沪科版全等三角形测试题
沪科版八年级上册数学第14章 全等三角形含答案(考试真题)
沪科版八年级上册数学第14章全等三角形含答案一、单选题(共15题,共计45分)1、下列判断正确的是()A.等边三角形都全等B.面积相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形和钝角三角形不可能全等2、如图,正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,垂足分别为E、F,EF=3,则PD的长为()A.1.5B.2C.2.5D.33、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和12,则b的面积为()A.4B.17C.16D.554、如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF②△AED为等腰三角形③BE+DC>DE④BE2+DC2=DE2,其中正确的有()个.A.4B.3C.2D.15、如图,若,则下列结论错误的是()A. B. C. D.6、如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠BAC的平分线交BC于点D,过点D作DE⊥AB,垂足为E,连接CE交AD于点F,则以下结论:①AB=2CE;②AC=4CD;③CE⊥AD;④△DBE与△ABC的面积比是:1:()其中正确结论是()A.①②B.②③C.③④D.①④7、用尺规作已知角的平分线的理论依据是()A.SASB.AASC.SSSD.ASA8、如图,AB=AC,点D,E分别在AB,AC上,补充下列一个条件后,不能判断△ABE≌△ACD的是()A.∠B=∠CB.AD=AEC.∠BDC=∠CEBD.BE=CD9、下列命题是真命题的是()A.有一个角为60°的三角形是等边三角形B.底边相等的两个等腰三角形全等C.有一个角是40°,腰相等的两个等腰三角形全等D.两直线平行,内错角相等的逆命题是真命题10、如图,正方形 ABCD中AB= 3,点B在边CD上,且 CD=3DE. 将△ADE沿AE 对折至△AFE,延长EF交边BC 于点G,连接AG,CF下列结论:①点G是BC的中点;②FG=FC;③ GAE=45º;④GE=BG+DE.其中正确的是( )A.①②B.①③④C.②③D.①②③④11、如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA12、如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于()A.60°B.54°C.56°D.66°13、如图,用直尺和圆规作一个角等于已知角,能得出的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)14、如图,∠ACB=90°,CD⊥AB,垂足为点D,下列结论错误的是()A.∠A=∠2B.∠1和∠B都是∠A的余角C.∠1=∠2D.图中有3个直角三角形15、如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I 中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为________.(答案不唯一,只需填一个)17、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:=3.6.其中正确结①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG//CF;⑤S△FGC论是________.18、空调安装在墙上时,一般会用如图所示的三角形支架固定在墙上,这种方法应用的数学知识是________.19、如图,,,是内过顶点的一条射线,作,,垂足分别为,,将和分别沿直线,翻折得到和,已知,,则的长度是________.20、如图,方格纸上有一个格点三角形和一条格点线段AB.在这个格点纸上找一点C,使得△ABC与这个格点三角形全等,这样的C点可以找到________个.21、如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.22、如图,过点的直线交轴于点,,,曲线过点,将点沿轴正方向平移个单位长度恰好落在该曲线上,则的值为________.23、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB :S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是________.24、如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD要使△ABE≌△ACD,需添加一个条件是________(只要写一个条件).25、已知:如图,四边形中,与相交于点O,则图中全等的三角形共有________对.三、解答题(共5题,共计25分)26、如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.27、如图,是CD上一点,BE交AD于点求证:.28、如图,,,,且,求证:.29、如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.30、如图,△ABC中,∠CAB的平分线与BC的垂直平分线DG相交于D,过点D 作DE⊥AB,DF⊥A C,求证:BE=CF.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、D7、C8、D9、D10、B11、D12、D13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、。
沪科版八年级上册数学第14章 全等三角形含答案【完整版】
沪科版八年级上册数学第14章全等三角形含答案一、单选题(共15题,共计45分)1、如图,已知AE=CF,BE=DF,要证△ABE≌△CDF,还需添加的一个条件是()A.∠BAC=∠ACDB.∠ABE=∠CDFC.∠DAC=∠BCAD.∠AEB=∠CF D2、如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE3、下列图中不具有稳定性的是()A. B. C. D.4、下列说法中正确的是()A.全等三角形的周长相等B.从直线外一点到这条直线的垂线段,叫做这点到直线的距离C.两条直线被第三条直线所截,同位角相等D.等腰三角形的对称轴是其底边上的高5、如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中能使△ABC≌△DEF的条件有()A.1组B.2组C.3组D.4组6、利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A.已知三条边B.已知三个角 C.已知两角和夹边 D.已知两边和夹角7、下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两个角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.其中正确的个数有()A.1个B.2个C.3个D.4个8、如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正确的有()A.1个B.2个C.3个D.4个9、如图,P是∠AOB的角平分线OC上的一点,点D、E分别在OA,OB上,且OD=OE,则判定△OPD≌△OPE的依据是()A.A.S.A B.S.A.S C.A.A.SB.S.S.S10、下列命题为假命题的是()A.