二次根式加减法教学设计84418讲解学习

合集下载

二次根式的加减法教案

二次根式的加减法教案

二次根式的加减法教案一、教学目标:1.掌握二次根式的加减法的定义与性质;2.能够灵活运用二次根式的加减法进行简化与化简运算;3.培养学生的数学思维和推理能力。

二、教学重点:1.二次根式的加减法的定义与性质;2.进行二次根式的加减法的简化与化简运算。

三、教学难点:1.运用二次根式的加减法进行复杂运算;2.培养学生的数学思维和推理能力。

四、教学准备:1.教师准备:黑板、彩色粉笔、教学课件;2.学生准备:教材、笔、纸。

五、教学过程:Step 1 自主探究:引入二次根式的加减法1.提问:你还记得二次根式的概念吗?2.学生回答:是指根号下有含有字母的式子。

3.教师解释:是的,二次根式是指根号下含有字母的式子。

那么,我们来思考一个问题:如果有两个二次根式,它们之间可以进行何种运算?Step 2 学习定义与性质1.教师板书:二次根式的加减法的定义。

2.学生默写:二次根式的加减法是指将两个二次根式进行加减运算,将其中的同类项进行合并。

3.教师解释:我们可以将二次根式看作是一种特殊的代数式,它们可以进行加法和减法运算。

在进行加减运算时,我们需要将二次根式中的同类项进行合并。

4.教师板书:二次根式的加减法的性质。

5.学生默写:二次根式的加减法具有交换律、结合律和分配律。

Step 3 进行实例讲解1.教师板书:根号2+根号2=?2.学生回答:2根号23.教师解释:很好,这里的根号2是同类项,可以进行合并。

所以,根号2+根号2=2根号24.教师板书:根号5-根号3=?5.学生回答:根号5-根号36.教师解释:是的,这里的根号5和根号3不是同类项,无法进行合并。

所以,根号5-根号3仍然是根号5-根号3Step 4 练习与巩固1.学生进行练习题,并把答案写在纸上。

2.教师进行点评与讲解。

Step 5 拓展与延伸1.教师提出拓展问题:如何进行复杂的二次根式的加减法运算?2.学生进行讨论。

3.教师展示解题方法与步骤。

六、教学总结1.复习本节课的学习内容;2.概括本节课的核心思想。

《二次根式的加减》教学设计方案

《二次根式的加减》教学设计方案

《二次根式的加减》教学设计方案《《二次根式的加减》教学设计方案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:二次根式的加减主题内容简介:在上一节学习的化简二次根式的基础上,进一步学习二次根式的加减,再化简二次根式的同时,引导学生概括出同类二次根式的概念,类比整式的加减运算中的合并同类项,给出二次根式的加减运算法则,从而进行二次根式的加减的混合运算。

学习目标分析知识与能力目标:1、了解同类二次根式的概念,掌握判断同类二次根式的方法;2、使学生能正确的合并同类二次根式,进行二次根式的加减运算。

过程与方法目标:正确掌握合并同类二次根式的方法。

情感态度与价值观目标:在探究合并同类二次根式的方法过程中,发展合作意识和合情推理能力。

学情分析前需知识掌握情况:由于初二学生的数学思维特征,由具体逻辑思维,逐步过渡到抽象逻辑思维,但仍有很大程度的经验性,而二次根式需要有一定的抽象思维能力,因此,本节课应用引导探究法,在老师引导下,学生进行自主探究的教学方法。

通过练习,检测学生对合并同类项及二次根式化简的掌握情况。

对微课的认识:我们是农村学校,学生从未经历过微课形式和使用微课学习的方式。

因为从未经历过这种方式的学习,所以我觉得学生们的接受程度可能只是一般。

学生特征分析学习态度:学生对将采用的自主学习和课堂学习模式感到新鲜,有浓厚的参与欲望。

学习风格:按照平常对学生的观察与接触,感觉他们会比较喜欢小组讨论、交流,比较多的参与到课堂,然后在较轻松的课堂氛围中进行学习,更能活跃学生的思维能力,提高学生的学习效率。

微课用于学生学习的教学策略分析微课用于学生学习的目的:使用微课用于学生学习,主要是复习二次根式的化简并由此引出同类二次根式的定义,注意引导学生对同类二次根式和同类项、二次根式的加减的合并同类项进行比较学习,在理解、掌握和应用二次根式的加减法则的学习过程中,逐步渗透类比、概括等数学思想,提高学生用数学方法解决实际问题的能力。

