微观表征与分析在现代材料科学中起着重要的作用。

通过对材料微观结构进行分析,可以揭示材料的力学性能和力学行为的本质。

本文将介绍一些常用的微观表征技术,并探讨其在材料力学性能研究中的应用。

1. 金相显微镜金相显微镜是一种常见的材料显微镜,能够观察材料的显微组织和颗粒尺寸。

通过金相显微镜,可以对材料的晶粒大小、晶体结构和相含量等进行直观的观察和分析。

晶粒大小对材料的力学性能有很大影响,小晶粒尺寸通常会导致材料的强度和硬度增加。

2. 电子显微镜电子显微镜是一种高分辨率的显微镜,可以观察材料的微观结构和表面形貌。

扫描电子显微镜(SEM)是其中一种常用的电子显微镜技术,可以获得材料表面的高分辨率图像。

透射电子显微镜(TEM)则能够观察材料的内部结构。

这些电子显微镜技术可以提供关于材料微观结构和缺陷的详细信息,揭示材料的力学性能和失效机制。

3. X射线衍射X射线衍射是一种常用的材料表征技术,通过对材料中的晶体进行衍射分析,可以确定晶体的晶胞参数和晶体结构。

通过X射线衍射,可以研究晶体中的缺陷和残余应力等信息,从而揭示材料的力学行为。

4. 原子力显微镜原子力显微镜(AFM)是一种能够对材料表面进行原子级分辨的显微镜技术。

通过AFM,可以获得材料表面的三维形貌和力学性质。

AFM在材料力学性能的表征中具有广泛的应用,例如,可以通过AFM 观察微米级混凝土的表面纳米级颗粒的分布和力学特性。

5. 纳米压痕技术纳米压痕技术是一种通过在纳米尺度下对材料表面施加压力,来研究材料力学性质的方法。

通过纳米压痕实验,可以获得材料的硬度、弹性模量和塑性形变等重要力学参数。

这种技术可以应用于各种材料,从金属和陶瓷到生物材料和聚合物等。

通过以上的微观表征技术,我们可以揭示材料的微观结构和力学性能之间的关系。

这些表征技术为材料的设计和优化提供了重要的信息和依据。

例如,在材料的强度提升方面,我们可以通过观察晶粒大小和晶体结构来优化材料的微观结构,从而增强材料的力学性能。

射线衍射方法测量残余应力的原理与方法

射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力得原理与方法-STRESSX射线衍射方法测量残余应力得原理与方法什么就是残余应力?外力撤除后在材料内部残留得应力就就是残余应力。

但就是,习惯上将残余应力分为微观应力与宏观应力。

两种应力在X射线衍射谱中得表现就是不相同得。

微观应力就是指晶粒内部残留得应力,它得存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起得衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰得宽化,并采用近似函数法或傅立叶变换方法来求得微观应力得大小。

宏观应力就是指存在于多个晶体尺度范围内得应力,相对于微观应力存在得范围而视为宏观上存在得应力。

一般情况下,残余应力得术语就就是指在宏观上存在得这种应力。

宏观残余应力(以下称残余应力)在X射线衍射谱上得表现就是使峰位漂移。

当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间得距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰得位移情况,可以求得残余应力。

X射线衍射法测量残余应力得发展X射线衍射法就是一种无损性得测试方法,因此,对于测试脆性与不透明材料得残余应力就是最常用得方法。

20世纪初,人们就已经开始利用X射线来测定晶体得应力。

后来日本成功设计出得X射线应力测定仪,对于残余应力测试技术得发展作了巨大贡献。

1961年德国得E、Mchearauch提出了X射线应力测定得sin2ψ法,使应力测定得实际应用向前推进了一大步。

X射线衍射法测量残余应力得基本原理X射线衍射测量残余内应力得基本原理就是以测量衍射线位移作为原始数据,所测得得结果实际上就是残余应变,而残余应力就是通过虎克定律由残余应变计算得到得。

其基本原理就是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生得衍射峰也将随之移动,而且移动距离得大小与应力大小相关。

