平面直角坐标系(提高) 巩固练习
八年级数学平面直角坐标系考点专项练习(含答案)
八年级数学平面直角坐标系考点专项练习类型一确定点的位置1.如图QM1-1,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为()图QM1-1A.(2,3)B.(0,3)C.(3,2)D.(2,2)2.张茜想在中国地图上准确地找到合肥市市政府的位置,下面能够快速准确确定合肥市位置的是()A.北京的西南方向上B.北纬31.5°C.北纬31.5°、东经117°D.东经117°3.如图QM1-2,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为.图QM1-2图QM1-34.如图QM1-3,A在南纬30°、东经120°的位置,B在的位置,C在的位置(用经纬度表示).5.图QM1-4是某学校的平面示意图,借助刻度尺、量角器,解决如下问题:(1)教学楼位于校门的北偏东多少度的方向上?到校门的图上距离约为多少厘米?实际距离呢?(2)某楼位于校门的南偏东约为75°的方向上,到校门的实际距离约为200米,说出这一地点的名称;(3)如果用(2,5)表示图上校门的位置,那么图书馆的位置应如何表示?(10,5)表示哪个地点的位置?图QM1-46.如图QM1-5,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(),B→C(),C→D();(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置.图QM1-5类型二坐标系内点的坐标特征7.若m是任意实数,则点P(m,1-2m)一定不在 ()A.第一象限B.第二象限C.第三象限D.第四象限8.已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a的值为()A.1B.2C.3D.09.在平面直角坐标系中,已知A(-2,1),B(3,1),C(1,-2),D(-2,-2)四个点.(1)线段AB,CD有什么位置关系?并说明理由;(2)顺次连接A,B,C,D四点,得到梯形ABCD,求出它的面积.类型三图形在坐标系内的平移10.已知△ABC在平面直角坐标系中的位置如图QM1-6所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是()A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)图QM1-6图QM1-711.如图QM1-7所示,三架飞机P,Q,R保持编队飞行,某时刻它们在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P飞到P'(4,3)的位置,则飞机Q,R的位置Q',R'分别为()A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)12.小华用直角坐标系描述一个风景区的几个景点的位置,其中猴山与狮子园的坐标分别为(-4,3),(-2,2),他感到这样建立直角坐标系不方便,于是将坐标原点先向左平移4个单位,然后再向上平移1个单位,则移动后猴山与狮子园的坐标分别为.13.把点M向右平移2个单位,再向下平移3个单位得点N(1,1),则点M的坐标是.14.如图QM1-8,在平面直角坐标系中,将线段AB平移至线段CD的位置,连接AC,BD.(1)直接写出图中相等的线段、平行的线段;(2)已知A(-3,0),B(-2,-2),点C在y轴的正半轴上,点D在第一象限内,且S△ACO=5,求点C,D 的坐标.图QM1-815.如图QM1-9,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经过平移后点P的对应点为P1(a+6,b+2).(1)请画出上述平移后的△A1B1C1,并写出点A,C,A1,C1的坐标;(2)求出以A,C,A1,C1为顶点的四边形的面积.图QM1-9类型一有关坐标系的易错题16.点P(-2,-5)到x轴的距离是()A.-2B.-5C.2D.517.已知点P(a+8,a-5)在坐标轴上,则a的值是.18.已知x轴上一点A(3,0),点B在y轴上,连接AB所得的△AOB的面积为6,求点B的坐标.类型二有关坐标系的创新题符合上述条件的点P的坐19.已知点P(x,y)位于第二象限,并且y≤x+4,x,y为整数,写出一个..标:.20.已知平面直角坐标系中有6个点:.A(3,3),B(1,1),C(9,1),D(5,3),E(-1,-9),F-2,-12请将上述的6个点分成两类,并写出同类点具有而另一类点不具有的一个特征(特征不能用否定形式表达).类型三有关坐标系的规律探究题21.如图QM1-10,在平面直角坐标系中,一个点从A(a1,a2)出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此一直运动下去,则a2014+a2015+a2016的值为()图QM1-10A.1006B.1007C.1509D.151122.如图QM1-11,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上,已知OA2=1,则OA2018的长为.图QM1-1123.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图QM1-12),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…,A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…,B n,图形与x轴负半轴的交点依次记作C1(-3,0),C2(-7,0),…,C n,图形与y轴负半轴的交点依次记作D1(0,-4),D2(0,-8),…,D n,发现其中包含了一定的数学规律.请根据你发现的规律解决下列问题:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,C n,D n.图QM1-12期末复习1.D2.C3.(3,2)4.北纬30°、西经60°北纬60°、西经90°5.解:(1)教学楼位于校门的北偏东约为40°的方向上,图上距离约为2.1 厘米,实际距离约为210米.(2)位于校门的南偏东约为75°的方向上,到校门的实际距离约为200米的地点是实验楼.(3)如果用(2,5)表示图上校门的位置,那么图书馆的位置表示为(2,9),(10,5)表示旗杆的位置.6.解:(1)+3,+4 +2,0 +1,-1 (2)9(3)P 的位置如图所示.7.C 8.B9.解:(1)AB ∥CD.理由:∵A (-2,1),B (3,1),∴点A ,B 的纵坐标相同,∴AB ∥x 轴.同理,CD ∥x 轴.∴AB ∥CD.(2)∵AB=5,CD=3,AD=3,∴梯形ABCD 的面积等于(5+3)×3÷2=12.10.B 11.A 12.(0,2),(2,1) 13.(-1,4) 14.解:(1)AB=CD ,BD=AC ,AB ∥CD ,BD ∥AC. (2)∵A (-3,0),∴OA=3. 设OC=x ,∵S △ACO =5,∴12×3x=5,解得x=103,∴点C 的坐标为0,103, ∴点A 向右平移3个单位,向上平移103个单位得到点C. -2+3=1,-2+103=43,故点D 的坐标为1,43. 15.解:(1)△A 1B 1C 1如图所示, A (-3,2),C (-2,0),A 1(3,4),C 1(4,2).(2)如图,连接AA 1,CC 1,S△AC1A1=12×7×2=7,S△AC1C=12×7×2=7,∴四边形ACC1A1的面积为7+7=14.16.D17.5或-818.解:由题意知,直角三角形AOB的面积为6,而|OA|=3,所以|OB|=4.因为点B在y轴上,所以点B的坐标为(0,-4)或(0,4).19.答案不唯一,如(-3,1)20.解:答案不唯一,如点A,B,C,D为一类,它们都在第一象限,点E,F为另一类,它们都在第三象限;或点A,C,E为一类,它们的横坐标与纵坐标的关系是x·y=9,点B,D,F为一类,它们的横坐标与纵坐标的关系是2y=x+1.21.D22.2201623.(1)(9,0)(0,10)(-11,0)(0,-12)(2)(4n-3,0)(0,4n-2)(-4n+1,0)(0,-4n)。
人教版初中数学平面直角坐标系精选课时练习(含答案)1
27.在平面直角坐标系中,点(﹣8,2)所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
28.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)
的坐标为(﹣1,﹣2),则白棋(甲)的坐标是(
)
A.(2,2)
B.(0,1)
C.(2,﹣1)
D.(2,1)
Байду номын сангаас
A. a 1,b 1
B. b 1, a 1 C. b 1, a 1
D. b 1, a 1
8.如图,在平面直角坐标系中,正方形 OABC 的顶点 O、B 的坐标分别是(0,0),(2, 0),则顶点 C 的坐标是( )
试卷第 1页,总 7页
A.(1,1)
B.(﹣1,﹣1)
C.(1,﹣1)
D.(﹣1,1)
1.在平面直角坐标系中,点 A 3, 2 到 x 轴的距离为 ( )
A.3
B. 2
C. 3
D.2
2.在平面直角坐标系中,点 P(-2,x2+1)所在的象限是
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.在平面直角坐标系中,已知 A2, 0 ,B 2, 0 ,则该平面直角坐标系中满足“ ABC
为 C 90 且两条直角边长之比为1: 2 ”的点 C 有( )
1
A.
4
1
B.
3
1
C.
2
25.若 x 轴上的点 P 到 y 轴的距离为 3,则点 P 的坐标为(
D.1 )
A.(3,0)
B.(3,0)或(–3,0)
C.(0,3)
D.(0,3)或(0,–3)
北师大版八年级上册数学[平面直角坐标系(提高版) 知识点整理及重点题型梳理]
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平面直角坐标系(提高)【学习目标】1.了解确定位置的方法,用有序数对或用方向和距离来确定物体的位置.2.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标.3.会用确定坐标、描点、连线的方法在直角坐标系中作出简单图形.【要点梳理】要点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位). 要点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东30°方向78千米的位置,可用代码表示为__________.【思路点拨】根据题目的叙述可知:代码的前四位表示时间,前两位是几点,中间两位表示多少分,后两位是指距离,时间表示方向角,即正对钟表时按:上北,下南,左西,右东的方向,以钟面圆心为基准,时针指向所对应的时间.【答案】050078【解析】解:南偏东30°方向,时针正好指到5点00分,因而代码前4位是:0500,78千米的位置则代码的后两位是78.则代码是:050078.故答案填:050078.【总结升华】正确读懂题目的含义,是解决题目的关键,这一题目就是训练学生审题,理解题目的能力.类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD ,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A ,B ,C ,D 各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A 为坐标原点,边AB 所在的直线为x 轴,边AD 所在直线为y 轴,建立平面直角坐标系,如图(1):A (0,0),B (5,0),C (5,3),D (0,3).解法二:以边AB 的中点为坐标原点,边AB 所在的直线为x 轴,AB 的中点和CD 的中点所在的直线为y 轴,建立平面直角坐标系,如图(2):A (﹣2.5,0),B (2.5,0),C (2.5,3),D (-2.5,3).解法三:以两组对边中点所在直线为x 轴、y 轴,建立平面直角坐标系,如图(3): A (﹣2.5,-1.5),B (2.5,-1.5), C (2.5,1.5), D (-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x 轴和y 轴确定,每一个点的位置也确定,而一旦原点或x 轴、y 轴改变,每一个点的位置也相对应地改变.3.平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC 的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,过点A 、C 分别作平行于y 轴的直线与过B点平行于x 轴的直线交于点D 、E ,则四边形ACED 为梯形,根据点A(-3,-1)、B(1,3)、C(2,-3)可求得AD =4,CE =6,DB =4,BE =1,DE =5,所以△ABC 的面积为:111()222ABC S AD CE DE AD DB CE BE =+--△ 111(46)5446114222=+⨯-⨯⨯-⨯⨯=. 【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三: 【变式】(2015春•莘县期末)在如图所示的正方形网格中,每个小正方形的单位长度均为1,△ABC 的三个顶点恰好是正方形网格的格点.(1)写出图中所示△ABC 各顶点的坐标.(2)求出此三角形的面积.【答案】解:(1)A(3,3),B((﹣2,﹣2),C((4,﹣3);(2)如图所示:S△ABC=S矩形DECF﹣S△BEC﹣S△ADB﹣S△AFC==.类型三、坐标平面及点的特征4.(2016春•沂水县期中)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【思路点拨】根据点的坐标特征一一求解.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,包括坐标轴上的点的坐标特征,平行于坐标轴的点的特征,以及到坐标轴的距离相等的点的特征,考察很全面.举一反三:【变式】若点C(x,y)满足x+y<0,xy>0,则点C在第_____象限.【答案】三.5.一个正方形的一边上的两个顶点O、A的坐标为O(0,0),A(4,0),则另外两个顶点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为B、C,因为OABC是正方形,所以OC=BA=BC=OA=4.且OC∥AB,OA∥BC,则:(1)当顶点B在第一象限时,如图所示,显然 B点坐标为(4,4),C点坐标为(0,4).(2)当顶点B在第四象限时,如图所示,显然B点坐标为(4,-4),C点坐标为(0,-4).【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】点A(m,n)到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.【答案】(2,3)或(-2,3)或(-2,-3)或(2,-3).。
人教版初中数学7平面直角坐标系练习题
.. 人教版初中数学7平面直角坐标系练习题一、选择题(本大题共102小题,共306.0分)1. 点P(x+1,x-1)不可能在第()象限.A. 一B. 二C. 三D. 四2. 我校“心动数学”社团活动小组,在网格纸上为学校的一块空地设计植树方案如下:第k棵树种植在点第x k行y k列处,其中x 1=1,y 1=1,当k≥2时,,[a]表示非负数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点所在的行数是4,则所在的列数是()A. 401B. 402C. 2009D. 20103. 点P(m-1,2m+1)在第二象限,则m的取值范围是()A. B. C. m<1D.4. 一质点P 从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM 的中点M 3处,第二次从M 3跳到OM 3的中点M 2处,第三次从点M 2跳到OM 2的中点M 1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为()A. B. C. D.5. 点A(-3,4)所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 点P在第二象限内,P到x 轴的距离是4,到y轴的距离是3,那么点P的坐标为()A. (-4,3)B. (-3,-4)C. (-3,4)D. (3,-4)7. 在平面直角坐标系中,点(2,-1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 如图,小手盖住的点的坐标可能为()A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)9. 如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为()A. (8,7)B. (7,8)C. (8,9)D. (8,8)10. 在平面直角坐标系中,点P(2,3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11. 如图,点M(-3,4)到原点的距离是()A. 3B. 4C. 5D. 712. 下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|-5|的算术平方根是5;④点P(1,-2)在第四象限,其中正确的个数是()A. 0B. 1C. 2D. 313. 点P(2m-1,3)在第二象限,则m的取值范围是()A. m>B. m≥C. m<D. m≤14. 若点P(1-m,m)在第二象限,则下列关系式正确的是()A. 0<m<1B. m<0C. m>0D. m>115. 已知点P(a,a-1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为()A. B. C. D.16. 如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A. (-2,0)B. (0,-2)C. (1,0)D. (0,1)17. 若|a|=5,|b|=4,且点M(a,b)在第二象限,则点M的坐标是()A. (5,4)B. (-5,4)C. (-5,-4)D. (5,-4)18. 二次函数y=ax 2+bx+c的图象如图所示,则点A(a,b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限19. 点M(-3,4)离原点的距离是多少单位长度()A. 3B. 4C. 5D. 720. 点P(a,b),ab>0,a+b<0,则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限21. 若式子有意义,则点P(a,b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限22. 在直角坐标系xoy中,已知点A(0,2),B(1,3),则线段AB的长度是()A. 1B.C.D. 223. 已知点A的坐标为(-3,4),O为坐标原点,则OA的长为()A. 3B. 4C. 5D. 624. m为整数,点P(3m-9,3-3m)是第三象限的点,则P点的坐标为()A. (-3,-3)B. (-3,-2)C. (-2,-2)D. (-2,-3)25. 点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A. (2,3)B. (-2,-3)C. (-3,2)D. (3,-2)26. 若y轴上的点P到x轴的距离为3,则点P的坐标是()A. (3,0)B. (0,3)C. (3,0)或(-3,0)D. (0,3)或(0,-3)27. 如果xy>0,那么在平面直角坐标系中,点P(x,y)在()A. 第一象限B. 第三象限C. 第一象限或第三象限D. 第二象限或第四象限28. 如图是坐标系的一部分,若M位于点(2,-2)上,N位于点(4,-2)上,则G位于点()上.A. (1,3)B. (1,1)C. (0,1)D. (-1,1)29. 下列语句中,假命题的是()A. 如果A(a,b)在x轴上,那么B(b,a)在y轴上B. 如果直线a、b、c满足a∥b,b∥c,那么a∥cC. 两直线平行,同旁内角互补D. 相等的两个角是对顶角30. 已知a<b<0,则点A(a-b,b)在第()A. 一象限B. 二象限C. 三象限D. 四象限31. 在平面直角坐标系中,点(-1,m 2+1)一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限32. 在平面直角坐标系中,点P(3,-2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限33. 已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限34. 在平面直角坐标系中,点P(-3,2)所在象限为()初中数学试卷第2页,共17页.. A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限35. 若点P(m,n)在第二象限,则点Q(-m,-n)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限36. 若P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为()A. (3,4)B. (-3,4)C. (-4,3)D. (4,3)37. 在直角坐标系中,下列各点到原点的距离不是5的是()A. (4,3)B.C. (5,0)D.38. 已知点M(3a-9,1-a)在x轴上,则a=()A. 1B. 2C. 3D. O39. 在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点A(2,1),B(4,-1),这两个标志点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A. (5,2)B. (-2,1)C. (5,2)或(1,-2)D. (2,-1)或(-2,1)40. 