《数学教育学概论》模拟试题及答案04
《数学教育学概论》模拟试题及答案03
《数学教育学概论》模拟试题03(答题时间120分钟)一、判断题(判断正确与错误,每小题 1 分,共 10分。
请将正确答案填在下面的表格内)题号 1 2 3 4 5 6 7 8 9 10 答案1、严士健是北京师范大学教授,数学家和数学教育家,他撰写的面向21世纪的数学教育改革,就20世纪我国数学教育的发展状况与现代化社会对数学的要求之间形成的尖锐矛盾进行了分析,从战略的高度和社会发展的角度来研究我国数学教育的目标、课程体系和数学基本方法等问题.2、郑毓信教授是南京师范大学数学哲学、数学教育哲学的专家,在我国最早研究了“建构主义与数学教育”的关系,其代表著作有《数学教育哲学》.3、贵州师范大学于2000年提出了“贯彻数学方法论的教育方式,全面提高学生素质”的数学教育实验.4、维果茨基(Vygotsky)的最近发展区的理论指在教学要求与学生无人帮助的情况下能够独自达到的水平之间有多少差距.5、乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表中的解题过程分为:弄清问题---拟订计划---实现计划----回顾.6、西南师范大学教授、代数学家、博士生导师陈重穆先生于1993年提出了“淡化形式,注重实质”的重要观点.7、曹才翰(1933--1999)是我国著名的数学教育家,1999年10月在《数学通报》发表了《论数学教育及其研究》,文章对20 世纪末我国的数学教育研究课题进行全方位的论述,揭示当时需要解决的14个方面的重大问题,提出了一系列有指导意义的、建设性的见解和主张.8、著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)认为数学教学方法的核心是学生的“再创造”.9、当代著名的数学家和数学教育家乔治.波利亚(George Polya美)认为数学教育的目的就是“教年轻人会思考”,就是有目的的思考、产生式的思考,也包括形式的和非形式的思维.10、我国双基数学教学的教学策略是问题引入环节、师生互动环节、巩固联系.二、填空题(每题2分,共14分)1、有意义的学习的内涵是以符号为代表的新知识与学习者认知结构中已有的适当知识建立: .2、在加涅(R.M.Gagne)的数学理论中的数学学习的阶段为:.3、普通高中《数学课程标准》提出的数学课程的教学目标包括:三个方面.4、皮亚杰(J.Piaget)关于智力发展的四个阶段为: .5、数学学习的认知过程为: .6、著名学者克鲁捷茨基(р.а.крутецкий)根据语言逻辑成分和视觉形象成分之间的相关,把数学能力的结构分成了: 等数学气质类型.7、数学学习一般分为:数学概念、的学习.三、解释概念(每题4分,共16分)1、数学化2、数学教育实验3、数学能力4、数学认知结构四、简答题(每题5分,共 40分)1、尝试指导、效果回授教学法的步骤是什么?2、5、6、8、1数学课堂教学评价的基本要求是什么?3、建构主义观点下数学学习的特征是什么?4、普通高中数学课程标准提出的课程教学建议是什么?20世纪50年代克鲁捷茨基(р.а.крутецкий)提出的数学能力结构的组成部分是什么?普通高中《数学课程标准》提出的数学课程的基本理念是什么?7、确定数学教学目的的主要依据是什么?弗赖登塔尔(Hans Freudenthal 荷兰)所认识的数学教育的主要特征是什么?五、概述题(每题10分,共20分)、如何认识和贯彻数学教学的严谨性与量力性相结合的教学原则?2、在新数学课程标准观点下,关于常规数学思维能力的界定有哪些方面?《数学教育学概论》模拟试题03参考答案 一、判断题(每小题 1分,共 10分)答案如下,每小题1分。
华师大数学教育概论模拟试卷及答案
写在前面:本文档整合了《数学教育概论》的四张模拟卷,从网上摘抄的答案,仅作学员参考之用。
若涉及到版权问题,请原作者及时联系。
一、(1)填空:20世纪的数学教育风起云涌。
首先在世纪之初,由著名数学家【贝利】和【克莱茵】发起了一场课程改革运动;到了50年代,由于前苏联的人造地球卫星上天等原因,引发了一场影响全球的【新数】运动;由于这场运动的许多过于激进的做法,导致了80年代初期的所谓的【回到基础】运动,使得许多国家的数学课程跌到了低谷。
为了改变这种局面,美国数学教师学会提出了“要把【问题解决】作为80年代美国数学课堂教学的核心”的口号,得到了许多国家的响应。
(2)请在下表中列举五位著名的数学教育家及他们的一本著作或一个观点:(3)数学课程改革的许多争论都可以归结为“为什么要学数学?”的问题。
作为一个数学专业的学生,你认为,你从多年的数学学习中,得到了哪些益处?由此谈谈你对数学教育目标的看法。
【1)数学一直是形成人类文化的主要力量,通过数学这面镜子可以了解一个时代的特征。
古希腊数学家强调严密的推理,中国古代数学崇尚实用,一个时代的特征与这个时代的数学活动密切相关。
数学能像音乐一样,给人以巨大的心灵震撼。
从斐波那契数列和圆周率的小数位数字,到四面体和麦比乌斯带,都可以作为艺术家创作的灵感。
法国数学家傅立叶证明了:所有的声音,无论是噪音还是仪器发出的声音,复杂的还是简单的声音,都可以用数学方式进行全面的描述。
2)数学教育必须超越抽象的世界、符号的世界、逻辑的世界、知识的世界、绝对真理的世界以及升学工具的世界,迈向意义的世界。
可以说,回归数学意义是每一个数学教育工作者神圣的使命。
走向意义的数学教育理所当然应该成为新的教育方向,新的教育追求。
】(4)一些国际比较研究表明,东亚学生的数学解题水平很高,但对数学学习的自信心和兴趣却不高。
你认为其中的主要原因有哪些?请给出例证。
【现如今的数学教育已经陷入了一个怪圈,很多人都是为了考试而学习数学,学生在数学上的自信和兴趣并没有来自于是否真正掌握了数学知识和方法,更多的是来自于自身在群体中取得的成绩,这也是造成优秀群体学生陷入“数学知识在攀比中越来越艰深,数学兴趣在艰深中越来越丧失”这个怪圈的一个原因。
数学教育学概论模拟试题
《数学教育学概论》模拟试题01(答题时间120分钟)一、判断题(判断正确与错误,每小题 1分,共 8分。
请将答案填在下面的表格内)1.普通高中《数学课程标准》于2003.5颁布,山东省于2004.9实施。
2.普通高中《数学课程标准》规定的课程框架为:必修系列1,2,3,4,5;选修系列1,2,3,4;必修课程是每个学生都必须学习的数学内容,其中包括算法初步。
3.数学教育的目的主要为数学教育的思想性目的;知识性目的;能力性目的。
4.普通高中《数学课程标准》在课程中设置了数学探究、数学建模、数学文化内容。
5.普通高中《数学课程标准》提出的课程目标包括发展数学应用意识和创新意识,力求对客观显示世界中蕴涵的一些数学模式进行思考和作出判断。
6.当代美国著名数学家哈尔莫斯(P.R.Halmos)指出:“问题是数学的心脏”。
7.普通高中《数学课程标准》规定数学选修系列4不属于普通高考范围。
8.著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)认为数学教学方法的核心是学生的“再创造”。
二、填空题(每题 2 分,共 12分)1.乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表的解题过程分为____________________。
2.在加涅(R.M.Gagne)的数学理论中的数学学习的阶段为 _______________________。
3.我国传统的数学教学方法有_________________________。
4.皮亚杰(J.Piaget)关于智力发展的四个阶段是 _______________________。
5.美国数学教育家(Dubinsky)发展了一种数学概念学习APOS理论其具体内容是 _______________________。
6.数学思维的基本成分是______________________________________。