九年级数学上册《二次根式的加减法》教案、教学设计

九年级数学上册《二次根式的加减法》教案、教学设计
1.培养学生面对数学问题的积极态度,增强学生解决数学问题的信心,使学生感受到数学学习的乐趣。
2.通过二次根式的学习,让学生认识到数学知识在实际生活中的重要作用,提高学生对数学价值的认识。
3.培养学生严谨、求实的科学态度,使学生形成良好的学习习惯和道德品质。
在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣,引导学生主动探究,提高学生的数学素养。在此基础上,结合以下教学内容,进行教学设计。
2.思维能力:九年级学生的抽象思维能力逐渐增强,但仍有部分学生依赖具体形象思维。在教学过程中,教师应注重培养学生的抽象思维能力,引导学生运用分类讨论等方法解决问题。
3.学习方法:学生在学习过程中,可能仍依赖模仿和记忆,缺乏主动探究和合作学习的能力。教师应引导学生转变学习方式,培养学生的自主学习能力和合作意识。
二、教学内容
1.二次根式的概念及性质
2.二次根式的书写与化简
3.二次根式的加减法运算
4.二次根式的实际应用
三、教学过程
1.导入:通过实际问题,引出二次根式的概念,激发学生的学习兴趣。
2.基本概念:讲解二次根式的定义,让学生理解并掌握二次根式的性质。
3.书写与化简:教授二次根式的书写方法,引导学生进行二次根式的化简。
2.应用提高题:完成课本第46页第7-10题,这些题目将考察学生对二次根式加减法的掌握程度。学生需要运用所学的运算规则,解决实际问题,提高数学应用能力。
3.拓展思维题:选择课本第47页第11题作为拓展题目,鼓励学生通过小组讨论或独立思考,解决具有一定难度的二次根式问题。这类题目旨在培养学生的逻辑思维和创新能力,激发学生对数学学习的兴趣。
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。针对以下问题进行讨论:

【精】《二次根式的加减》精品教案

【精】《二次根式的加减》精品教案

《二次根式的加减》精品教案【教学目标】1.知识与技能(1)理解和掌握二次根式加减的方法;(2)含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。

2.过程与方法先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解。

再总结经验,用它来指导根式的计算和化简。

3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。

【教学重点】二次根式的乘除、乘方等运算规律。

【教学难点】最简二次根式的判断,及二次根式的混合运算。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件。

【课时安排】1课时【教学过程】一、复习导入【过渡】在之前的学习当中,我们学习了同类项的合并,大家还记得同类项合并的计算方法吗?我们来检测一下吧。

学生活动:计算下列各式。

(1)2x+3x;(2)2x5-5x5+5x5;(3)3x+2x+3y;(4)3a2-2a2+a3【过渡】上面题目的结果,实际上是我们以前所学的同类项合并。

同类项合并就是字母不变,系数相加减。

而我们本节内容,则主要是学习二次根式的加减,那么这两者之间有没有什么共同点呢?现在,就让我们一起来探究一下吧。

二、新课教学1.二次根式的加减【过渡】按照我们刚刚复习的同类项的合并,我们来试着思考一下,这样的同类项合并能否用于二次根式呢?我们来看看课本12页的思考题。

【过渡】问题是要判断能否截出两个正方形,转化为几何问题,即为判断两个正方形的边长和与长方形的边长的大小,若小于长方形的边长,则说明不能截出。

那么两个正方形的边长分别是√8和√18,两者之和为√8+√18。

该如何计算这个呢?(学生讨论回答)结合我们复习的同类项合并,可以这样计算。

课件展示计算过程。

【过渡】在这个问题之后,我们再来看几个简单的计算:(1)√5+3√5= (2)3√5-√5= (3)√8+√18= (4)√8-√18=(5)√2+√3= (6)√5+√3=【过渡】根据刚刚我们探究的内容,这几个计算很容易就能算出来,我们也发现,(5)(6)这两个是不能合并同类项的,而从(3)(4)中,在计算之前,我们需要将二次根式化简为最简根式。

《 二次根式的加减》教学设计(第1课时)

《 二次根式的加减》教学设计(第1课时)

16.3 二次根式的加减----第1课时教材分析:本节课主要学习二次根式的加减运算,其中蕴含有数形结合思想,转化思想等,培养学生运算能力,逻辑思维能力,分析问题解决问题能力,本节课之前学生已学过二次根式以及合并同类项,教会学生类比方法,学完这节课为接下来二次根式的混合运算等作铺垫。

学情分析:八年级学生的认知能力逐渐趋于成熟,解决问题的能力有所提高,本节从具体例子出发,从特殊到一般的归纳给出二次根式的加减法法则,设计的问题有利于学生发现规律,考虑到学生的年龄特征和知识水平,教会学生用类比的方法来理解同类二次根式,引导学生探索发现二次根式加减运算的核心是合并被开方数相同的二次根式,基本依据是二次根式的性质和分配律.三维目标1、知识与技能:1.知道二次根式加减运算的步骤;2.会用合并同类二次根式正确进行二次根式的计算;2、过程与方法:经历探究二次根式加减法法则的过程,体会类比以及从特殊到一般的数学思想方法3、情感态度与价值观:通过引导学生自主探究,培养学生的数学探究能力及合作交流的意识,培养学生简洁解题的能力,体会数学的简洁美教学重难点重点:理解同类二次根式以及二次根式的加减法运算难点:被开方数是分数(式)或含字母的二次根式加减运算教学过程设计(一)创设情景,提出问题问题1:学校计划在校园内修建一个长方形的花坛,在花坛中央还要修一个正方形的小喷水池。