如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A. 黑(3,3),白(3,1)B. 黑(3,1),白(3,3)C. 黑(1,5),白(5,5)D. 黑(3,2),白(3,3)41. 在平面直角坐标系中,已知点P(2,-3),则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限42. 在同一平面直角坐标系中,点A的坐标(2,-1)、点B的坐标(-3,-4),则线段AB的长度为()A. 4B.C. 5D. 643. 点P(0,-3)的位置是()A. x轴的正方向上B. x轴的负方向上C. y轴的正方向上D. y轴的负方向上44. 如图是杭州西湖的部分示意图,如以过“曲院风苑”,“中国印学博物馆”的直线为x轴,以这两景点连线的中垂线为y轴,建立直角坐标系(每一小格表示1),则苏堤春晓的坐标是()A. (-7,2)B. (2,-7)C. (-2,-7)D. (-7,2)45. 在平面直角坐标系中,点(3,3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限46. 在直角坐标系中,点(2,1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限47. 已知y轴上的点P到原点的距离为5,则点P的坐标为()A. (5,0)B. (0,5)或(0,-5)C. (0,5)D. (5,0)或(-5,0)48. 在平面直角坐标系中,点A(2,-3)在第()象限.A. 一B. 二C. 三D. 四49. 点P(m,1)在第二象限内,则点Q(-m,0)在()A. x轴负半轴上B. x轴正半轴上C. y轴负半轴上D. y轴正半轴上50. 在平面直角坐标系中,点P(-3,4)到x轴的距离为()A. 3B. -3C. 4D. -451. 如果实数a、b满足,那么点(a,b)在()A. 第一象限B. 第二象限C. 第二象限或坐标轴上D. 第四象限或坐标轴上52. 在平面直角坐标系中,点P(-1,3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限53. 下列命题:①坐标平面内,点(a,b)与点(b,a)表示同一个点;②要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本容量是40台电视机;③过一点有且只有一条直线与这条直线平行;④如果a<b,那么ac<bc;其中真命题有()A. 3个B. 2个C. 1个D. 0个54. 如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A. A(5,30°)B. B(2,90°)C. D(4,240°)D. E(3,60°)55. 如果点P(m,n)是第三象限内的点,则点Q(-n,0)在()A. x轴正半轴上B. x轴负半轴上C. y轴正半轴上D. y轴负半轴上56. 下列说法正确的是()A. 点P(3,-5)到x轴的距离为-5B. 在平面直角坐标系内,(-1,2)和(2,-1)表示同一个点C. 若x=0,则点P(x,y)在x轴上D. 在平面直角坐标系中,有且只有一个点既在x轴上,又在y轴上57. 在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在()A. 原点B. x轴上C. y轴D. 坐标轴上58. 已知二次函数y=ax 2+bx+c的图象如图所示,则点(ac,bc)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限59. 如图是创星中学的平面示意图,其中宿舍楼暂未标注,已知宿舍楼在教学楼的北偏东约30°的方向,与教学楼实际距离约为200米,试借助刻度尺和量角器,测量图中四点位置,能比较准确地表示该宿舍楼位置的是()A. 点AB. 点BC. 点CD. 点D60. 在坐标平面内,若点P(x-2,x+1)在第二象限,则x的取值范围是()A. x>2B. x<2C. x>-1D. -1<x<261. 若a>0,则点P(-a,2)应在()A. 第-象限内B. 第二象限内C. 第三象限内D. 第四象限内62. 确定平面上一个点的位置,一般需要的数据个数为()A. 3个B. 2个C. 1个D. 无法确定63. 若0<a<1,则点M(a-1,a)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限64. 若a>0,b<-2,则点(a,b+2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限65. 若点P(a,b)到x轴的距离是2,到y轴的距离是4,则这样的点P有()A. 1个B. 2个C. 3个D. 4个66. 已知点P的坐标(a,b)满足b(a 2+1)=0,则点P一定在()A. x轴上B. y轴上C. 原点D. 以上都不对67. 我国最新居民身份证的编号有18位数字.其意义是:如在“510702…”中,“51”表示四川,“07”表示绵阳,“02”表示涪城,接下来的4位是出生的年份,后2位是出生的月份,再后2位是出生的日期,最后4位是编码.若某人的身份证编号是:510702************,则这个人出生的时间是()A. 1987年8月15日B. 1966年2月3日C. 1987年8月1日D. 1981年5月6日68. 在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴的正方向的夹角为α,则用[ρ,α]表示点P的极坐标,显然,点P的坐标初中数学试卷第4页,共17页..和它的极坐标存在一一对应关系,如点P 的坐标(1,1)的极坐标为P[ ,45°],则极坐标Q[2 ,120°]的坐标为( )A. (-,3)B. (-3,)C. (,3)D. (3,)69. 当 <m <1时,点P(3m-2,m-1)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 70. 若点P(a ,4-a)是第二象限的点,则a 必须满足( )A. a <4B. a >4C. a <0D. 0<a <4 71. 若a 为整数,且点M(3a-9,2a-10)在第四象限,则a 2+1的值为( ) A. 17B. 16C. 5D. 472. 下列五个命题:①若直角三角形的两条边长为3与4,则第三条边长是5; ②;=a ,③若点P(a ,b)在第三象限,则点P′(-a ,-b+1)在第一象限;④连接对角线互相垂直且相等的四边形各边中点的四边形是正方形; ⑤两边及其第三边上的中线对应相等的两个三角形全等. 其中正确命题的个数是( ) A. 2个B. 3个C. 4个D. 5个73. 下列五个命题:(1)若直角三角形的两条边长为5和12,则第三边长是13; (2)如果a≥0,那么=a(3)若点P(a ,b)在第三象限,则点P(-a ,-b+1)在第一象限; (4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等. 其中不正确命题的个数是( ) A. 2个B. 3个C. 4个D. 5个74. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( ) A. (3,2) B. (3,1) C. (2,2) D. (-2,2) 75. 两圆半径分别为2和3,圆心坐标分别为(1,0)和(-4,0),则两圆的位置关系是( )A. 外离B. 外切C. 相交D. 内切76. 如图,是象棋盘的一部分.若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( )上. A. (-1,1) B. (-1,2) C. (-2,1) D. (-2,2) 77. 已知点A(3a ,2b)在x 轴上方,y 轴的左边,则点A 到x 轴、y 轴的距离分别为( ) A. 3a ,-2b B. -3a ,2b C. 2b ,-3a D. -2b ,3a 78. 在平面直角坐标系中,点(4,-3)所在象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限79. 如图,下列各点在阴影区域内的是( )A. (3,2)B. (-3,2)C. (3,-2)D. (-3,-2)80. 小明在外地从一个景点回宾馆,在一个岔路口迷了路,问了4个人得到下面四种回答,其中能确定宾馆位置的是( ) A. 离这儿还有3kmB. 沿南北路一直向南走C. 沿南北路走3kmD. 沿南北路一直向南走3km 81. 直角坐标系中,点P(1,4)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 82. 已知点A(2,1),过点A 作x 轴的垂线,垂足为C ,则点C 的坐标为( ) A. (2,1) B. (2,0) C. (0,1) D. (1,0) 83. 若x 轴上的点P 到y 轴的距离为3,则点P 为( )A. (3,0)B. (3,0)或(-3,0)C. (0,3)D. (0,3)或(0,-3)84. 下列说法正确的是( )A. (3,2)和(2,3)表示同一个点B. 点(2,0)在x轴的正半轴上C. 点(-2,1)在第四象限D. 点(-3,2)到x轴的距离为385. 点P(a+1,a-1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限86. 如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A. (35,44)B. (36,45)C. (37,45)D. (44,35)87. 已知点P的坐标是(3,-5),则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限88. 在直角坐标系中,点(x,y)满足x+y<0,xy>0,则点(x,y)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限89. 排列做操队形时,甲、乙、丙位置如图所示,甲对乙说,如果我的位置用(0,0)来表示,你的位置用(2,1)表示,那么丙的位置是()A. (5,4)B. (4,5)C. (3,4)D. (4,5)90. 在横轴上的点()A. 横坐标为0B. 纵坐标为0C. 横,纵坐标为0D. 横,纵坐标不确定91. 下列各点中,在第一象限的点是()A. (2,3)B. (2,-3)C. (-2,3)D. (-2,-3)92. 如果直角坐标系内两个点的横坐标相同,那么过这两点的直线()A. 平行于x轴B. 平行于y轴C. 经过原点D. 以上都不对93. 以关于x、y的方程组的解为坐标的点(x,y)在第二象限.则符合条件的实数m的范围为()A. B. m<-2C. D.94. 如图,一个机器人从O点出发,向正东方向走3m到达A 1点,再向正北方向走6m到达A 2点,再向正西方向走9m到达A 3点,再向正南方向走12m到达A 4点,再向正东方向走15m到达A 5点.按如此规律走下去,当机器人走到A 6点时,离O点的距离是()A. 10mB. 12mC. 15mD. 20 m95. 已知点A(-2,3),则点A在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限96. 已知点P(m+1,m),则点P不可能在第()象限.A. 四B. 三C. 二D. 一初中数学试卷第6页,共17页.97. 如图,在平面直角坐标系中,坐标是(0,-3)的点是()A. 点AB. 点BC. 点CD. 点D98. 已知点M(a+1,a+3)在y轴上,则点M的坐标是()A. (-2,0)B. (0,2)C. (0,4)D. (-4,0)99. 若点A(x,y)在坐标轴上,则()A. x=0B. y=0C. xy=0D. x+y=0100. 点P(m+3,m+1)在直角坐标系x轴上,则点P坐标为()A. (0,-2)B. (0,2C. (-2,0)D. (2,0)101. 已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()A. (-3,-5)B. (5,-3)C. (3,-5)D. (-3,5)102. 点P(1,-2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共100小题,共300.0分)103. 若点(m-4,1-2m)在第三象限内,则m的取值范围是____________.104. 在平面直角坐标系内点A(2,-3)与B(-1,1)的距离是____________.105. 如果点A、B在一个反比例函数的图象上,点A的坐标为(1,2),点B横坐标为2,那么A、B两点之间的距离为____________.106. 在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是____________;当点B的横坐标为4n(n为正整数)时,m=____________(用含n的代数式表示).107. 已知点P(1-2a,a-2)是第三象限的点,则a的整数值是____________.108. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为____________.109. 在平面直角坐标系中,点A(2,m 2+1)一定在第____________象限.110. 如图,用(0,0)表示M点的位置,用(-2,-3)表示O点的位置,则N点的位置可以用____________表示.111. 已知点P在第四象限,且到x轴的距离为2,到y轴的距离为3,则点P的坐标为____________.112. 在直角坐标系中,点M到x轴负半轴的距离为2,到y轴正半轴的距离为4,则M点的坐标为____________.113. 点A(-2,1)在第____________象限.114. 点(-3,4)到y轴的距离为____________个单位,其关于x轴的对称点的坐标为____________.115. P(3,4)到x轴的距离为____________个单位长度,到y轴的距离为____________个单位长度;如果B(m+1,3m-5)到x轴的距离和到y 轴的距离相等,则m=____________.116. 式子有意义,则点P(a,b)在第____________象限.117. 点A位于第二象限,且它的横、纵坐标的积为-8,写出一个满足条件的A点的坐标____________.118. 如果点P(x,y)的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:____________.119. 在电影院内找座位,将“4排3号”简记为(4,3),则(6,7)表示____________.120. 若点A在第二象限,且到x轴的距离为3,到y轴的距离为2,则点A的坐标为____________.121. 某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东40°方向78千米的位置,可用代码表示为____________..122. 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第49秒时跳蚤所在位置的坐标是____________.123. 在平面直角坐标中,已知点P(3-m,2m-4)在第一象限,则实数m的取值范围是____________.124. 如图,在平面直角坐标系中,第一次将△OAB变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3.(1)观察每次变换前后的三角形的变化规律,若将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是____________,B 4的坐标是____________;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是____________,B n的坐标是____________.125. 已知a<b<0,则点A(a-b,b)在第____________象限.126. 已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,写出一个符合上述条件的点P的坐标____________.127. 点P(-3,7)、Q(5,7)之间的距离是____________.128. 若点M(x-1,3-x)在第二象限,则x的取值范围是____________.129. 如图,小强告诉小华图中A,B两点的坐标分别为(-3,5),(3,5),小华一下就说出了C在同一坐标系下的坐标____________.130. 如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标____________;(2)顺次连接(1)中的所有点,得到的图形是____________图形(填“中心对称”、“旋转对称”、“轴对称”);(3)指出(1)中关于点P成中心对称的点____________.131. 点P(m-1,2m+3)关于原点对称的点在第四象限,则m的取值范围是____________.132. 剧院里5排2号可以用(5,2)表示,则7排4号用____________表示.133. 如图,在平面内,两条直线l 1,l 2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l 1,l 2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有____________个.134. 如果点P(2a-6,a-1)在第二象限内,且a为整数,则P点坐标为____________.135. 如果用(7,8)表示七年级八班,那么八年级七班可表示成____________,(9,4)表示的含义是____________.136. 如果点A的坐标为(-1,2),点B的坐标为(3,0),那么线段AB的长为____________.137. 若点P(1-m,m)在第二象限,则(m-1)x>1-m的解集为____________.138. 在平面直角坐标系中,若点P(x+2,x)在第四象限,则x的取值范围是____________.139. 若是第三象限内的点,且a为整数,则a=____________.140. 将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是____________.初中数学试卷第8页,共17页.141. 将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是____________.142. 已知点M(a+1,2-a)的位置在第一象限,则a的取值范围是____________.143. 已知点P(x,y)满足|x-2|+(y+2) 2=0,则点P坐标为____________.144. 点P(5,-12)到原点的距离是____________.145. 在平面直角坐标系xOy中,点P(2,a)在正比例函数的图象上,则点Q(a,3a-5)位于第____________象限.146. 在图所示的平面直角坐标系中表示下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5).(1)A点到原点O的距离是____________个单位长.(2)将△ABC向左平移4个单位,作出平移后的△A′B′C′.(3)连接CE,则直线CE与y轴是什么位置关系?(4)点D到x、y轴的距离分别是多少?147. 如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A⇒B(+1,+4),从B到A记为:B⇒A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A⇒C(____________,____________),B⇒C(____________,____________),C⇒____________(-3,-4);(2)若贝贝的行走路线为A⇒B⇒C⇒D,请计算贝贝走过的路程;(3)若贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,- 2),请在图中标出妮妮的位置E点;(4)在(3)中贝贝若每走1m需消耗1.5焦耳的能量,则贝贝寻找妮妮过程中共需消耗多少焦耳的能量?148. 如果用有序数对(10,25)表示第10排第25列的位置,那么第28排第30列的位置则用有序数对____________来表示.149. 已知点P的坐标为(-2,3),则点P到y轴的距离为____________个单位长度.150. 已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为____________.151. 第二象限内的点P(x,y)满足|x|=5,y 2=4,则点P的坐标是____________.152. 当x=____________时,点P(1+x,1-x)在x轴上.153. 在正比例函数y=-3mx中,函数y的值随x值的增大而增大,则P(m,5)在第____________象限.154. 若点P(2m+4,3m+3)在x轴上,则点P的坐标为____________.155. 如图为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为____________..156. 如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=____________时,AC+BC的值最小.157. 如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt△ABC或Rt△DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(-7,5),E(4,-3).所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以由勾股定理可得:DE= = .下面请你参与:(1)在图①中:AC=____________,BC=____________,AB=____________.(2)在图②中:设A(x 1,y 1),B(x 2,y 2),试用x 1,x 2,y 1,y 2表示AC=____________,BC=____________,AB=____________.(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标.158. 