高中数学模拟考试试卷
2024届高三数学模拟检测(广东专用,2024新题型)(考试版)
2024年高考第三次模拟考试
高三数学(广东专用)
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的)
2168πcm
C.3
部选对的得6分,部分选对的得部分分,有选错的得0分)
⎫
对称
⎪
⎭
单调递减
与平面ABP夹角的余弦值.
2 21
y
b
+=的焦距为2,1F 的周长为8.。
江苏省仪征中学2025届高三第六次模拟考试数学试卷含解析
江苏省仪征中学2025届高三第六次模拟考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且21()()(1)2x f x g x x ++=+-,则(1)(1)f g -=( ) A .1-B .0C .1D .32.已知三棱锥P ABC -中,O 为AB 的中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,则有下列四个结论:①若O 为ABC 的外心,则2PC =;②ABC 若为等边三角形,则⊥AP BC ;③当90ACB ∠=︒时,PC 与平面PAB 所成的角的范围为0,4π⎛⎤ ⎥⎝⎦;④当4PC =时,M 为平面PBC 内一动点,若OM ∥平面PAC ,则M 在PBC 内轨迹的长度为1.其中正确的个数是( ). A .1 B .1C .3D .43.设函数'()f x 是奇函数()()f x x R ∈的导函数,当0x >时,1'()ln ()<-f x x f x x,则使得2(1)()0x f x ->成立的x 的取值范围是( ) A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-4.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )AB C .2D .35.M 、N 是曲线y=πsinx 与曲线y=πcosx 的两个不同的交点,则|MN|的最小值为( )A .πB πC πD .2π6.对于定义在R 上的函数()y f x =,若下列说法中有且仅有一个是错误的,则错误..的一个是( ) A .()f x 在(],0-∞上是减函数 B .()f x 在()0,∞+上是增函数C .()f x 不是函数的最小值D .对于x ∈R ,都有()()11f x f x +=-7.设集合1,2,6,2,2,4,26{}{}{|}A B C x R x ==-=∈-<<,则()A B C = ( )A .{}2B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R8.已知向量a b (3,1),(3,3)=-=,则向量b 在向量a 方向上的投影为( ) A .3-B .3C .1-D .19.已知点2F 为双曲线222:1(0)4x y C a a -=>的右焦点,直线y kx =与双曲线交于A ,B 两点,若223AF B π∠=,则2AF B 的面积为( )A .22B .23C .42D .43 10.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( ) A .B .C .D .11.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 的面积是( )A 3B .2C 3D 312.执行如图所示的程序框图,如果输入2[2]t e ∈-,,则输出S 属于( )A .[32]-,B .[42]-,C .[0]2,D .2[3]e -,二、填空题:本题共4小题,每小题5分,共20分。
2025届山西省朔州市怀仁一中高三第二次模拟考试数学试卷含解析
2025届山西省朔州市怀仁一中高三第二次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数21z i =+ ,其中i 为虚数单位,则z =( ) A .5B .3C .2D .22.已知111M dx x =+⎰,20cos N xdx π=⎰,由程序框图输出的S 为( )A .1B .0C .2πD .ln 23.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:422=+,633=+,835=+,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( ) A .121B .221C .115D .2154.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424π++B .()85824π++C .()854216π++D .()858216π++5.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56B .72C .88D .406.在ABC ∆中,0OA OB OC ++=,2AE EB =,AB AC λ=,若9AB AC AO EC ⋅=⋅,则实数λ=( ) A .33B .32C .63D .627.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .8.已知复数1cos23sin 23z i =+和复数2cos37sin37z i =+,则12z z ⋅为 A .132- B 312i + C .132+ D 312i - 9.ABC ∆ 的内角,,A B C 的对边分别为,,a b c ,已知22cos a c b A +=,则角B 的大小为( ) A .23π B .3π C .6π D .56π 10.设m ,n 为直线,α、β为平面,则m α⊥的一个充分条件可以是( ) A .αβ⊥,n αβ=,m n ⊥ B .//αβ,m β⊥ C .αβ⊥,//m βD .n ⊂α,m n ⊥11.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)123n n n n ++++++=)A .1624B .1024C .1198D .156012.已知π3π,22α⎛⎫∈ ⎪⎝⎭,()3tan π4α-=-,则sin cos αα+等于( ).A .15±B .15-C .15D .75-二、填空题:本题共4小题,每小题5分,共20分。
2025届广东省华南师大附中高三第二次模拟考试数学试卷含解析
2025届广东省华南师大附中高三第二次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知()()()sin cos sin cos k k A k παπααα++=+∈Z ,则A 的值构成的集合是( )A .{1,1,2,2}--B .{1,1}-C .{2,2}-D .{}1,1,0,2,2--2.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .103.下列图形中,不是三棱柱展开图的是( )A .B .C .D .4.定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[﹣3,﹣2]时,f (x )=﹣x ﹣2,则( ) A .66f sinf cos ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭> B .f (sin 3)<f (cos 3)C .4433f sin f cos ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<D .f (2020)>f (2019)5.设函数'()f x 是奇函数()()f x x R ∈的导函数,当0x >时,1'()ln ()<-f x x f x x,则使得2(1)()0x f x ->成立的x 的取值范围是( ) A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-6.已知复数z 满足1z =,则2z i +-的最大值为( ) A .23+B .15+C .25+D .67.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .838.已知函数()()3sin 3cos 0f x x x ωωω=+>,对任意的1x ,2x ,当()()1212f x f x =-时,12min2x x π-=,则下列判断正确的是( ) A .16f π⎛⎫=⎪⎝⎭B .函数()f x 在,62ππ⎛⎫⎪⎝⎭上递增 C .函数()f x 的一条对称轴是76x π=D .函数()f x 的一个对称中心是,03π⎛⎫⎪⎝⎭9.设复数z 满足(1)21z i i ⋅+=+(i 为虚数单位),则复数z 的共轭复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424π++B .()85824π++C .()854216π++D .()858216π++11.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数N 除以正整数m 所得的余数是n ”记为“(mod )N n m ≡”,例如71(mod 2)≡.执行该程序框图,则输出的n 等于( )A .16B .17C .18D .1912.已知抛物线220y x =的焦点与双曲线()222210,0x y a b a b-=>>的一个焦点重合,且抛物线的准线被双曲线截得的线段长为92,那么该双曲线的离心率为( ) A .54 B .53C .52D 5二、填空题:本题共4小题,每小题5分,共20分。
2024-2025学年高二上学期期中模拟考试数学试题02(直线与圆 圆锥曲线)含解析
2024-2025学年高二数学上学期期中模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版(2019)选择性必修第一册第一章~第三章(空间向量与立体几何+直线与圆+圆锥曲线)。
5.难度系数:0.65。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.5.如图,在平行六面体ABCD 则AC'的长为()A.98562+B.【答案】A-'【解析】平行六面体ABCD A故选:A7.已知椭圆的方程为2 9 x+的周长的最小值为()A.8B 【答案】C则由椭圆的中心对称性可知可知12AF BF 为平行四边形,则可得2ABF △的周长为2AF A .0B .【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.则21242||222y y m HC ++===12||4||22yy p AB HM ++===所以||2sin ||2(HC m HMN HM m ∠==因为20m ≥,所以212(1)m ∈三、填空题:本题共3小题,每小题5分,共15分.则11,22BN BA BD DM =+ 所以1122BN DM BA ⎛⋅=+ ⎝ 1144BA BC BD BC =⋅+⋅-uu r uu u r uu u r uu u r四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知两直线1:20l x y ++=和2:3210l x y -+=的交点为P .(1)直线l 过点P 且与直线310x y ++=平行,求直线l 的一般式方程;(2)圆C 过点()1,0且与1l 相切于点P ,求圆C 的一般方程.【解析】(1)直线l 与直线310x y ++=平行,故设直线l 为130x y C ++=,(1分)联立方程组203210x y x y ++=⎧⎨-+=⎩,解得11x y =-⎧⎨=-⎩.(3分)∴直线1:20l x y ++=和2:3210l x y -+=的交点()11P --,.16.(15分)在正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在线段1CC 上,且14CC CE = ,点F 为BD 中点.(1)求点1D 到直线EF 的距离;(2)求证:1A C ⊥面BDE .【解析】(1)如图,以D 为原点,以,DA DC 正四棱柱111ABCD A B C -()()(10,0,4,0,2,1,1,1,0D E F ∴则点1D 到直线EF 的距离为:17.(15分)18.(17分)如图,在四棱锥P ABCD -中,M 为棱PC 的中点.(1)证明:BM ∥平面PAD ;(2)若5PC =,1AB =,(2)1AB = ,2DC ∴=,又PD 222PC PD DC ∴=+,则PD DC ⊥又平面PDC ⊥平面ABCD ,平面PD ∴⊥平面ABCD ,(7分)19.(17分)416(2)(i )由题意知直线l 的方程为联立221416x y ⎧-=⎪⎨,化简得(4m 2(ii )1212232,41m y y y y m -+=-直线AD 的方程为11y y x =+。
2024年高考数学合格性考试仿真模拟卷02(全解全析)
2024年北京市第二次普通高中学业水平合格性考试数学仿真模拟试卷02一、选择题(本大题共20题,每小题3分,共计60分。