用波长λ得X射线,先后数次以不同得入射角照射到试样上,测出相应得衍射角2θ,求出2θ对sin2ψ得斜率M,便可算出应力σψ。

X射线衍射在材料分析当中的应用

X射线衍射在材料分析当中的应用

X射线衍射在材料分析当中的应用X射线衍射是一种重要的材料分析方法,广泛应用于材料科学、物理学、化学、地质学等领域。

它基于X射线与晶体中的原子相互作用而产生的衍射现象,通过测量衍射角度和强度,可以获得关于材料的结构、晶格参数、晶体形态、晶体质量、晶体缺陷等信息。

下面将详细介绍X射线衍射在材料分析当中的应用。

1.结构测量X射线衍射可以用来确定晶体的结构。

晶体的结构是由周期性排列的原子组成的,X射线可以通过与晶体中的原子相互作用而产生衍射现象。

测量X射线的衍射图样可以得到晶体的结构信息,包括晶胞参数、晶体对称性、原子位置等。

这对于研究固体结构和材料的物理、化学性质非常重要。

2.晶体质量分析X射线衍射可以用来评估晶体的质量。

晶体的质量对于材料的性能具有重要影响。

通过测量X射线衍射的强度和形状,可以判断晶体的纯度、晶格缺陷、晶体畸变等信息,从而评估晶体的质量。

这对于工业生产和材料品质控制非常重要。

3.相变研究X射线衍射可以用来研究材料的相变行为。

相变是材料中的原子或分子之间发生的结构转变。

通过测量相变前后X射线衍射的变化,可以确定相变的发生温度、相变类型、相变机制等信息。

这对于研究材料在不同温度、压力等条件下的结构变化和性质变化非常重要。

4.晶体的应力分析X射线衍射可以用来分析材料中的应力状态。

当晶体中存在应力时,晶胞参数会发生变化,进而影响X射线衍射的角度和强度。

通过测量X射线衍射的变化,可以计算材料中的应力状态。

这对于理解材料的力学性能、设计材料的使用条件非常重要。

5.晶体取向分析X射线衍射可以用来分析材料中晶体的取向情况。

当材料中存在多个取向的晶体时,不同晶面的衍射强度会有区别。

通过测量X射线衍射的强度和方向,可以确定晶体的取向分布。

这对于研究材料的制备方法、材料的性能分布等具有重要意义。

6.材料成像利用X射线衍射原理,可以实现材料的成像。

例如,X射线衍射成像技术可以用来观察材料的内部结构,如晶体的缺陷、晶体的结构变化等。

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料部残留的应力就是残余应力。

但是,习惯上将残余应力分为微观应力和宏观应力。

两种应力在X射线衍射谱中的表现是不相同的。

微观应力是指晶粒部残留的应力,它的存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。

宏观应力是指存在于多个晶体尺度围的应力,相对于微观应力存在的围而视为宏观上存在的应力。

一般情况下,残余应力的术语就是指在宏观上存在的这种应力。

宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。

当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰的位移情况,可以求得残余应力。

X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。

20世纪初,人们就已经开始利用X射线来测定晶体的应力。

后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。

1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。

X射线衍射法测量残余应力的基本原理X射线衍射测量残余应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。

其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。

用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。

X射线衍射方法主要是测试沿试样表面某一方向上的应力σφ。

(完整版)X射线衍射技术在材料分析中的应用

(完整版)X射线衍射技术在材料分析中的应用

X射线衍射技术在材料分析中的应用沈钦伟126406324 应用化学1引言X射线衍射分析法是研究物质的物相和晶体结构的主要方法。

当某物质( 晶体或非晶体)进行衍射分析时,该物质被X射线照射产生不同程度的衍射现象, 物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。

X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。

因此,X射线衍射分析法作为材料结构和成分分析的一种现代科学方法, 已逐步在各学科研究和生产中广泛应用。

2X射线衍射基本原理X射线同无线电波、可见光、紫外线等一样,本质上都属于电磁波,只是彼此之间占据不同的波长范围而已。

X射线的波长较短, 大约在10-8~10-10cm之间。

X 射线分析仪器上通常使用的X射线源是X射线管,这是一种装有阴阳极的真空封闭管, 在管子两极间加上高电压, 阴极就会发射出高速电子流撞击金属阳极靶,从而产生X射线。