如果小喷水池的面积是8平方米,花坛的宽是18米,花坛的长是宽的2倍,问花坛的外周与小喷水池的周长一共是多少米?师生活动:教师引导学生认真读题,分析题意.追问2:你认为可以怎样计算+?师生活动:让学生讨论,教师了解学生的思路,有的学生提出可先估计两个正方形的边长,再把它们的值与木板的长比较;有的提出可化简求和,教师适时给予肯定评价.设计意图:用实际问题引出+是让学生感受学习二次根式加减运算的必要性和意义.通过分析如何计算+让学生了解到本课内容并不是孤立的全新知识,而与二次根式的化简密切相关.(二)探索新知,解决问题问题2:化简结果是多少?师生活动:学生回答,并复习合并同类项的方法.追问1:你能化简吗?师生活动:学生指出它们不是同类项不能合并,老师给予肯定评价. 追问2:你能化简21224+吗? 师生活动:教师引导学生类比合并同类项,令,学生总结方法得出结果.追问3:能化简18484+吗?与上题21224+区别在哪?设计意图:让学生经历类比合并同类项的方法去探究二次根式加减运算的方法,问题3:、都是最简二次根式,那、是最简二次根式吗? 师生活动:学生回答:不是、,教师给予肯定评价. 追问1:如何化简+? 师生活动:学生讨论得出,教师引导学生类比合并同类项,总结得出二次根式加减运算的方法. “先化成最简二次根式。

八年级数学下册《二次根式的加减运算》教案、教学设计

八年级数学下册《二次根式的加减运算》教案、教学设计
(2)反馈调节:及时收集学生的反馈信息,调整教学进度和方法,确保教学效果。
(3)情感激励:关注学生的情感需求,鼓励学生积极参与课堂活动,培养学生的自信心和成就感。
3.教学过程:
(1)导入:通过实际问题,引出二次根式的概念,激发学生学习兴趣。
(2)新课内容:讲解二次根式的性质、运算方法,结合实例进行示范和讲解。
八年级数学下册《二次根式的加减运算》教案、教学设计
一、教学目标
(一)知识与技能
1.理解二次根式的定义,掌握二次根式的表示方法。
2.掌握二次根式的性质,如乘法、除法、平方等运算规则。
3.学会进行二次根式的加减运算,包括同类项的合并、异类项的转换等。
4.能够运用二次根式的加减运算解决实际问题,提高数学应用能力。
4.小组讨论题:针对本节课所学内容,设计一道小组讨论题目,要求学生在课后进行小组讨论,共同解决问题,并提交讨论报告。
5.课后反思:要求学生结合本节课的学习,总结自己在二次根式学习中的收获和不足,撰写一篇反思日记。
作业布置要求:
1.学生需按时完成作业,保持书写工整,确保作业质量。
2.家长要关注孩子的学习情况,协助孩子养成良好的学习习惯。
1.教学内容:教师讲解二次根式的定义、性质,以及二次根式的加减运算方法。
2.教学方法:采用讲解、示范、举例等方式,让学生了解并掌握二次根式的相关知识。
3.教学步骤:
a.解释二次根式的定义,如√a(a≥0)表示非负实数a的平方根。
b.介绍二次根式的性质,如乘法、除法、平方等运算规则。
c.讲解二次根式的加减运算方法,特别是同类项的识别和合并。
b.学生完成后,教师选取部分题目进行讲解和点评。
c.针对学生的错误,进行针对性的辅导和指导。