每小题列出的四个选项中只有一项是最符合题目要求的)1.设集合{}{}1,0,1,21,2,3M N =-=,,则M N ⋂=()A .{}1,2B .{}1,2,3C .{}1,0,1,2-D .{}1,0,1,2,3-【答案】A【分析】根据交集运算求解.【详解】由题意可得:M N ⋂={}1,2.故选:A.2.命题:“2,340x x x ∀∈-+<R ”的否定是()A .2,340x x x ∃∉-+≥RB .2,340x x x ∃∈-+>RC .2,340x x x ∃∈-+≥RD .2,340x x x ∀∉-+≥R 【答案】C【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“2,340x x x ∀∈-+<R ”的否定为:“2,340x x x ∃∈-+≥R ”.故选:C.3.设32i z =-+,则在复平面内z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限A B .1C .2D .3,,2n x =,若//m n ,则()A .1BC .D .AB .2C .2D .12A .12B .32C .1D .2【答案】C【分析】根据两角和的正弦公式求得正确答案.【详解】()sin30cos60cos30sin60sin 3060sin901︒︒+︒︒=︒+︒=︒=.故选:C8.要得到π3sin()6y x =+的图象只需将3sin y x =的图象()A .向左平移π6个单位B .向右平移π6个单位C .向左平移π2个单位D .向右平移π2个单位【答案】A【分析】根据给定条件,利用图象的平移变换求解即得.A .2B .1C .0D .2-【答案】D【分析】令()0f x =,求出方程的解,即可得到函数的零点.【详解】解:令()0f x =,即20x +=,解得2x =-,所以函数()2f x x =+的零点为2-;故选:D10.不等式24120x x +-<的解集为()A .{}62x x -<<B .{}26x x -<<C .{}62x x -<<-D .{}25x x <<2A .2B .3C .1D .-3【答案】B【分析】直接化简即可.【详解】由322log 8log 23==.故选:B.12.若函数()1y k x b =-+在()∞∞-+,上是增函数,则().A .1k >B .1k <C .1k <-D .1k >-【答案】A【分析】根据函数是增函数,求解参数范围.【详解】因为()1y k x b =-+在()-∞+∞,上是增函数,则10k ->,即1k >.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A .45-B .45C.15D .15-A .()3f x x =+B .2()3f x x =+C .3()f x x =D .1()f x x=16.已知函数()56,0f x x x ⎧+≥=⎨+<⎩,若()6f a =,则=a ()A .0B .2C .3-D .2或3【答案】B【分析】由题意分类讨论0a ≥,a<0,解方程可求解a .【详解】当0a ≥时,则()26f a a a =+=,解得:2a =或3a =-(舍去)当0a <时,则()566f a a =+=,解得:0a =(舍去)综上所述:2a =故选:B.17.已知事件M 表示“3粒种子全部发芽”,事件N 表示“3粒种子都不发芽”,则M 和N ()A .是对立事件B .不是互斥事件C .互斥但不是对立事件D .是不可能事件【答案】C【分析】利用互斥事件和对立事件的定义求解即可.【详解】事件M 表示“3粒种子全部发芽”,事件N 表示“3粒种子都不发芽”,所以事件M 和事件N 不会同时发生,是互斥事件,因为3粒种子可能只发芽1粒,所以事件M 和事件N 可以都不发生,则M 和N 不是对立事件.故选:C18.若0x >,则9x x+有()A .最小值6B .最小值8C .最大值8D .最大值319.一组数据:1,1,3,3,5,5,7,7,,x y ,其中,x y 为正整数,且x y ≠.若该组数据的40%分位数为2.5,则该组数据的众数为()A .1B .3C .5D .7人,进行理论知识和实践技能两项测试(每项测试结果均分为A B C 、、三等),取得各等级的人数如下表:实践技能等级理论知识等级AB C A m124B 20202Cn65已知理论知识测试结果为A 的共40人.在参加测试的100人中,从理论知识测试结果为A 或B ,且实践技能测试结果均为C 的人中随机抽取2人,则这2人理论知识测试结果均为A 的概率是()A .35B .25C .12D .34【答案】B【分析】由题知理论知识测试结果为A ,且实践技能测试结果为C 的有4人,记为,,,A B C D ,理论知识测试结果为B ,且实践技能测试结果为C 的有2人,记为,a b ,再根据古典概型列举基本事件,求解概率即可.【详解】解:由题知理论知识测试结果为A 的共40人,故12440m ++=,解得24m =,21.已知幂函数()f x x α=的图象过点()3,9P ,则α=【答案】2【分析】将点()3,9P 代入函数()f x x α=,即可求解.【详解】因为幂函数()f x x α=的图象过点()3,9P ,所以()339f α==,解得2α=.故答案为:2.22.能说明“若a b >,则11a b<”为真命题的一组,a b 的值依次为=a ;b =.1111则该直三棱柱的体积为.【答案】24【分析】根据直三棱柱的体积公式直接求解即可..以下函数中,图象经过第二象限的函数有①.1y x-=②.ln()y x =-③.23y x =④.exy =25.(7分)已知函数()sin 2f x x =+.(1)求函数()f x 的最小正周期;(2)当x ∈[0,2π]时,求函数()f x 的最大值及取得最大值时x 的值.分别是PA ,PB 的中点,求证:(1)//MN 平面ABCD ;(2)CD ⊥平面PAD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线性质和线面平行判定定理可证;(2)利用线面垂直的性质可知PA CD ⊥,然后由矩形性质和线面垂直的判定定理可证.【详解】(1)因为M ,N 分别是PA ,PB 的中点,所以//MN AB .又因为MN ⊄平面ABCD ,AB ⊂平面ABCD ,所以//MN 平面ABCD .(2)因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,因为四边形ABCD 是矩形,所以CD AD ⊥.又AD PA A ⋂=,,AD PA ⊂平面PAD ,所以CD ⊥平面PAD .27.(7分)阅读下面题目及其解答过程,并补全解答过程.已知函数()2()f x x b b =-+∈R .(Ⅰ)当0b =时,判断函数()f x 的奇偶性;(Ⅱ)求证:函数()f x 在R 上是减函数.解答:(Ⅰ)当0b =时,函数()f x 是奇函数.理由如下:因为()2f x x b =-+,所以当0b =时,()f x =①.因为函数()f x 的定义域是R ,所以x ∀∈R ,都有x -∈R .所以()2()2f x x x -=--=.所以()f x -=②.所以函数()f x 是奇函数.(Ⅱ)证明:任取12,x x ∈R ,且12x x <,则③.因为()()11222,2f x x b f x x b =-+=-+,所以()()()()121222f x f x x b x b -=-+--+=④.所以⑤.所以()()12f x f x >.所以函数()f x 在R 上是减函数.以上解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的,并填写在答题卡的指定位置.空格序号选项①A .2x -B .2x ②A .()f x B .()f x -③A .120x x -<B .120x x ->④A .()122x x -B .()122x x --⑤A .()()120f x f x -<B .()()120f x f x ->【答案】①A ;②B ;③A ;④B ;⑤B .【分析】根据选项一一判断即可.【详解】①中,当0b =时,()22f x x b x =-+=-,故选:A ;②中,()()2()2f x x x f x -=--==-,故选:B ;③中,12x x <,则120x x -<,故选:A ;④中,()()()()()1212121222222f x f x x b x b x x x x -=-+--+=-+=--,故选:B ;⑤中,()()()12122f x f x x x -=--,因为120x x -<,所以()()120f x f x ->,故选:B .28.(7分)对于正整数集合{}()*12,,,,3n A a a a n n =⋅⋅⋅∈≥N ,如果去掉其中任意一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“平衡集”.(1)判断集合{}2,4,6,8,10Q =是否是“平衡集”并说明理由;(2)求证:若集合A 是“平衡集”,则集合A 中元素的奇偶性都相同;(3)证明:四元集合{}1234,,,A a a a a =,其中1234a a a a <<<不可能是“平衡集”.【答案】(1){}2,4,6,8,10Q =不是“平衡集”,利用见解析(2)证明见解析(3)证明见解析【分析】(1)根据定义直接判断即可得到结论.(2)设12n a a a M ++⋯+=,由“平衡集”定义可知(1i M a i -=,2,⋯,)n 为偶数,所以(1i a i =,2,⋯,)n 的奇偶性相同.(3)依次去掉1a ,2a 可得12a a =,显然与12a a <矛盾,所以集合1{A a =,2a ,3a ,4}a 不可能是“平衡集”.【详解】(1)集合{}2,4,6,8,10Q =不是“平衡集”,理由如下:当去掉1或5或9时,满足条件,当去掉4时,21068+≠+,不满足条件,当去掉8时,21046+≠+,不满足条件,所以集合{}2,4,6,8,10Q =不是“平衡集”.(2)设集合1{A a =,2a ,⋯,}n a ,12n a a a M ++⋯+=,由于集合A 是“平衡集”,设去掉(N )i a i *∀∈,则{}12i A A A a =⋃⋃,其中12A A =∅ ,且12,A A 中的元素和相等,不妨设1A 中的元素和为,N n n ∈,所以i 2M n a =+,12(i M n a i -==,2,⋯,)n 为偶数,(1i a i ∴=,2,⋯,)n 的奇偶性相同,方可保证()i M a -一直为偶数,即集合A 中元素的奇偶性都相同.(3)若集合1{A a =,2a ,3a ,4}a 是“平衡集”,且1234a a a a <<<,去掉1a ,则234a a a +=,去掉2a ,则134a a a +=,12a a ∴=,显然与12a a <矛盾,∴集合1{A a =,2a ,3a ,4}a 不可能是“平衡集”.。
肇庆市高中毕业班2025届高三第三次模拟考试数学试卷含解析
肇庆市高中毕业班2025届高三第三次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数()()222cos 137f x x x m x m m =+-+++-有且仅有一个零点,则实数m 的值为( )A .3372-- B .3372-+ C .4- D .22.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b ab aa ab b >>>D .1log log a bb a a b a b >>>3.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2或233B .2或3C .3或62D .233或624.双曲线的离心率为,则其渐近线方程为 A .B .C .D .5.已知()5x a +展开式的二项式系数和与展开式中常数项相等,则2x 项系数为( ) A .10 B .32 C .40 D .806.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)7.函数2|sin |2()61x x f x x=-+的图象大致为( )A .B .C .D .8.在复平面内,复数21(1)ii +-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知复数(2)1ai iz i+=-是纯虚数,其中a 是实数,则z 等于( )A .2iB .2i -C .iD .i -10.一个几何体的三视图如图所示,则该几何体的体积为( )A .103B .3C .83D .7311.已知集合A {x x 0}︱=>,2B {x x x b 0}=-+=︱,若{3}A B ⋂=,则b =( ) A .6-B .6C .5D .5-12.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3-B .{}1,0-C .{}0,3D .{}1,0,3-二、填空题:本题共4小题,每小题5分,共20分。
高中数学学业水平考试模拟试题
高中数学学业水平考试模拟试题高中学业水平考试数学模拟题一一、选择题:1.已知集合A={1,2,3,4,5},B={2,5,7,9},则AB等于()A。
{1,2,3,4,5}B。
{2,5,7,9}C。
{2,5}D。
{1,2,3,4,5,7,9}2.若函数f(x)=x+3,则f(6)等于()A。
3B。
6C。
9D。
123.直线A。
(-4,2)B。
(4,-2)C。
(-2,4)D。
(2,-4)4.两个球的体积之比为8:27,那么这两个球的表面积之比为()A。
2:3B。
4:9C。
8:27D。
22:335.已知函数f(x)=sinx*cosx,则f(x)是()A。
奇函数B。
偶函数C。
非奇非偶函数D。
既是奇函数又是偶函数6.向量a=(1,-2),b=(2,1),则()A。
a//bB。
a⊥bC。
a与b的夹角为60°D。
a与b的夹角为30°7.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是()A。
15B。
30C。
31D。
648.阅读下面的流程图,若输入的a,b,c分别是5,2,6,则输出的a,b,c分别是()A。
6,5,2B。
5,2,6C。
2,5,6D。
6,2,59.已知函数f(x)=x-2x+b在区间(2,4)内有唯一零点,则b的取值范围是()A。
RB。
(-∞,0)C。
(-8,+∞)D。
(-8,0)10.在△ABC中,已知∠A=120°,b=1,c=2,则a等于()A。
3B。
5+√3C。
7D。
5-√3二、填空题:11.某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查。
已知从其他教师中共抽取了10人,则该校共有教师人数为50人。
12.(3)³的值是27.13.已知m>0,n>0,且m+n=4,则mn的最大值是4.14.若幂函数y=f(x)的图像经过点(9,1),则f(25)的值是1/25.15.已知f(x)是定义在[-2,0)∪(0,2]上的奇函数,log4(2) = 1/2,则f(log4(2))的值为0.当$x>0$时,函数$f(x)$的图像如下图所示,因此$f(x)$的值域为$(-\infty,-1]\cup[1,\infty)$。
福建省普通高中2025届高三第一次模拟考试数学试卷含解析
福建省普通高中2025届高三第一次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三棱锥P ﹣ABC 的顶点都在球O 的球面上,PA 2=,PB 14=,AB =4,CA =CB 10=,面PAB ⊥面ABC ,则球O 的表面积为( ) A .103πB .256πC .409πD .503π2.如图所示,在平面直角坐标系xoy 中,F 是椭圆22221(0)x ya b a b+=>>的右焦点,直线2b y =与椭圆交于B ,C 两点,且90BFC ∠=︒,则该椭圆的离心率是( )A 6B .34C .12D 33.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( ) A .方差B .中位数C .众数D .平均数4.已知某几何体的三视图如图所示,则该几何体的体积是( )A .643B .64C .323D .325.将函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后,得到函数的图象关于直线3x π=对称,则函数()f x 在,88ππ⎡⎤-⎢⎥⎣⎦上的值域是( ) A .[1,2]-B .[3,2]-C .2,12⎡⎤-⎢⎥⎣⎦D .[2,2]-6.关于函数()cos cos 2f x x x =+,有下列三个结论:①π是()f x 的一个周期;②()f x 在35,44ππ⎡⎤⎢⎥⎣⎦上单调递增;③()f x 的值域为[]22-,.则上述结论中,正确的个数为() A .0B .1C .2D .37.若关于x 的不等式1127kxx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( )A .9B .8C .7D .68.已知:|1|2p x +> ,:q x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .1a ≤ B .3a ≤-C .1a ≥-D .1a ≥9.已知全集,,则( )A .B .C .D .10.已知函数()e ln mxf x m x =-,当0x >时,()0f x >恒成立,则m 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e e⎛⎫ ⎪⎝⎭C .[1,)+∞D .(,e)-∞11.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .2012.已知ABC 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=( )A .1B .2-C .12D .12-二、填空题:本题共4小题,每小题5分,共20分。