当X射线照射到晶体物质上,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射, 衍射线在空间分布的方位和强度,与晶体结构密切相关,不同的晶体物质具有自己独特的衍射花样, 这就是X射线衍射的基本原理。

3 X射线衍射技术在材料分析中的应用由X射线衍射原理可知,物质的X射线衍射花样与物质内部的晶体结构有关。

每种结晶物质都有其特定的结构参数(包括晶体结构类型, 晶胞大小,晶胞中原子、离子或分子的位置和数目等)。

因此,没有两种不同的结晶物质会给出完全相同的衍射花样。

通过分析待测试样的X射线衍射花样,不仅可以知道物质的化学成分,还能知道它们的存在状态,即能知道某元素是以单质存在或者以化合物、混合物及同素异构体存在。

同时,根据X射线衍射试验还可以进行结晶物质的定量分析、晶粒大小的测量和晶粒的取向分析。

浅谈X射线衍射分析在材料科学中应用及对内应力测量

浅谈X射线衍射分析在材料科学中应用及对内应力测量

浅谈X射线衍射分析在材料科学中应用及对内应力测量摘要:X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。

将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。

X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。

本文主要介绍X射线衍射分析在材料科学中应用并以测量内应力为例对其进行具体分析。

关键词:X射线衍射分析、内应力测量、物相分析X射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。

将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。

在当今的材料科学领域中,主要将其应用于以下几个方方面:一.物相分析晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X 射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X 射线衍射物相分析方法的依据。

制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。

鉴定出各个相后,根据各相花样的强度正比于该组分存在的量,就可对各种组分进行定量分析。

目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS) ”负责编辑出版的粉末衍射卡片即PDF卡片进行物相分析。

目前,物相分析存在的问题主要有:(1) 待测物图样中的最强线条可能并非某单一相的最强线,而是两个或两个以上相的某些次强或三强线叠加的结果。

这时若以该线作为某相的最强线将找不到任何对应的卡片。

X射线衍射原理及在材料分析中的应用

X射线衍射原理及在材料分析中的应用
当一束单色x射线入射到晶体时由于这些规则排列的原子间距离与入射x射线波长有相同数?级故能相互干涉在某些特殊方向上产生x射线衍射衍射线在空间分布的方位和强度与晶体结构相关
2008 年第 9 期 物理通报 知识介绍
X 射线衍射原理及在材料分析中的应用
性分析可采用未知样品衍射图谱与标准图谱比较的
方法. 定量分析中 , 根据衍射强度理论 , 物质中某相
的衍射强度 Ii 与其质量百分数 Xi 有如下关系
Ii
=
kiXi Um
式中 ki 为实验条件和待测相共同决定的常数 , Um 为待测样品的平均质量吸收系数 ,与 Xi 有关.
物相分析存在的问题主要有 :
1) 待测物图样中的最强线条可能并非某单一
相的最强线 ,而是两个或两个以上相的某些次强或
三强线叠加的结果. 这时若以该线作为某相的最强
线将找不到任何对应的卡片.
2) 在众多卡片中找出满足条件的卡片 , 十分复
杂而繁锁 ;虽然可以利用计算机辅助检索 ,但仍难以
令人满意.
2008 年第 9 期 物理通报 知识介绍
2 dsinθ = nλ 式中 d 为晶面间距 ,θ为掠射角 , n 为反射级数 ,λ为 X 射线波长.
(2) X 射线衍射的运动学理论 达尔文 (Darwin) 理论称为 X 射线衍射运动学理 论. 该 理 论 把 衍 射 现 象 作 为 三 维 夫 琅 禾 曼 ( Frannhofer) 衍射问题来处理 ,认为晶体的每个体积 元的散射与其他体积元的散射无关 ,而且散射线通 过晶体时不会再被散射. 虽然这样处理可以得出足 够精确的衍射方向 ,也能得出衍射强度 ,但运动学理 论的根本性假设并不完全合理. 因为散射线在晶体 内一定会被再次散射 ,除了与原射线相结合外 ,散射 线之间也能相互结合. Darwin 不久以后就认识到这 点 ,并在他的理论中作出了多重散射修正. (3) X 射线衍射的动力学理论 埃瓦尔德 ( Ewald) 理论称为 X 射线衍射的动力 学理论. 该理论考虑到了晶体内所有波的相互作用 , — 58 —