三、解释概念(每题 5分,共 20 分)1.数学能力2.数学认知结构3.启发式教学思想4.数学教育实验四、简答题(每题 5分,共 30分)1.说明数学思维发展的年龄特征?2.现在数学课堂教学的教学环节是什么?3.普通高中《数学课程标准》中关于数学课程的基本理念是什么?4.数学课堂教学评价的标准是什么?5.如何利用奥苏伯尔(D.P.Ausubel)的同化学习理论,指导数学概念的教学?6.如何理解教学过程的优化,教学过程优化的措施是什么?五、概述题(每题 10分,共 30 分)1.简要概述我国数学教学目的的发展变化特点,回答关于常规数学思维能力的界定。
数学教育理论试题及答案
数学教育理论试题及答案一、单项选择题(每题2分,共10分)1. 数学教育的基本目标是什么?A. 培养学生的计算能力B. 培养学生的逻辑思维和创新能力C. 仅仅为了通过考试D. 以上都是答案:B2. 在数学教学中,以下哪项不是激发学生兴趣的有效方法?A. 创设情境,联系实际B. 单一的讲授法C. 利用多媒体教学D. 鼓励学生提问和探索答案:B3. 数学思维的核心是什么?A. 记忆公式和定理B. 逻辑推理C. 快速计算D. 重复练习答案:B4. 下列哪项不是数学教育中常用的评价方式?A. 形成性评价B. 终结性评价C. 自我评价D. 随机评价答案:D5. 数学教学中,教师应如何对待学生的错误?A. 忽略错误,继续教学B. 批评错误,以防止再犯C. 分析错误,帮助学生理解D. 惩罚犯错的学生答案:C二、简答题(每题5分,共20分)1. 简述数学教育中培养学生问题解决能力的重要性。
答:在数学教育中,培养学生的问题解决能力至关重要。
首先,问题解决能力是数学思维的核心,能够帮助学生理解和应用数学知识。
其次,这种能力能够激发学生的探究精神和创新意识,使他们能够主动学习,不断提出和解决新问题。
最后,问题解决能力对于学生未来的学术发展和职业生涯都具有重要意义,它是一种终身受益的技能。
2. 描述数学教学中如何实现学生的个性化学习。
答:在数学教学中实现学生的个性化学习,教师可以采取以下措施:首先,了解每个学生的学习需求和兴趣,设计差异化的教学计划。
其次,运用多样化的教学方法,如小组合作、个别辅导、项目式学习等,以适应不同学生的学习风格。
再次,提供不同层次的数学问题,让所有学生都能在自己的水平上得到挑战和发展。
最后,鼓励学生根据自己的兴趣和目标选择学习内容,培养自主学习能力。
3. 解释数学教育中“反证法”的概念及其在教学中的应用。
答:“反证法”是一种数学证明技巧,它通过假设某个命题的否定是真的,然后推导出矛盾或不可能的结论,从而证明原命题为真。
《数学教育学概论》模拟试题及答案03
《数学教育学概论》模拟试题03(答题时间120分钟)一、判断题(判断正确与错误,每小题 1 分,共 10分。
请将正确答案填在下面的表格内)题号 1 2 3 4 5 6 7 8 9 10 答案1、严士健是北京师范大学教授,数学家和数学教育家,他撰写的面向21世纪的数学教育改革,就20世纪我国数学教育的发展状况与现代化社会对数学的要求之间形成的尖锐矛盾进行了分析,从战略的高度和社会发展的角度来研究我国数学教育的目标、课程体系和数学基本方法等问题.2、郑毓信教授是南京师范大学数学哲学、数学教育哲学的专家,在我国最早研究了“建构主义与数学教育”的关系,其代表著作有《数学教育哲学》.3、贵州师范大学于2000年提出了“贯彻数学方法论的教育方式,全面提高学生素质”的数学教育实验.4、维果茨基(Vygotsky)的最近发展区的理论指在教学要求与学生无人帮助的情况下能够独自达到的水平之间有多少差距.5、乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表中的解题过程分为:弄清问题---拟订计划---实现计划----回顾.6、西南师范大学教授、代数学家、博士生导师陈重穆先生于1993年提出了“淡化形式,注重实质”的重要观点.7、曹才翰(1933--1999)是我国著名的数学教育家,1999年10月在《数学通报》发表了《论数学教育及其研究》,文章对20 世纪末我国的数学教育研究课题进行全方位的论述,揭示当时需要解决的14个方面的重大问题,提出了一系列有指导意义的、建设性的见解和主张.8、著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)认为数学教学方法的核心是学生的“再创造”.9、当代著名的数学家和数学教育家乔治.波利亚(George Polya美)认为数学教育的目的就是“教年轻人会思考”,就是有目的的思考、产生式的思考,也包括形式的和非形式的思维.10、我国双基数学教学的教学策略是问题引入环节、师生互动环节、巩固联系.二、填空题(每题2分,共14分)1、有意义的学习的内涵是以符号为代表的新知识与学习者认知结构中已有的适当知识建立: .2、在加涅(R.M.Gagne)的数学理论中的数学学习的阶段为:.3、普通高中《数学课程标准》提出的数学课程的教学目标包括:三个方面.4、皮亚杰(J.Piaget)关于智力发展的四个阶段为: .5、数学学习的认知过程为: .6、著名学者克鲁捷茨基(р.а.крутецкий)根据语言逻辑成分和视觉形象成分之间的相关,把数学能力的结构分成了: 等数学气质类型.7、数学学习一般分为:数学概念、的学习.三、解释概念(每题4分,共16分)1、数学化2、数学教育实验3、数学能力4、数学认知结构四、简答题(每题5分,共 40分)1、尝试指导、效果回授教学法的步骤是什么?2、5、6、8、1数学课堂教学评价的基本要求是什么?3、建构主义观点下数学学习的特征是什么?4、普通高中数学课程标准提出的课程教学建议是什么?20世纪50年代克鲁捷茨基(р.а.крутецкий)提出的数学能力结构的组成部分是什么?普通高中《数学课程标准》提出的数学课程的基本理念是什么?7、确定数学教学目的的主要依据是什么?弗赖登塔尔(Hans Freudenthal 荷兰)所认识的数学教育的主要特征是什么?五、概述题(每题10分,共20分)、如何认识和贯彻数学教学的严谨性与量力性相结合的教学原则?2、在新数学课程标准观点下,关于常规数学思维能力的界定有哪些方面?《数学教育学概论》模拟试题03参考答案 一、判断题(每小题 1分,共 10分)答案如下,每小题1分。
数学教育教学概论试题(四).【甄选文档】
数学教育教学概论试题(四).(优选)数学教育教学概论试题(四)一、选择题(每小题2分,共16分)1. A 2. B 3. D 4. D5. A.6. D7. C8. C1. 以下不属于数学概念之间的关系的是()A.排斥关系 B.同一关系 C.从属关系 D.对立关系3.下列不属于逻辑思维基本形式的是()A.概念B.判断C.推理D.归纳4. 教一道复合应用题时,先把它分解成若干个连续的简单应用题,这一教学过程是()。
A.实验B.演绎C.综合D.分析5.“奇数”和“偶数”这两个概念,从外延上看,存在着( )。
A.矛盾关系B.对立关系C.交叉关系D.并列关系6.高中课程的设计方式与传统数学区别最突出的地方是()。
A .注重数学实验 B. 增加数学文化选讲C.注重数学探究活动D.采用模块设计7.中学数学课程教学语言不包括()A.口头语言B.板书语言 D.态势语言8.以下不是新课程内容标准的特点的是()A.基础性B.层次性 D.发展性二、判断题(每小题1分,共8分)1. ×2.√ 3. √ 4. √5. ×6.×7.√8.×1. 由全等三角形的性质类比出相似三角形的性质是顺向正迁移。
()2. 数学教育的目的主要包括数学教育的思想性目的,知识性目的,能力性目的。
()3.概念间的关系指的是概念外延之间的关系。
()4.演绎推理又称为必然推理。
()5.程序教学法是美国心理学家布鲁纳提出的一种教学模式。
()6.尝试指导、效果回授法就课堂教学结构来说,主要是尝试、变式、归纳、回授四个环节。
()7.态势语言属于非语言符号系统。
()8.数学课的类型包括新知课、练习课、复习课。
()三、填空题(每空2分,共18分)1. 在《标准》的基础性指的是三基性,即数学基本知识、数学基本技和数学的基本观念。
2.证明的方法有:综合法、反证法、分析法、同一法和数学归纳法。
3.微格教学的基本程序是:事前的学习和研究、确定培训技能、编写教案、微型课提供示范、、反馈评价和修改教案。
数学教学论试卷四
2010—2011学年第一学期《数学教学论》期中考试试卷学校学院班级学号姓名一: 填空题(每题3分, 共6小题, 18分)1 数学的特征: , , 。