安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷
安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题1.已知集合{}{}21,0,1,2,3,230M N x x x =-=--<,则M N =I ( )A .{}1,0,1-B .{}1,0,1,2,3-C .{}0,1,2D .{}1-2.下列图象中,表示定义域和值域均为[0,1]的函数是( )A .B .C .D .3.已知向量()()1,3,3,a b m =-=r r ,若a b r r∥,则m =( ) A .9B .9-C .1D .1-4.已知函数()()222,22,2x x x f x f x x ⎧-++≤⎪=⎨->⎪⎩,则()3f =( )A .1-B .1C .2D .35.若函数()25742xy a a a a =-++-是指数函数,则有( )A .2a =B .3a =C .2a =或3a =D .2a >,且3a ≠6.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点1,12⎛⎫- ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭( )A .3-B .3C .13-D .137.水平放置的ABC V 的斜二测直观图如图所示,已知3,2A C B C ''''==,则ABC V 的面积是( )A .4B .5C .6D .78.命题“21,10x x ∀≥-≤”的否定是( ) A .21,10x x ∃<-> B .21,10x x ∃≥-> C .21,10x x ∀<-≤D .21,10x x ∀-<>9.函数π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象的一条对称轴是( )A .π6x =- B .π2x =C .2π3x =D .5π6x =10.已知复数z 满足()34i i z +=,则z =( )A .34i 55-B .34i 55+C .43i 55+D .43i 55-11.“今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于( )A .5310⨯立方尺B .5610⨯立方尺C .6610⨯立方尺D .6310⨯立方尺12.抛掷一枚质地均匀的骰子,记随机事件:E =“点数为奇数”,F =“点数为偶数”,G =“点数大于2”,H =“点数小于2”,R =“点数为3”.则下列结论不正确的是( )A .,E F 为对立事件B .,G H 为互斥不对立事件C .,E G 不是互斥事件D .,G R 是互斥事件13.ABC V 的内角,,A B C 的对边分别为,,,a b c ABC V 且π1,3b C ==,则边c =( )A .7B .3C D 14.已知,,αβγ是空间中三个不同的平面,,m n 是空间中两条不同的直线,则下列结论错误的是( )A .若,,m n αβα⊥⊥//β,则m //nB .若,αββγ⊥⊥,则α//γC .若,,m n m n αβ⊥⊥⊥,则αβ⊥D .若α//,ββ//γ,则α//γ15.若不等式2430ax x a -+-<对所有实数x 恒成立,则a 的取值范围为( )A .()(),14,-∞-⋃+∞B .(),1∞--C .(][),14,-∞-⋃+∞D .(],1-∞-16.已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为( )A .100,30B .100,21C .200,30D .200,717.已知向量a r 与b r 的夹角为π,2,16a b ==rr ,则向量a r 与b r 上的投影向量为( )A .b rBC .a rD r18.若函数()22log 3y x ax a =-+在(2,)+∞上是单调增函数,则实数a 的取值范围为A .(,4]-∞B .(,4)-∞C .(4,4]-D .[4,4]-二、填空题19.已知5sin cos 4αα-=,则sin 2α=. 20.已知单位向量a r 与单位向量b r的夹角为120︒,则3a b +=r r .21.某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为.22.某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买x 台设备的总成本为()21800200f x x x =++(单位:万元).若要使每台设备的平均成本最低,则应购买设备台.三、解答题23.已知()f x a b =⋅r r,其中向量())()sin2,cos2,R a x x b x ==∈r r ,(1)求()f x 的最小正周期;(2)在ABC V 中,角、、A B C 的对边分别为a b c 、、,若224A f ⎫⎛== ⎪⎝⎭,求角B 的值.24.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)证明:1AC BC ⊥; (2)证明:1//AC 平面1CDB . 25.已知函数()[]()211,1x b f x x x a+-=∈-+是奇函数,且()112f = (1)求,a b 的值;(2)判断函数()f x 在[]1,1-上的单调性,并加以证明;(3)若函数()f x 满足不等式()()12f t f t -<-,求实数t 的取值范围.。
高中数学模拟试题
高中数学模拟试题第一部分:选择题1. 设函数 f(x) = x^2 + 2x - 3,那么当 x = -3 时,f(x)的值为多少?A. -15B. -9C. 0D. 32. 已知集合 A = {1, 2, 3},集合 B = {3, 4, 5},则 A ∪ B 等于:A. {1, 2}B. {1, 2, 3}C. {1, 2, 3, 4, 5}D. {3, 4, 5}3. 在直角三角形 ABC 中,∠B = 90°,AB = 5,BC = 12。
那么 sinA 的值为多少?A. 5/12B. 12/13C. 5/13D. 12/54. 一元二次方程 x^2 + mx + n = 0 的解为 x = 1 和 x = -3。
那么 m 和n 的值分别是多少?A. m = -4, n = 3B. m = 4, n = -3C. m = -4, n = -3D. m = 4, n = 35. 设函数 f(x) = 2x^3 + 5x^2 + bx + 3,已知 f(-1) = 0 且 f(2) = 0。
那么 b 的值是多少?A. -1B. 1C. -2D. 2第二部分:填空题1. 已知集合 A = {1, 2, 3},集合 B = {3, 4, 5},则A ∩ B 等于_____________。
2. 解方程 3x - 7 = 2x + 3,得出 x = _____________。
3. 假设 A 和 B 分别表示事件 A 和 B 的概率,且事件 A 和 B 相互独立,则 P(A 且 B) 等于_____________。
4. 在直角三角形 ABC 中,∠C = 90°,AB = 6,BC = 8,那么 cosA 的值是_____________。
第三部分:解答题1. 解方程组:2x + y = 53x - y = 12. 计算:3^2 + 4^23. 已知函数 f(x) = x^2 + 4x - 5,求 f(x) 的最小值。
2024-2025学年高二上数学开学考试模拟卷(范围:必修第二册)(解析版)
2024-2025学年高二上数学开学考试模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(23-24高一下·湖南·期末)已知1i1i−=+z ,则z =( )A .1B .2CD .5【答案】A【解析】2221i (1i)12i i i,i 1i 1i 2z z −−−+====−=+−,所以1z =.故选:A . 2.(23-24高一下·山东枣庄·月考)在ABC 中,已知45A = ,30B °=,2a =,则b 等于( )A .2 BC D .1【答案】C【解析】由正弦定理,sin sin a bA B=,解得sin 2sin 30sin sin 45a B b A ==故选:C3.(23-24高一下·湖南怀化·期末)连续投掷一枚质地均匀骰子两次,这枚骰子两次出现的点数之积为奇数的概率是( ) A .13B .14C .15D .16【答案】B【解析】易知样本空间Ω样本点总数()6636n Ω=×=,记“两次出现的点数之积为奇数”为事件A ,则{(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)}A =, 所以()9n A =,所以()91()()364n A P An ===Ω.故选:B. 4.(23-24高一下·湖北十堰·期末)某公司在职员工有1200人,其中销售人员有400人,研发人员有600人,现采用分层随机加样的方法抽取120人进行调研,则被抽到的研发人员人数比销售人员人数多( ) A .20 B .30 C .40 D .50【答案】A【解析】由题意可得被抽到的研发人员有120600601200×=人,销售人员有120400401200×=人, 则被抽到的研发人员人数比销售人员人数多604020−=.故选:A 5.(23-24高一下·江西赣州·期末)如图,A B C ′′′ 是水平放置ABC 的直观图,其中1B C A C ′=′′=′,//A B x ′′′轴,//A C y ′′′轴,则ABC 的周长为( )A .1B .4+C .2D .2+【答案】C【解析】依题意,因//A B x ′′′轴,//A C y ′′′轴,故45C A B ′′′∠= ,在平面图xoy 直角坐标系中,有90CAB ∠= ,又1B C A C ′=′′=′,则90A C B ′′′∠= ,A B ′′=于是,22,AC A C AB A B BC ′′′′======故ABC 的周长为:2+故选:C.6.(23-24高一下·广西南宁·期末)已知数据1238,,,,x x x x 的平均数10x =,方差2110s =,则123832,32,32,,32x x x x ++++ 的平均数y 和方差22s 分别为( )A .2230,92y s = B .2232,92y s = C .2230,90ys =D .2232,90ys =【答案】D【解析】因为1238,,,,x x x x 的平均数是10,方差是10,则1238108x x x x x ++++= ,()()()()2222123822108x x x x x x x x s −+−+−++−==,所以123832,32,32,,32x x x x ++++ 的平均数是12381238323232323()28323288x x x x x x x x y x +++++++++++++×===+= ,方差是()(()(()(2221282232323232[32328x x x x x x s +−+++−++++−+= 22222123819()9()9()9()9908x x x x x x x x s −+−+−++−== 故选:D.7.(23-24高一下·安徽蚌埠·月考)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求其面积的公式,求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积”翻译成公式,即)S a b c =≤≤,其中a ,b ,c 分别为ABC 中角A ,B ,C 的对边,S 为ABC 的面积.现有面积为的ABC 满足sin :sin :sin 2:3:4A B C =,则其内切圆的半径是( )A B C D 【答案】B【解析】因为sin :sin :sin 2:3:4A B C =,由正弦定理可知::2:3:4a b c =,设2a k =,则3b k =,4c k =,0k >,2k =, 所以4a =,6b =,8c =, 设ABC 内切圆的半径为r ,由()12a b c r ++r =.故选:B. 8.(23-24高一下·湖北武汉·期末)如图,圆台1OO 的轴截面是等腰梯形ABCD ,24AB BC CD ===,E 为下底面O 上的一点,且AE =,则直线CE 与平面ABCD 所成角的正切值为( )A .2B .12C D 【答案】D【解析】过E 作EH AB ⊥,连接CH .因为ABCD 为圆台1OO 的轴截面,所以平面AEB ⊥平面ABCD ,因为平面AEB 平面ABCD AB =,EH ⊂平面AEB ,所以EH ⊥平面ABCD , 所以直线CE 与平面ABCD 所成的角即ECH ∠.因为24AB BC CD ===且AE =则BH =,CH =所以tan EH ECH CH∠==故选:D.二、多选选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高一下·山西大同·期末)已知事件,A B ,且()0.7P A =,()0.2P B =,则下列说法正确的是( ) A .若B A ⊆,则()0.7P AB =B .若A 与B 互斥,则()0.9P A B ∪=C .若A 与B 相互独立,则()0.06P AB =D .若A 与B 相互独立,则()0.9P A B ∪=【答案】BC【解析】对于A ,若B A ⊆,则()()0.2P AB P B ==,故A 错误; 对B ,若A 与B 互斥,则()()()0.9P A B P A P B ∪=+=,故B 正确; 对于C ,若A 与B 相互独立,则A 与B 相互独立,所以()()()()()10.30.20.06P AB P A P B P A P B ==−=×= ,故C 正确; 对于D ,若A 与B 相互独立,则()()()()0.70.20.70.20.76P A B P A P B P AB =+−=+−×= ,故D 错误.