如果两点:M(x 1,y 1),N(x 2,y 2),那么.已知:A(3,-1),B(-1,4),C(1,-6),在△ABC内求一点P,使PA 2+PB 2+PC 2最小,则点P的坐标是____________.159. 如图,已知二次函数y=- x 2+ x+4的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.(1)点A的坐标为____________,点C的坐标为____________;(2)△ABC是直角三角形吗?若是,请给予证明;(3)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由.160. 在平面直角坐标系中点A( ,1)到原点的距离是____________.161. 直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF∥AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.(1)①直线y=x-6与坐标轴交点坐标是A(____________,____________),B(____________,____________);②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);(3)设四边形DCEF落在第一象限内的图形面积为S,求S关于t的函数表达式,并求出S的最大值.162. 如图是一张传说中的“藏宝图”,图上除标明了A﹑B﹑C三点的位置以外,并没有直接标出”宝藏”的位置,但图上注有寻找“宝藏”的方法:把直角△ABC补成矩形,使矩形的面积是A BC的2倍,“宝藏”就在矩形未知的顶点处,那么“宝藏”的位置可能是____________.(用坐标表示)初中数学试卷第10页,共17页.163. 已知点P(-1,2),点Q到y 轴的距离与点P到y轴的距离相等,且PQ=4,则点Q的坐标为____________.164. 如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为____________.165. 在平面直角坐标系中,点P(-4,5)到x轴的距离为____________,到y轴的距离为____________.166. 阅读材料:在直角三角形中,30°所对的直角边是斜边的一半.如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,).动点P从A点开始沿折线AO-OB-BA 运动,点P在AO,OB,BA上运动,速度分别为1,,2(单位长度/秒).一直尺的上边缘l从x轴的位置开始以(单位长度/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.请解答下列问题:(1)过A,B两点的直线解析式是____________;(2)当t﹦4时,点P的坐标为____________;当t=____________,点P与点E重合;(3)作点P关于直线EF的对称点P′.在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?167. 点M(-2,3)到x轴的距离是____________.168. 如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该是____________.169. 如图,点P是反比例函数(k 1>0,x>0)图象上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数(k 2<0且|k 2|<k 1)的图象于E、F两点.(1)图1中,四边形PEOF的面积S 1=____________(用含k 1、k 2的式子表示);(2)图2中,设P点坐标为(2,3).①点E的坐标是(____________,____________),点F的坐标是(____________,____________)(用含k 2的式子表示);②若△OEF的面积为,求反比例函数的解析式.170. 已知点A(x+3,x-3)在x轴上,则点A的坐标为____________.171. 若点P(a,-b)在第二象限内,则点(-a,-b)在第____________象限.172. 在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是____________.173. 甲处表示2街与4巷的十字路口,乙处表示4街与2巷的十字路口,如果用(2,4)表示甲处的位置,那么“(2,4)→(3,4)→(4,4)→(4,3)→(4,2)“表示从甲处到乙处的一种路线.请你仅用5个有序数对写出一种从乙处到甲处的路线.你的路线是:____________.174. 请写出一个在第二象限的点的坐标____________.175. 反比例函数y= 的图象上有一点P(m,n),其坐标是关于t的一元二次方程t 2-3t+k=0的两根,且点P到原点的距离为,则该反比例函数的关系式为____________.176. 在平面直角坐标系中,点(1,-2)位于第____________象限.177. 在平面直角坐标系中,点(-2,-3)在第____________象限.178. 如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为.正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B 到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(____________,____________),B→C(____________,____________),C→____________(+1,____________);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(4)若图中另有两个格点M、N,且M→A(3-a,b-4),M→N(5-a,b-2),则N→A应记为什么?179. 在平面直角坐标系中,点(-2,-1)在第____________象限.180. 已知x轴上点P到y轴的距离是3,则点P坐标是____________.181. 已知点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标是(写出一个符合条件的一个点即可)____________.182. 2008年奥运火炬将在我省传递(传递路线为:昆明-丽江-香格里拉),某校学生小明在我省地图上设定的临沧市位置点的坐标为(-1,0),火炬传递起点昆明市位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标为____________.183. P(3,-4)到x轴的距离是____________.184. 在平面直角坐标系中,若点P(x-2,x)在第二象限,则x的取值范围为____________.185. 点A(-6,8)到x轴的距离为____________,到y轴的距离为____________,到原点的距离为____________.186. 在直角坐标系内,点A(3,)到原点的距离是____________.187. 点A(2,m)与点B(-1,0)之间的距离是5,那么m的值为____________.188. 如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴的对称图形△A 1B 1C 1.(2)写出点A 1,B 1,C 1的坐标(直接写答案).A 1____________B 1____________C 1____________.189. 如图是某学校的平面示意图,在10×10的正方形网格中(每个小方格都是边长为1的正方形),如果分别用(3,1),(3,5)表示图中图书馆和教学楼的位置,那么实验楼的位置应表示为____________.190. 如果P(m+3,2m+4)在y轴上,那么点P的坐标是____________.191. 平面直角坐标系内点P(-2,0),与点Q(0,3)之间的距离是____________.192. 若点P(2m+1,)在第四象限,则m的取值范围是____________.193. 已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是____________.194. 电影院里5排2号可以用(5,2)表示,则(7,4)表示____________.初中数学试卷第12页,共17页。
人教版初1数学7年级下册 第7章(平面直角坐标系)练习试题(含解析)
初中数学七年级下册第七章平面直角坐标系综合练习(考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如果点M (a +3,a +1)在直角坐标系的x 轴上,那么点M 的坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4)2、若点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-1)3、点P (−2,−3)向上平移3个单位,再向左平移1个单位,则所得到的点的坐标为( )A .()1,0-B .()1,6-C .()3,6--D .()3,0-4、一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)5、若点B (m +1,3m ﹣5)到x 轴的距离与到y 轴的距离相等,则点B 的坐标是( )A .(4,4)或(2,2)B .(4,4)或(2,﹣2)C .(2,﹣2)D .(4,4)6、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--7、在平面直角坐标系中,点A (0,3),B (2,1),经过点A 的直线l ∥x 轴,C 是直线l 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .(0,1)B .(2,0)C .(2,﹣1)D .(2,3)8、点P 在第二象限内,P 点到x 、y 轴的距离分别是4、3,则点P 的坐标为( )A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4)9、在平面直角坐标系中,李明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位长度;当n 被3除,余数是1时,则向右走1个单位长度;当n 被3除,余数是2时,则向右走2个单位长度.当走完第12步时,棋子所处位置的坐标是( )A .(9,3)B .(9,4)C .(12,3)D .(12,4)10、在平面直角坐标系中,若点M (﹣2,3)与点N (﹣2,y )之间的距离是5,那么y 的值是( )A .﹣2B .8C .2或8D .﹣2或8二、填空题(5小题,每小题4分,共计20分)1、若点P (m ,n )的坐标满足m n mn +=,则称点P 为“和诣点”,请写出一个“和诣点”的坐标____.2、已知点P (﹣10,3a +9)不在任何象限内,则a 的值为_____.3、如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2021秒点P 所在位置的坐标是 ___.4、如图所示,在平面直角坐标系中,射线OA 将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A 的坐标为________.5、在平面直角坐标系中,点A (﹣2,1),B (2,4),C (x ,y ),BC //y 轴,当线段AC 最短时,则此时△ABC 的面积为____.三、解答题(5小题,每小题10分,共计50分)1、五一假期到了,七年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是(4,2)-.”王磊说:“丛林飞龙的坐标是(2,1)--.”若他们二人所说的位置都正确,请完成下列问题.(1)在图中建立适当的平面直角坐标系;(2)用坐标表示出西游传说、华夏五千年、太空飞梭、南门的位置.2、已知点3(22P a +,23)a -,根据下列条件,求出点P 的坐标.(1)点P 在y 轴上;(2)点Q 的坐标为(3,)a -,直线//PQ x 轴.3、在平面直角坐标系中,点A 的坐标是()35,1a a -+.(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 在第二象限且到x 轴的距离与到y 轴的距离相等,求a 的值及点A 的坐标.4、如图所示,在平面直角坐标系中,已知点A (-5,0),B (-3,0),C (-1,2),求出△ABC 的面积.5、如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 在x 轴上,顶点C 在y 轴上,且∠ACB =90°.(1)图中与∠ABC 相等的角是 ;(2)若AC =3,BC =4,AB =5,求点C 的坐标.---------参考答案-----------一、单选题1、B【分析】因为点(3,1)M a a ++在直角坐标系的x 轴上,那么其纵坐标是0,即10a +=,1a =-,进而可求得点M 的横纵坐标.【详解】点(3,1)M a a ++在直角坐标系的x 轴上,10a ∴+=,1a ∴=-,把1a =-代入横坐标得:32a +=.则M 点坐标为(2,0).故选:B .【点睛】本题主要考查了点在x 轴上时纵坐标为0的特点,解题的关键是掌握在x 轴上时纵坐标为0.2、D【分析】先判断出点M 的横、纵坐标的符号,再根据点M 到x 轴、y 轴的距离即可得.【详解】解: 点M 在第四象限,∴点M的横坐标为正数,纵坐标为负数,点M到x轴的距离为1,到y轴的距离为2,∴点M的纵坐标为1-,横坐标为2,M-,即(2,1)故选:D.【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.3、D【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:将点P(-2,-3)向上平移3个单位,再向左平移1个单位,所得到的点的坐标为(-2-1,-3+3),即(-3,0),故选:D.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4、C【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;故选:C.【点睛】本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.5、B【分析】根据到x轴的距离与它到y轴的距离相等可得m+1=3m-5,或m+1+3m-5=0,解方程可得m的值,求出B 点坐标.【详解】解:由题意得:m+1=3m-5,或m+1+3m-5=0,解得:m=3或m=1;当m=3时,点B的坐标是(4,4);当m=1时,点B的坐标是(2,-2).所以点B的坐标为(4,4)或(2,-2).故选:B.【点睛】本题主要考查了点的坐标,关键是掌握到x轴的距离与它到y轴的距离相等时横坐标的绝对值=纵坐标的绝对值.6、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】-在第四象限,故本选项不合题意;解:A、(2,1)-在第二象限,故本选项不合题意;B、(2,1)C、(2,1)在第一象限,故本选项符合题意;--在第三象限,故本选项不合题意;D、(2,1)故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.8、C【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】∵P点到x、y轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.9、D【分析】设走完第n步,棋子的坐标用A n来表示.列出部分A点坐标,发现规律“A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”,根据该规律即可解决问题.【详解】解:设走完第n 步,棋子的坐标用A n 来表示.观察,发现规律:A 0(0,0),A 1(1,0),A 2(3,0),A 3(3,1),A 4(4,1),A 5(6,1),A 6(6,2),…,∴A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n ).∵12=4×3,∴A 12(12,4).故选:D .【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n )”.本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列出部分A 点的坐标,根据坐标的变化发现规律是关键.10、D【分析】根据点M (﹣2,3)与点N (﹣2,y )之间的距离是5,可得35y -=,由此求解即可.【详解】解:∵点M (﹣2,3)与点N (﹣2,y )之间的距离是5,∴35y -=,∴8y =或2y =-,故选D .【点睛】本题主要考查了坐标与图形,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题【解析】【分析】+=,当m=2时,代入得到2+n=2n,求出n即可.由题意点P(m,n)的坐标满足m n mn【详解】+=,,解:∵点P(m,n)的坐标满足m n mn当m=2时,代入得:2+n=2n,∴n=2,故答案为(2,2).【点睛】此题主要考查了点的坐标,正确掌握“和谐点”的定义是解题关键.2、-3【解析】【分析】根据点P(﹣10,3a+9)不在任何象限内,可得390a+=,从而得解.【详解】解:∵点P(﹣10,3a+9)不在任何象限内,∴390a+=,a=-,解得:3故答案为:3-.【点睛】本题考查了在平面直角坐标系表示点,熟知平面直角坐标系中点的坐标特征是解本题的关键.【解析】【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0),动点P第24=4×6秒运动到(4,0),动点P第48=6×8秒运动到(6,0),以此类推,动点P第2n(2n+2)秒运动到(2n,0),∴动点P第2024=44×46秒运动到(44,0),2024-2021=3,∴按照运动路线,差3个单位点P到达(44,0),∴第2021秒点P所在位置的坐标是(44,3),故答案为:(44,3).【点睛】本题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.4、(113,3)##(233,3)【解析】【分析】过A点作AB⊥y轴于B点,作AC⊥x轴于C点,由于射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所以两边的面积分别为3.5,△AOB面积为5.5,即12OB×AB=5.5,可解AB,则A点坐标可求.【详解】解:过A点作AB⊥y轴于B点,作AC⊥x轴于C点,则AC=OB,AB=OC.∵正方形的边长为1,∴OB=3.∵射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,∴两边的面积分别为3.5.∴△AOB面积为3.5+2=5.5,即12OB×AB=5.5,1 2×3×AB=5.5,解得AB=113.所以点A坐标为(113,3).故答案为:(113,3).【点睛】本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标.5、6【解析】【分析】由垂线段最短可知点BC ⊥AC 时,AC 有最小值,从而可确定点C 的坐标,进而可求面积.【详解】解:依题意可得://BC y Q 轴,2x ∴=,根据垂线段最短,当BC AC ⊥于点C 时,点A 到BC 的距离最短,此时点C 的坐标为:(21),,∴4,3AC BC ==,∴1143622ABC S AC BC ==⨯⨯= ,故答案为:6.【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.三、解答题1、(1)见解析;(2)(3,3),(1,4)--,(0,0),(0,5)-【解析】【分析】(1)根据题意可的,太空飞梭为坐标原点,水平方向为x ,竖直方向为y ,建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【详解】解:(1)由题意可得,太空飞梭为坐标原点,水平方向为x ,竖直方向为y ,建立平面直角坐标系,如下图:(2)西游传说(3,3),华夏五千年(1,4)--,太空飞梭(0,0)、南门(0,5)-【点睛】本题考查了坐标确定位置,根据已知条件确定出坐标原点的位置是解题的关键.2、(1)P 点的坐标为17(0,)3-;(2)P 点的坐标为13(2,3).【解析】【分析】(1)根据y 轴上的点横坐标为0,列式求出a 的值即可得出结果;(2)根据//PQ x 可得23a a -=,求解即可.【详解】解:(1)令3202a +=,解得43a =-,417232()333a ∴-=⨯--=-,P ∴点的坐标为17(0,)3-;(2)令23a a -=,解得3a =.∴3313232222a +=⨯+=,232333a -=⨯-=,所以P 点的坐标为13(2,3).【点睛】本题考查平面直角坐标系中点的坐标特征,熟知y 轴上的点横坐标为0以及平行于x 轴上的点纵坐标相等是解本题的关键.3、(1)53a =,80,3⎛⎫⎪⎝⎭;(2)1a =,()2,2A -【解析】【分析】(1)根据A 点在y 轴上可得35=0a -,解方程即可求出a 的值和A 点坐标;(2)根据点A 在第二象限且到x 轴的距离与到y 轴的距离相等,可得()351a a -=-+,解方程求解即可求出a 的值和A 点坐标.【详解】解:(1) 点A 在y 轴上,∴350a -=,解得:53a =,813a +=,点A 的坐标为:80,3⎛⎫ ⎪⎝⎭;(2) 点A 在第二象限且A 到x 轴的距离与到y 轴的距离相等,∴()351a a -=-+,解得:1a =,则点()2,2A -.【点睛】此题考查了平面直角坐标系中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中点的坐标特点.4、2【解析】【分析】首先根据题意求出AB 的长度和AB 边上的高的长度,然后根据三角形面积公式求解即可.【详解】解:作CD ⊥x 轴,垂足为点D .因为A (- 5,0),B (- 3,0),C (-1,2),所以OA =5,OB =3,CD =2,所以AB =OA -OB =5-3=2.所以S △ABC =12AB ·CD =12×2×2=2.【点睛】此题考查了网格中三角形面积的求法,解题的关键是根据题意求出AB的长度和AB边上的高.5、(1)∠ACO;(2)点C的坐标为(0,125).【解析】【分析】(1)由同角的余角相等,可得到∠ABC=∠ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OC⊥AB,∠ACB=90°.∴∠ABC+∠BCO=∠ACO+∠BCO=90°,∴∠ABC=∠ACO;故答案为:∠ACO;(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°1 2AB⨯CO=12AC⨯BC,即CO=345⨯=125,∴点C的坐标为(0,125).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.。