2 所谓数学“双基”, 是指数学的基础知识和。
3 , , 是学生学习数学的重要方式。
4 心理学将概念的应用分为两个层次, 即和思维水平的应用。
5 基础知识教学的基本途径是 , , 。
6 研究性学习的基本特征: 重过程, 重应用, 重体验, 。
二: 选择题(每题4分, 共5小题, 20分)1 下列关于数学教育学的基本特点的描述, 哪一项是错误的?()A 专研性B 实践性C 科学性D 教育性2 行为主义学习理论的代表人物是()A 布鲁尔B 加涅C 桑代克D 斯尔福特3 数学学习的一般过程可分为三个阶段, 下列哪一个不属于这个过程的?()A 输入阶段B 相互作用阶段C 操作阶段D 领悟输出阶段4 下列关于中学数学教学设计的原则的描述, 哪一项是错误的?()A 继承和创新的原则B 学生参与数学教学活动的原则C 揭示思维过程的原则D 内涵深刻而形式多样化的原则5 下列各项中, 哪一项是教育工作的灵魂?()A 专业知识教育B 思想品德教育C 人文知识教育D 社会实践教育三: 名词解释(每题5分, 共4小题, 20分)数学学习教学原则教学设计探究性学习四: 简答题(每题6分, 共5小题, 30分)数学教学论的主要内容普通高中课改的具体目标学生学习的特点影响掌握概念的因素教学设计的理论依据五: 中学数学教学原则相关案例分析(共1题, 12分)课题名称: 经过三定点的圆(注: “师”代表老师, “生”代表学生)(提出问题)师: 有一破损的圆形铁轮, 现要重新浇铸一个, 需先画出圆形铁轮的轮廓线, 怎么画出这个圆呢?师: 确定一个圆的基本条件是什么?生:圆心和半径(半径定圆的大小, 圆心则定下了圆的方位)。
(分析各种情况)师: 经过一个已知点A, 可以画多少个圆?这些圆的圆心可在哪里?生: 经过一个已知点A可以画无数个圆。
《小学数学教育学》模拟试卷
《小学数学教育学》模拟试卷及答案一、名词解释(每题4分)1、数学认知结构2、先行组织者策略3、数学问题4、数学教学过程二、单项选择题(每题2分)1、APOS理论认为学生数学概念的建构过程是的过程。
A 具体到抽象B 理论联系实际C 演绎D 整合2、数学的新课程标准对数学教育目标作了新的规定。
以下不是义务教育阶段数学教育目标的组成部分。
A 数学思考B 解决问题C 情感与态度D 逻辑推理能力3、小学数学学习中,数学心智技能的形成过程的第三阶段是。
A 活动认知阶段B 示范模仿阶段C 无意识的内部言语阶段D有意识的言语阶段4、小学数学课程内容选择的主要依据之一是。
A社会的需要 B 教材的需要 C 教学的需要 D 学科的需要5、数学新课程标准在内容上加强的部分是。
A 计算的速度B 应用题的教学C实践与综合运用 D 根式的运算6、以下不是日本当前数学课程改革的特点。
A 重视个性教育B加强数学能力的C提倡选择性学习D精简教学内容7、如果说数学教学过程由四个基本要素构成,那么不属于四要素的是。
A 教师B 学生C 课程内容D 教学目标8、学生参与教学过程,具体有认知参与、情感参与和。
A 学习的参与B 行为参与C目标设计的参与D评价的参与9、范例教学模式的三个基本原则是:基本性、范例性和。
A 典型性B代表性 C 基础性D综合性10、在数学教育评价中,反应测验可靠性的指标是。
A测验的信度B测验的效度 C 测验的难度D测验的区分度三、是非判断题(先判断,再说明理由;每题3分)1、课堂教学中,教师提出的问题都应该是发散性问题。
2、概念获得模式中,学生的思维以归纳为主。
3、教学内容的编排组织的依据是学科的逻辑体系。
4、数学教育评价的作用在于确定数学教育活动是否实现了教育目标。
5、在小学数学学习方式中,接受学习也就是机械学习。
四、简要回答以下问题(每题6分)1、小学数学教学的特点。
2、义务教育阶段数学的新课程标准中的新理念。
3、在小学数学教学中,如何帮助学生形成问题图式?4、小学数学教学中,探究发现教学模式的基本程序。
数学教育学概论模拟
《数学教育学概论》模拟试题一、判断题1.普通高中《数学课程标准》于2003.5颁布,山东省于2004.9实施。
√2.普通高中《数学课程标准》规定的课程框架为:必修系列1,2,3,4,5;选修系列1,2,3,4;必修课程是每个学生都必须学习的数学内容,其中包括算法初步。
√3.数学教育的目的主要为数学教育的思想性目的;知识性目的;能力性目的。
√4.普通高中《数学课程标准》提出的课程目标包括发展数学应用意识和创新意识,力求对客观显示世界中蕴涵的一些数学模式进行思考和作出判断。
√5.当代美国著名数学家哈尔莫斯(P.R.Halmos)指出:“问题是数学的心脏”。
√6.普通高中《数学课程标准》规定数学选修系列4不属于普通高考范围。
×7.著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)认为数学教学方法的核心是学生的“再创造”。
√8.维果茨基(Vygotsky)的最近发展区的理论指在教学要求与学生无人帮助的情况下能够独自达到的水平之间有多少差距。
√9.普通高中《数学课程标准》规定数学选修系列4不属于普通高考范围。
×10.普通高中《数学课程标准》于2004.9颁布。
×11.根据语言逻辑成分和视觉形象成分之间的相关,数学能力的结构形成了分析的、几何的、抽象的调和型和形象的调和型等数学气质类型√。
12.当代著名的数学家和数学教育家乔治。
波利亚(George Polya美)的著作《怎样解题》一书译成16(17)种文字,仅平装本的销售量100万册。
√13.美国数学教育家Dubinsky发展了一种数学概念学习的APOS理论为:Action—活动阶段;Process—过程阶段;Object—对象阶段;Scheme—模型阶段√14.严士健是北京师范大学教授,数学家和数学教育家,他撰写的面向21世纪的数学教育改革,就20世纪我国数学教育的发展状况与现代化社会对数学的要求之间形成的尖锐矛盾进行了分析,从战略的高度和社会发展的角度来研究我国数学教育的目标、课程体系和数学基本方法等问题. √15.郑毓信教授是南京师范大学数学哲学、数学教育哲学的专家,在我国最早研究了“建构主义与数学教育”的关系,其代表著作有《数学教育哲学》. ×16.贵州师范大学于2000年提出了“贯彻数学方法论的教育方式,全面提高学生素质”的数学教育实验. ×17.乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表中的解题过程分为:弄清问题---拟订计划---实现计划----回顾. √18.曹才翰(1933--1999)是我国著名的数学教育家,1999年10月在《数学通报》发表了《论数学教育及其研究》,文章对20 世纪末我国的数学教育研究课题进行全方位的论述,揭示当时需要解决的14个方面的重大问题,提出了一系列有指导意义的、建设性的见解和主张. √19.当代著名的数学家和数学教育家乔治.波利亚(George Polya美)认为数学教育的目的就是“教年轻人会思考”,就是有目的的思考、产生式的思考,也包括形式的和非形式的思维. √20.我国双基数学教学的教学策略是问题引入环节、师生互动环节、巩固联系. √21.2000年,在第九届国际数学教育大会上Mogens Niss做了题为《数学教育研究的主要问题与趋势》的大会报告. √22.普通高中《数学课程标准》提出的数学课程目标包括:提高数学地提出分析和解决问题地能力,数学表达和交流的能力,发展独立获取数学知识的能力. √23.1963年全日制《中学数学教学大纲》提出中学数学教学目的是“使学生牢固地掌握中学数学的基础知识”,……“培养学生正确而迅速的计算能力、逻辑推理能力和空间想像能力”,在当时,这是我国数学教育工作者对国际数学教育的一项重要贡献. √24.现在数学的学科特点可以解释为:①数学对象的特征,指思想材料的形式化抽象;②数学思维的特征,指策略创造与逻辑演绎的的结合;③数学知识的特征,指通用简约的科学语言;④数学应用的特征,指数学模型的技术. √25.《学校数学课程与评价标准》(NCTM标准)提出了美国数学教育的目的,将其明确地分为社会目标和学生应当达到的目标,其中学生应达到的目标包括学会数学交流.√26.