故选:BC.10.(23-24高一下·河南郑州·期末)人均可支配收入和人均消费支出是两个非常重要的经济和民生指标,常被用于衡量一个地区经济发展水平和群众生活水平.下图为2018~2023年前三季度全国城镇居民人均可支配收入及人均消费支出统计图,据此进行分析,则( )A .2018~2023年前三季度全国城镇居民人均消费支出逐年递增B .2018~2023年前三季度全国城镇居民人均可支配收入逐年递增C .2018~2023年前三季度全国城镇居民人均可支配收入的极差比人均消费支出的极差小D .2018~2023年前三季度全国城镇居民人均消费支出的中位数为21180元 【答案】BD对于B ,由题中折线图知人均可支配收入逐年递增,B 正确;对于C ,2018 2023年前三季度全国城镇居民人均可支配收入的极差为39428295999829−=元, 人均消费支出的极差为24315190145301−=元,C 错误; 对于D ,2018 2023年前三季度全国城镇居民人均消费支出的中位数 为2037921981211802+=元,D 正确.故选:BD11.(23-24高一下·湖北武汉·期末)如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2),则( )A .若往容器内再注入a 升水,则容器恰好能装满B .正四棱锥的高等于正四棱柱高的一半C .将容器侧面水平放置时,水面也恰好过点PD .任意摆放该容器,当水面静止时,水面都恰好经过点P 【答案】BCD【解析】设图1中水的高度2h ,几何体的高为1h ,底面正方形的边长为b ;则图2中水的体积为2221212()b h b h b h h −=−,即222122()3bh b h h =−,解得1253h h =, 所以正四棱锥的高等于正四棱柱高的一半是错误的,即B 错误.对于A ,往容器内再注入a 升水,水面将升高223h ,则22212533h h h h +==,容器恰好能装满,A 正确; 对于C ,当容器侧面水平放置时,P 点在长方体中截面上,占容器内空间的一半, 所以水面也恰好经过P C 正确;对于D ,任意摆放该容器,当水面静止时,P 点在长方体中截面上,始终占容器内空间的一半, 所以水面都恰好经过点P ,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分. 12.(23-24高一下·江西南昌·期末)已知复数()()21i z a a a =−+∈R 在复平面内对应的点位于第二象限,则a的取值范围是 . 【答案】10,2【解析】由复数()()21i z a a a =−+∈R 在复平面内对应的点位于第二象限,则2100a a −<> ,解得102a <<,故答案为:10,2. 13.(23-24高一下·河北保定·期末)在山脚A 测得山顶P 的仰角30α=°,沿倾斜角15β=°的公路向上走600m 到达B 处,在B 处测得山顶P 的仰角60γ=°,如图,若在山高的34处的点S 位置建造下山索道,则此索道离地面的高度为 m.【答案】【解析】过B 作BD AQ ⊥,垂足为D ,因为()sin15sin 4530sin 45cos30cos 45sin 30°=°−°=°°−°°=,在Rt △ABD 中,可得sin 150BD AB β=⋅=,在PAB 中,则600,15,30AB BAP APB =∠=°∠=°,由正弦定理sin sin AB PBAPB BAP=∠∠可得sin 300sin AB BAP PB APB ⋅∠==∠,在Rt PBC 中,可得(sin 150PC PB γ=⋅=,则山的高度h BD PC =+=,所以索道离地面的高度为34h =m ).故答案为:.14.(23-24高一下·海南省直辖县级单位·期中)已知向量()1,1a =−,()1,b m = ,若()a mab ⊥+ ,则m = .【答案】13【解析】因为()1,1a =−,()1,b m = ,则()1,2m m ma b +=−,若()a mab ⊥+ ,则()120a ma b m m ⋅+=−+= ,解得13m =. 故答案为:13.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(23-24高一下·河南周口·期末)2024年5月底,各省教育厅陆续召开了2024年高中数学联赛的相关工作,若某市经过初次选拔后有小明、小王、小红三名同学成功进入决赛,在决赛环节中三名同学同时解答一道试题.已知小明正确解出这道题的概率是34,小明、小红两名同学都解答错误的概率是112,小王、小红两名同学都正确解出的概率是14.设小明、小王、小红正确解出该道题分别为事件,,A B C ,,,A B C 三个事件两两独立,且()()()()P ABC P A P B P C =. (1)求三名同学都正确解出这道题的概率; (2)求小王正确解出这道题的概率. 【答案】(1)316;(2)38【解析】(1)由题意得,()()()()()()3134416P ABC P A P B P C P A P BC ===×=,所以三名同学都正确解出这道题的概率为316. (2)因为()34P A =,则()1()14P A P A =−=,又因为1()()()12P AC P A P C ==,可得1()3P C =,则()()213P C P C =−=,又因为()()()14P BC P B P C ==,所以()38P B =. 所以小王正确解出这道题的概率为38.16.(23-24高一下·安徽阜阳·期中)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且2cos 2a cC b−=. (1)求角B 的大小;(2)若3b =,sin C =ABC 的面积.【答案】(1)π3;【解析】(1)在ABC 中,2cos 2a cC b−=, ∴由正弦定理得2sin sin cos 2sin A CC B−=,2sin sin 2sin cos A C B C ∴=+. 又()sin sin sin cos cos sin AB C B C B C =+=+,sin 2cos sin C B C ∴=, ()0,πC ∈ ,sin 0C ∴≠,1cos 2B ∴=,()0,πB ∈ ,π3B ∴=.(2)在ABC 中,π3B =,3b =,sinC =∴由正弦定理得sin sin b c B C =,sin 2sin b Cc B∴==, ∴由余弦定理得2491cos 42a B a +−==,解得1a =,ABC ∴ 的面积为(11sin 1222ac B =×+×=.17.(23-24高一下·河南商丘·期末)如图,在正三棱柱111ABC A B C -中,4CA =,E ,P 分别为棱AC ,BC 的中点,且11PB BC ⊥.(1)证明:1//AB 平面1EBC ;(2)求三棱柱111ABC A B C -被平面1EBC 截得的两部分的体积.【答案】(1)证明见解析;(2)三棱锥1C CEB −,多面体111ABEA B C 【解析】(1)连接1CB 交1BC 于F ,连接EF ,如图.∵三棱柱111ABC A B C -为正三棱柱,∴F 为1CB 的中点,又E 为AC 的中点,∴EF 为1ACB 的中位线,∴1EF AB ∥,又EF ⊂平面1EBC ,1AB ⊂/平面1EBC ,∴1AB ∥平面1EBC . (2)三棱柱111ABC A B C -被平面1EBC 截得的两部分为三棱锥1C CEB −与多面体111ABEA B C .∵三棱柱111ABC A B C -为正三棱柱,∴四边形11CBB C 为矩形, 又11BC PB ⊥,∴111PBB BB C ∽, ∴1111BB PB BB C B =,解得1BB =∴三棱柱111ABC A B C -24×故三棱锥1C CEB −的体积为1243×× 多面体111ABEA B C的体积为18.(21-22高一下·山东临沂·期末)文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的最大受益者,更是文明城市的主要创造者,某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)40,50,[)[]50,60,,90,100 ,得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值; (2)求样本成绩的第75百分位数;(3)已知落在[)50,60的平均成绩是54,方差是7,落在[)60,70的平均成绩为66,方差是4,求两组成绩的总平均数和总方差.【答案】(1)0.030a =;(2)84;(3)总平均数为62;总方差为37 【解析】(1)因为每组小矩形的面积之和为1,所以()0.0050.0100.0200.0250.010101a +++++⨯=,则0.030a =.(2)成绩落在[)40,80内的频率为()0.0050.0100.0200.030100.65+++×=, 落在[)40,90内的频率为()0.0050.0100.0200.0300.025100.9++++×=, 设第75百分位数为m ,由()0.65800.0250.75m +−×=,得84m =,故第75百分位数为84. (3)由图可知,成绩在[)50,60的市民人数为1000.110×=, 成绩在[)60,70的市民人数为1000.220×=,故这两组成绩的总平均数为21054662061020×=++×,由样本方差计算总体方差公式可得总方差为:2221020s 7(5462)4(6662)373030 =×+−+×+−=.19.(23-24高一下·重庆·期末)对于数集{}121,,,,n X x x x =−,其中120n x x x <<<< ,2n ≥,定义向量集(){},,,Y aa s t s X t X ==∈∈.(1)设{}1,2,3X =−,请写出向量集Y ;(2)对任意1a Y ∈,存在()212a Y a a ∈≠ ,使得12a a λ= ,R λ∈,则称X 具有性质P .若12x <<,集合{}1,1,,2x −是否具有性质P ,若具有,求x 的值,若不具有,请说明理由;(3)对任意1a Y ∈,存在()212a Y a a ∈≠ ,使得120a a ⋅= ,则称X 具有性质T .若X 具有性质T ,且2x q =,q 为常数且1q >,当X 为整数集时,求证:34231nn x x x q x x x −====. 【答案】(1)()()()()()()()()(){}1,1,1,2,1,3,2,1,2,2,2,3,3,1,3,2,3,3Y =−−−−−−;(2)不具有,理由见解析(3)证明见解析【解析】(1)由题意()()()()()()()()(){}1,1,1,2,1,3,2,1,2,2,2,3,3,1,3,2,3,3Y =−−−−−−;(2)假设存在,因为12a a λ= ,所以12//a a , 当()11,2a = 时,设()2a = ,则2m n =,而集合{}1,1,,2x −,12x <<中,只有221=×,所以只能是2,1n m ==,此时12a a =,这与已知矛盾, 所以集合{}1,1,,2x −不具有性质P ;(3)因为X 具有性质T ,取11(,)a x x =,则存在(),s t Y ∈,,s t X ∈,使得110sx tx +=,而1>0x ,故0s t +=,故,s t 异号, 而,s t X ∈,故,s t 必有一个为1−,故{}{},1,1s t =−,故1X ∈,即11x =,取(,),3,,i i b q x i n ==,因为X 具有性质T , 所以存在(),i i s t Y ∈,使得10i i i s q t x ++=, 因为2301n qx x x <<=<<⋅⋅⋅<,故,i i s t 必有一个为1−, 若1i s =−,则1i t >且i i q t x =,但i x q >,故i i t x q >,矛盾;故1i t =−,则1i s >且i i x s q =即i i x s X q=∈, 因为31411n n n x x x x x q q q q −<<<<<< , 且X 中除1,1−外有且只有n 1−个大于1的元素, 故314231,,,,i n i n x x x x q x x x x q q q q +−===== , 即34231n n x x x q x x x −==⋅⋅⋅==.。
2025届陕西省延安市高三第一次模拟考试数学试卷含解析
2025届陕西省延安市高三第一次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,矩形ABCD 中,1AB =,2BC =,E 是AD 的中点,将ABE △沿BE 折起至A BE ',记二面角A BE D '--的平面角为α,直线A E '与平面BCDE 所成的角为β,A E '与BC 所成的角为γ,有如下两个命题:①对满足题意的任意的A '的位置,αβπ+≤;②对满足题意的任意的A '的位置,αγπ+≤,则( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立2.35(1)(2)x y --的展开式中,满足2m n +=的m nx y 的系数之和为( )A .640B .416C .406D .236-3.M 是抛物线24y x =上一点,N 是圆()()22121x y -+-=关于直线10x y --=的对称圆上的一点,则MN 最小值是( ) A 111- B 31 C .221D .324.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 A .-40B .-20C .20D .405.已知ABC 是边长为3的正三角形,若13BD BC =,则AD BC ⋅=A .32- B .152 C .32D .152-6.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( )A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆7.如图,圆锥底面半径为2,体积为223π,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )A .12B .1C .104D .528.直三棱柱111ABC A B C -中,12CA CC CB ==,AC BC ⊥,则直线1BC 与1AB 所成的角的余弦值为( ) A .55B .53C .255D .359.执行下面的程序框图,如果输入1995m =,228n =,则计算机输出的数是( )A .58B .57C .56D .5510.若向量(0,2)m =-,(3,1)n =,则与2m n +共线的向量可以是( ) A .(3,1)-B .(3)-C .(3,1)-D .(1,3)-11.设f (x )是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->> B .0.40.33(log 0.3)(2)(2)f f f -->> C .0.30.43(2)(2)(log 0.3)f f f -->>D .0.40.33(2)(2)(log 0.3)f f f -->>12.已知n S 是等差数列{}n a 的前n 项和,若312S a S +=,46a =,则5S =( )A .5B .10C .15D .20二、填空题:本题共4小题,每小题5分,共20分。