二次根式加减法教学设计.doc

二次根式加减法教学设计.doc

二次根式加减法教学设计.doc
二次根式加减法教学设计
一、课前准备
1、教学内容:讲解二次根式的加减法的计算方法。

2、教学目标:
(1)能熟练运用二次根式的加减法计算所给根式的值和理解其运算规律。

(2)能较好地掌握根式的特点。

3、教学重点:
(1)能掌握二次根式的加减法及相应的运算规律;
(2)能熟练运用相应的规律来实现给定的根式的计算;
(3)理解和掌握二次根式的特点。

二、课堂教学
1、复习:
先复习上节课学过的二次根式的特点,帮助学生清楚的认识到二次根式的概念。

2、介绍:
提出本节课想要讲授的加减法的概念,让学生了解到这是一种加减法,并且介绍一些简单的案例让学生更加清楚加减法的概念以及本节课想要传授的内容。

3、练习:
让学生分组排队,然后每组有三~四道题,让学生凭借自身的理解,利用加减法来求解所给的二次根式,课堂内进行答题,检查学生的学习成果以及熟悉的程度。

4、拓展:
将二次根式的加减法的求解过程进行讨论,检查是否完全掌握了算法,并用一个实际的案例来让学生进一步理解这种运算概念,以及能够熟练的加以应用。

三、课后反思
学习完加减法,要让学生总结出它的运算原理,及应用二次根式加减法求解根式的方法,以便更加清晰的理解并得到熟练的掌握,最终为进一步的深入学习打好基础。

二次根式的加减(第1课时)教学设计

二次根式的加减(第1课时)教学设计

16.3二次根式加减法教学设计(第一课时)一、教材分析:本节主要内容是二次根式的加减运算和二次根式的加、减、乘、除混和运算。

学习本节之前,学生已经掌握了把二次根式化简成最简二次根式的方法,这是学习本节课的基础。

本节课的重点是二次根式的加减。

二、学情分析我班学生基础较差,两极分化较严重有部分学生对平方根、立方根的知识掌握的不够扎实,对整式加减运算欠账比较多,因此学习本章时有困难。

三、教学目标:1.知识与技能:探究二次根式加减法运算法则,会用二次根式加减法法则进行计算。

2.过程与方法:学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。

通过加减法运算,培养学生的运算能力。

3.情感态度与价值观:通过加减法运算解决生活中实际问题,体会数学知识应用的价值,提高学生学习数学的兴趣。

四、教学重难点1.重点:首先把二次根式化成最简二次根式,再合并被开方数相同的二次根式。

2.难点:二次根式加减法的实际应用,去括号问题。

五、教学方法:自主探究、合作、讨论。

六、教学媒体:多媒体,白板。

七、教学活动过程1、引入新课【活动一】:计算下列各式教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,把系数相加减。

【活动二】: 现有一块长7.5dm 、宽5dm 的木板,能否采用如教科书图16.3-1所示的方式,在这块木板上截出两个面积分别是8dm 2和18dm 2的正方形木板? 分析:由于大小正方形的边长分别为8和18,显然木板够宽,下面考虑木板是否够长。

由于两个正方形的边长和为188+,这实际上是求8和18这两个二次根式的和,计算188+之前,我们先来看下面几道题怎么算?22+32(1)8-38+58(2)2 7+27+397⨯)3-23+2(4)3 师生行为:(1)学生分组讨论,探求方案。