弗赖登塔尔(Hans Freudenthal 荷兰)提倡的“再创造”,是数学过程再现,是通过教师精心设计,创造问题情景,通过学生自己动手实验研究、合作商讨,探索问题的结果并进行组织的学习方式. √27.现行普通高中数学课程选修系列3包括三等分角与数域扩充,属于高考范围. ×28.江苏省无锡市教育科学研究所于2000年提出了数学教学的“情境—问题”教学模式. ×29.克莱因(F.Klein)倡导近代数学教育改革运动贝利----克莱因运动, 1908年成立了国际数学教育委员会(ICMI),克莱因当选为第一任主席.√30.义务教育和普通高中《数学课程标准》先后于2001.7和2003.5颁布. √31.浙江教育学院戴再平教授提出了“数学开放题”的教学模式,其代表性著作《中小学数学开放题丛书》(戴再平主编). √32.当代著名的数学家和数学教育家乔治.波利亚(George Polya美)认为数学教育的目的就是“教年轻人会思考”,就是有目的的思考、产生式的思考,也包括形式的和非形式的思维. √33.张孝达先生是人民教育出版社的资深编辑,他撰写的《数学教育50年》是他亲身经历的我国数学教育重要事件的历史回顾. √34.对于数学课程的基础性、普及性和发展性,义务教育《数学课程标准》提出了“人人学有价值的数学;人人都能获得必须的数学;不同的人在数学上得到不同的发展”的理念. √35.义务教育和普通高中《数学课程标准》提出了数学教学的许多新的理念,包括注重培养学生数学地提出问题、分析问题和解决问题地能力,发展学生的创新意识和应用意识,提高学生的数学探究能力,数学建模能力和数学交流能力,进一步发展学生的数学实践能力.√36.1992年以来,西南师范大学在陈重穆教授(代数学家、博士生导师)和宋乃庆教授的倡导下,开展了“提高课堂效益的初中数学教改实验”、陈重穆先生提出了“淡化形式,注重实质”的重要观点(《数学教育学报》1993(4)). √37.20世纪数学观出现了以下的变化:公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式;在计算机技术的支持下,数学注重应用;数学不等于逻辑,要做“好”的数学. √38.发现式教学模式是指学生在教师的指导下,通过阅读、观察、实验、思考、讨论等方式,像数学家那样去发现问题、研究问题,进而解决问题、总结规律,成为知识的发现者. √39.当代著名的数学家和数学教育家乔治.波利亚(George Polya美)的著作《怎样解题》一书译成17种文字,仅平装本的销售量100万册;波利亚在《怎样解题》中指出:数学有两个侧面,它是欧几里德式的严谨科学,但它也是别的什么东西.用欧几里德方式提出来的数学看来像一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学. √40.现代建构主义主要是吸收了杜威的经验主义和皮亚杰的结构主义与发生认识论等思想,并在总结20世纪60年代以来的各种教育改革方案的经验基础上演变和发展起来的. √41.著名学者顾泠沅先生领导组织实施了“尝试指导、效果回授”教学实验,并取得了著名的“青浦教改经验”. √42.现行普通高中数学课程数学必修系列3包括算法初步、统计、概率,其中算法初步不属于高考范围. ×43.2004年,在第十届国际数学教育(ICMI)大会在丹麦举行,张奠宙、戴再平、刘意竹应邀在大会作45分钟演讲. √44.当代著名的数学家和数学教育家乔治.波利亚(George Polya美)的著作《怎样解题》一书译成17种文字,仅平装本的销售量100万册. √45.学生的思维水平要与数学学习的内容相吻合,学生的智力发展到形式运算阶段才可以进行几何的形式证明. √46.现在数学的学科特点可以解释为:①数学对象的特征,思想材料的形式化抽象;②数学思维的特征,策略创造与逻辑演绎的的结合;③数学知识的特征,通用简约的科学语言;④数学应用的特征,数学模型的技术. √47.3---7岁儿童的计数能力发展顺序是:口头数数,按物点数,说出总数,按物取数. √48.弗赖登塔尔提倡的“再创造”,是数学过程再现,是通过教师精心设计,创造问题情景,通过学生自己动手实验研究、合作商讨,探索问题的结果并进行组织的学习方式. √49.美国数学教育家Dubinsky发展的数学概念学习的APOS理论为Action:活动阶段;Process:过程阶段;Object:对象阶段;Scheme:模型阶段, APOS理论中是由活动、过程到抽象、图式的学习过程,体现了数学知识形成的规律性,为教师提供了一种实用的教学策略. √50.1985年诺贝尔医学奖授予美国的柯马克和英国的洪斯费尔德,褒奖他们运用拉东变换原理设计了CT层析仪. ×51.在我国传统的数学概念学习中一般为“属+种差”的概念同化方式. √52.数学学习分类一般为①数学概念的学习;②数学原理的学习;③数学思维过程的学习;④数学技能的学习;⑤数学态度的学习. √53.克鲁捷茨基根据语言逻辑成分和视觉形象成分之间的相关,数学能力的结构形成了分析的、几何的、抽象的调和型、形象的调和型等数学气质类型. √54.有意义的学习就是以符号为代表的新知识与学习者认知结构中已有的适当知识建立非人为的实质性的联系. √55.建构主义(constructivism)是行为主义发展到认知主义以后的进一步发展,它是在吸取了众多学习理论,尤其是在杜威(J.Deway)的经验主义,皮亚杰(J.Piaget)的结构主义,维果茨基(Vygotsky)的最近发展区的理论的基础上,总结了20 世纪60 年代以来的各种教育改革方案的经验基础上发展和形成的. √56.著名学者顾泠沅先生领导组织实施、并取得了著名的“青浦教改经验”;泰山学院杜玉祥、马晓燕、魏立平、赵继超教授开展了数学差生转化研究,代表性著作为《数学差生问题研究》(华东师范大学出版社,2003). √57.2004年9月开始了普通高中课程改革,普通高中《数学课程标准》要求高中课程实行模块化、学分制,数学必修课程有5个模块,10个学分,选修有4个系列,都属于普通高考范围. ×58.学习的生成过程就是学习者将已有认知结构(已经存储在长时记忆中的事件和信息加工策略)与从环境中接受的信息(新知识)相结合,主动地选择注意信息并主动地构建信息意义的过程.学习过程不是从感觉开始的,而是从对感觉经验的选择性注意开始的. √59.浙江教育学院戴再平教授提出了“数学开放题”的教学模式,其代表性著作《中小学数学开放题丛书》(戴再平主编);泰山学院杜玉祥、马晓燕、魏立平、赵继超教授开展了数学差生转化研究,代表性著作为《数学差生问题研究》(华东师范大学出版社,2003). √60.顾泠沅是东北师范大学数学教育的博士生导师,他以数学教育中的“青浦经验”闻名全国. ×61.全日制九年《义务教育数学课程标准》就数学课程的基础性、普及性和发展性,提出了“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学有不同的发展”. √62.1911年,哥廷根大学的Rudolf Schimmack成为第一个数学教育博士,其导师是著名数学家克莱因(Felix Klein),1982年,克莱因发表了著名的几何学“爱尔兰纲领”,用运动群下的不变量对几何学进行分类,成为划时代的数学里程碑. √63.我国从20世纪90年代以来,重视数学思想方法的教学已经成为中国数学教育的一大特色;2004年9月开始了普通高中课程改革,普通高中《数学课程标准》将“数学建模”、“数学探究”、“数学文化”的学习活动作为教学板块正式列入课程.√64.普通高中《数学课程标准》于2003.5颁布,山东省于2006.9实施. ×65.普通高中《数学课程标准》规定的课程框架为:必修系列1.2.3.4.5;选修系列1.2.3.4;必修课程是每个学生都必须学习的数学内容,其中包括算法初步. √66.数学教育研究课题一般分为理论性课题、应用性课题和发展性课题. √67.数学概念的引入、命题的提出、新知识的归纳总结,教学时一般采用讲解法. √68.数学教学的基本要素为教师、学生、教学内容、教学环境;学生学习发展的过程: 预习----听讲----作业----复习----总结. √69.普通高中《数学课程标准》规定数学选修系列4不属于普通高考范围. ×70.1901年培利(John Perry),德国数学家F.