2025届浙江省宁波效实中学高三3月份第一次模拟考试数学试卷含解析
2025届浙江省宁波效实中学高三3月份第一次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大正整数,则下列结论正确的是( ) A .()f x 的值域是[]0,1 B .()f x 是奇函数 C .()f x 是周期函数D .()f x 是增函数2.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( ) A .23B .2C .14D .133.已知定义在R 上的函数()f x 的周期为4,当[2,2)x ∈-时,1()43xf x x ⎛⎫=-- ⎪⎝⎭,则()()33log 6log 54f f -+=( ) A .32B .33log 22- C .12-D .32log 23+ 4.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为( )A .22n n -B .212n -C .212n (-)D .22n5.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74B .121C .74-D .121-6.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下: 小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的; 小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )A .小王或小李B .小王C .小董D .小李7.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .128.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( ) A .2B .3C .4D .59.设12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点若双曲线上存在点P ,使1260F PF ∠=︒,且122PF PF =,则双曲线的离心率为( ) A .3B .2C .5D .610.设全集U =R ,集合2{|340}A x x x =-->,则UA =( )A .{x |-1 <x <4}B .{x |-4<x <1}C .{x |-1≤x ≤4}D .{x |-4≤x ≤1}11.已知向量a 与a b +的夹角为60︒,1a =,3b =,则a b ⋅=( ) A .32-B .0C .0或32-D .32-12.已知数列{}n a 的前n 项和为n S ,且()()()212*111N ()n n n S S S n ++++=+∈,121,2a a ==,则n S =( ) A .()12n n + B .12n + C .21n - D .121n ++二、填空题:本题共4小题,每小题5分,共20分。
福建省福州市2024-2025学年高一上学期10月份第一次月考数学模拟试卷
2024-2025学年福州市高一上学期第一次月考数学模拟试卷总分150分;考试时间120分钟;一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组对象中不能组成集合的是( ).A .2023年男篮世界杯参赛队伍B .中国古典长篇小说四大名著C .高中数学中的难题D .我国的直辖市2. 已知M,N 都是U 的子集,则图中的阴影部分表示( )A. M ∪NB. ∁U (M ∪N)C. (∁U M)∩ND. ∁U (M∩N)3.若集合{}1,2,3A =,(){},|40,,Bx y x y x y A =+−>∈,则集合B 的真子集个数为( ) A .5B .6C .7D .8 4.已知集合{}12A x x =−<<,{}01B x x =<<,则( ) A .A B > B .A ⊆B C .B ⊆A D .A B =5.已知命题3:0,p x x x ∀≥>,命题2:0,10q x x ∃<+>,则( )A .p 和q 均为真命题B .p ¬和q 均为真命题C .p 和q ¬均为真命题D .p ¬和q ¬均为真命题6.设,a b ∈R ,则“1a <且1b <”是“2a b +<”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.227x x +的最小值为( )A .B .C .D .8.若关于x 的方程()2210mx m x m +−+=有两个不相等的实数根,则实数m 的取值范围是( ).A .14m <B .14m >C .14m <且0m ≠ D .14m >且0m ≠ 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是( )A .“11a b>”是“a b >”的充分不必要条件 B .“A =∅”是“A B ∩=∅”的充分不必要条件C .若,,R a b c ∈,则“22ab cb >”的充要条件是“a c >”D .若,R a b ∈,则“220a b +≠”是“0a b +≠”的充要条件10.下列命题中,是真命题的有( )A .集合{}1,2的所有真子集为{}{}1,2B .若{}{}1,2,a b =(其中,a b ∈R ),则3a b +=C .{x x 是等边三角形}{x x ⊆是等腰三角形}D .{}{}3,6,x x k k x x z z =∈⊆=∈N N11.若关于x 的一元二次不等式()20,,R ax bx c a b c ++>∈的解集为{}23x x −<<,则( )A .0a >B .0bc >C .0a b +=D .0a b c −+>12. 对于非空数集M ,定义()f M 表示该集合中所有元素的和.给定集合 1,2,3,4S ,定义集合(){},T f A A S A ⊆≠∅,则下列说法正确的是( )A. 7T ∈B. 8T ∉C. 集合T 中有10个元素D. 集合T 中有11个元素三、填空题:本大题共4小题,每小题5分.13. 命题“x ∀∈R ,240x x −+≥”的否定为______.14.集合{}2|40A x x =−=的子集个数是15. 已知0a >,则91a a ++的最小值是______. 16.不等式2320x x −++>的解集为 .四、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. 已知关于x 不等式:()23130ax a x −++<. (1)当2a =−时,解此不等式;(2)当0a >时,解此不等式.18. 已知集合{}{}25,123A x x B x m x m =−≤≤=−≤≤+.(1)若4m =,求A B ∪;(2)若A B B = ,求实数m 的取值范围.19. 已知实数a >0,b >0,a +2b =2 (1)求12a b+的最小值; (2)求a 2+4b 2+5ab 的最大值.20. 某公司建造一间背面靠墙的房屋,地面面积为248m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元,如果墙高为3m ,且不计房屋背面和地面的费用,那么怎样设计房屋能使总造价最低?最低总造价是多少?21. 已知命题:p x ∃∈R ,240x x m −+=为假命题.(1)求实数m 的取值集合B ;(2)设{}34A x a x a =<<+,若x B ∈是x A ∈的必要不充分条件,求实数a 的取值范围.22. 已知集合2{|320,R,R}A x ax x x a =−+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围的。
2024年黑龙江普通高中学业水平合格性考试数学仿真模拟试卷1(高频考点版)
一、单选题二、多选题1.已知函数,则A .是偶函数,且在R 上是增函数B .是奇函数,且在R 上是增函数C .是偶函数,且在R 上是减函数D .是奇函数,且在R 上是减函数2.如图,设点在河的两岸,一测量者在的同侧所在的河岸边选定一点.测出两点间的距离为.,则两点间的距离为( )m.A.B.C.D.3. 记为的任意一个排列,则使得为奇数的排列个数为( )A .8B .12C .16D .184. 下列命题中,真命题的个数有( )①②;③函数是单调递增函数.A .0个B .1个C .2个D .3个5. 线性回归分析模型中,变量X 与Y 的一组样本数据对应的点均在直线上,表示解释变量对于预报变量变化的贡献率,则( )A .2B .1C.D.6. 若点是函数图象上任意一点,直线为点处的切线,则直线倾斜角的取值范围是( )A.B.C.D.7. 命题:,的否定是( )A .,B .,C .,D .,8. 甲,乙两人在5天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则下列结论正确的是()A .在这5天中,甲,乙两人加工零件数的极差相同B .在这5天中,甲,乙两人加工零件数的中位数相同C .在这5天中,甲日均加工零件数大于乙日均加工零件数D .在这5天中,甲加工零件数的方差小于乙加工零件数的方差2024年黑龙江普通高中学业水平合格性考试数学仿真模拟试卷1(高频考点版)2024年黑龙江普通高中学业水平合格性考试数学仿真模拟试卷1(高频考点版)三、填空题四、解答题9. 已知双曲线的左,右焦点分别为、,过的直线与双曲线的右支交于点、,与双曲线的渐近线交于点、(、在第一象限,、在第四象限),为坐标原点,则下列结论正确的是( )A .若轴,则的周长为B .若直线交双曲线的左支于点,则C.面积的最小值为D .的取值范围为10. 将一枚质地均匀的硬币连续抛掷n 次,以表示没有出现连续3次正面向上的概率,则下列结论正确的是( )A.B.C .当时,D.11. 已知椭圆的上顶点为,左、右焦点分别为,则下列叙述正确的是( )A .若椭圆的离心率为,则B .若直线与椭圆的另一个交点为,且,则C .当时,过点的直线被椭圆所截得的弦长的最大值为D .当时,椭圆上存在异于的两点,满足,则直线过定点12. 如图所示,正方体的棱长为1,,分别是棱,的中点,过直线的平面分别与棱,交于点,,以下四个命题中正确的是()A .四边形一定为矩形B .平面平面C .四棱锥体积为D .四边形的周长最小值为13. 已知平面向量,满足,,且,的夹角大小为,则在方向上的投影向量的坐标为__________.14. 已知函数.(1)若,则的定义域是___________;(2)若在区间上是减函数,则实数a 的取值范围是___________.15. 已知抛物线的焦点为,过点的直线交于两个不同点,若,则直线的斜率为__________.16. 如图,圆柱的轴截面是一个边长为2的正方形,点D 为棱的中点,为弧上一点,且(1)求三棱锥的体积;(2)求二面角的余弦值.17. 已知正项等比数列满足,.(1)求数列的通项公式;(2)记,求数列的前项和.18. 如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,为底面圆的内接正三角形,且边长为在母线上,且.(1)求证:平面平面;(2)设线段上动点为,求直线与平面所成角的正弦值的最大值.19. 某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按,,,,分组,整理如下图:(1)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(2)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;(3)估计1200个日销售量数据中,数据在区间中的个数.20. 已知函数.(1)求函数的极值;(2)若对任意有解,求的取值范围.21. 如图1所示,平面多边形中,四边形为正方形,,,沿着将图形折成图2,其中,为的中点.(Ⅰ)求证:;(Ⅱ)求四棱锥的体积.。
浙江省温州市2024届高三第一次模拟考试数学试题含答案
浙江省温州2024届高三第一次模拟考试数学学科(答案在最后)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则复数1i1i +-的虚部为()A.i - B.iC.0D.1【答案】D 【解析】【分析】利用复数的除法运算,得到复数的代数形式,由此求得复数的虚部.【详解】因为()()21i (1i)2ii 1i 1i 1i 2++===-+-,所以虚部为1.故选:D .2.某校高一年级18个班参加艺术节合唱比赛,通过简单随机抽样,获得了10个班的比赛得分如下:91,89,90,92,94,87,93,96,91,85,则这组数据的80%分位数为()A.93B.93.5C.94D.94.5【答案】B 【解析】【分析】利用百分位数的定义即可得解.【详解】将比赛得分从小到大重新排列:85,87,89,90,91,91,92,93,94,96,因为1080%8⨯=,所以这组数据的80%分位数第8个数与第9个数的平均值,即939493.52+=.故选:B.3.已知直线:2l y x b =+与圆()()22:235C x y ++-=有公共点,则b 的取值范围为()A.[]2,12 B.(][),212,∞∞-⋃+C.[]4,6- D.(][),46,-∞-+∞ 【答案】A 【解析】【分析】由圆心到直线距离小于等于半径,得到不等式,求出答案.【详解】由题意得,圆心()2,3-到直线:2l y x b =+的距离≤,解得212b ≤≤,故b 的取值范围是[]2,12.故选:A4.三棱锥-P ABC 中,PA ⊥平面ABC ,ABC 为等边三角形,且3AB =,2PA =,则该三棱锥外接球的表面积为()A.8πB.16πC.32π3D.12π【答案】B 【解析】【分析】首先作图构造外接球的球心,再根据几何关系求外接球的半径,最后代入三棱锥外接球的表面积公式.【详解】如图,点H 为ABC 外接圆的圆心,过点H 作平面ABC 的垂线,点D 为PA 的中点,过点D 作线段PA 的垂线,所作两条垂线交于点O ,则点O 为三棱锥外接球的球心,因为PA ⊥平面ABC ,且ABC 为等边三角形,2,3PA AB ==,所以四边形AHOD 为矩形,3AH AB ==112OH PA ==,所以2OA ==,即三棱锥外接球的半径2R =,则该三棱锥外接球的表面积为24π16πR =.故选:B5.已知等比数列{}n a 的首项11a >,公比为q ,记12n n T a a a =⋅⋅⋅(*n ∈N ),则“01q <<”是“数列{}n T 为递减数列”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据等比数列的通项公式,结合等差数列的前n 项和公式、充分性和必要性的定义进行判断即可.