等腰三角形一边上的中线、高线和所对角的角平分线互相重合B.角平分线上的点到角两边距离相等C.到线段两端点距离相等的点在这条线段的垂直平分线上D.全等三角形对应边相等,对应角相等11、如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cmB.2cmC.3cmD.4cm12、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.80°B.70°C.30°D.110°13、如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1B.2C.3D.414、如图,中,,,,若恰好经过点B,交AB于D,则的度数为()A. B. C. D.15、如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=60°,那么∠BCD度数为()A.30°B.60°C.90°D.条件不足,无法计算二、填空题(共10题,共计30分)16、如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,=________将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED17、如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE 绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是________.18、如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________ 性.19、如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG:GE=:4其中正确结论的序号是________ .20、要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是________.21、如图,在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同的速度在直线DC、CB上移动,连接AE和DF交于P,若AD=6,则线段CP的最小值为________.22、已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为________23、如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.24、如图,等边中,,分别是、边上的一点,且,则________ .25、如图,⊙O的半径为1,点为⊙O外一点,过点P作⊙O的两条切线,切点分别为点A和点B,则四边形PBOA面积的最小值是________.三、解答题(共5题,共计25分)26、如图,∠C=∠D=90°,DA=CB,∠CBA=28°,求∠DAC.27、如图,在△ABC 中,∠ACB=90°,AC=BC,BE⊥CE 于 E,AD⊥CE 于 D,AD=2.5,DE=1.7,求BE的长.28、已知,如图,点E、H分别为▱ABCD的边AB和CD延长线上一点,且BE=DH,EH分别交BC、AD于点F、G.求证:△AEG≌△CHF.29、如图,菱形ABCD中,点E、F分别是BC、CD边的中点.求证:AE=AF.30、如图,在长方形中,AD=2AB,E是边的中点,M,N分别在AB、BC边上,且.求证:.参考答案一、单选题(共15题,共计45分)1、D2、A3、B4、A5、C6、B7、B8、C9、B10、A11、D12、B13、D14、B15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
沪科版八年级数学上册《全等三角形》单元测试题(含答案)
沪科版八年级上《全等三角形》综合测试题姓名 班级 得分一、填空题(每题4分,共40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______<______<_______(填边)。
2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。
3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。
4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。
(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。
6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。
(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个AD ECB图4ABDE 图1 图2 图3图5图612、如图7,已知点E 在△ABC 的外部,点D 在BC 边上, DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADE13、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′ 14、如图8所示,90EF ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,19-2280分) 17、如图13,点A 、B 、C 、D AB=DC ,AE//DF ,AE=DF ,求证:EC=FBACD B图12EC BD FA图7图8图1318、如图14,AE 是∠BAC 的平分线,AB=AC 。
沪科版八年级上册数学第14章 全等三角形含答案【直接打印】
沪科版八年级上册数学第14章全等三角形含答案一、单选题(共15题,共计45分)1、下列各组条件中,能判断两个直角三角形全等的是()A.两组直角边对应相等B.一组边对应相等C.两组锐角对应相等 D.一组锐角对应相等2、如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF 的长是()A. B. C.6 D.3、已知下列条件,不能作出三角形的是( )A.两边及其夹角B.两角及其夹边C.三边D.两边及除夹角外的另一个角4、如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG= GC;③BE+DF=EF;④S△CEF =2S△ABE,其中正确的个数为()A.1B.2C.3D.45、如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF6、如图,等边三角形ABC的边长为4,点O是△ABC的内心,∠FOG=120”,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE:②S△ODE =S△BDE:③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1B.2C.3D.47、如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠A=∠DB.∠C=∠EC.∠D=∠ED.