X射线衍射在材料分析测试中的应用

X射线衍射在材料分析测试中的应用

X射线衍射技术在材料分析测试中的应用摘要:X 射线衍射分析技术是一种十分有效的材料分析方法, 在众多领域的研究和生产中被广泛应用。

介绍了X 射线衍射的基本原理, 从物相鉴定、点阵参数测定、微观应力测定等几方面概述了X 射线衍射技术在材料分析中的应用进展。

1 X射线基本原理由于X 射线是波长在1000Å~0. 01Å之间的一种电磁辐射, 常用的X 射线波长约在2. 5Å~ 0. 5Å之间, 与晶体中的原子间距( 1Å )数量级相同, 因此可以用晶体作为X 射线的天然衍射光栅, 这就使得用X射线衍射进行晶体结构分析成为可能。

当X射线沿某方向入射某一晶体的时候, 晶体中每个原子的核外电子产生的相干波彼此发生干涉.当每两个相邻波源在某一方向的光程差(Δ)等于波长λ的整数倍时, 它们的波峰与波峰将互相叠加而得到最大限度的加强, 这种波的加强叫做衍射, 相应的方向叫做衍射方向, 在衍射方向前进的波叫做衍射波。

Δ= 0的衍射叫零级衍射, Δ = λ的衍射叫一级衍射, Δ = nλ的衍射叫n级衍射. n不同, 衍射方向也不同。

在晶体的点阵结构中, 具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果, 决定了X射线在晶体中衍射的方向, 所以通过对衍射方向的测定, 可以得到晶体的点阵结构、晶胞大小和形状等信息。

晶体结构= 点阵+ 结构基元, 点阵又包括直线点阵, 平面点阵和空间点阵. 空间点阵可以看成是互不平行的三组直线点阵的组合, 也可以看作是由互相平行且间距相等的一系列平面点阵所组成. 劳厄和布拉格就是分别从这两个角度出发, 研究衍射方向与晶胞参数之间的关系。

伦琴发现X射线之后, 1912年德国物理学家劳厄首先根据X 射线的波长和晶体空间点阵的各共振体间距的量级, 理论预见到X 射线与晶体相遇会产生衍射现象, 并且他成功地验证了这一预见, 并由此推出了著名的劳厄定律。

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料部残留的应力就是残余应力。

但是,习惯上将残余应力分为微观应力和宏观应力。

两种应力在X射线衍射谱中的表现是不相同的。

微观应力是指晶粒部残留的应力,它的存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。

宏观应力是指存在于多个晶体尺度围的应力,相对于微观应力存在的围而视为宏观上存在的应力。

一般情况下,残余应力的术语就是指在宏观上存在的这种应力。

宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。

当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰的位移情况,可以求得残余应力。

X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。

20世纪初,人们就已经开始利用X射线来测定晶体的应力。

后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。

1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。

X射线衍射法测量残余应力的基本原理X射线衍射测量残余应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。

其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。

用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。

X射线衍射方法主要是测试沿试样表面某一方向上的应力σφ。

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ X射线衍射方法测量残余应力的原理与方法X 射线衍射方法测量残余应力的原理与方法射线衍射方法测量残余应力的原理与方法-STRESSXRD 2009-01-10 21:07:39 阅读 616 评论 2 字号:大中小X 射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。

但是,习惯上将残余应力分为微观应力和宏观应力。

两种应力在 X 射线衍射谱中的表现是不相同的。

微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。

宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。

一般情况下,残余应力的术语就是指在宏观上存在的这种应力。

宏观残余应力(以下称残余应力) X 射线衍射谱上的表现是使峰位漂移。

在当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰的位移情况,可以求得残余应力。

1/ 12X 射线衍射法测量残余应力的发展 X 射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。

20 世纪初,人们就已经开始利用 X 射线来测定晶体的应力。

后来日本成功设计出的 X 射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。

1961 年德国的---------------------------------------------------------------最新资料推荐------------------------------------------------------ E.Mchearauch 提出了 X 射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。