平面直角坐标系复习讲义(知识点+典型例题)
D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
专题11平面直角坐标系(基础巩固练习) 解析版
2021年中考数学专题11 平面直角坐标系(基础巩固练习,共31个小题)一、选择题:1.(2020•黄冈)在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.2.(2020•邵阳)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)【答案】B【解析】解:∵a+b>0,ab>0,∴a>0,b>0.A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;B、(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;C、(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;D、(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;故选:B.3.(2020•毕节市)在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是()A.(5,4)B.(4,5)C.(﹣4,5)D.(﹣5,4)【答案】C【解析】解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=﹣4,y=5,∴点M的坐标为(﹣4,5),故选:C.4.(2020•宜昌)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是()A.小李现在位置为第1排第2列 B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列 D.小谢现在位置为第4排第2列【答案】B【解析】解:根据题意画出图形可得:A、小李现在位置为第1排第4列,此选项说法错误;B、小张现在位置为第3排第2列,此选项说法正确;C、小王现在位置为第2排第3列,此选项说法错误;D、小谢现在位置为第4排第4列,此选项说法错误;故选:B.5.(2018•北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【答案】D【解析】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,每个方格的长度表示1,所以表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,每个方格的长度表示2,所以表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,可建立如图所示平面直角坐标系,每个方格的长度表示2,所以表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,如上图所示,每个方格的长度表示3,所以表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:D.6.(2020•兰州)若点A(﹣4,m﹣3),B(2n,1)关于x轴对称,则()A.m=2,n=0 B.m=2,n=﹣2 C.m=4,n=2 D.m=4,n=﹣2【答案】B【解析】解:根据题意:m﹣3=﹣1,2n=﹣4,所以m=2,n=﹣2.故选:B.7.(2020秋•盐田区期末)在平面直角坐标系中,点P(3,4)到原点的距离是()A.3 B.4 C.5 D.±5【答案】C【解析】解:∵点P(3,4),∴点P到原点的距离是√(32+(4−0)2=5.故选:C.8.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【答案】C【解析】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.9.(2019秋•张店区期末)在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是()A.﹣2 B.8 C.2或8 D.﹣2或8【答案】B【解析】解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,∴|y﹣3|=5,解得:y=8或y=﹣2.故选:D.10.(2020•浙江自主招生)代数式2+4+√(12−x)2+9的最小值为()A.12 B.13 C.14 D.11【答案】B【解析】解:如图所示:设P点坐标为P(x,0),原式可化为√(x−0)2+[0−(−2)]2+√(x−12)2+(0−3)2,即√(x−0)2+[0−(−2)]2=AP,√(x−12)2+(0−3)2=BP,AB=√122+52=13.代数式√x2+4+√(12−x)2+9的最小值为13.故选:B.11.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)【答案】D【解析】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.12.(2020•台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【答案】D【解析】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C (0,﹣1),∴F(0+3,﹣1+2),即F(3,1),故选:D.13.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)【答案】C【解析】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A 2019的坐标是(1009,0).故选:C .14.(2019•阜新)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A (4,0),B (0,3),则点C 100的坐标为( )A .(1200,125) B .(600,0) C .(600,125)D .(1200,0)【答案】B【解析】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上. ∵A (4,0),B (0,3), ∴OA =4,OB =3, ∴AB =2+OB 2=5,∴点C 2的横坐标为4+5+3=12=2×6,同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n ×6(n 为正整数), ∴点C 100的横坐标为100×6=600, ∴点C 100的坐标为(600,0).故选:B .15.(2019•日照)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A【解析】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×12=−1008.∴A2019的坐标为(﹣1008,0).故选:A.二、填空题:1.(2020•金华)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).【答案】﹣1(答案不唯一)【解析】解:∵点P(m,2)在第二象限内,∴m<0,则m的值可以是﹣1(答案不唯一).故答案为:﹣1(答案不唯一).2.(2018•柳州)如图,在平面直角坐标系中,点A的坐标是.【答案】(﹣2,3)【解析】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).3.(2017•六盘水)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(,).【答案】﹣1,1【解析】解:∵A(﹣2,1),B(﹣6,0),∴建立如图所示的平面直角坐标系,∴C(﹣1,1).故答案为:﹣1,1.4.(2019•白银)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“卒”位于点.【答案】(﹣1,1)【解析】解:如图所示:可得原点位置,则“卒”位于(﹣1,1).故答案为:(﹣1,1).5.(2016•梅州)已知点P(3﹣m,m)在第二象限,则m的取值范围是.【答案】m>3【解析】解:∵点P(3﹣m,m)在第二象限,∴{3−m<0m>0解得:m>3;故答案为:m>3.6.(2020•广安)在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab=.【答案】12【解析】解:∵点A(a,2)与点B(6,b)关于原点对称,∴a=﹣6,b=﹣2,∴ab=12,故答案为:12.7.(2018•临安区)P(3,﹣4)到x轴的距离是.【答案】4【解析】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.8.(2020春•盘龙区期末)已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为.【答案】1或﹣3【解析】解:∵平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,∴|2a+2|=4,解得:a1=1,a2=﹣3.故答案为:1或﹣3.9.(2016•衡阳)点P(x﹣2,x+3)在第一象限,则x的取值范围是.【答案】x>2【解析】解:∵点P(x﹣2,x+3)在第一象限,∴{x−2>0 x+3>0,解得:x>2.故答案为:x>2.10.(2018•北京)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.【答案】3【解析】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:311.(2020•金昌)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为.【答案】(7,0)【解析】解:∵A(3,√3),D(6,√3),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0),故答案为(7,0).12.(2020•朝阳)如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P所在位置的坐标是.【答案】(45,43)【解析】解:由题意分析可得,动点P第8=2×4秒运动到(2,0),动点P第24=4×6秒运动到(4,0),动点P第48=6×8秒运动到(6,0),以此类推,动点P第2n(2n+2)秒运动到(2n,0),∴动点P第2024=44×46秒运动到(44,0),2068﹣2024=44,∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位,∴第2068秒点P所在位置的坐标是(45,43),故答案为:(45,43).13.(2020•齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是.【答案】22020(形式可以不同,正确即得分)【解析】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的腰长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的腰长为10﹣6=4,∴第3个等腰直角三角形的面积=12×4×4=8=23,…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).14.(2020•广安)如图,在平面直角坐标系中,边长为2的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3…以此类推,则正方形OB2020B2021C2021的顶点B2021的坐标是.【答案】(﹣21011,﹣21011)【解析】解:观察,发现:B1(2,2),B2(0,4),B3(﹣4,4),B4(﹣8,0),B5(﹣8,﹣8),B6(0,﹣16),B7(16,﹣16),B8(32,0),B9(32,32),…,∴B8n+1(24n+1,24n+1)(n为自然数).∵2021=8×252+5,∴B2021的纵横坐标符号与点B5的相同,∴点B2021的坐标为(﹣21011,﹣21011).故答案为:(﹣21011,﹣21011).15.(2019•绥化)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2019的坐标是.【答案】(20192,√32)【解析】解:由题意知, A 1(12,√32) A 2(1,0) A 3(32,√32) A 4(2,0) A 5(52,−√32) A 6(3,0) A 7(72,√32) …由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:√32,0,√32,0,−√32,0这样循环,∴A 2019(20192,√32), 故答案为:(20192,√32)三、解答题:1.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周小最小,请画出△PAB,并直接写出P的坐标.【答案】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0)。
平面直角坐标系练习题
平面直角坐标系练习题1.已知点P的坐标为(﹣3,﹣4),则点P到y轴的距离为()A.﹣3B.3C.4D.﹣42.点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<04.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)5.已知点P(x,y)在第四象限,且到y轴的距离为3,到x轴的距离为5,则点P的坐标是()A.(3,﹣5)B.(5,﹣3)C.(﹣3,5)D.(﹣5,3)6.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,5)D.(44,2)7.在平面直角坐标系中,在第三象限的点是()A.(﹣3,5)B.(1,﹣2)C.(﹣2,﹣3)D.(1,1)8.已知点P(2﹣x,3x+6),且点P到两坐标轴的距离相等,则点P的坐标为()A.(﹣6,6)B.(3,﹣3)C.(6,﹣6)或(3,3)D.(﹣6,6)或(﹣3,﹣3)9.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)10.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如果P(m+3,2m+1)在y轴上,那么点P的坐标是.12.已知点P(x,y)的坐标满足|x|=5,y=,则xy<0,则点P的坐标是.13.已知M(3a﹣2,a+6),若点M到两坐标轴的距离相等,则a的值为.14.若点P(1﹣a,1+b)在第四象限,则点(a﹣1,b)在第象限.15.若点P(a+5,2a+1)在第二、四象限角平分线上,则a=.16.若点P(a,b)到x轴的距离是4,到y轴的距离是3,且|a﹣b|=b﹣a,则点P的坐标是.17.在平面直角坐标系中,点P(m2+1,﹣3)在第象限.18.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.19.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC.20.在平面直角坐标系中,有A(0,a),B(b,0)两点,且a,b满足b=(1)求A,B两点的坐标;(2)若点P在x轴上,且△P AB的面积为6,求点P的坐标.函数练习题一:平面直角坐标系答案1.已知点P的坐标为(﹣3,﹣4),则点P到y轴的距离为()A.﹣3B.3C.4D.﹣4【解答】解:∵点P的坐标为(﹣3,﹣4),∴点P到y轴的距离为:|﹣3|=3.故选:B.2.点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题可得,点(2,﹣2)所在的象限是第四象限,故选:D.3.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<0【解答】解:由题意得:,解得:0<a<2,故选:A.4.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)【解答】解:如图所示:则“兵”位于(﹣3,2).故选:B.5.已知点P(x,y)在第四象限,且到y轴的距离为3,到x轴的距离为5,则点P的坐标是()A.(3,﹣5)B.(5,﹣3)C.(﹣3,5)D.(﹣5,3)【解答】解:∵点P(x,y)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∵点P到x轴的距离为5,∴点P的纵坐标是﹣5,∴点P的坐标(3,﹣5);故选:A.6.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,5)D.(44,2)【解答】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了2=1×2分钟,将向左运动,(2,2)表示粒子运动了6=2×3分钟,将向下运动,(3,3)表示粒子运动了12=3×4分钟,将向左运动,...于是会出现:(44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动,∴在第2021分钟时,粒子又向下移动了2021﹣1980=41个单位长度,∴粒子的位置为(44,3),故选:B.7.在平面直角坐标系中,在第三象限的点是()A.(﹣3,5)B.(1,﹣2)C.(﹣2,﹣3)D.(1,1)【解答】解:A、(﹣3,5)在第二象限,不符合题意;B、(1,﹣2)在第四象限,不符合题意;C、(﹣2,﹣3)在第三象限,符合题意;D、(1,1)在第一象限,不符合题意,故选:C.8.已知点P(2﹣x,3x+6),且点P到两坐标轴的距离相等,则点P的坐标为()A.(﹣6,6)B.(3,﹣3)C.(6,﹣6)或(3,3)D.(﹣6,6)或(﹣3,﹣3)【解答】解:∵点P(2﹣x,3x+6)到两坐标轴的距离相等,则①2﹣x+3x+6=0 解得:x=﹣4,∴点P的坐标为(6,﹣6)②2﹣x=3x+6,解得:x=﹣1,∴点P的坐标为(3,3),综上:点P的坐标为(3,3),(6,﹣6),故选:C.9.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)【解答】解:如图所示:市场的位置是(5,3),故选:D.10.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.11.如果P(m+3,2m+1)在y轴上,那么点P的坐标是(0,﹣5).【解答】解:∵P(m+3,2m+1)在y轴上,∴m+3=0,解得m=﹣3,即2m+1=﹣6+1=﹣5.即点P的坐标为(0,﹣5).故答案为:(0,﹣5).12.已知点P(x,y)的坐标满足|x|=5,y=,则xy<0,则点P的坐标是(﹣5,).【解答】解:∵|x|=5,∴x=5或﹣5,∵xy<0,y=,∴x=﹣5,∴点P的坐标为(﹣5,).故答案为:(﹣5,).13.已知M(3a﹣2,a+6),若点M到两坐标轴的距离相等,则a的值为4或﹣1.【解答】解:∵M(3a﹣2,a+6),若点M到两坐标轴的距离相等,∴|3a﹣2|=|a+6|,∴3a﹣2=a+6或3a﹣2=﹣(a+6),∴a=4或a=﹣1,故答案为4或﹣1.14.若点P(1﹣a,1+b)在第四象限,则点(a﹣1,b)在第三象限.【解答】解:∵点P(1﹣a,1+b)在第四象限,∴1﹣a>0,1+b<0,∴a<1,b<﹣1,∴a﹣1<0,b<0,∴(a﹣1,b)在第三象限,故答案为:三.15.若点P(a+5,2a+1)在第二、四象限角平分线上,则a=﹣2.【解答】解:由点P(a+5,2a+1)点在第二、四象限的角平分线上,得a+5+2a+1=0,解得a=﹣2,故答案为:﹣2.16.若点P(a,b)到x轴的距离是4,到y轴的距离是3,且|a﹣b|=b﹣a,则点P的坐标是(3,4)或(﹣3,4).【解答】解:∵点P(a,b)到x轴的距离是4,到y轴的距离是3,∴a=±3,b=±4,∵|a﹣b|=b﹣a,∴b﹣a>0,则b>a,当b=4,则a=±3,当b=﹣4,a的值不合题意,故点P的坐标是:(3,4)或(﹣3,4).故答案为:(3,4)或(﹣3,4).17.在平面直角坐标系中,点P(m2+1,﹣3)在第四象限.【解答】解:因为m2+1≥1,所以点P(m2+1,﹣3)在第四象限.故答案为:四.18.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.【解答】解:如图,描出点A(﹣3,4)、B(﹣3,3)、C(3,﹣3)、D(3,4),19.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)S△ABC=4×5﹣=7.20.在平面直角坐标系中,有A(0,a),B(b,0)两点,且a,b满足b=(1)求A,B两点的坐标;(2)若点P在x轴上,且△P AB的面积为6,求点P的坐标.【解答】解:(1)依题意,得:,解得a=﹣2;则b=﹣3.所以A(0,﹣2),B(﹣3,0);(2)设P(x,0),由题意知,|x+3|×2=6.解得x=3或x=﹣9.所以点P的坐标(3,0)或(﹣9,0).。