∠ABD=∠CBE8、如图,A,C,B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE,BD分别与CD,CE交于点M,N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN,其中正确结论的个数是( )A.3B.2C.1D.09、用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A.3根B.4根C.5根D.6根10、如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=25°,则∠AED=()A.60°B.65°C.70°D.75°11、如图,已知,垂足为,,,则可得到,理由是( )A. B. C. D.12、如图,,点A,B,E在同一直线上,,,则的度数为()A. B. C. D.13、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的()A.CB=CDB.∠ BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90 014、小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块15、如图,平分,于点,于点,延长,交,于点,,下列结论错误的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC=3cm,BC=4cm,AB=5cm,那么EBD的周长为________.17、如图,在等腰梯形 ABCD 中,AD∥BC,AB=CD.点 P 为底边 BC 的延长线上任意一点,PE⊥AB 于 E,PF⊥DC 于 F,BM⊥DC 于 M.请你探究线段 PE、PF、BM 之间的数量关系:________.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED 的面积分别为40和28,则△EDF的面积为________ 。
沪科版全等三角形测试题
全等三角形综合测试题答题时间:100 满分:120分一、选择题(30分每小题只有一个正确答案,请将正确答案的代号填入下表中) 1、如图1,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF 的度数为 ( ) A.150° B.40° C.80° D.90°(1) (2) (3)2、如图2所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E 的度数为 ( )A.25°B.27°C.30°D.45°3、如图3所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是 ( )A. SSSB. SASC. AASD. ASA4.如果某三角形的两边长分别为3和4,则以下长度的线段能作为其第三边的是 ( )题号 12345678910答案ABCEF DACEA、1B、5C、7 D 、95.如图4,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是 ( )A. 带①去B. 带②去C. 带③去D. 带①和②去6、以下命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线与对应角平分线分别相等,其中真命题的个数有 ( )A、3个B、2个C、1个D、0个7、△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为( )A.3 B.4 C.5 D.3或4或58.如下图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1∶∠2∶∠3 = 28∶ 5∶ 3,则∠α的度数( )(第8题图)A.80°B.100°C.60°D.45°9、以下各条件中,不能作出惟一三角形的是 ( )A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边10、已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( )A、 40°B、 60°C、 80°D、 90°二、填空题(每小题3分,共30分)11、如下图,AD是△ABC中BC边上的中线,若AB=2,AC=4,则AD的取值围是。
沪科版三角形全等典型10题测试
沪科版三角形全等典型10题测试1.已知:AB ⊥BC ,AD ⊥DC ,∠BCA=∠DCA ,求证:BC=CD .2.如图,已知:AB=DE 且AB ∥DE, BE=CF .求证:⑴∠A=∠D ;⑵AC ∥DF .3、如右图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:AB=ADABCDEABC DFE DCBA4.如图,在△ABC 中,AB =AC ,点E 在高AD 上.求证:(1)BD=CD ;(2)BE=CE .5.已知:如图,AB=AC ,DB=DC .F 是AD 的延长线上一点. 求证: (1) ∠ABD =∠ACD (2)BF=CF6、已知:如图, AO 平分∠EAD 和∠EOD 求证:① △A OE ≌△A OD ②EB=DC第5题第6题CA DBE7(2014•浙江杭州,第18题,8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.8.如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.9.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.10.如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB.求证:AB=CD.答案:1,提示:用AAS证明两直角三角形全等.2.⑴提示:证明△ABC ≌△DEF(SAS).⑵∵△ABC ≌△DEF,∴∠ACB=∠F,∴AC∥DF.4,(1)提示:用HL证明Rt△ADB ≌Rt△ADC.(2)可以用全等三角形证明,但最好用垂直平分线的性质一下得到.7考全等三角形的判定与性质;等腰三角形的性质.点:分析:可证明△ABF≌△ACE,则BF=CE,再证明△BEP≌△CFP,则PB=PC,从而可得出PE=PF,BE=CF.解答:解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=BF,在△BEP和△CFP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.全等三角形的判定与性质.8,考点:专题:证明题.分析:首先根据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用SAS定理证明△ABE ≌△ACD,进而得到∠B=∠C.解答:证明:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).∴∠B=∠C.点评:本题主要考查三角形全等的判定方法和性质,关键是掌握全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.9,考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.解答:证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.点评:本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.10,分析:根据等角对等边可得OB=OC,再利用“边角边”证明△ABO和△CDO全等,根据全等三角形对应边相等证明即可.证明:∵∠OBD=∠ODB,∴OB=OD,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.。