【详解】由题意,()()1123(1)1121211110n n n nn n n n a a q a q aT qa qa a a a --+++-=⋅=⋅⋅=⋅⋅⋅>= ,(1)12111(1)21n n n nn n n n nT a q a q T a q +++-⋅==⋅⋅,当11,01a q ><<时,11na q ⋅<对于N n *∈不一定恒成立,例如122,3a q ==;当{}n T 为递减数列时,0q >且11na q ⋅<对于N n *∈恒成立,又因为11a >,所以得01q <<,因此“01q <<”是“数列{}n T 为递减数列”的必要不充分条件,故选:C.6.已知函数()π4f x x ω⎛⎫=- ⎪⎝⎭,其中0ω>.若()f x 在区间π3π,34⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围是()A.10,3⎛⎤ ⎥⎝⎦B.35,43⎡⎤⎢⎥⎣⎦C.50,3⎛⎤ ⎥⎝⎦D.(]0,1【答案】A 【解析】【分析】利用余弦函数的单调性求出()π4f x x ω⎛⎫=- ⎪⎝⎭单调递增区间,可得3π2ππ4,3π2π3π4,4k k ωω⎧-+⎪≤⎪⎪⎨⎪+⎪≥⎪⎩,解不等式即可得出答案.【详解】由题意得,函数()f x 的增区间为()ππ2π2π4k x k k ω-+≤-≤∈Z ,且0ω>,解得()3ππ2π2π44k k x k ωω-++≤≤∈Z .由题意可知:()3ππ2π2ππ3π44,,34k k k ωω⎛⎫-++ ⎪⎛⎫⊆∈⎪ ⎪⎝⎭ ⎪⎝⎭Z .于是3π2ππ43π2π3π44k k ωω⎧-+⎪≤⎪⎪⎨⎪+⎪≥⎪⎩,解得()9186433k k k ω-+≤≤+∈Z .又0ω>,于是103ω<≤.故选:A .7.在直角梯形ABCD ,AB AD ⊥,//DC AB ,1AD DC ==,=2AB ,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示),若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是()A.⎡⎤⎣⎦B.⎡⎣C.11,22⎡⎤-⎢⎥⎣⎦D.,22⎡-⎢⎣⎦【答案】A 【解析】【分析】结合题意建立直角坐标系,得到各点的坐标,再由AP ED AF λμ=+ 得到3cos 2αλμ=-+,1sin 2αλμ=+,从而得到2π4αλμ⎛⎫=-- ⎪⎝⎭,由此可求得2λμ-的取值范围.【详解】结合题意建立直角坐标,如图所示:.则()0,0A ,()1,0E ,()0,1D ,()1,1C ,()2,0B ,()ππcos ,sin 22P ααα⎛⎫-≤≤ ⎪⎝⎭,则31,22F ⎛⎫ ⎪⎝⎭,()cos ,sin AP αα=,()1,1ED =- ,31,22AF ⎛⎫= ⎪⎝⎭ ,∵AP ED AF λμ=+ ,∴()()3131cos ,sin 1,1,,2222ααλμλμλμ⎛⎫⎛⎫=-+=-++ ⎪⎪⎝⎭⎝⎭,∴3cos 2αλμ=-+,1sin 2αλμ=+,∴()13sin cos 4λαα=-,()1cos sin 2μαα=+,∴()()11π23sin cos cos sin sin cos 224λμααααααα⎛⎫-=--+=-=- ⎪⎝⎭,∵ππ22α-≤≤,∴3πππ444α-≤-≤,∴π1sin 42α⎛⎫-≤-≤ ⎪⎝⎭,∴π14α⎛⎫≤-≤ ⎪⎝⎭,故21λμ≤-≤,即()2λμ⎡⎤⎣⎦-∈.故选:A.8.已知lg4lg5lg610,9,8a b c ===,则,,a b c 的大小关系为()A.a b c >>B.a c b>> C.b c a>> D.c b a>>【答案】D 【解析】【分析】根据题意可得lg lg4lg10,lg lg5lg9,lg lg6lg8a b c =⋅=⋅=⋅,构建函数()()lg lg 14,46f x x x x =⋅-≤≤,利用导数分析可知()f x 在[]4,6上单调递增,进而结合对数函数单调性分析判断.【详解】因为lg4lg5lg610,9,8a b c ===,两边取对数得:lg lg4lg10,lg lg5lg9,lg lg6lg8a b c =⋅=⋅=⋅,令()()lg lg 14,46f x x x x =⋅-≤≤,则()()()()()()lg 1414lg 14lg lg 1ln1014ln10ln1014x x x x x x f x x x x x ⎡⎤----⋅=-=⎢⎥-⋅-⎢⎥⎣⎦',令()lg g x x x =⋅,则()()()()1lg lg lg 0,1,ln10g x x x x x x x '=⋅+⋅=+>∈''+∞,可知()g x 在()1,+∞上单调递增,因为46x ≤≤,则81410x ≤-≤,可知14x x ->恒成立,则()()14g x g x ->,即()()140g x g x -->,可得()0f x ¢>,则()()lg lg 14f x x x =⋅-在[]4,6上单调递增,可得()()()456f f f <<,可得lg4lg10lg5lg9lg6lg8⋅<⋅<⋅,即lg lg lg a b c <<,又因为lg y x =在()0,∞+上单调递增,所以a b c <<.故选:D.【点睛】关键点睛:对题中式子整理观察形式,构建函数()()lg lg 14,46f x x x x =⋅-≤≤,利用导数判断其单调性.二、多选题:本大题共4小题,在每小题给出的四个选项中,有多项符合题目要求.9.下列选项中,与“11x>”互为充要条件的是()A.1x <B.20.50.5log log x x >C.233x x< D.()()11x x x x -=-【答案】BC 【解析】【分析】求解各不等式判断即可.【详解】对A ,11x>则110x ->,即10xx ->,()10x x -<,解得01x <<,故A 错误;对B ,20.50.5log log x x >则20x x <<,故()10x x -<,解得01x <<,故B 正确;对C ,233x x <则2x x <,解得01x <<,故C 正确;对D ,()()11x x x x -=-,则()10x x -≤,解得01x ≤≤,故D 错误.故选:BC10.设A ,B 是一次随机试验中的两个事件,且1(3P A =,1()4P B =,7()12P AB AB +=,则()A.A ,B 相互独立B.5()6P A B +=C.()13P B A =D.()()P A B P B A≠【答案】ABD【解析】【分析】利用独立事件、对立事件、互斥事件的定义与概率公式可判定A 、B ,利用条件概率的定义与公式可判定C 、D .【详解】由题意可知()()()23()1,134P A P A P B P B =-==-=,事件,AB AB 互斥,且()()()()()(),P AB P AB P A P AB P AB P B +=+=,所以()()()()()7()212P AB AB P AB P AB P A P B P AB +=+=+-=,即()()()()2171234126P AB P AB P A P B +-=⇒==,故A 正确;则()()()()()()()()P A B P A P B P AB P A P B P A P B+=+-=+-⋅1313534346=+-⨯=,故B 正确;由条件概率公式可知:()()()11162433P AB P B A P A ===≠,故C 错误;()()()()()()11146134P AB P B P AB P A B P B P B --====,()()()()()()21336243P BA P A P AB P B A P A P A --====即()()P A B P B A ≠,故D 正确.故选:ABD11.在三棱锥-P ABC 中,ACBC ⊥,4AC BC ==,D 是棱AC 的中点,E 是棱AB 上一点,2PD PE ==,AC ⊥平面PDE ,则()A.//DE 平面PBCB.平面PAC ⊥平面PDEC.点P 到底面ABC 的距离为2D.二面角D PB E --的正弦值为7【答案】ABD 【解析】【分析】根据线面平行的判定定理可判断A ;根据面面垂直的判定定理可判断B ;取DE 的中点O ,过点O 作OF DE ⊥交BC 于点F ,利用线面垂直的判定定理可得PO ⊥平面ABC ,求出PO 可判断C ;以{},,OE OF OP为正交基底建立空间直角坐标系,求出平面PBD 、平面PBD 的一个法向量,由线面角的向量求法可判断D .【详解】对于A ,因为AC ⊥平面PDE ,DE ⊂平面PDE ,所以AC DE ⊥.因为AC BC ⊥,且直线,,AC BC DE ⊂平面ABC ,所以//DE BC .因为DE ⊄平面PBC ,BC ⊂平面PBC ,所以//DE 平面PBC ,A 正确;对于B ,AC ⊥平面PDE ,AC ⊂平面PAC ,所以平面PDE ⊥平面PAC ,B 正确;对于C ,取DE 的中点O ,连接PO ,过点O 作OF DE ⊥交BC 于点F ,因为PD PE =,所以PO DE ⊥.因为AC ⊥平面PDE ,PO ⊂平面PDE ,所以AC PO ⊥,因为DE AC D ⋂=,DE ,AC ⊂平面ABC ,所以PO ⊥平面ABC,PO =,C 错误;对于D ,如图,以{},,OE OF OP为正交基底建立空间直角坐标系,因为D 是AC 的中点,4AC BC ==,所以()()()()0,0,0,3,2,0,1,0,0,1,0,0O B E D -,因为2PD PE ==,所以PO =,即(P ,所以()((()4,2,0,1,0,,1,0,,2,2,0DB DP EP EB ===-=,设平面PBD 的一个法向量()111,,m x y z =,则00m DB m DP ⎧⋅=⎪⎨⋅=⎪⎩,即11114200x y x +=⎧⎪⎨+=⎪⎩,令1x =111y z =-=-,所以平面PBD的一个法向量)1m =--,设平面PBE 的一个法向量()222,,n x y z = ,则0n EB n EP ⎧⋅=⎪⎨⋅=⎪⎩,即22222200x y x +=⎧⎪⎨-+=⎪⎩,令2x =,得221y z ==,所以平面PBE的一个法向量)n =,所以1cos ,7m nm n m n-⨯-⋅== ,设二面角D PB E--为[],0,πθθ∈,所以21sin 7θ==,所以二面角D PB E --的正弦值为7,故D 正确.故选:ABD .【点睛】方法点睛:二面角的通常求法,1、由定义作出二面角的平面角;2、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角;3、利用向量法求二面角的平面.12.设F 为抛物线2:4C y x =的焦点,直线():2200l x ay b a -+=≠与C 的准线1l ,交于点A .已知l 与C 相切,切点为B ,直线BF 与C 的一个交点为D ,则()A.点(),a b 在C 上B.BAF AFB∠<∠C.以BF 为直径的圆与1l 相离 D.直线AD 与C 相切【答案】BCD 【解析】【分析】A 选项,联立直线l 与抛物线方程,根据根的判别式得到点(),b a 在C 上;B 选项,作出辅助线,结合抛物线定义得到相等关系,再由大边对大角作出判断;C 选项,证明出以BF 为直径的圆与y 轴相切,得到C 正确;D 选项,设出直线BD 方程,与抛物线方程联立求出D 点坐标,从而求出直线AD 方程,联立抛物线,根据根的判别式得到答案.【详解】对于A ,联立直线l 与C 的方程,消去x 得2240y ay b -+=,因为l 与C 相切,所以2Δ4160a b =-=,即24a b =,所以点(),b a 在C 上,A 错误.对于B ,过点B 作BM 垂直于C 的准线,垂足为M ,由抛物线定义知BF BM =,因为0a ≠,所以AB BM >,所以在ABF △中,AB BF >,由大边对大角得BAFAFB ∠<∠,B 正确.对于C ,()1,0F ,由A 选项l 与C 相切,切点为B ,可得(),B b a ,其中24a b =,则BF 的中点坐标为1,22b a +⎛⎫⎪⎝⎭,且()221BF b a =-+()()22211412b a b bb -+-++==,由于半径等于以BF 为直径的圆的圆心横坐标,故以BF 为直径的圆与y 轴相切,所以与1l 相离,C 正确;对于D ,设直线BD 方程为11b x y a -=+,与C 联立得()24140b y y a ---=,所以4D a y ⋅=-,解得4D y a=-,则21144111D D b b x y a a a a b --⎛⎫=+=⋅-+== ⎪⎝⎭,因为221,b A a -⎛⎫- ⎪⎝⎭,所以直线AD 方程为22b y x a a=--,联立直线AD 与曲线C 的方程得2240by ay ++=,因为2Δ4160a b '=-=,所以直线AD 与C 相切,D 正确.故选:BCD .【点睛】抛物线的相关结论,22y px =中,过焦点F 的直线与抛物线交于,A B 两点,则以,AF BF 为直径的圆与y 轴相切,以AB 为直径的圆与准线相切;22x py =中,过焦点F 的直线与抛物线交于,A B 两点,则以,AF BF 为直径的圆与x 轴相切,以AB 为直径的圆与准线相切.三、填空题:本大题共4小题13.已知:31p x -≤≤,:q x a £(a 为实数).若q 的一个充分不必要条件是p ,则实数a 的取值范围是________.【答案】[)1,+∞【解析】【分析】利用小范围是大范围的充分不必要条件转换成集合的包含关系求解.【详解】因为q 的一个充分不必要条件是p ,所以[3,1]-是(],a -∞的一个真子集,则1a ≥,即实数a 的取值范围是[)1,+∞.故答案为:[)1,+∞.14.已知正项数列{}n a 满足121n n n a a n +=+,则106a a =_______.【答案】485【解析】【分析】由递推公式可得121n n a n a n +=+,再由累乘法即可求得结果.【详解】由121n n n a a n +=+可得121n na n a n +=+,由累乘可得9101879870662928272648918171615a a a a a a a a a a ⨯⨯⨯⨯=⋅⋅⋅=⨯⨯⨯=++++.故答案为:48515.直三棱柱111ABC A B C -的底面是直角三角形,AC BC ⊥,6AC =,8BC =,14AA =.若平面α将该直三棱柱111ABC A B C -截成两部分,将两部分几何体组成一个平行六面体,且该平行六面体内接于球,则此外接球表面积的最大值为______.【答案】104π【解析】【分析】α可能是AC 的中垂面,BC 的中垂面,1AA 的中垂面.截下的部分与剩余的部分组合成为长方体,用公式求出外接球直径进而求解.【详解】平行六面体内接于球,则平行六面体为直四棱柱,如图α有如下三种可能.截下的部分与剩余的部分组合成为长方体,则222238489R =++=或222264468R =++=或2222682104R =++=,所以2max 4π104πS R ==.