第七章全章巩固训练
《平面直角坐标系》全章复习与巩固(基础)巩固练习【巩固练习】一、选择题1.点P(0,3)在().A.x轴的正半轴上B.x的负半轴上C.y轴的正半轴上D.y轴的负半轴上2.如图中△ABC到△A'B'C'经历了如何的变化().A.向左平移4个单位B.向右平移4个单位C.向左平移3个单位D.向右平移3个单位3.将某图形的横坐标减去2,纵坐标保持不变,可将图形().A.横向向右平移2个单位B.横向向左平移2个单位C.纵向向右平移2个单位D.纵向向左平移2个单位4.(广东佛山)在平面直角坐标系中,点M(-3,2)关于x轴对称的点在( ).A.第一象限B.第二象限C.第三象限D.第四象限5.点P的坐标为(3a-2,8-2a),若点P到两坐标轴的距离相等,则a的值是().A.23或4 B.-2或6 C.23-或-4 D.2或-66. 如图是被墨迹污染的旅游区各景点地图,隐约可见,第一景点的坐标为(0,3),第二景点的坐标为(5,3),景区车站坐标为(0,0),则车站大约在().A.点A B.点B C.点C D.点D7.若点A(m,n)在第二象限,则点B(|m|,-n)在( ).A.第一象限B.第二象限C.第三象限D.第四象限8.点P(m+3,m+1)在直角坐标系的x轴上,则P点的坐标为( ).A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)二、填空题9.如图,若点E坐标为(-2,1),点F坐标为(1,-1),则点G的坐标为.10. 点P(-5,4)到x轴的距离是,到y轴的距离是.11. 若点M在第二象限,到x轴的距离是2,到y轴的距离是3,则M的坐标是.12.若点(a,b)在第二象限,则点(b,a)在第象限.13.将点P(-1,-2)向下平移2个单位,再向右平移3个单位,得到P1,则点P1的坐标是.14.点B与点C的横坐标相同,纵坐标不同,则直线BC与x轴的关系为.15.(沈阳)在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.16.在平面直角坐标系内,已知点A(1-2k,k-2)在第三象限,且k为整数,则k的值为.三、解答题17.如图所示,三角形ABC三个顶点的坐标分别是A(-2,3),B(-2,-4),C(2,2).求三角形ABC的面积.18.(1)在直角坐标系中,用线段依次连接点(1,0),(1,3),(7,3),(7,0),(1,0)和(0,3),(8,3),(4,5),(0,3),两组图形共同组成一个什么图形?(2)如果将上面各点的横坐标都加上1,纵坐标不变,那么用同样方式连接相应各点,所得的图形发生了什么变化?19.已知A(0,0),B(9,O),C(7,5),D(2,7),求四边形ABCD的面积.20.小杰与同学去游乐城游玩,他们准备根据游乐城平面示意图安排游玩顺序.(1)如果用(8,5)表示入口处的位置,(6,1)表示高空缆车的位置,那么攀岩的位置如何表示?(4,6)表示哪个地点?(2)你能找出哪个游乐设施离入口最近,哪个游乐设施离入口最远吗?(3)请你帮小杰设计一条游玩路线,与同学交流,看谁设计的路线最短?【答案与解析】一.选择题1. 【答案】C ;【解析】横坐标为0,说明点在y 轴上,又纵坐标大于0,说明点在y 轴的正半轴上.2. 【答案】D ;【解析】看对应点的左边变化即得答案.3. 【答案】B.4. 【答案】C ;【解析】关于x 轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数.5. 【答案】D ;【解析】由题意得:3282a a -=-,解得:2a =或6-.6. 【答案】B ;【解析】根据已知的坐标,可建立平面直角坐标系,如图,由此可得答案.7. 【答案】D ;【解析】第二象限的点横坐标为负,纵坐标为正,所以m <0且n >0,所以|m|>0,-n <0,点B(|m|,-n)在第四象限,故选D .8. 【答案】B ;【解析】在x 轴上点的纵坐标为0,所以m+1=0,可得m =-1,m+3=2,所以P 点的坐标为(2,0),故选B .二.填空题9. 【答案】(1 ,2);【解析】由图可知,点G的横坐标与点F的横坐标相同,均为1,而纵坐标比点E的纵坐标大1,所以点点G 的坐标为(1,2).10.【答案】4,5.11.【答案】(-3 ,2).12.【答案】四;【解析】由点(a,b)在第二象限,可得a<0,b>0,即得点(b,a)的横坐标大于0,而纵坐标小于0,所以点(b,a)在第四象限.13.【答案】(2,-4);【解析】-1+3=2,-2-2=-4.14.【答案】垂直.15.【答案】-4或6;【解析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x的值.16. 【答案】1.【解析】∵点A(1-2k,k-2)在第三象限,∴1-2k<0,k-2<0,解得:0.5<k<2,又∵k为整数,∴k=1.三.解答题17.【解析】解:因为AB=3-(-4)=7.高h=2-(-2)=4,所以三角形ABC的面积117414 22AB h==⨯⨯=.18.【解析】解:如图所示,(1)小房子.(2)形状不变,位置沿水平方向向右平移了一个单位长度.19.【解析】解:过点C 作CF ⊥x 轴于点F ,过D 作DE ⊥x 轴于点E则AE=2,DE=7,BF=2,CF=5,EF=5∴ A D E B C F A B C D D E F C S S S S∆∆=++四边形梯形 11127(75)52542222=⨯⨯+⨯+⨯+⨯⨯=. 20. 【解析】解:(1)(0,7),海底世界;(2)天文馆离入口最近,攀岩离入口最远;(3)略.。
初中数学中考总复习冲刺:阅读理解型问题--巩固练习题及答案(提高)
中考冲刺:阅读理解型问题—巩固练习(提高)【巩固练习】一、选择题1. 已知坐标平面上的机器人接受指令“[a ,A]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向其面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A .(-1,)B .(-1.-1) D .(-1)2.任何一个正整数n 都可以进行这样的分解:n =s ×t(s 、t 是正整数,且s ≤t),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()pF n q=.例如18可以分解成1×18,2×9,3×6这三种,这时就有31(18)62F ==. 给出下列关于F(n)的说法:(1)1(2)2F =;(2)3(24)8F =;(3)F(27)=3;(4)若n 是一个完全平方数,则F(n)=1.其中正确说法的个数是( ).A .1B .2C .3D .4二、填空题3.阅读下列题目的解题过程:已知a 、b 、c 为△ABC 的三边长,且满足222244a cbc a b -=-,试判断△ABC 的形状. 解:∵222244a cbc a b -=-, (A)∴2222222()()()c a b a b a b -=+-, (B) ∴222c a b =+, (C)∴△ABC 是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误? 请写出该错误步骤的代号:________________. (2)错误的原因为:________________________. (3)本题的正确结论为:____________________.4.先阅读下列材料,然后解答问题:从A ,B ,C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)(1)321nm m m m n C n n --+=-⨯⨯⨯ggg ggg .例:从7个元素中选5个元素,共有577654354321C ⨯⨯⨯⨯=⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有______________种.三、解答题5. 已知p 2-p -1=0,1-q -q 2=0,且pq ≠1,求1pq q+的值.解:由p 2-p -1=0及1-q -q 2=0,可知p ≠0,q ≠0 又∵pq ≠1,∴1p q ≠ ∴1-q-q 2=0可变形为21110q q ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭的特征所以p 与1q 是方程x 2- x -1=0的两个不相等的实数根则111,1pq p qq++=∴=根据阅读材料所提供的方法,完成下面的解答.已知:2m 2-5m -1=0,21520n n +-=,且m ≠n ,求:11m n+的值.6. 阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m 种不同的方法,在第二类方案中有n 种不同的方法,那么完成这件事共有N =m+n 种不同的方法,这是分类加法计数原理,完成一件事需要两个步骤,做第一步有m 种不同的方法,做第二步有n 种不同的方法.那么完成这件事共有N =m ×n 种不同的方法,这就是分步乘法的计数原理.”如完成沿图①所示的街道从A 点出发向B 点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A 点出发到某些交叉点的走法数已在图②填出.(1)根据以上原理和图②的提示,算出从A 出发到达其余交叉点的走法数,将数字填入图②的空圆中,并回答从A 点出发到B 点的走法共有多少种?(2)运用适当的原理和方法算出从A 点出发到达B 点,并禁止通过交叉点C 的走法有多少种?(3)现由于交叉点C 道路施工,禁止通行,求如任选一种走法,从A 点出发能顺利开车到达B 点(无返回)的概率是多少?7.阅读:我们知道,在数轴上,x =1表示一个点,而在平面直角坐标系中,x =1表示一条直线;我们还知道,以二元一次方程2x -y +1=0的所有解为坐标的点组成的图形就是一次函数y =2x +1的图象,它也是一条直线,如图①.观察图①可以得出:直线x =1与直线y =2x +1的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩在直角坐标系中,x ≤1表示一个平面区域,即直线x =1以及它左侧的部分,如图②;y ≤2x +1也表示一个平面区域,即直线y =2x +1以及它下方的部分,如图③.① ② ③ 回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组222x y x =-⎧⎨=-+⎩的解;(2)用阴影表示2y 2x 2y 0x ⎧⎪⎨⎪⎩≥-≤-+≥,所围成的区域.8. 我们学习过二次函数图象的平移,如:将二次函数23y x =的图象向左平移2个单位长度,再向下平移4个单位长度,所得图象的函数表达式是23(2)4y x =+-.类比二次函数图象的平移,我们对反比例函数的图象作类似的变换: (1)将1y x=的图象向右平移1个单位长度,所得图象的函数表达式为________,再向上平移1个单位长度,所得图象的函数表达式为________. (2)函数1x y x +=的图象可由1y x =的图象向________平移________个单位长度得到;12x y x -=-的图象可由哪个反比例函数的图象经过怎样的变换得到?(3)一般地,函数x by x a+=+(ab ≠0,且a ≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?9. “三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1=的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB . (3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).10. 阅读下列材料:问题:如图1所示,在菱形ABCD 和菱形BEFG 中,点A ,B ,E 在同一条直线上,P 是线段DF 的中点,连接PG ,PC .若∠ABC =∠BEF =60°,探究PG 与PC 的位置关系PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG,与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中∠ABC =∠BEF =2α(0°<α<90°),将菱形BEFG 绕点B 顺旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).【答案与解析】 一、选择题 1.【答案】D ; 2.【答案】B ;二、填空题 3.【答案】 (1)C ;(2)错误的原因是由(B)到(C)时,等式两边同时约去了因式22()a b -,而22a b -可能等于0;(3)△ABC 是等腰三角形或直角三角形. 4.【答案】120.三、解答题 5.【答案与解析】解:由2m 2-5m -1=0知m ≠0,∵m ≠n ,∴11m n≠得21520mm+-=根据2215152020m m n n +-=+-=与的特征∴11mn与是方程x 2+5 x -2=0的两个不相等的实数根 ∴115m n+=- .6. 【答案与解析】(1)∵完成从A 点到B 点必须向北走,或向东走,∴到达A 点以外的任意交叉点的走法数只能是与其相邻的南边的交叉点和西边交叉点的数字之和,故使用分类加法原理,由此算出从A 点到达其余各交叉点的走法数,填表如图所示.故从A 点到B 点的走法共35种.(2)方法1:可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去它,即得从A 点到B 点。
人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题
2022学年人教版七年级下册数学第7章7.1《平面直角坐标系》考点一:有序数对把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。
考点二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点 .①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。
考点三、象限及坐标平面内点的特点1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。
注:ⅰ、坐标轴(x轴、y轴)上的点不属于任何一个象限。
例点A(3,0)和点B(0,-5)ⅱ、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。
2、平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.考点四:坐标平面内点的位置特点①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)考点五:点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。
(基础)坐标系知识 巩固练习全部整理 含参考
平面直角坐标系(基础)一、选择题1.为确定一个平面上点的位置,可用的数据个数为().A.1个B.2个C.3个D.4个2.下列说法正确的是().A.(2,3)和(3,2)表示的位置相同B.(2,3)和(3,2)是表示不同位置的两个有序数对C.(2,2)和(2,2)表示两个不同的位置D.(m,n)和(n,m)表示的位置不同3.(2016•大连)在平面直角坐标系中,点M(1,5)所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m,n)在第三象限,则点Q(-m,-n)在().A.第一象限B.第二象限C.第三象限D.第四象限5.知点P(m+3,2m+4)在y轴上,那么点P的坐标是().A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)二、填空题7.已知有序数对(2x-1,5-3y)表示出的点为(5,2),则x=________,y=________.8.某宾馆一大楼客房是按一定规律编号的,例如房间403号是指该大楼中第4层第3个房间,则房间815号是指第________层第________个房间;第6层第1个房间编号为________.9.点P(-3,4)到x轴的距离是________,到y轴的距离是________.10.指出下列各点所在象限或坐标轴:点A(5,-3)在_______,点B(-2,-1)在_______,点C(0,-3)在_______,点D(4,0)在_______,点E(0,0)在_______.11.(2016•黔南州)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.12.(2015•安溪县模拟)若点(3﹣x,x﹣1)在第二象限,则x的取值范围是.三、解答题13.在图中建立适当的平面直角坐标系,使A、B两点的坐标分别为(-4,1)和(-1,4),写出点C、D的坐标,并指出它们所在的象限.14.(2014春•夏津县校级期中)根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?15.已知A,B,C,D的坐标依次为(4,0),(0,3),(-4,0),(0,-3),在平面直角坐标系中描出各点,并求四边形ABCD的面积.答案、分析一、选择题1.答案B.2.答案B.3.答案B;析:四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).4.答案A;析:因为点P(m,n)在第三象限,所以m,n均为负,则它们的相反数均为正.5.答案B;析:m+3=0,∴m=-3,将其代入得:2m+4=-2,∴P(0,-2).二、填空题7.答案3,1;析:由2x-1=5,得x=3;由5-3y=2,得y=1.8.答案8,15,601;9.答案4,3;析:到x轴的距离为:│4│=4,到y轴的距离为:│-3│=3.10.答案第四象限,第三象限,y轴的负半轴上,x轴的正半轴上,坐标原点.11.答案(﹣3,4)析:解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).12.答案x>3;析:解:∵点(3﹣x,x﹣1)在第二象限,∴,解不等式①得,x>3,解不等式②得,x>1,所以不等式组的解集是x>3.故答案为:x>3.三、解答题13.解:建立平面直角坐标系如图:得C(-1,-2)、D(2,1).由图可知,点C在第三象限,点D在第一象限.14.解:∵M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第四象限;(2)当ab>0时,即a,b同号,故点M位于第一、三象限;(3)当a为任意实数,且b<0时,点M位于第三、四象限和纵轴的负半轴.15.解:描点如下:14443242ABCD AOBS S==⨯⨯⨯=四边形三角形坐标平面内图形的轴对称和平移(基础)一、选择题1.如图,在平面直角坐标系xOy 中,点P(-3,5)关于y 轴的对称点的坐标为()A.(-3,-5)B.(3,5)C.(3.-5)D.(5,-3)2.平面直角坐标系中,点P 的坐标为(-5,3),则点P 关于x 轴的对称点的坐标是()A.(5,3)B.(-5,-3)C.(3,-5)D.(-3,5)3.如图,△COB 是由△AOB 经过某种变换后得到的图形,请同学们观察A 与C 两点的坐标之间的关系,若△AOB 内任意一点P 的坐标是(a,b),则它的对应点Q 的坐标是().A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)4.(2016•贵港)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(-1,1)B.(-1,-2)C.(-1,2)D.(1,2)5.在平面直角坐标系中,将某个图象上各点的横坐标都加上3,得到一个新图形,那么新图形与原图形相比().A.向右平移3个单位B.向左平移3个单位C.向上平移3个单位D.向下平移3个单位6.(2015春•赵县期末)线段CD 是由线段AB 平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D 的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)二、填空题7.点A(-3,0)关于y 轴的对称点的坐标是______.8.点P(2,-1)关于x 轴对称的点P′的坐标是______.9.在平面直角坐标系中,点A(1,2)关于y 轴对称的点为B(a,2),则a=_____.10.通过平移把点A(1,-3)移到点A 1(3,0),按同样的平移方式把点P(2,3)移到点P 1,则点P 1的坐标是__________.11.(2016•广安)将点A (1,﹣3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A′的坐标为.12.(2014秋•嘉鱼县校级月考)点P(1,2)关于直线y=1对称的点的坐标是;关于直线x=1对称的坐标是.三、解答题13.已知点P(a+1,2a-1)关于x 轴的对称点在第一象限,求a 的取值范围.14.如图,正方形ABCD 关于x 轴、y 轴均成轴对称,若这个正方形的面积为100,请分别写出点A、B、C、D 的坐标.15.(2014春•环翠区校级期末)如图,回答下列问题:(1)将△ABC 沿x 轴向左移一个单位长度,向上移2个单位长度,则A 1的坐标为,B 1的坐标为,C 1的坐标为.(2)若△ABC 与△A 2B 2C 2关于x 轴对称,则A 2的坐标为,B 2的坐标为,C 2的坐标为.答案、分析一、选择题1.答案B;2.答案B;3.答案D;析:观察图形可得,△COB 与△AOB 关于x 轴对称,则P (a,b)关于x 轴对称点坐标为(a,-b).4.答案A;析:将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,即坐标变为(1-2,-2+3),即点A′的坐标为(-1,1).故选A.5.答案A .6.答案C;析:解:平移中,对应点的对应坐标的差相等,设D 的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D 的坐标为(1,2).故选:C.二、填空题7.答案(3,0);8.答案(2,1);9.答案-1;析:∵点A(1,2)关于y 轴对称的点为B (a,2),∴a=-1.10.答案(4,6);析:从点A 到A 1点的横坐标从1到3,说明是向右移动了3-1=2,纵坐标从-3到0,说明是向上移动了0-(-3)=3,那点P 的横坐标加2,纵坐标加3即可得到点P 1.