资料:X射线衍射在材料分析中的应用和原理

资料:X射线衍射在材料分析中的应用和原理

X射线衍射在材料分析中的应用和原理摘要:本文概要介绍了X射线衍射分析的基本原理及先关理论,提及了X射线衍射的各种方法,主要对X射线衍射分析技术的应用进行了叙述。

关键词:X射线衍射分析布拉格方程X射线衍射仪衍射花样前言X射线衍射分析(X-Ray Diffraction,简称XRD),顾名思义是利用晶体对入射的X射线形成衍射,对晶体物质进行内部原子在空间分布状况等结构信息分析的方法。

1. X射线衍射分析基本原理1.1 X射线及其获得X射线同无线电波、可见光、紫外光等一样,本质上均属于电磁波,区别在于彼此占据不同波长范围。

与所有基本粒子一样,X射线具有波粒二相性,由于其波长较短,大约在10-8~ 10-10cm之间,它的粒子性往往表现突出,故X射线可以视为一束具有一定能量的光量子流。

进行X射线衍射分析首先需得获得稳定的X射线,通常利用一种类似热阴极二极管的装置,用一定材料制作的板状阳极(靶)和阴极(灯丝)密封于一个真空玻璃-金属管壳内,阴极通电加热,在两极间加以直流高压(几KV-10KV),则阴极产生大量热电子,其在高压电场作用下飞向阳靶,在与阳极撞击瞬间产生X射线(包括连续和特征/标识X射线谱),其基本电气线路如下图。

图1X射线产生基本电气线路1.2 X射线衍射分析基本原理X射线与物质相遇时,会产生一系列效应,这是X射线应用的基础。

X射线在传播途中,与晶体中束缚较紧的电子相遇时,将发生经典散射。

晶体由大量原子组成,每个原子又有多个电子。

各电子锁产生的经典散射会相互干涉,使在某些方向被加强,另一些方向被削弱。

电子散射线干涉的总结果即为X射线衍射的本质。

由于电磁波散射干涉的矢量性,分析不难得知并不是每个方向都能获得衍射。

将晶体看成由平行的原子面组成,晶体的衍射亦当是由原子面的衍射线叠加而得,叠加的衍射线中大部分被抵消,只有一些得到加强,这些保留下来的衍射线可看成晶体中某些原子面对X射线的“反射”。

在将衍射看成反射的基础上,科学家最终导出结论:在某个方向上散射线互相加强的条件即产生X射线衍射条件是X射线与晶体之间需满足布拉格方程:2d sinθ=nλd——晶面间距;n——反射级数;θ——掠射角/布拉格角;λ——入射波长其导出条件如下图所示。