故答案为:104π16.对任意(1,)x ∈+∞,函数()ln ln(1)0(1)x f x a a a x a =--≥>恒成立,则a 的取值范围为___________.【答案】1e e ,⎡⎫+∞⎪⎢⎣⎭【解析】【分析】变形为()()11ln 1ln 1x x aa x x --≥--,构造()ln ,0F t t t t =>,求导得到单调性进而11x a ->恒成立,故()10x F a->,分当(]10,1x -∈和11x ->两种情况,结合()ln u g u u =单调性和最值,得到1e e a ≥,得到答案.【详解】由题意得1ln ln(1)x a a x -≥-,因为(1,)x ∈+∞,所以()()()11ln 1ln 1x x aa x x --≥--,即()()11ln 1ln 1x x a a x x --≥--,令()ln ,0F t t t t =>,则()()11x F aF x -≥-恒成立,因为()1ln F t t ='+,令()0F t '>得,1e t ->,()ln F t t t =单调递增,令()0F t '<得,10e t -<<,()ln F t t t =单调递减,且当01t <≤时,()0F t ≤恒成立,当1t >时,()0F t >恒成立,因为1,1a x >>,所以11x a ->恒成立,故()10x F a ->,当(]10,1x -∈时,()10F x -≤,此时满足()()11x F a F x -≥-恒成立,当11x ->,即2x >时,由于()ln F t t t =在()1e ,t ∞-∈+上单调递增,由()()11x F a F x -≥-得()1ln 11ln 1x x a x a x --≥-⇒≥-,令11u x =->,()ln u g u u =,则()21ln u g u u -'=,当()1,e u ∈时,()0g u '>,()ln u g u u =单调递增,当()e,+u ∞∈时,()0g u '<,()ln u g u u =单调递减,故()ln u g u u =在e u =处取得极大值,也是最大值,()ln e 1e e eg ==,故1ln e a ≥,即1e e a ≥,所以,a 的取值范围是1e e ,∞⎡⎫+⎪⎢⎣⎭.故答案为:1e e ,∞⎡⎫+⎪⎢⎣⎭【点睛】导函数求解参数取值范围,当函数中同时出现指数函数与对数函数,通常使用同构来进行求解,本题难点是1ln ln(1)x a a x -≥-两边同时乘以1x -,变形得到()()11ln 1ln 1x x a a x x --≥--,从而构造()ln ,0F t t t t =>进行求解.四、解答题:木大题共6小题,解答应写出文字说明,证明过程或演算步骤.17.在ABC 中,内角,,A B C 的对边分别为a ,b ,c ,且222a c b ac +-=,a =cos 3A =.(1)求角B 及边b 的值;(2)求sin(2)A B -的值.【答案】(1)π3B =,94b =(2【解析】【分析】(1)由余弦定理得到π3B =,求出2sin 3A =,由正弦定理得到94b =;(2)由二倍角公式求出sin 2,cos 2A A ,由差角公式求出答案.【小问1详解】因为222a cb ac +-=,由余弦定理得2221cos 222a c b ac B ac ac +-===,因为()0,πB ∈,所以π3B =,因为()0,πA ∈,cos 3A =,所以2sin 3A ==,由正弦定理得sin sin a b A B =,即232=94b =;【小问2详解】由(1)得2sin 22sin cos 2339A A A ==⨯⨯=,2251cos 22cos 12139A A ⎛=-=⨯-= ⎝⎭,8sin(2)sin 2cos cos 2s 11929i 1n 2A B A B A B -=-=⨯-⨯=.18.已知数列{}n a 的前n 项和为n S ,且2n n S a n =-.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n n a b a a ++=,其前n 项和为n T ,求使得20232024n T >成立的n 的最小值.【答案】(1)21n n a =-;(2)10.【解析】【分析】(1)根据,n n a S 关系及递推式可得112(1)n n a a -+=+,结合等比数列定义写出通项公式,即可得结果;(2)应用裂项相消法求n T ,由不等式能成立及指数函数性质求得10n ≥,即可得结果.【小问1详解】当2n ≥时,111(2)(21)2()1n n n n n n n a S S a n a n a a ---=-=---+=--,所以121n n a a -=+,则112(1)n n a a -+=+,而1111211a S a a ==-⇒=,所以112a +=,故{1}n a +是首项、公比都为2的等比数列,所以12nn a +=⇒21n n a =-.【小问2详解】由1111211(21)(21)2121n n n n n n n n n a b a a ++++===-----,所以111111111111337715212121n n n n T ++=-+-+-++-=---- ,要使1202324112102n n T +>=--,即111202520211422n n ++>-<⇒,由1011220252<<且*N n ∈,则11110n n +≥⇒≥.所以使得20232024n T >成立的n 的最小值为10.19.如图,正三棱锥O ABC -的三条侧棱OA 、OB 、OC 两两垂直,且长度均为2.E 、F 分别是AB 、AC 的中点,H 是EF 的中点,过EF 作平面与侧棱OA 、OB 、OC 或其延长线分别相交于1A 、1B 、1C ,已知132OA =.(1)求证:11B C ⊥平面OAH ;(2)求二面角111O A B C --的大小.【答案】(1)证明见解析;(2)【解析】【分析】(1)利用三角形中位线定理结线面平行的判定可得EF ∥平面OBC ,再由线面平行的性质可得EF ∥11B C ,由等腰三角形的性质可得AH ⊥EF ,从而可得AH ⊥11B C ,再由已知可得OA ⊥平面OBC ,则OA ⊥11B C ,然后利用线面垂直的判定定理可证得结论;(2)作ON ⊥11A B 于N ,连1C N ,则由已知条件可证得11A B ⊥平面1OC N ,从而可得1ONC ∠就是二面角111O A B C --的平面角,过E 作EM ⊥1OB 于M ,则可得EM ∥OA ,设1OB x =,然后利用平行线分线段成比例定理结合已知条件可求得x ,在11R t OA B 中可求出11A B 的长,从而可求得ON ,进而可直角三角形1OC N 中可求得结果.【详解】(1)证明:因为E 、F 分别是AB 、AC 的中点,所以EF 是ABC 的中位线,所以EF ∥BC ,因为EF ⊄平面OBC ,BC ⊂平面OBC ,所以EF ∥平面OBC ,因为EF ⊂平面111A B C ,平面111A B C Ç平面11OBC B C =,所以EF ∥11B C .因为E 、F 分别是AB 、AC 的中点,所以11,22AE AB AF AC ==,因为AB AC =,所以AE AF =,因为H 是EF 的中点,所以AH ⊥EF ,所以AH ⊥11B C .因为OA ⊥OB ,OA ⊥OC ,OB OC O = ,所以OA ⊥平面OBC ,因为11B C ⊂平面OBC ,所以OA ⊥11B C ,因为OA AH A= 因此11B C ⊥面OAH .(2)作ON ⊥11A B 于N ,连1C N .因为111111,,OC OA OC OB OA OB O ⊥⊥= ,因为1OC ⊥平面11OA B ,因为11A B ⊂平面11OA B ,所以111OC A B ⊥,因为1ON OC O = ,所以11A B ⊥平面1OC N ,因为1C N ⊂平面1OC N ,所以1C N ⊥11A B,所以1ONC ∠就是二面角111O A B C --的平面角.过E 作EM ⊥1OB 于M ,则EM ∥OA ,则M 是OB 的中点,则111,122EM OA OM OB ====.设1OB x =,由111OB OA MB EM =得,312x x =-,解得3x =,则13OC =,在11R t OA B中,11A B ==则1111OA OB ON A B ⋅==.所以在1R t ONC中,11tan OC ONC ON ∠==故二面角111O A B C --为20.甲、乙、丙为完全相同的三个不透明盒子,盒内均装有除颜色外完全相同的球.甲盒装有4个白球,8个黑球,乙盒装有1个白球,5个黑球,丙盒装有3个白球,3个黑球.(1)随机抽取一个盒子,再从该盒子中随机摸出1个球,求摸出的球是黑球的概率;(2)已知(1)中摸出的球是黑球,求此球属于乙箱子的概率.【答案】(1)23(2)512【解析】【分析】(1)设出事件,运用全概率公式求解即可.(2)利用条件概率公式求解即可.【小问1详解】记取到甲盒子为事件1A ,取到乙盒子为事件2A ,取到丙盒子为事件3A ,取到黑球为事件B :由全概率公式得1122331815132()()(|)()(|)()(|)31236363P B P A P B A P A P B A P A P B A =++=⨯+⨯+⨯=,故摸出的球是黑球的概率是23.【小问2详解】由条件概率公式得2215()536(|)2()123P A B P A B P B ⨯===,故此球属于乙箱子的概率是51221.设椭圆(222:109x y C b b +=<<,P 是C 上一个动点,点()1,0A ,PA长的最小值为2.(1)求b 的值:(2)设过点A 且斜率不为0的直线l 交C 于,B D 两点,,E F 分别为C 的左、右顶点,直线BE 和直线DF 的斜率分别为12,k k ,求证:12k k 为定值.【答案】(1;(2)证明见解析.【解析】【分析】(1)设出点P 坐标,并求出PA 长,再结合二次函数探求最小值即得解.(2)设出直线l 的方程,与椭圆方程联立,设出点,B D 的坐标,利用斜率坐标公式,结合韦达定理计算即得.【小问1详解】依题意,椭圆C 的焦点在x 轴上,设焦距为2(0)c c >,设00(,)P x y ,则222000||(1),[3,3]PA x y x =-+∈-,而22200(19x y b =-,则222200||(1)219b PA x x b =--++=222222*********()199c c x x b x b c c -++=-++-,而0b <<,则2(9(3,9))b -∈,即2(3,9)c ∈,因此29(1,3)c∈,由0[3,3]x ∈-,得当029x c =时,222min 295||1(22PA b c =+-==,即229392b b -=-,化简得42221450b b -+=,又0b <<,解得23b =,所以b=【小问2详解】由(1)知,椭圆C 的方程为22193x y +=,点(3,0),(3,0)E F -,设()()1122,,,B x y D x y ,则121212,33y y k k x x ==+-,即12k k =121212213(3)3(3)y x y x x y y x --⋅=++,斜率不为0的直线l 过点(1,0)A ,设方程为1x my =+,则112121221122(13)2(13)4k y my my y y k y my my y y +--==+++,由22139x my x y =+⎧⎨+=⎩消去x 并整理得22(3)280m y my ++-=,显然0∆>,则12122228,33m y y y y m m --+==++,即有2211)4(my y y y =+,因此()()121112112212212212422241444482y y y k my y y y y k my y y y y y y y +--+====++++,所以12k k为定值.【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.已知()3ln (1)f x x k x =--.(1)若过点(2,2)作曲线()y f x =的切线,切线的斜率为2,求k 的值;(2)当[1,3]x ∈时,讨论函数2π()()cos π2g x f x x =-的零点个数.【答案】(1)1(2)答案见解析【解析】【分析】(1)求导,设切点坐标为()()000,3ln 1x x k x --,结合导数的几何意义列式求解即可;(2)求导,可得()g x '在[1,3]内单调递减,分类讨论判断()g x 在[1,3]内的单调性,进而结合零点存在性定理分析判断.【小问1详解】由题意可得:3()f x k x'=-,设切点坐标为()()000,3ln 1x x k x --,则切线斜率为003()2k f x k x '==-=,即032k x =-,可得切线方程为()()0003ln 12y x k x x x ---=-⎡⎤⎣⎦,将(2,2),032k x =-代入可得()()0000323ln 2122x x x x ⎡⎤⎛⎫----=-⎢⎥ ⎪⎝⎭⎣⎦,整理得001ln 10x x -+=,因为1ln ,y x y x ==-在()0,∞+内单调递增,则1ln 1y x x=-+在定义域()0,∞+内单调递增,且当1x =时,0y =,可知关于0x 的方程001ln 10x x -+=的根为1,即01x =,所以0321k x =-=.【小问2详解】因为2π2π()()cos 3ln (1)cos π2π2g x f x x x k x =-=---,则3π()sin 2g x k x x '=-+,可知3y x=在[1,3]内单调递减,且[1,3]x ∈,则ππ3π,222x ⎡⎤∈⎢⎥⎣⎦,且sin y x =在π3π,22⎡⎤⎢⎥⎣⎦内单调递减,可知πsin 2y x =在[1,3]内单调递减,所以()g x '在[1,3]内单调递减,且(1)4,(3)g k g k ''=-=-,(i )若0k -≥,即0k ≤时,则()()30g x g ''≥≥在[1,3]内恒成立,可知()g x 在[1,3]内单调递增,则()()10g x g ≥=,当且仅当1x =时,等号成立,所以()g x 在[1,3]内有且仅有1个零点;(ⅱ)若40k -≤,即4k ≥时,则()()10g x g ''≤≤在[1,3]内恒成立,可知()g x 在[1,3]内单调递减,则()()10g x g ≤=,当且仅当1x =时,等号成立,所以()g x 在[1,3]内有且仅有1个零点;(ⅲ)若400k k ->⎧⎨-<⎩,即04k <<时,则()g x '在()1,3内存在唯一零点()1,3m ∈,可知当1x m ≤<时,()0g x '>;当3m x <≤时,()0g x '<;则()g x 在[)1,m 内单调递增,在(],3m 内单调递减,且()10g =,可知()()10g m g >=,可知()g x 在[)1,m 内有且仅有1个零点,且()33ln 32g k =-,①当()33ln 320g k =-≤,即3ln 342k ≤<时,则()g x 在(],3m 内有且仅有1个零点;②当()33ln 320g k =->,即30ln 32k <<时,则()g x 在(],3m 内没有零点;综上所述:若[)3,ln 34,2k ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()g x 在[1,3]内有且仅有1个零点;若3ln3,42k⎡⎫∈⎪⎢⎣⎭时,()g x在[1,3]内有且仅有2个零点.【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进而求解.。