则点P 1的坐标是(4,6).11.答案(﹣2,2).12.答案(1,0),(1,2);析:解:如图所示:点P(1,2)关于直线y=1对称的点的坐标是(1,0);关于直线x=1对称的坐标是:(1,2).故答案为:(1,0),(1,2).三、解答题13.解:依题意得p 点在第四象限,∴10210a a +>⎧⎨-<⎩,解得:-1<a<12,即a 的取值范围是-1<a<12.14.解:设正方形的边长为a.则2a =100∴a=10∴A(5,5),B(-5,5),C(-5,-5),D(5,-5).15.解:(1)A(3,0),B(﹣2,4),C(0,﹣1),将△ABC 沿x 轴向左移一个单位长度,向上移2个单位长度,则A 1的坐标为(3﹣1,0+2),B 1的坐标为(﹣2﹣1,4+2),C 1的坐标为(0﹣1,﹣1+2),即:A 1的坐标为(2,2),B 1的坐标为(﹣3,6),C 1的坐标为(﹣1,1),故答案为:(2,2),(﹣3,6),(﹣1,1);(2)若△ABC 与△A 2B 2C 2关于x 轴对称,则A 2的坐标为(3,0),B 2的坐标为(﹣2,﹣4),C 2的坐标为(0,1),故答案为:(3,0),(﹣2,﹣4),(0,1).《平面直角坐标系》全章复习与巩固(基础)巩固练习一、选择题1.点P(0,3)在().A.x轴的正半轴上B.x的负半轴上C.y轴的正半轴上D.y轴的负半轴上2.(2016•雅安)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)3.将某图形的横坐标减去2,纵坐标保持不变,可将图形().A.横向向右平移2个单位B.横向向左平移2个单位C.纵向向右平移2个单位D.纵向向左平移2个单位4.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限 C.第三象限 D.第四象限5.点P的坐标为(3a-2,8-2a),若点P到两坐标轴的距离相等,则a的值是().A.23或4B.-2或6C.23 或-4D.2或-66.如图是被墨迹污染的旅游区各景点地图,隐约可见,第一景点的坐标为(0,3),第二景点的坐标为(5,3),景区车站坐标为(0,0),则车站大约在().A.点A B.点B C.点C D.点D7.若点A(m,n)在第二象限,则点B(|m|,-n)在().A.第一象限B.第二象限C.第三象限D.第四象限8.点P(m+3,m+1)在直角坐标系的x轴上,则P点的坐标为().A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)二、填空题9.如图,若点E坐标为(-2,1),点F坐标为(1,-1),则点G的坐标为.GEF10.点P(-5,4)到x轴的距离是,到y轴的距离是.11.若点M在第二象限,到x轴的距离是2,到y轴的距离是3,则M的坐标是.12.若点(a,b)在第二象限,则点(b,a)在第象限.13.将点P(-1,-2)向下平移2个单位,再向右平移3个单位,得到P1,则点P1的坐标是.14.点B与点C的横坐标相同,纵坐标不同,则直线BC与x轴的关系为.15.(2015春•道县校级期中)在平面直角坐标系中,坐标轴上到点A(3,4)的距离等于5的点有个.三、解答题17.(2016春•潮南区月考)已知三角形ABC的两个顶点坐标为A(﹣4,0),B(2,0),如图,且过这两个点的边上的高为4,第三个顶点的横坐标为﹣1,求顶点C的坐标及三角形的面积.18.(2015春•和县期末)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到三角形ABC,求三角形ABC的面积.19.已知A(0,0),B(9,O),C(7,5),D(2,7),求四边形ABCD的面积.答案、分析一.选择题1.答案C;析:横坐标为0,说明点在y 轴上,又纵坐标大于0,说明点在y 轴的正半轴上.2.答案C;析:∵点A (0,6)平移后的对应点A 1为(4,10),4﹣0=4,10﹣6=4,∴△ABC 向右平移了4个单位长度,向上平移了4个单位长度,∴点B 的对应点B 1的坐标为(﹣3+4,﹣3+4),即(1,1).3.答案B.4.答案A;析:解:由A (a+1,b ﹣2)在第二象限,得a+1<0,b ﹣2>0.解得a <﹣1,b >2.由不等式的性质,得﹣a >1,b+1>3,点B (﹣a ,b+1)在第一象限,故选:A .5.答案D ;析:由题意得:3282a a -=-,解得:2a =或6-.6.答案B;析:根据已知的坐标,可建立平面直角坐标系,如图,由此可得答案.7.答案D;析:第二象限的点横坐标为负,纵坐标为正,所以m<0且n>0,所以|m|>0,-n<0,点B(|m|,-n)在第四象限,故选D.8.答案B;析:在x 轴上点的纵坐标为0,所以m+1=0,可得m=-1,m+3=2,所以P 点的坐标为(2,0),故选B.二.填空题9.答案(1,2);析:由图可知,点G 的横坐标与点F 的横坐标相同,均为1,而纵坐标比点E 的纵坐标大1,所以点点G 的坐标为(1,2).10.答案4,5.11.答案(-3,2).12.答案四;析:由点(a,b)在第二象限,可得a<0,b>0,即得点(b,a)的横坐标大于0,而纵坐标小于0,所以点(b,a)在第四象限.13.答案(2,-4);析:-1+3=2,-2-2=-4.14.答案垂直.15.答案3;析:解:点A 的坐标是(3,4),因而OA=5,坐标轴上到点A (3,4)的距离等于5的点就是以点A 为圆心,以5为半径的圆与坐标轴的交点,圆与坐标轴的交点是原点,另外与两正半轴有两个交点,共有3的点.所以坐标轴上到点A (3,4)的距离等于5的点有3个.故答案填:3.16.答案1.析:∵点A(1-2k,k-2)在第三象限,∴1-2k<0,k-2<0,解得:0.5<k<2,又∵k 为整数,∴k=1.三.解答题17.解:(1)∵AB 边上的高为4,∴点C 的纵坐标为4或﹣4,∵第三个顶点C 的横坐标为﹣1,∴点C 的坐标为(﹣1,4)或(﹣1,﹣4);(2)∵A (﹣4,0),B (2,0),∴AB=2﹣(﹣4)=2+4=6,∴△ABC 的面积=×6×4=12.18.解:(1)如下图;(2)如下图;(3)S △ABC =3×4﹣×2×1﹣×1×4﹣×3×3=4.5.19.解:过点C 作CF⊥x 轴于点F,过D 作DE⊥x 轴于点E 则AE=2,DE=7,BF=2,CF=5,EF=5∴ADE BCFABCD DEFC S S S S ∆∆=++四边形梯形11127(75)52542222=⨯⨯+⨯+⨯+⨯=.。
中考数学总复习考点知识专题练习05 平面直角坐标系(解析版)
中考数学总复习考点知识专题练习专题05 平面直角坐标系一、单选题(共10小题,每小题3分,共计30分)1.(2021·浙江台州市·中考真题)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【答案】D【分析】先找到顶点C的对应点为F,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C的对应点为F,由图可得F的坐标为(3,1),故选D.P向下平移2个单位长2.(2021·四川成都市·中考真题)在平面直角坐标系中,将点(3,2)度得到的点的坐标是()A.(3,0)B.(1,2)C.(5,2)D.(3,4)【答案】A【分析】根据点的坐标平移规律“左减右加,下减上加”,即可解答.【详解】解:将点P ()3,2向下平移2个单位长度所得到的点坐标为()3,22-,即()3,0, 故选:A .3.(2021·四川泸州市中考真题)在平面直角坐标系中,将点(2,3)A -向右平移4个单位长度,得到的对应点A '的坐标为()A .()2,7B .()6,3-C .()2,3D .()2,1--【答案】C【分析】根据横坐标,右移加,左移减可得点A (-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3).【详解】解:点A (-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3), 即(2,3),故选:C .4.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- 【答案】A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .5.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点()2,3A -位于哪个象限?( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A 坐标为()2,3-,则它位于第四象限,故选D .6.(2018·江苏扬州市·中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .7.(2018·北京中考真题)右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A .①③B .②③④C .①④D .①②③④【答案】D【详解】分析:根据天安门的坐标和点的平移规律,一一进行判断即可.详解:显然①②正确;③是在②的基础上,将所有点向右平移1个单位,再向上平移1个单位得到,故③正确; ④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.故选D.点睛:考查平面直角坐标系,点坐标的确定,点的平移,熟练掌握点的平移规律是解题的关键.8.(2018·山东枣庄市·中考真题)在平面直角坐标系中,将点A (﹣1,﹣2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B′的坐标为( )A .(﹣3,﹣2)B .(2,2)C .(﹣2,2)D .(2,﹣2)【答案】B【分析】首先根据横坐标右移加,左移减可得B 点坐标,然后再根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】点A (﹣1,﹣2)向右平移3个单位长度得到的B 的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B 关于x 轴的对称点B ′的坐标是(2,2),故选B .9.(2018·浙江丽水市·中考真题)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【答案】C【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【详解】如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10);故选C.10.(2018·四川广元市·中考真题)若以A(﹣1,0),B(3,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】首先画出平面直角坐标系,根据A、B、C三点的坐标找出其位置,然后再根据两组对边分别平行的四边形是平行四边形找出D的位置,进而可得答案.【详解】如图所示:第四个顶点不可能在第三象限.故选C.二、填空题(共5小题,每小题4分,共计20分)11.(2021·浙江金华市·中考真题)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)______.【答案】-1(答案不唯一,负数即可)【分析】根据第二象限的点符号是“-,+”,m取负数即可.【详解】∵点P(m,2)在第二象限内,m ,∴0m取负数即可,如m=-1,故答案为:-1(答案不唯一,负数即可).12.(2021·江苏连云港市·中考真题)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为________.【答案】(15,3)【分析】先根据条件,算出每个正方形的边长,再根据坐标的变换计算出点A的坐标即可.【详解】解:设正方形的边长为a,a=-则由题设条件可知:3123a=解得:3∴点A的横坐标为:12315-⨯=+=,点A的纵坐标为:9323故点A的坐标为(15,3).故答案为:(15,3).13.(2021·黑龙江大庆市·中考真题)点(2,3)关于y轴对称的点的坐标为_____.【答案】(﹣2,3)【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】点(2,3)关于y 轴对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).14.(2017·湖北荆州市·中考真题)将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为____.【答案】4【解析】试题分析:先根据一次函数平移规律得出直线y=x+b 沿y 轴向下平移3个单位长度后的直线解析式y=x+b ﹣3,再把点A (﹣1,2)关于y 轴的对称点(1,2)代入y=x+b ﹣3,得1+b ﹣3=2,解得b=4.故答案为4.15.(2021·宁夏中考模拟)点 P (a ,a -3)在第四象限,则a 的取值范围是_____.【答案】0<a <3【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】∵点P (a ,a -3)在第四象限,∴a 0{a 30>-<,解得0<a <3. 三、解答题(共5小题,每小题10分,共计50分)16.(2021·广西中考真题)如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是2,1,1,()()2,3,3()A B C ---(1)将ABC ∆向上平移4个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出与ABC ∆关于y 轴对称的222A B C ∆; (3)请写出12A A 、的坐标.【答案】(1)如图所示:111A B C ∆,即为所求;见解析;(2)如图所示:222A B C ∆,即为所求;见解析;(3)122,3,),1(()2A A --.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案; (2)直接利用轴对称的性质得出对应点位置进而得出答案; (3)利用所画图象得出对应点坐标.【详解】(1)如图所示:111A B C ∆,即为所求; (2)如图所示:222A B C ∆,即为所求;(3)122,3,),1(()2A A --.17.(2021·安徽中考模拟)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 1(,)、A 3(,)、A 12(,);(2)写出点A 4n 的坐标(n 是正整数);(3)指出蚂蚁从点A 100到点A 101的移动方向.【答案】⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0)⑶从下向上【解析】试题分析:(1)在平面直角坐标系中可以直接找出答案;(2)根据求出的各点坐标,得出规律;(3)点A 100中的n 正好是4的倍数,根据第二问的答案可以分别得出点A 100和A 101的坐标,所以可以得到蚂蚁从点A 100到A 101的移动方向.解:(1)A 1(0,1),A 3(1,0),A 12(6,0);(2)当n=1时,A 4(2,0),当n=2时,A 8(4,0),当n=3时,A 12(6,0),所以A 4n (2n ,0);(3)点A 100中的n 正好是4的倍数,所以点A 100和A 101的坐标分别是A 100(50,0),A 101的(50,1),所以蚂蚁从点A 100到A 101的移动方向是从下向上.18.(2021·沭阳县修远中学中考模拟)如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 平移至A '的位置,使点A 与A '对应,得到△A B C ''';(2)图中可用字母表示,与线段AA '平行且相等的线有:________;(3)求四边形ACC A ''的面积.【答案】(1)见解析;(2);BB CC '';(3)14.【详解】(1)根据图形可得,点A 向右平移5个单位,向上平移4个单位,分别将B 、C 按照点A 平移的路径进行平移,然后顺次连接,则△A B C '''即为所求.(2)根据平移可得线段AA′与线段CC′、BB′相互平行且相等,故答案为BB′、CC′(3)S 四边形ACC′A′=6×6-(12×4×5+12×2×1)×2=14.19.(2021·江苏中考模拟)如图,在平面直角坐标系xOy中,矩形ABCD各边都平行于坐标轴,且A(-2,2),C(3,-2).对矩形ABCD及其内部的点进行如下操作:把每个点的横坐标乘以a,纵坐标乘以b,将得到的点再向右平移k()个单位,得到矩形及其内部的点(分别与ABCD对应).E(2,1)经过上述操作后的对应点记为.(1)点D的坐标为,若a=2,b=-3,k=2,则点的坐标为;(2)若(1,4),(6,-4),求点的坐标.【答案】(1)(3,2),(8,-6);(2)E′(5,2).【解析】(1)∵矩形ABCD各边都平行于坐标轴,且A(-2,2),C(3,-2),∴D(3,2),∵对矩形ABCD及其内部的点进行如下操作:把每个点的横坐标乘以a,纵坐标乘以b,将得到的点再向右平移k(k>0)个单位,得到矩形A′B′C′D′及其内部的点(A′B′C′D′分别与ABCD对应),E(2,1)经过上述操作后的对应点记为E′.∴若a=2,b=-3,k=2,则D′(8,-6);(2)依题可列:,解得:,故2b=4,则b=2,∵点E(2,1),∴E′(5,2).20.(2021·广东中考模拟)在平面直角坐标系中,点M的坐标为(a,1-2a).(1)当a=-1时,点M在坐标系的第___________象限(直接填写答案);(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.【答案】(1)第二象限(2).【详解】(1)把把a=-1代入点M的坐标得(-1,3),故在第二象限;(2)∵点M(a,1-2a)平移后的点N的坐标为(a-2,1-2a+1),依题意得解得.。
2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系章节练习试题(含详解)
七年级数学第二学期第十五章平面直角坐标系章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P (3,﹣2)关于原点O 的对称点P '的坐标是( )A .(3,﹣2)B .(﹣3,2)C .(﹣3,﹣2)D .(2,3)2、在平面直角坐标系中,点()3,4-,关于x 轴对称点的坐标是( )A .()3,4B .()3,4-C .()4,3-D .()4,43、△ABC 在平面直角坐标系中的位置如图所示,将其绕点P 顺时针旋转得到△A 'B 'C ′,则点P 的坐标是( )A .(4,5)B .(4,4)C .(3,5)D .(3,4)4、在平面直角坐标系中,点(2,﹣5)关于x 轴对称的点的坐标是( )A .(2,5)B .(﹣2,5)C .(﹣2,﹣5)D .(2,﹣5)5、若点()2,1A a a -+在第一象限,则a 的取值范围是( )A .2a >B .1a 2-<<C .1a <D .无解6、点()2021,2022A --在( )A .第一象限B .第二象限C .第三象限D .第四象限7、平面直角坐标系内一点P (﹣3,2)关于原点对称的点的坐标是( )A .(2,﹣3)B .(3,﹣2)C .(﹣2,﹣3)D .(2,3)8、点A 的坐标为()1,2,则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限9、点P 的坐标为(﹣3,2),则点P 位于( )A .第一象限B .第二象限C .第三象限D .第四象限10、在平面直角坐标系中,已知点P (5,−5),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A (a ,1)与点B (3,b )关于x 轴对称,则a +b =_______.2、已知点()3,21E a a -+到两坐标轴的距离相等,则点E 的坐标为______.3、点P (1,2)关于原点中心对称的点的坐标为_______.4、在平面直角坐标系中,对ABC 进行循环往复的轴对称变换,若原来点A 的坐标是,则经过第2021次变换后所得的点A 的坐标是___________.5、若点P (m ﹣1,5)与点Q (﹣3,n )关于原点成中心对称,则m ﹣n 的值是___.三、解答题(10小题,每小题5分,共计50分)1、如图,ABC 的顶点坐标分别为(4,5),(5,2),(3,4)A B C ---画出ABC 绕点()1,1--顺时针旋转90︒,得到111A B C △并直接写出111A B C △的面积.2、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点的坐标分别是()1,5A -,()1,0B -,()4,3C -.(1)求ABC 的面积;(2)在图中作出ABC 关于y 轴的对称图形111A B C △;(3)写出点1A ,1C 的坐标.3、如图,AB ∥CD ∥x 轴,且AB =CD =3,A 点坐标为(-1,1),C 点坐标为(1,-1),请写出点B ,点D 的坐标.4、如图,在平面直角坐标系中,ABC 的三个顶点都在格点上,点A 的坐标为()2,4,请回答下列问题.(1)画出ABC 关于x 轴对称的111A B C △,并写出点1C 的坐标(___,___)(2)点P 是x 轴上一点,当PB PC +的长最小时,点P 坐标为______;(3)点M 是直线BC 上一点,则AM 的最小值为______.5、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.6、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.7、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;S的面积.(3)请计算出ABC8、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4).(1)画出△ABC关于x轴对称的△A1B1C1,A、B、C的对应点分别为A1,B1,C1;(2)画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2,A、B、C的对应点分别为A2,B2,C2.