克莱因(F.Klein )发起了培利---克莱因运动,主张数学教育应该面向大众,数学教育必须重视应用. √71.《学校数学课程与评价标准》(NCTM)指出了美国数学教育的目的,明确社会目标为①具有良好数学素养的工作者;②终身学习的能力;③机会人人均等④明智的选民. √72.尝试指导·效果回授法是由顾泠元经过了调查研究(3年),筛选经验(1年),实验研究(3年),推广运用(3年)提出的. √73.当代美国著名学者奥苏伯尔(D.P.Ausubel)指出:“问题是数学的心脏”. ×74.“情境--问题”数学学习模式是由贵州师范大学于2000年提出的. √75.国际数学教育委员会于1908年成立,简称ICMI;著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)于1967---1970担任国际数学教育委员会的主席,他认为数学教学方法的核心是学生的“再创造”. √76.数学概念的引入,命题的提出,新知识的归纳总结,教学时一般采用谈话法. ×77..我国学者关于数学问题解决的一般模式为:问题识别与定义;问题表征;策略选择与应用;资源分配;监控与评估. √78.普通高中《数学课程标准》于2003.5颁布,山东、广东、宁夏、海南等省于2004.9实施,2007年广东、宁夏、海南等省高考数学卷(理)13,14,15题是“三选二”的题目,这符合普通高中《数学课程标准》的要求. √79.普通高中《数学课程标准》规定数学选修系列2:由两个模块组成.×80.普通高中《数学课程标准》规定数学选修系列3:由六个专题组成. √81.普通高中《数学课程标准》规定数学选修选修4中包含信息安全与密码. ×82.普通高中《数学课程标准》规定数学选修系列3属于普通高考范围. ×83.普通高中《数学课程标准》规定数学选修系列4包括矩阵与变换;初等数论初步;优选法与试验设计初步. 属于普通高考范围. √84.数学知识不可能以实体的形式存在与个体之外,真正的理解只能是由学习者自身基于自己的经验背景而建构起来的,取决于特定情况下的学习活动过程. √85.尝试教学法的教学理论由邱学华老师(特级教师)提出的;张奠宙先生是我国著名的数学教育专家. √86.当代美国著名数学家哈尔莫斯(P.R.Halmos)指出:“问题是数学的心脏”. √87.张孝达先生是人民教育出版社的资深编辑,他撰写的数学教育50年是他亲身经历的我国数学教育重要事件的历史回顾. √88.普通高中《数学课程标准》提出的数学课程目标包括:提高数学地提出分析和解决问题地能力,数学表达和交流的能力,发展独立获取数学知识的能力. √89.江苏省无锡市教育科学研究所于2000年提出了数学教学的“情境—问题”教学模式×.90.普通高中《数学课程标准》于2003.5颁布,山东、广东、海南、宁夏等省(区)于2004年秋季实施新课程标准.二、填空题1.乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表的解题过程分为2.:弄清问题---拟订计划---实现计划----回顾。
数学教学论试题及答案
数学教学论试题及答案数学教学论是教育学的一个分支,它研究数学教学的理论和实践问题。
以下是一份数学教学论的模拟试题及答案,供参考。
# 数学教学论试题一、选择题(每题2分,共20分)1. 数学教学论主要研究的是以下哪方面?A. 数学理论的深入研究B. 数学教学的策略和方法C. 数学题目的解题技巧D. 数学知识的系统整理2. 以下哪个是数学教学中常用的教学方法?A. 讲授法B. 讨论法C. 案例分析法D. 所有选项3. 数学教学中,培养学生的哪些能力是重要的?A. 计算能力B. 逻辑思维能力C. 解题技巧D. 所有选项4. 以下哪个不是数学教学的目标?A. 培养学生的数学兴趣B. 教授数学知识C. 训练学生的记忆力D. 提高学生的数学素养5. 数学教学中,教师应该如何对待学生的错误?A. 立即纠正B. 忽视错误C. 鼓励学生自我发现错误D. 惩罚犯错的学生二、简答题(每题10分,共30分)6. 简述数学教学中启发式教学法的基本特点。
7. 描述数学教学中如何培养学生的批判性思维。
8. 阐述数学教学中如何实现个性化教学。
三、论述题(每题25分,共50分)9. 论述数学教学中如何有效利用现代信息技术。
10. 论述数学教学中如何平衡知识传授与能力培养的关系。
# 数学教学论试题答案一、选择题1. 答案:B2. 答案:D3. 答案:D4. 答案:C5. 答案:C二、简答题6. 启发式教学法的基本特点包括:- 强调学生的主动参与和自主学习。
- 教师的角色转变为引导者和协助者。
- 通过问题引导学生思考,激发学生的好奇心和求知欲。
- 鼓励学生通过探索和实践来获得知识。
7. 培养学生的批判性思维可以通过以下方式:- 鼓励学生对数学概念和方法提出疑问。
- 引导学生从不同角度分析数学问题。
- 教授学生如何评估和比较不同的解题策略。
- 鼓励学生对数学知识进行批判性分析和反思。
8. 实现个性化教学的方法包括:- 了解每个学生的兴趣、能力和学习风格。
数学教育概论考试题及答案
数学教育概论考试题及答案一、选择题(每题2分,共20分)1. 数学教育的主要目的是什么?A. 培养学生的逻辑思维能力B. 提高学生的计算速度C. 仅作为升学考试的工具D. 培养学生的审美观答案:A2. 在数学教学中,以下哪项不是常用的教学方法?A. 讲授法B. 讨论法C. 案例分析法D. 绘画法答案:D3. 数学教育中,培养学生的哪些能力最为重要?A. 记忆力B. 计算能力C. 解决问题的能力D. 语言能力答案:C4. 下列哪项不是数学的基本要素?A. 数量B. 结构C. 形状D. 颜色答案:D5. 数学教育的历史可以追溯到哪个文明古国?A. 古埃及B. 古巴比伦C. 古印度D. 古中国答案:B6. 在数学教学中,以下哪项不是激发学生兴趣的方法?A. 引入生活实例B. 过多的作业C. 互动式教学D. 利用多媒体教学答案:B7. 数学教育中,以下哪项不是评价学生学习成效的方式?A. 课堂表现B. 作业完成情况C. 考试成绩D. 学生的着装答案:D8. 数学教育中,以下哪项不是数学思维的特点?A. 抽象性B. 逻辑性C. 随意性D. 创新性答案:C9. 在数学教学中,以下哪项不是培养学生创新思维的方法?A. 鼓励学生提出问题B. 引导学生进行探索性学习C. 限制学生的想象力D. 创设问题情境答案:C10. 数学教育中,以下哪项不是数学语言的特点?A. 精确性B. 简洁性C. 模糊性D. 通用性答案:C二、填空题(每题2分,共20分)11. 数学教育的核心是_________,它关系到学生能否正确理解和运用数学知识。
答案:数学思维12. 数学教育不仅要教会学生数学知识,还要教会他们如何运用数学知识去_________。
答案:解决问题13. 在数学教育中,_________是培养学生数学兴趣的重要手段。
答案:游戏化教学14. 数学教育的现代化手段包括_________、计算机辅助教学等。
答案:多媒体教学15. 数学教育的目标之一是培养学生的_________和科学态度。
数学教育模拟题(参考答案)
一、填空题(参考答案)1. 数学教育学的主要对象是数学教学论、数学课程论、数学学习论。
2. 中国学习理论的主要论点是:立志、乐学、持恒、博学、慎思、自得、笃行。
3. 数学技能在形式上可分为外部操作技能和内部心智技能。
4. “若A、B是对顶角,则A、B相等”的否定命题是A、B是对顶角,但A、B不相等。
5. 数学课程目标的四个具体目标领域是知识与技能、数学思考、解决问题、情感与态度。
6. 按思维活动中抽象概括水平,可将思维划分为:直观行动思维、具体形象思维、抽象逻辑思维。
7. 数学教学的基本方式有讲解、阅读、讨论、问答、探索、演示与实验、练习。
8. “等腰三角形顶角平分线是底边的中线。
”的逆否命题是若三角形一角的平分线不平分对边,则该三角形的另两边不相等。
9 现代数学学习评价的特点是评价主体的多元性,评价内容的多元性和开放性,评价方式多样性。
10数学能力,包括:数学观察力、数学记忆力、空间想象力、数学思维力、数学化能力。
11概念间的关系有:同一关系,交叉关系,从属关系及全异关系。
全异关系有两特例:对立关系和矛盾关系。
12“等腰三角形顶角平分线是底边的中线。
