汽车振动分析试题1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年振动力学期末考试试题

第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解:

系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。

AB 转角:L y /=ϕ 系统动能:

m 1动能:2

1121y m T = m 2动能:2222222

22

222)3

1(21))(31(21)31(2121y m L y L m L m J T ====ϕ

ω m 3动能:2322

323

33)2

1(21))(21(212

1y

m R y R m J T ===

ω 系统势能:

2

21)21(21)21(

y k y g m gy m V +

+-=

在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有:

E y k gy m gy m y

m m m V T =+

+-++=

+2

212

321)

2

1(2

12

1)2

13

1(2

1

上式求导,得系统的微分方程为:

E y m m m k y

'=+

+

+)

2

131(4321 固有频率和周期为:

)

2

131(43210m m m k

+

+

=

ω

2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。

物体B 动能:2

212

1x

m T =

轮子与地面接触点为速度瞬心,则轮心速度为x

v c 2

1=

,角速度为x

R

21=ω,转过的角度为x R

21=

θ。轮子动能: )83(21)41)(21(21)4

1(

2

12

1212

122

21212

2

12x m x R

R m x

m J v m T c =+=

+

=

ω

系统势能:

x

2

2

2

2

8

)21(

2

1)(2

12

1x k xR R

k R k kx V c =

=

=

=

θ

在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有:

E x k

x

m m V T =++=

+22218)83(21

上式求导得系统的运动微分方程:

08322

1=++x m m k x

固有频率为:

2

10832m m k

+=

ω

第二题(20分)

1、在图示振动系统中,重物质量为m ,外壳质量为2m ,每个弹簧的刚度系数均为k 。设外壳只能沿铅垂方向运动。采用影响系数方法:(1)以x 1和x 2为广义坐标,建立系统的微分方程;(2)求系统的固有频率。 解:

系统为二自由度系统。

当x1=1,x2=0时,有:k11=2k ,k21=-2k 当x2=1,x2=1时,有:k22=4k ,k12=-2k 因此系统刚度矩阵为:

⎥⎦⎤

⎣⎡--k k

k k

4222 系统质量矩阵为:

⎥⎦

⎤⎢⎣⎡m m 20

0 系统动力学方程为:

⎥⎦

⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢

⎣⎡--+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00422220

02121x x k k

k k x x m m

频率方程为:

024222)(Δ2

2

=----=

ω

ωωm k k

k m k

解出系统2个固有频率:

m

k )

22(2

1-

=ω,m

k )

22(2

2+

2、在图示振动系统中,物体A 、B 的质量均为m ,弹簧的刚度系数均为k ,刚杆AD 的质量忽略不计,杆水平时为系统的平衡位置。采用影响系数方法,试求:(1)以x 1和x 2为广义坐标,求系统作微振动的微分方程;(2)系统的固有频率方程。 解:

系统可以简化为二自由度振动系统,以物体A 和B 在铅垂方向的位移x 1和x 2为系统的广义坐标。

当x1=1,x2=0时,AD 转角为L 3/1=θ

,两个弹簧处的弹性力分别为L k θ和L k θ2。对D 点取力矩平衡,有:

D

kL 3

2

kL 3

1

1⨯k

11k

x 1 x 2

相关文档
最新文档