连接B2C2,并直接写出线段B2C2的长度.9、如图,在平面直角坐标系中,点B 的坐标是()0,4-,点C 的坐标为6,4,CB 交x 轴负半轴于点A ,过点B 作射线BM BC ⊥,作射线CD 交BM 于点D ,且45BCD ∠=︒(1)求证:点A 为线段BC 的中点.(2)求点D 的坐标.10、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC 的三个顶点都在小正方形的顶点上.(1)画出三角形ABC 向左平移4个单位长度后的三角形DEF (点D 、E 、F 与点A 、B 、C 对应),并画出以点E 为原点,DE 所在直线为x 轴,EF 所在直线为y 轴的平面直角坐标系;(2)在(1)的条件下,点D 坐标(﹣3,0),将三角形DEF 三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P 、Q 、M (点P 、Q 、M 与点D 、E 、F 对应),画出三角形PQM ,并直接写出点P 的-参考答案-一、单选题1、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.2、A【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.解:点A(3,-4)关于x轴的对称点的坐标是(3,4),故选:A.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.3、B【分析】对应点的连线段的垂直平分线的交点P,即为所求.【详解】P,解:如图,点P即为所求,(4,4)故选:B.【点睛】本题考查坐标与图形变化 旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.4、A【分析】根据平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),据此即可求得点A (2,﹣5)关于x 轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x 轴对称,∴对称的点的坐标是(2,5).故选:A .【点睛】本题主要考查了关于x 轴对称点的性质,点P (x ,y )关于x 轴的对称点P ′的坐标是(x ,-y ).5、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.6、C【分析】根据各象限内点的坐标特征解答.【详解】解:点()2021,2022A --的横坐标小于0,纵坐标小于0,点()2021,2022A --所在的象限是第三象限. 故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).7、B【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P '(﹣x ,﹣y ),进而得出答案.【详解】解答:解:点P (﹣3,2)关于原点对称的点的坐标是:(3,﹣2).故选:B .【点睛】此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.8、A【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,1,2,∵点A的坐标为()∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、B【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.10、D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、2【分析】根据两点关于x 轴对称得到a =3,b =-1,代入计算即可.【详解】解:∵点A (a ,1)与点B (3,b )关于x 轴对称,∴a =3,b =-1,∴a +b =2.故答案为:2.【点睛】此题考查了轴对称的性质—关于x 轴对称:关于x 轴对称的两点的横坐标相等,纵坐标互为相反数,熟记性质是解题关键.2、(-7,-7)或(77,33-)【分析】 根据点到两坐标轴的距离相等,得到321a a -=+,解方程求出a 的值代入计算即可得到答案.【详解】 解:由题意得321a a -=+,解得4a =-或23a =,当4a =-时,a-3=-7,2a+1=-7,点E 的坐标为(-7,-7), 当23a =时,773,2133a a -=-+=,∴点E 的坐标为(77,33-), 故答案为:(-7,-7)或(77,33-).【点睛】 此题考查直角坐标系中点的坐标特点,正确掌握点到两坐标轴的距离相等,得到321a a -=+是解题的关键.3、(-1,-2)【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(﹣x ,﹣y ).据此作答.【详解】解:根据中心对称的性质,得点P (1,2)关于原点中心对称的点的坐标为(-1,-2).故答案为:(-1,-2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.4、 【分析】由题意根据点A 第四次关于y 轴对称后在第一象限,即点A 回到初始位置,所以,每四次对称为一个循环组依次循环进行分析即可得出答案.【详解】解:根据题意可知:点A 第四次关于y 轴对称后在第一象限,即点A 回到初始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505…1,∴经过第2021次变换后所得的A 点与第一次关于x 轴对称变换的位置相同,在第四象限,坐标为.故答案为:. 【点睛】 本题考查轴对称的性质以及点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键.5、9【分析】根据关于原点对称点的坐标特征求出m 、n 的值,再代入计算即可.【详解】 解:点(1,5)P m -与点(3,)Q n -关于原点成中心对称,13m ∴-=,5n =-,即4m =,5n =-,9m n ∴-=,故答案为:9.【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.三、解答题1、图见解析,面积为2【分析】先求出旋转后A 1(5,2),B 1(2,3),C 1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.【详解】解:∵ABC 的顶点坐标分别为(4,5),(5,2),(3,4)A B C ---,ABC 绕点()1,1--顺时针旋转90︒,得到111A B C △,∴点A 1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A 1(5,2),∴点B 1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B 1(2,3),∴点C 1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C 1(4,1),在平面直角坐标系中描点A 1(5,2),B 1(2,3),C 1(4,1),顺次连结A 1B 1, B 1C 1,C 1A 1,则△A 1B 1C 1为所求;1111111111ΔΔΔΔA B C B DA C EA B FC B FED S S S S S =---矩形, =11123311122222⨯-⨯⨯-⨯⨯-⨯⨯, =316222---, =2.【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.2、(1)152;(2)见解析;(3)A 1(1,5),C 1(4,3) 【分析】(1)根据三角形面积公式进行计算即可得;(2)ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y 轴的对称点,连接这些对称点即可得111A B C △;(3)根据(2)即可写出.【详解】解:(1)1155322ABCS =⨯⨯= (2)如下图所示:(3)A 1(1,5);C 1(4,3)【点睛】本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.3、B (2,1),D (﹣2,﹣1).【分析】根据平行于x 轴的直线上点的坐标的特点求出纵坐标,再根据AB =CD =3得出横坐标.【详解】解:∵AB ∥CD ∥x 轴,A 点坐标为(﹣1,1),点C (1,﹣1),∴点B 、D 的纵坐标分别是1,﹣1,∵AB =CD =3,∴点B 、D 的横坐标分别是-1+3=2,1-3=-2,∴B (2,1),D (﹣2,﹣1).【点睛】本题主要是考查平行于x 轴的直线的特点,解题关键是明确平行于x 轴的直线上点的纵坐标相同.4、(1)5,-3;(2)(135,0);(3 【分析】(1)利用关于x 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)连接BC 1交x 轴于点P ,利用两点之间线段最短可判断P 点满足条件,利用待定系数法求得直线BC 1的解析式,即可求解;(3)利用割补法求得△ABC 的面积,利用两点之间的距离公式求得BC 的长,再利用面积法即可求解.【详解】解:(1)如图,△A 1B 1C 1为所作,点C 1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作.设直线BC1的解析式为y=kx+b,∵点C1的坐标为(5,-3),点B的坐标为(1,2),∴532k bk b+=-⎧⎨+=⎩,解得:54134kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC1的解析式为y=54-x+134,当y=0时,x=135,∴点P的坐标为(135,0);故答案为:(135,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,△ABC的面积为2×4-12×2×1-12×4×1-12×3×1=72;BC=∵12×AM =72,∴AM .. 【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x 轴对称的点,横坐标相同,纵坐标互为相反数.5、(1)图见解析,(-1,-3),(-2,0);(2)9【分析】(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;(2)由题意利用△ABC 所在矩形面积减去周围三角形面积进行计算进而得出答案.【详解】解:(1)如图,△A 1B 1C 1即为所作,点A 关于x 轴对称的点坐标为 (-1,-3);点B 关于y 轴对称的点坐标为:(-2,0);故答案为:(-1,-3),(-2,0);(2)△ABC 的面积是:4×5-12×2×4-12×3×3-12×1×5=9.故答案为:9.【点睛】本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.6、(1)画图见解析,1(2,4)A -;(2)画图见解析,2A (-2,2)【分析】(1)根据关于y 轴的点的坐标特征分别作出△ABC 的各个顶点关于x 轴的对称点,然后连线作图即可;(2)利用网格特点和旋转的性质画出点A 2、B 、C 2的坐标,然后描点即可得到△A 2BC 2,然后写出点A 2的坐标.【详解】解:(1)如图,111A B C △即为所求;∵1A 是A (2,4)关于x 轴对称的点, ∴根据关于x 轴对称的点的坐标特征可知:1(2,4)A -;A BC即为所求,(2)如图,22∴A的坐标为(-2,2).2【点睛】本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.7、(1)见解析;(2)(-a,b);(3)2【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;(2)根据(1)中规律即可得出答案;(3)用割补法可求△ABC的面积.【详解】解:(1)△A1B1C1如图所示:(2)∵D 点的坐标为(a ,b ),∴D 1点的坐标为(-a ,b );(3)111231122132222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积.关于y 轴对称点的性质:纵坐标相同,横坐标互为相反数.8、(1)作图见解析;(2)作图见解析,223B C =【分析】(1)ABC 关于x 轴对称,即对应点横坐标不变,纵坐标互为相反数,找出111,,A B C 坐标即可;(2)根据旋转的性质可画出图形,即可找出222,,A B C 的坐标,由22B C BC =即可得出答案.【详解】(1)ABC 关于x 轴对称的111A B C △如图所作,(2,1)A ,(0,1)B ,(0,4)C ,1(2,1)A ∴-,1(0,1)B -,1(0,4)C -;(2)ABC 绕原点O 逆时针方向旋转90︒得到的222A B C △如图所示,由旋转的性质得:22413B C BC ==-=.【点睛】本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键.9、(1)证明见解析,(2)(8,2).【分析】(1)过点C 作CQ ⊥OA 于Q ,证△CQA ≌△BOA ,即可证明点A 为线段BC 的中点;(2)过点C 作CR ⊥OB 于R ,过点D 作DS ⊥OB 于S ,证△CRB ≌△BSD ,根据全等三角形对应边相等即可求点D 的坐标.【详解】(1)证明:过点C 作CQ ⊥OA 于Q ,∵点B 的坐标是()0,4-,点C 的坐标为6,4,∴CQ =OB =4,∵∠CQO =∠BOA =90°,∠CAQ =∠BAO ,∴△CQA ≌△BOA ,∴CA =AB ,∴点A 为线段BC 的中点.(2)过点C 作CR ⊥OB 于R ,过点D 作DS ⊥OB 于S ,∵BM BC ⊥,∴∠CRB =∠DSB =∠CBD =90°,∴∠CBR +∠SBD =90°,∠SDB +∠SBD =90°,∴∠CBR =∠SDB ,∵45BCD ∠=︒,∴∠BCD =∠BDC =45°,∴CB =DB ,∴△CRB ≌△BSD ,∴CR =SB ,RB =DS ,∵点B 的坐标是()0,4-,点C 的坐标为6,4, ∴CR =SB =6,RB =DS =8,∴OS =SB -OB =2,点D的坐标为(8,2).【点睛】本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.10、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM即为所求;∵P是D(-3,0)横坐标减2,纵坐标加3得到的,∴点P的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.。
初一年级平面直角坐标系所有知识点总结及常考题提高难题压轴题练习(含答案及解析)
初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)知识点:1、对应关系:平面直角坐标系内的点与有序实数对一一对应。
2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。
x轴上→纵坐标为0;y轴上→横坐标为0;第一、三象限夹角平分线上→横纵坐标相等;常考题:一.选择题(共15小题)1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)2.如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)3.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)4.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B (﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.57.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)8.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)11.在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣112.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33) D.(99,34)14.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方15.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺二.填空题(共10小题)16.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= .17.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.18.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C 点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是.19.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.20.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是.21.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是.22.如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是.23.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).24.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.25.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为.三.解答题(共15小题)26.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.27.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?28.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+3),从B到A记为:A→B(﹣1,﹣3),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.29.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.30.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史(1)请依据图示中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.31.已知点A(﹣1,﹣2),点B(1,4)(1)试建立相应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.32.在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.35.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.36.有趣玩一玩:中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图,按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→→(六,4)(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数不限),你的走法是:.你还能再写出一种走法吗.37.如图,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(﹣2,﹣3)、B (5,﹣2)、C(2,4)、D(﹣2,2),求这个四边形的面积.38.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB =S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.39.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.40.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共15小题)1.(2007•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.2.(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2007•盐城)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(2002•江西)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(2017春•潮阳区期末)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.6.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.8.(2013秋•平川区期末)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【分析】因为点P(m+3,m+1)在直角坐标系的x轴上,那么其纵坐标是0,即m+1=0,m=﹣1,进而可求得点P的横纵坐标.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.【点评】本题主要考查了点在x轴上时纵坐标为0的特点,比较简单.9.(2017春•和县期末)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.10.