X射线衍射分析的实验方法及其应用

X射线衍射分析的实验方法及其应用

X射线衍射分析的实验方法及其应用自1896年X射线被发现以来,可利用X 射线分辨的物质系统越来越复杂。

从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。

此外,在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。

由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。

本文主要介绍X射线衍射的原理和应用。

1、 X射线衍射原理1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。

当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。

这就是X射线衍射的基本原理。

衍射线空间方位与晶体结构的关系可用布拉格方程表示:1.1 运动学衍射理论Darwin的理论称为X射线衍射运动学理论。

该理论把衍射现象作为三维Frannhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。

虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。

因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。

Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。

1.2 动力学衍射理论Ewald的理论称为动力学理论。

该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。

两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。

x射线衍射仪在材料研究中的应用

x射线衍射仪在材料研究中的应用

一、概述随着科学技术的不断发展,材料研究逐渐成为科学研究的重要领域之一。

而在材料研究中,x射线衍射仪作为一种重要的分析仪器,发挥着重要作用。

本文将从x射线衍射仪的工作原理、应用范围、优势以及发展前景等方面进行深入探讨。

二、x射线衍射仪的工作原理1. x射线的发现与性质x射线是一种能够穿透物质的电磁辐射,具有波长短、能量高的特点。

1895年,康拉德·伦琴通过对阴极射线的研究发现了x射线,并对其性质进行了初步研究。

2. x射线的发射与衍射当x射线照射到晶体表面时,由于晶格结构的存在,x射线会发生衍射现象。

根据布拉格方程,可以计算出衍射角度和衍射强度,从而获取有关晶体结构的信息。

3. x射线衍射仪的基本构成x射线衍射仪由x射线源、样品台、衍射仪和探测器等部件组成。

x射线源发出x射线,照射到样品上后发生衍射,并由探测器检测衍射信号,从而得到样品的结构信息。

三、x射线衍射仪的应用范围1. 材料表征x射线衍射技术可以用于材料的晶体结构分析、晶粒尺寸测定、残余应力分析等方面,为材料研究提供了重要的实验手段。

2. 药物研究在药物研究领域,x射线衍射技术可以用于药物晶型的鉴定和结构分析,为药物的研发和生产提供了核心技术支持。

3. 矿物分析x射线衍射技术可以用于矿物的成分分析和晶体结构研究,为矿产资源的开发和利用提供了重要的技术手段。

四、x射线衍射仪的优势1. 高分辨率x射线衍射仪具有高分辨率的优势,可以对材料的微观结构进行准确测定,为材料研究提供了重要的数据支持。

2. 高灵敏度x射线衍射仪对样品的要求较低,可以对微量样品进行分析,提高了样品的利用率和分析效率。

3. 非破坏性x射线衍射技术是一种非破坏性分析方法,可以保持样品的完整性,适用于对珍贵样品的研究和分析。

五、x射线衍射仪的发展前景1. 多功能化随着材料研究领域的不断发展,人们对x射线衍射仪的功能要求也越来越高,未来的x射线衍射仪将向多功能化方向发展,包括晶体结构分析、表面形貌观测、残余应力分析等多种功能的集成。

射线衍射方法测量残余应力的原理与方法

射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力外力撤除后在材料内部残留的应力就是残余应力。

但是,习惯上将残余应力分为微观应力和宏观应力。

两种应力在X射线衍射谱中的表现是不相同的。

微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。

宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。

一般情况下,残余应力的术语就是指在宏观上存在的这种应力。

宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。

当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰的位移情况,可以求得残余应力。

X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。

20世纪初,人们就已经开始利用X射线来测定晶体的应力。

后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。

1961年德国的提出了X 射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。

X射线衍射法测量残余应力的基本原理X射线衍射测量残余内应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。

其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。

用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。

X射线衍射方法主要是测试沿试样表面某一方向上的内应力σφ。

现代材料测试技术(陶文宏)-第一章-x射线衍射分析

现代材料测试技术(陶文宏)-第一章-x射线衍射分析

晶粒尺寸
通过X射线衍射数据计算陶瓷 材料中晶粒的平均尺寸。
残余应力
分析陶瓷材料中的残余应力, 评估其性能和使用寿命。
高分子材料
结晶度
测量高分子材料的结晶度,了解其物理和化 学性能。
取向研究
研究高分子材料中分子的取向情况,了解其 力学性能和加工性能。
晶体结构
分析高分子材料中晶体的结构类型和晶格常 数。
感谢您的观看
THANKS
晶体结构
分析金属材料的晶体结 构类型,如面心立方、
体心立方等。
晶格常数
内应力
测量金属材料的晶格常 数,了解晶体中原子的
排列情况。
通过分析X射线衍射数据, 计算金属材料中的内应
力大小和分布。
陶瓷材料
01
02
03
04
晶体结构
确定陶瓷材料的晶体结构,包 括氧化物、硅酸盐等。
相变研究
研究陶瓷材料在加热或冷却过 程中的相变行为。
热稳定性
通过X射线衍射分析高分子材料的热稳定性, 评估其在高温下的性能。
复合材料
界面研究
分析复合材料中不同组分之间的界面 结构和相互作用。
相分析
确定复合材料的相组成和各相的含量。
取向研究
研究复合材料中各组分的取向情况, 了解其力学性能和加工性能。
残余应力
分析复合材料中的残余应力,评估其 性能和使用寿命。
特点。
02 03
布拉格方程
当X射线照射到晶体时,会被晶体中的原子散射,形成特定的衍射图案。 布拉格方程是描述X射线衍射条件的基本公式,即nλ=2dsinθ,其中n 为整数,λ为X射线的波长,d为晶面间距,θ为入射角。
衍射峰的形成
当满足布拉格方程时,X射线会在特定角度上发生衍射,形成衍射峰。 衍射峰的位置、强度和形状与晶体的结构密切相关。