(2)教师倾听学生的交流,指导学生探究。

教师关注:学生能否将8和18化成最简二次根式;能否将分配律运用到计算中 。

二次根式的加减法教案

二次根式的加减法教案

二次根式的加减法优秀教案第一章:二次根式的概念回顾1.1 教学目标:让学生理解二次根式的概念。

让学生掌握二次根式的基本性质。

1.2 教学内容:二次根式的定义:形如√a的式子,其中a是一个非负实数。

二次根式的基本性质:√a ×√a = a,√a ÷√a = 1,√a ×√b = √(ab),其中a、b是非负实数。

1.3 教学活动:通过具体的例子,让学生理解二次根式的概念。

通过练习题,让学生掌握二次根式的基本性质。

第二章:二次根式的加法2.1 教学目标:让学生掌握二次根式的加法运算规则。

2.2 教学内容:二次根式的加法运算规则:√a + √b = √(a + b),其中a、b是非负实数。

2.3 教学活动:通过具体的例子,让学生理解二次根式的加法运算规则。

通过练习题,让学生熟练掌握二次根式的加法运算。

第三章:二次根式的减法3.1 教学目标:让学生掌握二次根式的减法运算规则。

3.2 教学内容:二次根式的减法运算规则:√a √b = √(a b),其中a、b是非负实数,且a ≥b。

3.3 教学活动:通过具体的例子,让学生理解二次根式的减法运算规则。

通过练习题,让学生熟练掌握二次根式的减法运算。

第四章:二次根式的混合运算4.1 教学目标:让学生掌握二次根式的混合运算规则。

4.2 教学内容:二次根式的混合运算规则:先进行二次根式的乘除运算,再进行加减运算。

4.3 教学活动:通过具体的例子,让学生理解二次根式的混合运算规则。

通过练习题,让学生熟练掌握二次根式的混合运算。

第五章:综合练习5.1 教学目标:让学生综合运用二次根式的加减法知识,解决实际问题。

5.2 教学内容:综合练习题,包括不同难度的题目。

5.3 教学活动:提供综合练习题给学生,让学生独立完成。

解答学生的疑问,并进行讲解和指导。

第六章:二次根式的加减法在实际问题中的应用6.1 教学目标:让学生能够将二次根式的加减法应用到实际问题中。

数学教案-二次根式的加减法

数学教案-二次根式的加减法

数学教案-二次根式的加减法一、教学目标1.了解二次根式的定义和性质;2.掌握二次根式的加减法规则;3.能够灵活运用二次根式的加减法解决实际问题。

二、教学重点1.二次根式的加法运算规则;2.二次根式的减法运算规则。

三、教学内容1. 二次根式的定义和性质回顾二次根式是指形如√a的数,其中a为非负实数。

二次根式具有以下性质:•二次根式与非二次根式无法直接进行计算;•二次根式之间可以进行加减法运算;•二次根式可以化简为最简形式。

2. 二次根式的加法运算规则对于两个二次根式√a和√b,其加法运算规则如下:•当a和b相等时,二次根式相加后可化简为2√a;•当a和b不相等时,二次根式之间无法化简,保持原样。

示例1:计算√5 + √3。

解:根据加法运算规则,√5 + √3无法化简,保持原样。

3. 二次根式的减法运算规则对于两个二次根式√a和√b,其减法运算规则如下:•当a和b相等时,二次根式相减后可化简为0;•当a和b不相等时,二次根式之间无法化简,保持原样。

示例2:计算√7 - √7。

解:根据减法运算规则,√7 - √7可化简为0。

示例3:计算√15 - √10。

解:根据减法运算规则,√15 - √10无法化简,保持原样。

四、教学步骤1.复习二次根式的定义和性质,确保学生对二次根式有基本的了解;2.引出二次根式的加减法运算规则,让学生掌握运算规则的基本思想;3.在黑板上给出一些示例,让学生进行个别思考和讨论,并指导学生使用运算规则进行计算;4.让学生在课堂上完成一些练习题,加深对二次根式加减法运算规则的理解和掌握程度;5.结合实际问题,设计一些应用题,让学生灵活运用二次根式的加减法解决实际问题;6.总结本节课的内容,强化学生对二次根式加减法运算规则的理解。

五、教学提示1.学生在进行二次根式的加减法时,要注意运算规则的应用,不要将二次根式与非二次根式进行混合计算;2.在实际问题的应用中,学生需要将问题转化为数学表达式,再运用二次根式的加减法原则进行计算。

二次根式的加减教学设计

二次根式的加减教学设计

二次根式的加减教学设计1000字教学目标:1、了解二次根式的概念及性质。

2、掌握二次根式的加减运算法则。

3、了解二次根式加减运算的简化方法及应用。

教学内容:1、二次根式的概念及性质二次根式是指形如√a 的式子,其中a为正实数,且a≠1从二次根式的定义来看,它具有如下的性质:(1)非负性:二次根式√a(a>0)对于任意实数x都满足x≥0,即二次根式的值不是0就是正数。

(2)单调性:若a>b( a,b>0),则有√a>√b,这就是说,二次根式随着a的增大而增大。

(3)分母有理化:对于任意的二次根式√a,若用有理数表示它的倒数,即1/√a,可以将其化为标准形式,即有理数乘以二次根式下方同样的含有a的形式。

2、二次根式的加减运算法则二次根式的加减运算也称为合并同类项,即将同类项合并为一项。

二次根式的加减运算法则如下:(1)同类项是指根号下相同的实数项。

(2)同类项之间的加减,只要根号下的实数相同,就可以按加减的基本法则来运算。

(3)二次根式中,有理数的加减可以直接进行,但根号下的实数不能相互加减。

(4)同类项的合并只能在有理数和根号下的实数分别合并后进行。

例如:(1)√7 + 2√7 = 3√7(2)4√3 + 2√3 = 6√3(3)3√7 - 2√7 = √7(4)5√3 - √3 = 4√33、二次根式加减运算的简化方法及应用(1)因数分解法:对于较复杂的二次根式,可以先对根号下的实数进行因数分解后,再合并同类项。

例如:3√12 + 2√27 = 2√3 + 3√3 + 2√3√3= 7√3(2)有理化分母法:当二次根式的分母中含有根号时,为了方便计算,常常需要先用有理数完成分母的有理化,再进行加减运算。

例如:3/(√2 + 1) + 2/(√2 - 1) = (3(√2 - 1) + 2(√2 + 1))/((√2 + 1)(√2 - 1))= (3√2 + 1)/(2 - 1)(其中用到了(a + b)(a - b) = a² - b²的公式)= 3√2 + 1(3)用公式求解法:对于一些二次根式的和差,可以利用二次根式基本公式,将其化为标准形式。

《二次根式的加减》教案设计

《二次根式的加减》教案设计

《二次根式的加减》教案设计
《二次根式的加减》教案设计
一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探索新知
如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.
整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的.运算规律也适用于二次根式.
例1.计算:
(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算
(1)(+6)(3-)(2)(+)(-)
分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
三、巩固练习
课本P20练习1、2.
四、应用拓展
例3.已知=2-,其中a、b是实数,且a+b≠0,
化简+,并求值.
分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有
理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?。