(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【分析】逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(2008•菏泽)在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣1【分析】根据点P(m﹣3,m+1)在第二象限及第二象限内点的符号特点,可得一个关于m的不等式组,解之即可得m的取值范围.【解答】解:∵点P(m﹣3,m+1)在第二象限,∴可得到,解得m的取值范围为﹣1<m<3.故选A.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号以及不等式组的解法,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题关键.13.(2014•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33) D.(99,34)【分析】根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.【点评】本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.14.(2009秋•杭州期末)小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力,画出平面示意图能直观地得到答案.15.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺【分析】根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700,再向西直走DE=100公尺.【解答】解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.【点评】本题考查了坐标确定位置,根据题意画出图形是解题的关键.二.填空题(共10小题)16.(2014•黔西南州)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= (3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.17.(2013•天水)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(2013•绵阳)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3).【分析】先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.【解答】解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).【点评】本题考查了平移变换的知识,注意左右平移纵坐标不变,上下平移横坐标不变.19.(2015•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).【分析】根据绝对值的意义和平方根得到x=±5,y=±2,再根据第二象限的点的坐标特点得到x<0,y>0,于是x=﹣5,y=2,然后可直接写出P点坐标.【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).20.(2005•杭州)如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:由白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8)得出:棋盘的y轴是右侧第一条线,横坐标从右向左依次为﹣1,﹣2,﹣3,…;纵坐标是以上边第一条线为﹣1,向下依次为﹣2,﹣3,﹣4,….∴黑棋①的坐标应该是(﹣3,﹣7).故答案为:(﹣3,﹣7).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.根据已知条件建立坐标系是关键,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.21.(2015•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).【分析】先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.【解答】解:点A 变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为原来的,则点A 的对应点的坐标是(2,3), 故答案为(2,3).【点评】此题考查了坐标与图形性质的知识,根据图形得到点A 的坐标是解答本题的关键.22.(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角坐标系,规定一个单位长度表示1km ,甲、乙两人对着地图如下描述路桥区A 处的位置.则椒江区B 处的坐标是 (10,8) .【分析】根据A 点坐标,可建立平面直角坐标系,根据直角三角形的性质,可得AC 的长,根据勾股定理,BC 的长.【解答】解:如图:连接AB ,作BC ⊥x 轴于C 点,由题意,得AB=16,∠ABC=30°,AC=8,BC=8.OC=OA+AC=10,B (10,8).【点评】本题考查了坐标确定位置,利用A 点坐标建立平面直角坐标系是解题关键,利用了直角三角形的性质:30°的角所对的直角边是斜边的一半.23.(2013•聊城)如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (2n ,1) (用n表示).【分析】根据图形分别求出n=1、2、3时对应的点A 4n+1的坐标,然后根据变化规律写出即可.。
大庆实验中学七年级数学下册第七章【平面直角坐标系】提高练习(专题培优)
一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)3.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 4.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 5.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 6.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上7.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( )A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2) 8.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 10.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 13.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.14.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.15.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.16.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 17.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.18.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是_____. 19.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.ABC 在直角坐标系中如图所示.(1)请写出点A 、B 、C 的坐标;(2)求ABC 的面积.23.在平面直角坐标系中,ABC 的位置如图所示,把ABC 先向左平移2个单位,再向下平移4个单位可以得到A B C '''.(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.24.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()2,4--“帅”的坐标为()0,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.25.三角形ABC (记作△ABC )在8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 4.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3-5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .17.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 8.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 9.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)13.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.14.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.15.如果点()3,1P m m ++在坐标轴上,那么P 点坐标为_________.16.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 17.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.18.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____19.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.20.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.23.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,2).(1)将△ABC 向右平移6个单位长度,再向下平移4个单位长度,得到△A 'B ′C ′.请画出平移后的△A ′B ′C ′,并写出点的坐标A ′( , )、B ′( , )、C ′( , );(2)求出△A ′B ′C ′的面积;(3)若连接AA ′、CC ′,则这两条线段之间的关系是 .24.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.25.如图,将△ABC 向右平移4个单位长度,再向下平移2个单位长度,得到△A′B′C′. (1)请画出平移后的图形△A ′B ′C ′.(2)写出△A ′B 'C '各顶点的坐标.(3)求出△A ′B ′C ′的面积.一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠2.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .33.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)5.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2) C .(-2,4) D .(2,-4) 10.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)11.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m二、填空题12.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.13.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________.14.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.15.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.16.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.17.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是_____.19.在平面直角坐标系中,点P(m,1﹣m)在第一象限,则m的取值范围是_____.20.如图,已知点A的坐标为(−2,2),点C的坐标为(2,1),则点B的坐标是____.⊥于D.若A(4,0),B(m,3),21.如图,直线BC经过原点O,点A在x轴上,AD BCC(n,-5),则AD BC=______.三、解答题22.已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移4个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度)(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标;(3)求△ABC的面积.23.如图,已知五边形ABCDE 各顶点坐标分别为A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3)(1)求五边形ABCDE 的面积;(2)在线段DC 上确定一点F,使线段AF 平分五边形ABCDE 的面积,求F 点的坐标.24.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为,点D的坐标为,S四边形ABDC;(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.25.如图1,在平面直角坐标系中,A(a,0),C(b,4),且满足(a+5)2+5b=0,过C作CB⊥x轴于B.(1)a=,b=,三角形ABC的面积=;(2)若过B作BD//AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED 的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】 一、选择题
1.A 地在地球上的位置如图,则A 地的位置是( ).
A.东经130°,北纬50°
B.东经130°,北纬60°
C.东经140°,北纬50°
D.东经40°,北纬50° 2.点A (a ,-2)在二、四象限的角平分线上,则a 的值是( ). A .2
B .-2
C .
12
D .12
-
3.已知点M 到x 轴、y 轴的距离分别为4和6,且点M 在x 轴的上方、y 轴的左侧,则点M 的坐标为( ) .
A .(4,-6)
B .(-4,6)
C .(6,-4)
D .(-6,4) 4.(2015•威海)若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,b+1)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 5. 已知点(M a ,)b ,过M 作MH x ⊥轴于H ,并延长到N ,使NH MH =, 且N 点坐标为(2-,3)-,则()a b += . A .0
B .1
C .—1
D .—5
6.(2016•凉山州)观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )
A .第504个正方形的左下角
B .第504个正方形的右下角
C .第505个正方形的左上角
D .第505个正方形的右下角
二、填空题
7.已知点P (2-a ,3a -2)到两坐标轴的距离相等,则P 点的坐标为___________. 8.线段AB 的长度为3且平行x 轴,已知点A 的坐标为(2,-5),则点B 的坐标为 . 9.如果点(0A ,1),(3B ,1),点C 在y 轴上,且ABC △的面积是5,则C 点坐标____.
10.观察下列有序数对:(3,-1)、15,2⎛
⎫- ⎪⎝⎭,17,3⎛⎫- ⎪⎝⎭、19,4⎛⎫
- ⎪⎝⎭
、……根据你发现的规律,第100个有序数对是________.
11.在平面直角坐标系中,点A、B、C的坐标分别为:A(-2,1)、B(-3,-1),C(-1,-1),且D在x轴上方. 顺次连接这4个点得到的四边形是平行四边形,则D点的坐标为_______.
12.已知平面直角坐标系内两点M(5,a),N(b,-2).
(1)若直线MN∥x轴,则a________,b________;
(2)若直线MN∥y轴,则a________,b________.
13.(2015春•绥阳县校级期末)点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.
14.(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为________.
三、解答题
15.(2014秋•滨湖区校级月考)已知点P(2a﹣12,1﹣a)位于第三象限.(1)若点P的纵坐标为﹣3,试求出a的值;
(2)求a的范围;
(3)若点P的横、纵坐标都是整数,试求出a的值以及P点的坐标.
16.如图,若B(x1,y1)、C(x2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.
(1) 求△OBC的面积(用含x1、x2、y1、y2的代数式表示);
(2) 如图,若三个点的坐标分别为A(2,5),B(7,7),C(9,1),求四边形OABC的面积.
17.如图所示,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3,已知A(1,2),A1(2,2),A2(4,2),A3(8,2);B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形OA3B3变换成三角形OA4B4,则A4的坐标是________,B4的坐标是________;
(2)若按(1)中找到的规律将三角形OAB进行n次变换,得到三角形OA n B n,推测A n的坐标是________,B n的坐标是________.
(3)求出△O的面积.
【答案与解析】
一、选择题
1. 【答案】C.
2. 【答案】A;
【解析】因为(a,-2)在二、四象限的角平分线上,所以a+(-2)=0,即a=2. 3. 【答案】D;
【解析】根据题意,画出下图,由图可知M(-6,4).
4. 【答案】A;
【解析】解:由A(a+1,b﹣2)在第二象限,得
a+1<0,b﹣2>0.
解得a<﹣1,b>2.
由不等式的性质,得
﹣a>1,b+1>3,
点B(﹣a,b+1)在第一象限,
故选:A.
5. 【答案】B;
【解析】由题意知:点M(a,b)与点N(-2,-3)关于x轴对称,所以M(-2,3) .
6. 【答案】D;
【解析】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴
第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,
故选D.
二、填空题
7. 【答案】P (1,1)或P (2,-2);
【解析】232a a -=-,得01a a ==或,分别代入即可. 8. 【答案】B (5,-5)或(-1,-5); 【解析】235-1B x =±=或,而5B y =-. 9. 【答案】(0,
133)或(0,7
3
-); 【解析】3AB =,由ABC △的面积是5,可得ABC △的边AB 上的高为
10
3
,又点 C 在y 轴上,所以0C x =,101371-333
C y =±=或. 10.【答案】1201,
100⎛
⎫- ⎪⎝⎭
; 【解析】横坐标的规律:
n+1
-1(21)n +(),纵坐标的规律:1
(1)n n
-. 11.【答案】(0,1)或(-4,1);
【解析】2204D x =-±=或-,1D y =.
12.【答案】(1)=-2, ≠5; (2)≠-2, =5; 13.【答案】(﹣3,2)或(﹣3,﹣2)
【解析】解:∵P(x ,y )到x 轴的距离是2,到y 轴的距离是3,
∴x=±3,y=±2;
又∵点P 在y 轴的左侧, ∴点P 的横坐标x=﹣3,
∴点P 的坐标为(﹣3,2)或(﹣3,﹣2). 故填(﹣3,2)或(﹣3,﹣2).
14.【答案】(504,﹣504);
【解析】由规律可得,2016÷4=504,
∴点P 2016的在第四象限的角平分线上, ∵点P 4(1,﹣1),点P 8(2,﹣2),点P 12(3,﹣3), ∴点P 2016(504,﹣504), 故答案为(504,﹣504).
三、解答题 15.【解析】 解:(1)由题意得,1﹣a=﹣3,
解得a=4;
(2)∵点P (2a ﹣12,1﹣a )位于第三象限,
∴
,
解不等式①得,a <6, 解不等式②得,a >1,
所以,1<a <6;
(3)∵点P 的横、纵坐标都是整数,
∴a 的值为2、3、4、5,
① a=2时,2a ﹣12=2×2﹣12=﹣8,
1﹣a=1﹣2=﹣1, 点P (﹣8,﹣1),
② a=3时,2a ﹣12=2×3﹣12=﹣6,
1﹣a=1﹣3=﹣2, 点P (﹣6,﹣2),
③ a=4时,2a ﹣12=2×4﹣12=﹣4,
1﹣a=1﹣4=﹣3, 点P (﹣4,﹣3),
④ a=5时,2a ﹣12=2×5﹣12=﹣2,
1﹣a=1﹣5=﹣4, 点P (﹣2,﹣4).
16.【解析】
解: (1) 如图:AOB MOB CON BMNC S S S S ∆∆∆=+-梯形
111221222112111
()()2221
()2AOB MOB CON
BMNC S S S S x y y y x x x y x y x y ∆∆∆=+-=
++--=-梯形 (2)连接OB ,则:
四边形OABC 的面积为:1177(75-27)(97-71)38.5222
AOB BOC S S ∆∆+=⨯⨯+⨯⨯==. 17.【解析】
解:(1)(16,2), (32,0);
(2)(2n ,2), (2n +1
,0); (3)△n n OA B ∆的面积为:
1
112222
n n ++⨯⨯=.。