”的逆命题是若三角形一角平分线是对边的中线,则该三角形另两边相等。
二、简答题(参考答案)1.简述现代数学课程目标改革的特点?解答要点:共同的特点:(1)数学课程目标更加关注人的发展,关注学生数学素养的提高。
(2)数学课程目标面向全体的学生,从精英转向大众。
(3)数学课程目标关注学生的个别差异。
而不是统一的模式。
(4)数学课程目标更加注意联系现实生活与社会。
具体目标有:注重问题解决,注重数学应用,注重数学交流,注重数学思想方法,注重培养学生的态度情感与自信心等。
2. 如何理解数学的抽象性,如何应用抽象与具体相结合原则进行教学?解答要点:数学的抽象性表现在将事物的空间形式及数量关系作为研究对象数学抽象有着丰富的层次,是逐级抽象并且伴随着高度的概括性。
数学抽象还表现在广泛且有系统地使用符号,。
数学教育学模拟试卷(全部)
数学教育学试卷(一)一、填空题(共10题,每小题3分,共30分)1、数学是研究现实世界的空间形式和_______________的科学,是关于______________和秩序的科学。
2、中学数学教学的三维目标是指_ ____ 、________ 、____________________________ .3、弗赖登塔尔所认识的数学教育的特征可以用三个词加以概括: 、、.4、波利亚把解题过程划分为四个阶段,它们依次是:①了解问题;②_________________; ③_______________________ ;④________________________.5、数学教育作为一门科学,应该走克莱因(F.klein)所指出的道路,那就是他在演讲和著作中一再强调的:①数学教师应具备较高的数学观点;②___________________ __ ;③ ___________________ ___;④_____________________________________________.6、实行问题解决的教学模式,需要提供“好问题”。
通常认为“好问题”有以下五个特征:①______________________ ;②________________________ ;③_______________________;④可推广,具有探索性;⑤多解法,具有开放性。
.7、数学概念的教学过程设计一般分为概念的引入、__________、___________、_____________等阶段.8、数学教学设计的三要素是:①_________________;②____ ;③ ____ .9、《普通高中数学课程标准》中规定的高中数学课程结构是:必修模块,选修 4个系列,其中系列1有____模块,系列2有_____模块,系列3有_6_个专题,系列4有_10个_专题.10、建构主义学习观下的数学教育APOS理论提出,每个数学概念的建立都要经过以下四个阶段:Action 数学活动 ,Process_____________,Object____________,Scheme _______ .二、辨析题(每小题4分,共12分)判断下述说法是否正确,并简要说明理由。
《数学教育学概论》模拟试题及答案04
《数学教育学概论》模拟试题04(答题时间120分钟)一、判断题(每小题 1 分,共 10分。
正确划“√”,错误划“×”,请将答案填在下面的表格内)题号 1 2 3 4 5 6 7 8 9 10答案1、2000年,在第九届国际数学教育大会上Mogens Niss做了题为《数学教育研究的主要问题与趋势》的大会报告.2、当代著名的数学家和数学教育家乔治.波利亚(George Polya美)的著作《怎样解题》一书译成17种文字,仅平装本的销售量100万册.3、普通高中《数学课程标准》提出的数学课程目标包括:提高数学地提出分析和解决问题地能力,数学表达和交流的能力,发展独立获取数学知识的能力.4、1963年全日制《中学数学教学大纲》提出中学数学教学目的是“使学生牢固地掌握中学数学的基础知识”,……“培养学生正确而迅速的计算能力、逻辑推理能力和空间想像能力”,在当时,这是我国数学教育工作者对国际数学教育的一项重要贡献.5、现在数学的学科特点可以解释为:①数学对象的特征,指思想材料的形式化抽象;②数学思维的特征,指策略创造与逻辑演绎的的结合;③数学知识的特征,指通用简约的科学语言;④数学应用的特征,指数学模型的技术.6、《学校数学课程与评价标准》(NCTM标准)提出了美国数学教育的目的,将其明确地分为社会目标和学生应当达到的目标,其中学生应达到的目标包括学会数学交流.7、弗赖登塔尔(Hans Freudenthal 荷兰)提倡的“再创造”,是数学过程再现,是通过教师精心设计,创造问题情景,通过学生自己动手实验研究、合作商讨,探索问题的结果并进行组织的学习方式.8、现行普通高中数学课程选修系列3包括三等分角与数域扩充,属于高考范围.9、江苏省无锡市教育科学研究所于2000年提出了数学教学的“情境—问题”教学模式.10、克莱因(F.Klein)倡导近代数学教育改革运动贝利----克莱因运动, 1908年成立了国际数学教育委员会(ICMI),克莱因当选为第一任主席.二、填空题(每题2分,共14分)1、3---7岁儿童的计数能力发展顺序是: .2、我国现在数学教学的一般操作程序为:复习思考.3、美国数学教育家杜宾斯基(Dubinsky)发展的数学概念学习的APOS理论为: Action: ; :过程阶段; :对象阶段;Scheme: . APOS理论指出数学概念教学是由活动、过程到抽象、图式的学习过程,体现了数学知识形成的规律性,为教师提供了一种实用的教学策略.4、皮亚杰(J.Piaget)关于智力发展的基本观点: .5、数学教育学的主要研究对象包括:数学课程理论;.6、数学思维的基本成分为: .7、现实数学教育所说(弗赖登塔尔)的数学化的两种形:.三、解释概念(每题4分,共16分)1、中学数学教学目的2、启发式教学思想3、教学模式4、数学认知结构四、简答题(每题5分,共40分)1、数学思维的智力品质有哪几方面?2、如何运用奥苏贝尔(D.P.Ausubel)的同化规律,指导数学概念教学?3、我国学者提出的关于数学问题解决的框架是什么?4、建构主义观点下数学学习的特征是什么?5、探究教学模式的主要操作步骤是什么?6、讲解教学法的基本要求是什么?7、2000年美国数学教师协会发布《数学课程标准》,提出的数学能力的内涵是什么?8、普通高中《数学课程标准》提出的数学课程的基本理念是什么?五、概述题(每题10分,共20分)1、如何认识和贯彻数学教学的具体与抽象相结合的教学原则?2、九年义务教育《数学课程标准》所提出的课程目标包括哪几个方面?叙述九年义务教育《数学课程标准》所提出的课程目标.《数学教育学概论》模拟试题04参考答案一、 选择题(每小题 1分,共 10分)答案如下,每小题1分.题号 1 2 3 4 5 6 7 8 9 10 答案 √ √ √ √ √ √ √ × × √二、填空题(每题2分,共14分)答案如下,每小题2分.1、口头数数;按物点数;说出总数;按物取数.2、创设情境;探究新课;巩固反思;小结练习3、活动阶段;Process;Object;模型阶段.4、图式;同化;顺应;平衡.5、数学教学论;数学学习理论;数学思想方法论;数学教育评价理论.6、具体形象;思维抽象逻辑思维;直觉思维.7、实际问题转化为数学问题的数学化;从符号到概念的数学化.三、解释概念(每题4分,共16分)1、中学数学教学目的是指通过中学数学教育和教学,学生在数学的基础知识、基本技能、数学能力、个性发展、思想情操等方面所应达到的目标.它既要反映新时代对人才培养与公民素质提出的要求,又要符合中学生的知识、能力、基础和年龄特征.2、启发式教学思想 充分发挥教师为主导,学生为主体的双边活动作用,教师要善于激发学生的学习兴趣和求知欲望,引导学生积极地开展思维活动,学生在教师地指导组织促进下主动地获取知识,积极参与增长才干,具有坚定的知识基础和良好的学习习惯和能力,逐步地学会独立地提出问题和解决问题.3、教学模式 根据一定的教学目标,在一定的教学理论的指导下所设计的教学过程的结构及其相应的教学策略、教学方式.它既是教学基础理论的具体化,又是教学具体经验的概括化,是教学基础理论与教学实践的中介.4、数学认知结构是学习者通过教师所激发起来的心理结构作用与外界数学知识而形成的一种内在的知识结构.