二次根式的加减说课稿5篇

二次根式的加减说课稿5篇

二次根式的加减说课稿5篇二次根式的加减说课稿5篇教学教案是教师教学的重要工具,它能够帮助教师有条不紊地组织和实施教学活动,提高教学效果。

下面是小编为大家整理的二次根式的加减说课稿,如果大家喜欢可以分享给身边的朋友。

二次根式的加减说课稿精选篇1一、素质教育目标(一)知识教学点1.使学生了解最简二次根式的概念和同类二次根式的概念.2.能判断二次根式中的同类二次根式.3.会用同类二次根式进行二次根式的加减.(二)能力训练点通过本节的学习,培养学生的思维能力并提高学生的运算能力.(三)德育渗透点从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.(四)美育渗透点通过二次根式的加减,渗透二次根式化简合并后的形式简单美.二、学法引导1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.三、重点·难点·疑点及解决办法1.教学重点二次根式的加减法运算.2.教学难点二次根式的化简.3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.四、课时安排2课时五、教具学具准备投影片六、师生互动活动设计1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.七、教学步骤(一)明确目标学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.(二)整体感知同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.二次根式的加减说课稿精选篇2教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。

二次根式的加减教案

二次根式的加减教案

课时编号 主备人 备课时间 2017.05.23上课时间课 题12.3 二次根式的加减(1)教学目标1.通过自主探究概括同类二次根式的概念及二次根式加减法法则;2.了解同类二次根式的概念,会识别同类二次根式,会利用法则进行二次根式的加减运算;3.通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.教学重点 同类二次根式的概念及二次根式加减运算法则.教学难点 探讨二次根式加减法运算的方法,快速准确进行二次根式加减法的运算.教学内容师生活动 设计意图情境创设:问题1 现有一块长7.5 m、宽5 m的木板,能否 采用如图所示的方式,在这块木板上截出两个面积分 别是8 d m2和18 d m2的正方形木板?能截出两块正方形木板的条件是什么?能用数 学式子表示吗?探索活动:下列3组二次根式各有什么特征? (1)2,23,22-,215,232; (2)3,35-,36,317,3132;(3)5,203-,125,51. 经过化简以后,被开方数相同的二次根式,叫做同类二次根式. 尝试: 试计算.创设问题情景,引起学生思独立思考,回答问题:被开方数都是2;被开方数相同,像同类项;化简后的被开方数相同. 先独立思考再小组讨论,踊跃回答;设置问题情境,引出课题,激发学生的学习兴趣.通过学生的思考,归纳出同类二次根式的特征,认识同类二次根式的概念.5d7.5dm188818+1.202+402; 2.5-203+125+51. 例1 计算:(1)32+43-22+3; (2)12+18-8-32; (3)40-5101+10 练习:课本练习1.例2 如图,两个圆的圆心相同,半径分别为R 、r ,面积分别是18cm 2、8 cm 2.求圆环的宽度(两圆半径之差).小结:这节课你学到了什么知识?你有什么收获?学生观察并归纳:(1)二次根式化为最简二次根式后,被开方数相同的能合并.(2)二次根式相加减,先化简每个二次根式,然后合并同类二次根式.学生反思本节课学到的知识,谈自己的感受的同时也可以评价自己上课的表现及同学的表现问题出发引发学生思考,提高学生的学习兴趣. 使学生应用类比思想解决问题.培养学生观察、归纳师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力.能力.四、板书设计课后反思:。

八年级数学上册《二次根式的加减法》教案、教学设计

八年级数学上册《二次根式的加减法》教案、教学设计
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了实数的概念和运算法则,对于二次根式这一概念并不陌生。然而,由于二次根式的加减法涉及到的运算较为复杂,学生在实际操作过程中可能会遇到以下困难:对同类二次根式的识别和化简能力不足;在加减运算过程中,对符号的处理不够熟练;对于复杂二次根式的化简和运算缺乏信心和技巧。因此,在教学过程中,教师需要关注以下几点:
3.演示讲解,总结规律
教师针对学生探究过程中遇到的问题进行讲解,强调同类二次根式的识别与化简技巧,总结二次根式加减法的运算规律。
4.实践应用,巩固提高
设计不同难度的练习题,让学生独立完成,巩固所学知识。同时,鼓励学生运用所学知识解决实际问题,提高数学应用能力。
5.拓展延伸,激发创新
对二次根式的加减法进行拓展,引入更高级的根式运算,激发学生的创新意识,培养他们的数学思维能力。
3.解决实际问题时,能够将问题转化为二次根式的加减法运算。
教学设想:
1.创设情境,引入新课
通过生活中与二次根式相关的实际问题,激发学生的学习兴趣,引导学生主动探索二次根式的加减法运算。
2.自主探究,合作交流
(1)让学生自主探究同类二次根式的识别与化简方法,培养他们的逻辑思维能力和动手操作能力;
(2)组织学生进行小组合作交流,分享各自的方法和经验,提高他们的团队协作能力。
1.注重对学生已有知识的激活,引导他们运用已掌握的实数知识来理解和掌握二次根式的加减法;
2.针对不同学生的认知水平,设计有针对性的教学活动,提高他们的识别、化简和运算能力;
3.培养学生的数学思维能力,帮助他们建立起二次根式加减法的运算模型;
4.关注学生的情感需求,鼓励他们克服困难,增强自信心,积极参与课堂讨论和练习。通过以上措施,使学生在轻松、愉快的学习氛围中掌握二次根式的加减法,提高数学素养。

