2020学年浙教版八上第五章一次函数单元测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020学年浙教版八上第五章一次函数单元测试卷
一、单选题
1.下列各点在函数y=1-2x的图象上的是()
A.(2,-1
B.(0,2)
C.(1,0)
D.(1,-1)
2.一次函数y=ax+b(a>0)与x轴的交点坐标为(m ,0),则一元一次不等式ax+b≤0的解集应为()
A.x≤m
B.x≤-m
C.x≥m
D.x≥-m
3.若正比例函数的图像经过点(-1,2),则这个图像必经过点()
A.(1,2)
B.(-1,-2)
C.(2,-1)
D.(1,-2)
4.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是()
A.他离家8km共用了30min
B.他等公交车时间为6min
C.他步行的速度是100m/min
D.公交车的速度是350m/mi
5.一次函数y=a1x+b1与y=a2x+b2的图象在同一平面直角坐标系中的位置如图所示,小华根据图象写出下面三条信息:①a1>0,b1<0;②不等式a1x+b1≤a2x+b2的解集是x≥2;③方程组的解是,你认为小华写正确()
A.0个
B.1个
C.2个
D.3个
6.若一次函数y=(m﹣3)x+(m+1)(其中m为常数)的图形经过第一、二、四象限,则m的取值范围是()
A.﹣1≤m≤3
B.m<3
C.﹣1<m<3
D.m>3
7.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P,Q两点同时停止运动.设P点运动的时间为t秒,△APQ的面积为S,则表示S与t之间的函数关系的图象大致是()
A. B.
C. D.
8.下列函数(1)y=2πx;(2)y=-2x+6;(3)y= ;(4)y=x2+3;(5)y= ,其中是一次函数的是().
A.4个
B.3个
C.2个
D.1个
9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()
A.0
B.2
C.3
D.4
10.“龟兔首次赛跑“之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:
①“龟兔再次赛跑”的路程为1000米
②兔子和乌龟同时从起点出发
③乌龟在途中休息了10分钟
④兔子在途中750米处追上乌龟
其中说法正确的是()
A.1个
B.2个
C.3个
D.4个
二、填空题
11.若直线y=(k-2)x+2k-1与y轴交于点(0,1),则k的值等于________ .
12.写一个图象经过第二、四象限的正比例函数:________
13.某书定价为30元,如果一次购买20本以上,超过20本的部分打9折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系式为________
14.函数y=+(x﹣2)0中,自变量x的取值范围是 ________.
15.某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,则使不等式kx+30<x成立的x的取值范围是________
16.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),
点B2的坐标为(3,2),则点A n的坐标为________ .
三、解答题
17.已知直线L1:y=4x和点P(6,4),在直线L1上求一点Q,使过P,Q的直线与直线L1以及x轴在第一象限内所围成的三角形面积最小.
18.已知y关于x的函数y=(m+)(n﹣1)x|n|+m2﹣是正比例函数.
(1)求m,n的值;
(2)根据两点法画出函数图象;
(3)根据正比例函数的性质写出即可.
19.已知A、B两地相距30km,小明以6km/h的速度从A步行到B地的距离为y km,步行的时间为x h.
(1)求y与x之间的函数表达式,并指出y是x的什么函数;
(2)写出该函数自变量的取值范围.
20.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍一副定价60元,乒乓球每盒定价10元.今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买一副乒乓球拍赠两盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).
设该校要买乒乓球x盒,所需商品在甲商店购买需要y1元,在乙商店购买需要y2元.
(1)请分别写出y1、y2与x之间的函数关系式(不必注明自变量x的取值范围);
(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;
(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.
21.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.
方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:
(1)方案一中每个包装盒的价格是多少元?
(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1、y2与x的函数关系式.
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.