广东省广州市荔湾、海珠部分学校2025届高三第一次模拟考试数学试卷含解析
广东省广州市荔湾、海珠部分学校2025届高三第一次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[﹣3,﹣2]时,f (x )=﹣x ﹣2,则( ) A .66f sinf cos ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭> B .f (sin 3)<f (cos 3)C .4433f sinf cos ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭< D .f (2020)>f (2019)2.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题3.已知双曲线22214x y b-=(0b >0y ±=,则b =( )A .BCD .4.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如16511=+,30723=+.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A .114B .112C .328D .以上都不对5.已知函数()f x 是R 上的偶函数,且当[)0,x ∈+∞时,函数()f x 是单调递减函数,则()2log 5f ,31log 5f ⎛⎫ ⎪⎝⎭,()5log 3f 的大小关系是( )A .()()3521log log 3log 55f f f <<⎛⎫⎪⎝⎭B .()()3251log log 5log 35f f f <<⎛⎫⎪⎝⎭C .()()5321log 3log log 55f f f ⎪<⎛⎫⎝⎭< D .()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭< 6.已知函数()2()2ln (0)f x a e x x a =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点(,())s f t ,(,)s t D ∈所构成的平面区域面积为2e 1-,则a =( )A .eB .1e 2- C .1 D .2e e - 7.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A .1,0a b <-< B .1,0a b <-> C .1,0a b >-<D .1,0a b >->8.执行如图所示的程序框图,当输出的2S =时,则输入的S 的值为( )A .-2B .-1C .12-D .129.若各项均为正数的等比数列{}n a 满足31232a a a =+,则公比q =( ) A .1B .2C .3D .410.函数()()sin f x A x =+ωϕ(其中0A >,0>ω,2πϕ<)的图象如图,则此函数表达式为( )A .()3sin 24f x x π⎛⎫=+⎪⎝⎭B .()13sin 24f x x π⎛⎫=+⎪⎝⎭C .()3sin 24f x x π⎛⎫=-⎪⎝⎭D .()13sin 24πf x x ⎛⎫=- ⎪⎝⎭11.已知函数()y f x =在R 上可导且()()f x f x '<恒成立,则下列不等式中一定成立的是( )A .3(3)(0)f e f >、2018(2018)(0)f e f >B .3(3)(0)f e f <、2018(2018)(0)f e f >C .3(3)(0)f e f >、2018(2018)(0)f e f <D .3(3)(0)f e f <、2018(2018)(0)f e f <12.已知ABC 的垂心为H ,且6,8,AB BC M ==是AC 的中点,则HM AC ⋅=( ) A .14B .12C .10D .8二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学模拟考试试卷选择题(每小题5分,共40分)1.已知全集U ={1,2,3,4,5},集合M ={1,2,3},N ={3,4,5},则M ∩(U N )=()ðA. {1,2} B.{4,5} C.{3} D.{1,2,3,4,5}2. 复数z=i 2(1+i)的虚部为( )A. 1 B. i C. -1 D. - i 3.正项数列{a n }成等比,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是( )A. -24B. 21C. 24D. 484.一组合体三视图如右,正视图中正方形边长为2,俯视图为正三角形及内切圆,则该组合体体积为( )A.B.43π C.+43π5.双曲线以一正方形两顶点为焦点,另两顶点在双曲线上,则其离心率为( )A.+1C.D.16.在四边形ABCD 中,“=2”是“四边形ABCD 为梯形”的()AB DCA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.设P 在[0,5]上随机地取值,求方程x 2+px +1=0有实根的概率为( )A. 0.2B. 0.4C. 0.5D. 0.68.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,|φ|<)2π的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=5sin(x +) B.f (x )=5sin(x -)6π6π6π6πC.f (x )=5sin(x +) D.f (x )=5sin(x -)3π6π3π6π二、填空题:(每小题5分,共30分)9.直线y =kx +1与A (1,0),B (1,1)对应线段有公共点,则k 的取值范围是_______.10.记的展开式中第m 项的系数为,若,则=__________.nxx 12(+m b 432b b =n 11.设函数的四个零点分别为,则31()12x f x x -=--1234x x x x 、、、1234()f x x x x =+++;12、设向量,若向量与向量共线,则 (12)(23)==,,,a b λ+a b (47)=--,c =λ11..211lim______34x x x x →-=+-14. 对任意实数x 、y ,定义运算x *y =ax+by +cxy ,其中a 、b 、c 为常实数,等号右边的运算是通常意义的加、乘运算.现已知2*1=3,2*3=4,且有一个非零实数m ,使得对任意实数x ,都有x *m =2x ,则m = .三、解答题:15.(本题10分)已知向量=(sin(+xcos x ),=(sin x ,cos x ), f (x )= ·.a 2πb a b ⑴求f (x )的最小正周期和单调增区间;⑵如果三角形ABC 中,满足f (A ,求角A 的值.16.(本题10分)如图:直三棱柱(侧棱⊥底面)ABC —A 1B1C 1中,∠ACB =90°,AA 1=AC=1,,CD ⊥AB,垂足为D .⑴求证:BC ∥平面AB 1C 1;⑵求点B 1到面A 1CD 的距离.17.(本题10分)旅游公司为4个旅游团提供5条旅游线路,每个旅游团任选其中一条. (1)求4个旅游团选择互不相同的线路共有多少种方法; (2)求恰有2条线路被选中的概率;(3)求选择甲线路旅游团数的数学期望.18. (本题10分) 数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =4n .⑴求通项a n ;⑵求数列{a n }的前n 项和 S n .19.(本题12分)已知函数f (x )=a ln x +bx ,且f (1)= -1,f ′(1)=0,⑴求f (x );⑵求f (x )的最大值;⑶若x >0,y >0,证明:ln x +ln y ≤.32xy x y ++-20.(本题14分)设分别为椭圆的左、右两个焦点,若椭圆21,F F )0(1:2222>>=+b a by a x CC 上的点)到F 1,F 2两点的距离之和等于4.⑴写出椭圆C 的方程和焦点坐标;⑵过点P (1,)的直线与椭圆交于两点D 、E ,若DP=PE ,求直线DE 的方程;14⑶过点Q (1,0)的直线与椭圆交于两点M 、N ,若△OMN 面积取得最大,求直线MN 的方程.21. (本题14分) 对任意正实数a 1、a 2、…、an ;求证 1/a 1+2/(a 1+a 2)+…+n/(a 1+a 2+…+a n )<2 (1/a 1+1/a 2+…+1/a n )09高三数学模拟测试答案一、选择题:.ACCD BAD A二、填空题:本题主要考查基础知识和基本运算.每小题4分,共16分.9.[-1,0] 10.5 11.19 12. 2 13.14. 315三、解答题:15.本题考查向量、二倍角和合成的三角函数的公式及三角函数性质,要求学生能运用所学知识解决问题.解:⑴f (x )= sin x cos xcos2x = sin(2x+3πT=π,2 k π-≤2x+≤2 k π+,k ∈Z ,2π3π2π最小正周期为π,单调增区间[k π-,k π+],k ∈Z .……………………512π12π⑵由sin(2A+)=0,<2A+<,……………3π3π3π73π∴2A+=π或2π,∴A =或 (3)π3π56π16.、本题主要考查空间线线、线面的位置关系,考查空间距离角的计算,考查空间想象能力和推理、论证能力,同时也可考查学生灵活利用图形,建立空间直角坐标系,借助向量工具解决问题的能力.⑴证明:直三棱柱ABC —A 1B 1C 1中,BC ∥B 1C 1,又BC 平面A B 1C 1,B 1C 1平面A B 1C 1,∴B 1C 1∥平面A B 1C 1;……………… ⊄⊂⑵(解法一)∵CD⊥AB 且平面ABB 1A 1⊥平面AB C,∴CD⊥平面ABB 1A 1,∴CD⊥AD 且CD⊥A 1D ,∴∠A 1DA 是二面角A1—CD —A 的平面角,在R ,又CD⊥AB,∴AC 2=AD×AB∴AA 1=1,∴∠DA 1B 1=∠A 1DA=60°,∠A 1B 1A=30°,∴A B 1⊥A 1D 又CD⊥A 1D ,∴AB 1⊥平面A 1CD ,设A 1D∩AB1=P,∴B 1P 为所求点B 1到面A 1CD 的距离.B 1P=A 1B 1cos ∠A 1B 1 cos30°=.32即点到面的距离为.………………………………………………… 1B CD A 123(2)(解法二)由V B 1-A 1CD =V C -A 1B 1D =×13,而cos ∠A 1,S △A 1CD =,设B 1到平12面A 1CD 距离为h ,则h ,得h =为1332所求.⑶(解法三)分别以CA 、CB 、CC 1所在直线为x 、y 、z 轴建立空间直角坐标系(如图)则A (1,0,0),A 1(1,0,1),C(0,0,0),C 1(0,0,1),B (0,0),B 1(0,1),∴D(,0)=(0,1),设平面A 1CD 的法向量=(x,y ,z ),则231CB n ,取=(1,,-1)13200n CD x n CA x z ⎧⋅==⎨⋅=+=⎩n 点到面的距离为d = ……………………………………1B CD A 11n CB n⋅23=17.本题主要考查排列,典型的离散型随机变量的概率计算和离散型随机变量分布列及期望等基础知识和基本运算能力.解:(1)4个旅游团选择互不相同的线路共有:A 54=120种方法; …(2)恰有两条线路被选中的概率为:P 2= …2454(22)285125C ⋅-=(3)设选择甲线路旅游团数为ξ,则ξ~B(4,) 15∴期望E ξ=np =4×= (154)5答: (1)线路共有120种,(2)恰有两条线路被选中的概率为0.224, (3)所求期望为0.8个团数.………………………18.本题主要考查数列的基础知识,考查分类讨论的数学思想,考查考生综合应用所学知识创造性解决问题的能力.解:(1)a 1+2a 2+22a 3+…+2n -1a n =4n ,∴a 1+2a 2+22a 3+...+2n a n +1=4n +1,相减得2n a n +1=3×4n , ∴a n +1=3×2n ,又n =1时a 1=4,∴综上a n =为所求; (1)4(1)32(2)n n n -=⎧⎨⨯≥⎩⑵n ≥2时,S n =4+3(2n -2), 又n =1时S 1=4也成立,∴S n =3×2 n -2………………12分19.本题主要考查函数、导数的基本知识、函数性质的处理以及不等式的综合问题,同时考查考生用函数放缩的方法证明不等式的能力.解:⑴由b = f (1)= -1, f ′(1)=a +b =0, ∴a =1,∴f (x )=ln x -x 为所求; ……………⑵∵x >0,f′(x )=-1=,1x 1xx-x 0<x <1x =1x >1f′(x )+0-f (x )↗极大值↘∴f (x )在x =1处取得极大值-1,即所求最大值为-1; ……………⑶由⑵得ln x ≤x -1恒成立, ∴ln x +ln y =+≤+=成立………ln 2xy ln ln 2x y +12xy -112x y -+-32xy x y ++-20.本题考查解析几何的基本思想和方法,求曲线方程及曲线性质处理的方法要求考生能正确分析问题,寻找较好的解题方向,同时兼顾考查算理和逻辑推理的能力,要求对代数式合理演变,正确分析最值问题.解:⑴椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a=4,即a=2.;又点在椭圆上,因此得b2=1,于是c 2=3;22314 1.2b+=所以椭圆C 的方程为,………22121,(4x y F F +=焦点 ⑵∵P 在椭圆内,∴直线DE 与椭圆相交,∴设D(x 1,y 1),E(x 2,y 2),代入椭圆C 的方程得x 12+4y 12-4=0, x 22+4y 22-4=0,相减得2(x 1-x 2)+4×2×(y 1-y 2)=0,∴斜率为k =-114∴DE 方程为y -1= -1(x -),即4x +4y =5; (1)4(Ⅲ)直线MN 不与y 轴垂直,∴设MN 方程为my =x -1,代入椭圆C 的方程得(m 2+4)y 2+2my -3=0, 设M(x 1,y 1),N(x 2,y 2),则y 1+y 2=-, y 1y 2=-,且△>0成立.224m m +234m +又S △OMN =|y 1-y 2|=,设t,则1212S △OMN =,(t +)′=1-t -2>0对t 恒成立,∴t 时t +取得最小,S △OMN 最大,21t t+1t1t此时m =0,∴MN 方程为x =1……………。