《二次根式加减》教学设计

《二次根式加减》教学设计
1 2 8
初步进行计算, 并强化去括号 后的符号变化 学生板演,并
2 课本例 2,之后补充 ○
24 1 2 1 8 6
说明每一步的 依据,然后师 生订正.
1 中补充(3)结果为负,(4)含分数线, 分析说明:○ 2 中补充括号前是负号的. 作为例 1,例 2 的过渡。○ (二)二次根式加减的应用 1.课本引例 分析:这个实际问题的解决方法可能不同,还可以比 较. 2.课本例 3
一、复习引入 板书课 导语设计:到目前为止,我们已经学习了二次根式的乘 点题, 除、加减运算,这节课来学习二次根式的混合运算. 二、探究新知 (一)二次根式混合运算法则 活动 1、类比计算,说明理由 1 (2 a +3b) a ; ○ 2 (2 a +3b)( a -b); ○ 3 (3 a b-4 a 2 )÷ a ○ (
48 1 4 6) 27
为总结二次根式 的混合运算法则 做铺垫 教师组织学 生小组交 流,进行讨 论. 更好地理解和 运用法则
结合探究内 容师生总结 初步进行计算
(5 2 2 5 )2
并 1 中补充(3)是不能除尽(含分数线)的类 学生板演, 分析说明:○ 2 中补充完全平方公式应用. 型。○ 归纳:二次根式混合运算时,乘法公式仍然适用,仔细 观察式子的特征,灵活运用完全平方公式、平方差公 式来简化运算. (二)二次根式混合运算的应用 1.若 x= 2 1 ,则 x2+x+1= 2.已知 x 求 1 值. 3.如图, 四边形 ABCD 中, AB⊥BC,AD ⊥AB,AB=1,BC=CD=2,求四边形 ABCD 的面 积.
ab与 ab2
m2 n 2 与 m2 n 2

(教案)二次根式的加减运算

(教案)二次根式的加减运算

(教案)二次根式的加减运算【知识与技能】1.把握同类二次根式的概念,会判定同类二次根式,会合并同类二次根式.2.把握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维适应,学会从数学的角度提出问题、明白得问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:[来源:1](1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.[来源:学.科.网Z.X.X.K]这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减运算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,确实是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、摸索探究,猎取新知例1运算:例2运算:[来源:1]【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并.例3运算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍旧适用.[来源:Z|xx|k ]三、运用新知,深化明白得.1.下列运确实是否正确?什么缘故?[来源:Zxxk ]【教学说明】这类运算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展现本节课学习的知识要点.1.布置作业:从教材相应练习和“习题”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习整式的加减法合并同类项,引入二次根式的概念及二次根式的合并方法,对法则的教学与整式的加减比较学习,在明白得、把握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和爱好.。