内化了的数学理论;内化了的数学技能;数学活动经验的积累(对具体数学理论或数学技能的应用背景和条件的概括).四、简答题(每题5分,共40分)答案要点, 每小题5分.1答、①数学思维的目的性;②数学思维的广阔性;③数学思维的敏捷性;④数学思维的批判性;⑤数学思维的创新性.2答、①分析教材结构,把握同化模式 ;在概念系统中学习概念弄清新旧概念之间,及其在概念体系的逻辑关系,数学知识的来龙去脉.②运用同化规律,设计教学程序;积极的组织和创造学习的内部和外部条件,促使内部和外部条件相互结合新的学习要适合学生的认知水平.③合理有效地组织数学教学材料;在合理的变式练习中,突出概念的关键特征.④巩固和完善新的数学认知结构,深化概念教学;对新概念的练习应当是适时的,有目的,分层次的.3答、①问题识别与定义;②问题表征;③策略选择与应用;④资源分配;⑤监控与评估. 4答、①学习不是由教师把知识简单地传递给学生,而是由学生自己建构知识的过程.学生不是简单被动地接受信息,而是主动地建构知识的意义,这种建构是无法由他人来代替的;②学习不是被动接受信息刺激,而是主动地建构意义,是根据自己的经验背景,对外部信息进行主动地选择,加工和处理,从而获得自己的意义,外部信息本身没有什么意义,意义是学习者通过新旧知识经验间的反复的,双向的相互作用过程而建构成的.因此,学习,不是像行为主义所描述的“刺激---反应”那样;③学习意义的获得,是每个学习者以原有的知识经验为基础,对新信息重新认识和编码,建构自己的理解.在这一过程中, 学习是一个积极主动的建构进程,学习者原有的知识经验因为新知识经验的进入而发生调整和改变;④学习者的建构是多元化的.5答、①教师精心设置问题链②学生基于对问题的分析,提出假设③在教师的引导下,学生对问题进行论证,形成确切的概念④学生通过实例来证明或辨认所获得的概念⑤教师引导学生分析思维过程,形成新的认知结构.6答、讲解法:是由教师对所授教材作系统的讲述与分析,学生集中注意力倾听的一种教学方法.基本要求①保证讲解内容的科学性②遵循学生的认知规律,体现循序渐进,具有系统性.突出重点,分散难点,祥略得当③讲解的过程要善于运用启发式教学思想,善于运用分析综合归纳演绎类比等思维方法,通过设疑和释疑来达到传授知识的目的④根据学生的思维水平,随时关注学生的个性发展,及时调整讲解的策略,照顾每一个学⑤讲解要有针对性,通俗易懂⑥讲清数学知识的发生、发展过程,知识的来龙去脉,渗透数学思想方法.7答、①数的运算能力;②问题解决的能力;③逻辑推理能力;④数学联结能力⑤数学交流能力;⑥数学表示能力.8答、①构建共同基础,提供发展平台;②提供多样化课程,适应个性选择;③倡导积极主动,勇于探索的学习方式;④注重提高学生的思维能力;⑤发展学生的应用意识;⑥与时俱进地认识基础知识和基本能力;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立科学的评价体系.五、概述题(每题10分,共20分)答案要点,每小题10分1答、(1)数学知识的抽象性(--2分)数学的抽象性撇开对象的具体内容,仅仅保留空间形式或数量关系,数学的抽象性有着丰富的层次性包含着逐级抽象,逐次提高的抽象过程,数学的抽象性伴随着高度的概括性,抽象程度越高概括性就越强.①数学知识的符号化----数学术语,意义,符号②任何抽象的数学概念和数学命题,甚至抽象的数学思想方法都有具体生动的现实原形③数学抽象具有层次性.(2).学生抽象思维的局限性(--2分)学生的学习和理解问题的能力,认识问题的规律受到年龄心理发展的影响.需要注意的事情:过分地依赖于具体素材具体与抽象相割裂,不能将抽象数学理论应用到具体问题中去对抽象的数学对象之间的关系不易掌握.(3).贯彻具体与抽象相结合的原则(--6分)①在教学中根据学生的认识规律,从学生的感知出发,以客观事物为基础,从具体到抽象,形成抽象的数学概念,上升为理论,进行判断和推理,再由抽象到具体,用理论指导实践.(抽象化是从个别到一般的过程,就逻辑方法抽象是归纳过程,具体化是从一般到个别的过程,就逻辑方法是演绎过程),掌握好数学基础知识,培养和发展数学能力.②注意从事例引入,阐明数学概念通过实物,图象语言,形成直观形象,提供感性材料.通过数形结合使抽象的数学概念关系得以直观化形象化,有利于分析、发现、和理解.③展现知识的应用过程使思维由抽象过渡到具体.为了深化对知识的理解,需要把经过抽象而得到的数学知识应用到同类具体的数学问题或实际问题中去.抽象化是通过对一系列具体事物的分析与比较,抽取该类事物的本质属性,从而形成数学概念和原理的过程,具体化则是分解和运用这些本质属性从而对具体事物作出判断和推理的过程.抽象与具体相结合就是为了使学生对抽象的理论理解地正确,认识地深刻,为了发展学生的抽象思维而使抽象的数学理论教学具体化,在教学中只有不断地实施具体与抽象相结合,具体----抽象----具体,循环往复,才能不断将学习向纵深发展,使认识逐步提高和深化.2答、(1)知识与技能;数学思考;解决问题;情感态度. (--2分)(2)通过义务教育阶段的数学学习,学生能够:①获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;(--2分)②初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;(--2分)③体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;(--2分)④具有初步的创新精神和实践能力,在情感态度和一般能力方面都得到发展.(--2分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学教育学概论》模拟试题04(答题时间120分钟)一、判断题(每小题 1 分,共 10分。
正确划“√”,错误划“×”,请将答案填在下面的表格内)题号 1 2 3 4 5 6 7 8 9 10答案1、2000年,在第九届国际数学教育大会上Mogens Niss做了题为《数学教育研究的主要问题与趋势》的大会报告.2、当代著名的数学家和数学教育家乔治.波利亚(George Polya美)的著作《怎样解题》一书译成17种文字,仅平装本的销售量100万册.3、普通高中《数学课程标准》提出的数学课程目标包括:提高数学地提出分析和解决问题地能力,数学表达和交流的能力,发展独立获取数学知识的能力.4、1963年全日制《中学数学教学大纲》提出中学数学教学目的是“使学生牢固地掌握中学数学的基础知识”,……“培养学生正确而迅速的计算能力、逻辑推理能力和空间想像能力”,在当时,这是我国数学教育工作者对国际数学教育的一项重要贡献.5、现在数学的学科特点可以解释为:①数学对象的特征,指思想材料的形式化抽象;②数学思维的特征,指策略创造与逻辑演绎的的结合;③数学知识的特征,指通用简约的科学语言;④数学应用的特征,指数学模型的技术.6、《学校数学课程与评价标准》(NCTM标准)提出了美国数学教育的目的,将其明确地分为社会目标和学生应当达到的目标,其中学生应达到的目标包括学会数学交流.7、弗赖登塔尔(Hans Freudenthal 荷兰)提倡的“再创造”,是数学过程再现,是通过教师精心设计,创造问题情景,通过学生自己动手实验研究、合作商讨,探索问题的结果并进行组织的学习方式.8、现行普通高中数学课程选修系列3包括三等分角与数域扩充,属于高考范围.9、江苏省无锡市教育科学研究所于2000年提出了数学教学的“情境—问题”教学模式.10、克莱因(F.Klein)倡导近代数学教育改革运动贝利----克莱因运动, 1908年成立了国际数学教育委员会(ICMI),克莱因当选为第一任主席.二、填空题(每题2分,共14分)1、3---7岁儿童的计数能力发展顺序是: .2、我国现在数学教学的一般操作程序为:复习思考.3、美国数学教育家杜宾斯基(Dubinsky)发展的数学概念学习的APOS理论为: Action: ; :过程阶段; :对象阶段;Scheme: . APOS理论指出数学概念教学是由活动、过程到抽象、图式的学习过程,体现了数学知识形成的规律性,为教师提供了一种实用的教学策略.4、皮亚杰(J.Piaget)关于智力发展的基本观点: .5、数学教育学的主要研究对象包括:数学课程理论;.6、数学思维的基本成分为: .7、现实数学教育所说(弗赖登塔尔)的数学化的两种形:.