x射线应力测定仪原理

x射线应力测定仪原理

x射线应力测定仪原理X射线应力测定仪原理一、引言X射线应力测定仪是一种重要的非破坏性测试设备,能够准确测量材料中的应力分布情况。

本文将从X射线应力测定仪的原理出发,介绍其工作原理和应用。

二、X射线应力测定仪的工作原理X射线应力测定仪利用了X射线的特性,通过对材料中的晶体结构进行分析,从而得出材料的应力分布情况。

1. X射线的产生X射线是一种高能电磁波,可以通过电子束轰击金属靶产生。

当高能电子与金属靶碰撞时,电子会失去能量并释放出X射线。

2. X射线的穿透和散射X射线能够穿透物体,其穿透能力与物体的密度和厚度有关。

当X 射线通过材料时,会与材料中的原子发生相互作用,其中包括散射和吸收。

散射会改变X射线的传播方向,而吸收会使X射线的强度减弱。

3. 应力引起的晶格畸变材料中的应力会导致晶格畸变,进而影响X射线的散射行为。

当材料受到应力时,晶体中的原子会发生位移,改变原子之间的距离和角度,从而改变了X射线的散射角度和强度。

4. 应力与散射角度的关系根据布拉格衍射原理,当X射线入射角等于出射角,并满足一定的衍射条件时,会出现散射峰。

而应力会导致晶体中的晶面间距发生变化,进而改变散射峰的位置和强度。

通过测量散射峰的位置和强度,可以推算出材料中的应力分布情况。

三、X射线应力测定仪的应用X射线应力测定仪广泛应用于材料科学和工程领域,特别是在金属材料的研究和工业生产中。

1. 材料研究X射线应力测定仪可以用于研究材料的力学性能和微观结构。

通过测量不同应力下材料的应力分布,可以评估材料的强度和韧性,并优化材料的制备工艺。

2. 工业生产X射线应力测定仪可以用于质量控制和产品评估。

通过测量材料中的应力分布,可以预测材料的寿命和故障风险,从而指导产品的设计和使用。

3. 应力分析X射线应力测定仪可以用于应力分析和应力校准。

对于复杂结构或大尺寸的工件,可以通过测量不同部位的应力分布,了解材料的力学行为和应力集中情况。

4. 焊接和变形分析X射线应力测定仪可以用于焊接接头的应力分析和变形分析。

射线衍射方法测量残余应力的原理与方法

射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法-STRESSXRD 2009-01-10 21:07:39 阅读719 评论3 字号:大中小订阅X射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。

但是,习惯上将残余应力分为微观应力和宏观应力。

两种应力在X射线衍射谱中的表现是不相同的。

微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。

宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。

一般情况下,残余应力的术语就是指在宏观上存在的这种应力。

宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。

当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰的位移情况,可以求得残余应力。

X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。

20世纪初,人们就已经开始利用X射线来测定晶体的应力。

后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。

1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。

X射线衍射法测量残余应力的基本原理X射线衍射测量残余内应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。

其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。

用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。

xrd微观应力单位

xrd微观应力单位

xrd微观应力单位
X射线衍射(XRD)是一种常用的材料表征技术,可以用于研究晶体的结构和性质。

在XRD实验中,被测样品会被照射一束X射线,然后观察它们在晶体中的衍射情况,从而确定晶体的结构和晶格参数等信息。

除此之外,XRD还可以用来测量材料中的微观应力。

微观应力是指晶体中的局部应力分布,它可以影响材料的宏观性质和性能。

在XRD实验中,如果晶体受到应力的影响,其晶格常数会受到微小的变化,从而引起X射线衍射角的改变。

通过分析这种衍射角的变化,可以计算出晶体中的微观应力。

在XRD中,微观应力的单位通常是以GPa为基础的微米级应力(strain)。

微米级应力是一种衡量晶体中微小应力变化的单位,它表示晶体长度的变化与原始长度的比例,通常用10的负6次方表示(=10^-6)。

因此,微米级应力可以表示为m/m或strain。

XRD微观应力的测量可以被用于研究材料的变形、疲劳和裂纹扩展行为等。

此外,它还可以用于探测晶体中的应力集中区域,从而帮助改进材料的制备和加工方法。

因此,在材料科学和工程领域中,XRD微观应力的测量是一个非常重要的研究方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