二次根式的加减法教学设计

二次根式的加减法教学设计

二次根式的加减法教学设计
一、教学目标
1.知识目标:让学生掌握二次根式的加减法的基本概念。

通过加减法,实现对多项式的化简及解方程。

2.能力目标:学习和掌握加减法在二次根式的应用,能熟练地运用加减法化简和解二次方程。

3.情感目标:在学习二次方程的加减法的运用过程中,培养学生克服困难、勇于创新的精神,增强学生对理科的兴趣,引导学生培养良好的学习习惯。

二、教学重点
区分不同类型的二次项式,运用加减法进行规范化简。

四、教学准备
(一)教具准备:多媒体等教具;
(二)教学用书:《新课标通用数学》。

五、教学过程
1、导入。

谈论对对数的应用,让学生把数学应用到现实生活中;
2、自主学习。

让学生仔细领会二次根式的定义,同时利用手机等设备复习二次方程的加减法的运用规则;
3、合作探究。

分组活动,把同学们分别分成两个队伍进行游戏,让一队问出加减法题目,两队分别解答,准确有效地解题,最终获胜。

4、检测诊断。

让学生看到学习成果,看到自己熟练二次根式的加减法,体会成功的喜悦;
5、归纳总结。

复习讲解今天所学的加减法的内容。

用实例形象生动地描述、讲解加减法的规律;
6、布置作业。

让学生做训练题。

练习归纳总结的二次根式的加减法的规律。

六、课后反思
根据学生的学习情况,和运用加减法化简方程的情况,不断改进课堂教学,把教学质量提高到更高的层次。

做到有效的教学、科学的教学,使学生获得良好的学习成效。

人教版数学八年级下册16.3《二次根式加减》教学设计

人教版数学八年级下册16.3《二次根式加减》教学设计
-设想:在讲解重点、难点时,要精讲、细讲,确保学生掌握。同时,加强课堂练习,对学生的解答进行及时反馈,指学过程中,关注学生的情感态度,鼓励学生克服困难,培养他们勇于挑战、自信学习的品质。
四、教学内容与过程
(一)导入新课
1.教学内容:回顾平方根的概念和性质,为新课的学习做好铺垫。
人教版数学八年级下册16.3《二次根式加减》教学设计
一、教学目标
(一)知识与技能
1.理解并掌握二次根式的概念,能够正确书写和识别二次根式。
-学生能够理解二次根式表示的是平方根,掌握二次根式的性质和运算规则。
-学生能够运用二次根式解决实际问题时,能够准确识别问题中的二次根式并进行相应的运算。
2.学会进行二次根式的加减运算,掌握运算步骤和法则。
-学生能够掌握合并同类项的原则,将含有相同根式的代数式进行加减运算。
-学生能够解决含有二次根式的复合运算问题,如加减混合运算,并掌握运算顺序。
3.能够应用二次根式的加减运算解决实际生活中的问题,如面积、体积计算等。
(二)过程与方法
1.通过直观教具和实际例子的展示,引导学生观察、分析二次根式的特点,培养学生从具体到抽象的思维能力。
-学生在解题过程中,教师进行巡回辅导,关注学生的解题方法和技巧,及时纠正错误。
-对学生的练习情况进行点评,强调易错点和关键点,指导学生掌握解题策略。
(五)总结归纳
1.教学内容:对本节课所学的内容进行总结,巩固学生的知识体系。
2.教学过程:
-让学生回顾本节课所学的二次根式的定义、性质、加减运算规则,并进行自我总结。
3.采用问题驱动的教学策略,激发学生的探究欲望,鼓励学生主动参与,提高解决实际问题的能力。
-教师设计不同难度的问题,引导学生自主探究二次根式的性质和运算方法。

《二次根式的加减》四步教学设计

《二次根式的加减》四步教学设计

《二次根式的加减》四步教学设计
回龙镇初级中学校杨拥均
课题:二次根式的加减
课时:第1课时(总课时三课时)
课型:新授课
教学目标:
1.知识目标:二次根式的加减法运算
2.能力目标:能熟练进行二次根式的加减运算。

3.情感态度:培养学生善于思考,一丝不苟的科学精神。

重难点分析:
重点:能熟练进行二次根式的加减运算。

难点:正确合并被开方数相同的二次根式。

教学关键:通过自主探究,运用合作学习的方法;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

运用教具:多媒体等。

教学过程:
★展示学习目标。

见学案和课件(学生分析,加深理解)一.自主学习
1学习教材p14-p15、完成学案1-2题(学习课本,完成学案)
2小组交流二次根式的加减步骤(同学交流,相互提高)
二.合作探究
教材p14例子并总结应用二次根式加减的步骤
归纳总结合并同类的二次根式步骤。

(同学合作,探究提高)三.即时训练
判断正误学案1-8题(同学判断,加深印象)知识训练学案1-2题(同学练习,知识熟练)能力提高学案1-2题(同学训练,能力加强)四.评点总结
1.二次根式加减运算的步骤? (重点回顾,加强概括)
2.如何合并同类二次根式?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的加减法学案
一、复习引入:
1、下列根式中,哪些是最简二次根式?
2、化简下列各数,
(1
2
1 (2)331
(3)a 5,a 20,35a
二、探索新知
提出问题:观察上面各数的结果,你发现他们有什么特点吗?
总结:同类二次根式
谈一谈你对同类二次根式概念的理解
例1:判断下列每组二次根式是否是同类二次根式?
(1)5.0, (2)27,50
1 (3)
(4)38ab ,
b
a
2,5332b a (a>0,b>0)
想一想:计算
(1) (2)
思考:+
2你能计算么
总结:二次根式加减
三、应用新知 例1.计算
(1)3223+ (2
(3))+
二次根式加减法计算步骤:1 2 3
简记:一化,二找,三合并
四.巩固新知 大显身手:
(2)a a 850-
(3) (4)
(5)-
五、小结: 本节课我们学习了什么?
六、课堂检测:
(1
(2)。

相关文档
最新文档