三、解释概念(每题4分,共16分)1、中学数学教学目的2、启发式教学思想3、教学模式4、数学认知结构四、简答题(每题5分,共40分)1、数学思维的智力品质有哪几方面?2、如何运用奥苏贝尔(D.P.Ausubel)的同化规律,指导数学概念教学?3、我国学者提出的关于数学问题解决的框架是什么?4、建构主义观点下数学学习的特征是什么?5、探究教学模式的主要操作步骤是什么?6、讲解教学法的基本要求是什么?7、2000年美国数学教师协会发布《数学课程标准》,提出的数学能力的内涵是什么?8、普通高中《数学课程标准》提出的数学课程的基本理念是什么?五、概述题(每题10分,共20分)1、如何认识和贯彻数学教学的具体与抽象相结合的教学原则?2、九年义务教育《数学课程标准》所提出的课程目标包括哪几个方面?叙述九年义务教育《数学课程标准》所提出的课程目标.《数学教育学概论》模拟试题04参考答案一、 选择题(每小题 1分,共 10分)答案如下,每小题1分.题号 1 2 3 4 5 6 7 8 9 10 答案 √ √ √ √ √ √ √ × × √二、填空题(每题2分,共14分)答案如下,每小题2分.1、口头数数;按物点数;说出总数;按物取数.2、创设情境;探究新课;巩固反思;小结练习3、活动阶段;Process;Object;模型阶段.4、图式;同化;顺应;平衡.5、数学教学论;数学学习理论;数学思想方法论;数学教育评价理论.6、具体形象;思维抽象逻辑思维;直觉思维.7、实际问题转化为数学问题的数学化;从符号到概念的数学化.三、解释概念(每题4分,共16分)1、中学数学教学目的是指通过中学数学教育和教学,学生在数学的基础知识、基本技能、数学能力、个性发展、思想情操等方面所应达到的目标.它既要反映新时代对人才培养与公民素质提出的要求,又要符合中学生的知识、能力、基础和年龄特征.2、启发式教学思想 充分发挥教师为主导,学生为主体的双边活动作用,教师要善于激发学生的学习兴趣和求知欲望,引导学生积极地开展思维活动,学生在教师地指导组织促进下主动地获取知识,积极参与增长才干,具有坚定的知识基础和良好的学习习惯和能力,逐步地学会独立地提出问题和解决问题.3、教学模式 根据一定的教学目标,在一定的教学理论的指导下所设计的教学过程的结构及其相应的教学策略、教学方式.它既是教学基础理论的具体化,又是教学具体经验的概括化,是教学基础理论与教学实践的中介.4、数学认知结构是学习者通过教师所激发起来的心理结构作用与外界数学知识而形成的一种内在的知识结构.内化了的数学理论;内化了的数学技能;数学活动经验的积累(对具体数学理论或数学技能的应用背景和条件的概括).四、简答题(每题5分,共40分)答案要点, 每小题5分.1答、①数学思维的目的性;②数学思维的广阔性;③数学思维的敏捷性;④数学思维的批判性;⑤数学思维的创新性.2答、①分析教材结构,把握同化模式 ;在概念系统中学习概念弄清新旧概念之间,及其在概念体系的逻辑关系,数学知识的来龙去脉.②运用同化规律,设计教学程序;积极的组织和创造学习的内部和外部条件,促使内部和外部条件相互结合新的学习要适合学生的认知水平.③合理有效地组织数学教学材料;在合理的变式练习中,突出概念的关键特征.④巩固和完善新的数学认知结构,深化概念教学;对新概念的练习应当是适时的,有目的,分层次的.3答、①问题识别与定义;②问题表征;③策略选择与应用;④资源分配;⑤监控与评估. 4答、①学习不是由教师把知识简单地传递给学生,而是由学生自己建构知识的过程.学生不是简单被动地接受信息,而是主动地建构知识的意义,这种建构是无法由他人来代替的;②学习不是被动接受信息刺激,而是主动地建构意义,是根据自己的经验背景,对外部信息进行主动地选择,加工和处理,从而获得自己的意义,外部信息本身没有什么意义,意义是学习者通过新旧知识经验间的反复的,双向的相互作用过程而建构成的.因此,学习,不是像行为主义所描述的“刺激---反应”那样;③学习意义的获得,是每个学习者以原有的知识经验为基础,对新信息重新认识和编码,建构自己的理解.在这一过程中, 学习是一个积极主动的建构进程,学习者原有的知识经验因为新知识经验的进入而发生调整和改变;④学习者的建构是多元化的.5答、①教师精心设置问题链②学生基于对问题的分析,提出假设③在教师的引导下,学生对问题进行论证,形成确切的概念④学生通过实例来证明或辨认所获得的概念⑤教师引导学生分析思维过程,形成新的认知结构.6答、讲解法:是由教师对所授教材作系统的讲述与分析,学生集中注意力倾听的一种教学方法.基本要求①保证讲解内容的科学性②遵循学生的认知规律,体现循序渐进,具有系统性.突出重点,分散难点,祥略得当③讲解的过程要善于运用启发式教学思想,善于运用分析综合归纳演绎类比等思维方法,通过设疑和释疑来达到传授知识的目的④根据学生的思维水平,随时关注学生的个性发展,及时调整讲解的策略,照顾每一个学⑤讲解要有针对性,通俗易懂⑥讲清数学知识的发生、发展过程,知识的来龙去脉,渗透数学思想方法.7答、①数的运算能力;②问题解决的能力;③逻辑推理能力;④数学联结能力⑤数学交流能力;⑥数学表示能力.8答、①构建共同基础,提供发展平台;②提供多样化课程,适应个性选择;③倡导积极主动,勇于探索的学习方式;④注重提高学生的思维能力;⑤发展学生的应用意识;⑥与时俱进地认识基础知识和基本能力;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立科学的评价体系.五、概述题(每题10分,共20分)答案要点,每小题10分1答、(1)数学知识的抽象性(--2分)数学的抽象性撇开对象的具体内容,仅仅保留空间形式或数量关系,数学的抽象性有着丰富的层次性包含着逐级抽象,逐次提高的抽象过程,数学的抽象性伴随着高度的概括性,抽象程度越高概括性就越强.①数学知识的符号化----数学术语,意义,符号②任何抽象的数学概念和数学命题,甚至抽象的数学思想方法都有具体生动的现实原形③数学抽象具有层次性.(2).学生抽象思维的局限性(--2分)学生的学习和理解问题的能力,认识问题的规律受到年龄心理发展的影响.需要注意的事情:过分地依赖于具体素材具体与抽象相割裂,不能将抽象数学理论应用到具体问题中去对抽象的数学对象之间的关系不易掌握.(3).贯彻具体与抽象相结合的原则(--6分)①在教学中根据学生的认识规律,从学生的感知出发,以客观事物为基础,从具体到抽象,形成抽象的数学概念,上升为理论,进行判断和推理,再由抽象到具体,用理论指导实践.(抽象化是从个别到一般的过程,就逻辑方法抽象是归纳过程,具体化是从一般到个别的过程,就逻辑方法是演绎过程),掌握好数学基础知识,培养和发展数学能力.②注意从事例引入,阐明数学概念通过实物,图象语言,形成直观形象,提供感性材料.通过数形结合使抽象的数学概念关系得以直观化形象化,有利于分析、发现、和理解.③展现知识的应用过程使思维由抽象过渡到具体.为了深化对知识的理解,需要把经过抽象而得到的数学知识应用到同类具体的数学问题或实际问题中去.抽象化是通过对一系列具体事物的分析与比较,抽取该类事物的本质属性,从而形成数学概念和原理的过程,具体化则是分解和运用这些本质属性从而对具体事物作出判断和推理的过程.抽象与具体相结合就是为了使学生对抽象的理论理解地正确,认识地深刻,为了发展学生的抽象思维而使抽象的数学理论教学具体化,在教学中只有不断地实施具体与抽象相结合,具体----抽象----具体,循环往复,才能不断将学习向纵深发展,使认识逐步提高和深化.2答、(1)知识与技能;数学思考;解决问题;情感态度. (--2分)(2)通过义务教育阶段的数学学习,学生能够:①获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;(--2分)②初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;(--2分)③体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;(--2分)④具有初步的创新精神和实践能力,在情感态度和一般能力方面都得到发展.(--2分)。