35/65
35/65 35/65
-72
-68 -80
-20
-18 -18
11
9 10
4
5
2
2.5
—73
—84
—56
—50
35/6535/65-62-62-11-22
7
12
结论

五次试验测量的两相第二类残余应力平均结果分别是18和
10,修正后的宏观残余应力求平均值得到:69 MPa,这与 用钻孔法得到的74 Mpa相差很小。表明X射线得到的应力结 果在消除第二类残余应力的影响后可以很好与钻孔法得到的 宏观残余应力相符。

,以及宏观残
实验过程

利用X射线残余应力分析仪分别测量出两相中的残
余应力,然后使用X射线衍射仪对两相进行定量分
析,已知应力大小和含量多少后,根据前面提到的
公式,就可以求出第Ⅱ类应力,再根据第Ⅱ类应力
修正宏观残余应力,得到的结果再与钻孔法得到的
宏观残余应力进行比较。
实验仪器及材料
仪器:STRESSX-3000

对不同材料,第二类残余应力对衍射峰2θ产生的附加位移也 不尽相同,对单相材料测量的结果影响很小,而对多相材料, 产生的位移较大,误差也就较大。 为了使X射线衍射法更加精确的测量宏观残余应力,我们在实

验中尝试测量出第Ⅱ类应力来修正宏观残余应力的结果
测量原理
以两相材料为例,实验测得的各相应力结果是宏观残余应力 和第Ⅱ类残余应力之和,其关系是如1,2;各相的第Ⅱ类
残余应力则在两相间存在平衡,其关系式如公式(3)所示
r , A r r , A
r ,B r r , B
v A r , A vB r , B 0


(1) (2) (3)


根据上面3个公式就可以求出 r , A 、 r ,B 1 余应力的真实值 r

实验也表明通过X射线衍射定量和X射线分析应力的方法可
以很好的对第Ⅱ类残余应力进行测量。
结后语

可能细心的专家会有这样一个疑问:为什么不用衍射线宽化
的方法来测微观应力?大家知道,通常情况下,我们也都是 用衍射线的宽化来测微观应力的,我个人认为,这种方法获 得的微观应力并不能直接用来修正宏观残余应力。因为这里 面存在一个问题:用X射线宽化得到的微观应力包含第三类
材料:双相钢
Stress3000 衍射仪
Stress3000 衍射仪
实验结果
σr,A( σr,B A/B 序号 测点深 度(mm) MPa) (MPa) 计算值 (

r,A

r ,B

1 r)
(计算值)(计算值)
1
2 3
0.5
1 1.5
—92
—86 —98
—61
—59 —70
利用X射线衍射测量材料中的微观
应力
内容
X射线法测量两相材料中的残余应力时遇到
的问题 微观应力对X射线测量宏观残余应力的影响 实验过程 结果讨论
X射线法测量两相材料中的残余应力 时遇到的问题



在残余应力的测试诸多方 法中以X射线衍射法最为普 遍,得到了行业内的广泛 认可,但在实际测试中这 种方法也遇到了一些问题。 比如,我们在测量两相材 料的残余应力时,得到的 结果不一致。 那么为什么不一致?怎样 才能得到正确的结果呢?
微观应力对宏观残余应力测量结果的 影响

材料的内应力分为3类:宏观残余应力、第Ⅱ类和第Ⅲ类残余 应力。后两者统称为微观应力。 第Ⅲ类残余应力:使材料的衍射线宽化,不对衍射峰产生位移。 对宏观残余应力的测量结果没有影响。


第Ⅱ类残余应力对X射线谱线的影响:

1 是使衍射谱线宽化; 2 是如同第一类残余应力(宏观残余应力)对衍射峰偏 移的作用一样,使衍射峰2θ值产生附加位移,从而影响 了宏观残余应力测量的精度。
残余应力,也就是晶格畸变的影响,第Ⅲ类并不能引起衍射
峰的位移。因此并不能用来修正我们试验测得的宏观残余应 力。
欢迎各位专家批评 指正!!
相关文档
最新文档