沪科版八年级上册数学第14章 全等三角形 含答案
沪科版八年级上册数学第14章全等三角形含答案一、单选题(共15题,共计45分)1、如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF :S四边形BCED的值为( )A.1:3B.2:3C.1:4D.2:52、如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.2cmB.3cmC.4cmD.5cm3、如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF =S△ABC;④BE+CF=EF.上述结论中始终正确的有()A.4个B.3个C.2个D.1个4、如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.80°B.70°C.30°D.110°5、如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG.有下列结论:= AB2①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD其中正确的结论有()A.1个B.2个C.3个D.4个6、下列四个图形中,属于全等图形的是()A.①和②B.②和③C.①和③D.②和④7、尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根据是()A.SASB.ASAC.AASD.SSS8、要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是()A.2.5B.10C.5D.以上都不对9、利用基本作图,不能作出唯一三角形的是()A.已知两边及其夹角B.已知两角及夹边C.已知两边及一边的对角 D.已知三边10、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠CC.DB=DCD.AB=AC11、如图,AB=BD,AC=CD,则全等三角形共有( )A.1对B.2对C.3对D.4对12、如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的个数有()A.3B.2C.1D.013、如图,△AOC≌△BOD,∠A和∠B,∠C和∠D是对应角,下列几组边中是对应边的是()A.AC与BDB.AO与ODC.OC与OBD.OC与BD14、下列图形中,具有稳定性的是()A. B. C. D.15、下列各组中的两个图形为全等形的是().A.两块三角尺B.两枚硬币C.两张 A4 纸D.两片枫树叶二、填空题(共10题,共计30分)16、在△ABC和△ADC中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:________.17、在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,绳索长为13米,玛丽在荡绳索过程中离地面的最低点的高度MN=________.18、如图,小志同学将边长为3的正方形塑料模板与一块足够大的直角三角板叠放在一起,其中直角三角板的直角顶点落在点处,两条直角边分别与交于点,与延长线交于点,则四边形的面积是________.19、如图,已知BD=CE,∠B=∠C,若AB=8,AD=3,则DC=________.20、如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是________.(填SAS或AAS或HL)21、如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段________.22、生活中有一种可推拉的活动护栏,它是应用了数学中四边形的________.23、如图,正方形ABCD,点E在CD上,连接AE,BD,点G是AE中点,过点G作FH⊥AE,FH分别交AD,BC于点F,H,FH与BD交于点K,且HK=2FG,若EG=,则线段AF的长为________.24、判定两个三角形全等的三个基本事实为________、________、________;一条判定定理为________;全等三角形的________、________相等.25、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF ⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D,则下列结论:①若BD=4,则AC=8;②AB=CD;③∠DBA=∠ABC;④S△ABE =S△ACE;⑤∠D=∠AEC;⑥连接AD,则AD=CD.其中正确的是________.(填写序号)三、解答题(共5题,共计25分)26、如图,∠C=∠D=90°,DA=CB,∠CBA=28°,求∠DAC.27、如图,点C,D在线段BF上,AB∥DE,AB=DF,∠A=∠F.求证:△ABC≌△FDE.28、如图,已知O是AB的中点,∠A=∠B,求证:△AOC≌△BOD.29、要使下列木架稳定,可以在任意两个点之间钉上木棍,各至少需要钉上多少根木棍?30、如图,在△ABC中,∠BAC的平分线与BC边的垂直平分线相交于点P,过点P作AB、AC(或延长线)的垂线,垂足分别是M、N,求证:BM=CN.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、B5、C6、D7、D8、C9、C11、C12、A13、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形综合测试题
答题时间:100 满分:120分
、选择题(30分每小题只有一个正确答案,请将正确答案的代号填入 F 表中)
题号
1 2 3 4 5 6 7 8 9 10 答案
1、如图1,已知AB= DC AD= BC E, F 在DB 上两点且 BF = DE 若/ AEB =120 °,/ ADB= 30°,则/ BCF 的度数为()
2、如图 2 所示,BE!AC 于点 D,且 AD= CD BD= ED 若/ ABC= 54 则/E 的度数为()
3、如图3所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据 所学知识画出一个与书上完全一样的三角形,
那么这两个三角形完全一样 的依据是()
A. SSS
B. SAS
C. AAS
D. ASA
4 •如果某三角形的两边长分别为
3和4,则下列长度的线段能作为其第 三边的是()
A.150 (1) (2)
A.25 °
B.27 °
C.30
D.45
B.40 °
C.80 °
D.90
A、1 B 、5 C 、7 D
5. 如图4,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配
一块完全一样的玻璃,那么最省事的办法是()
A.带①去
B. 带②去
C. 带③去
D. 带①和②去
6、下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边; (3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有
A、3 个B 、2 个C 、1个D 、0个
7、A ABC^A DEF AB=2, AC=4,若厶DEF的周长为偶数,则EF的取值为
A. 3 B . 4 C . 5 D
&如图所示,△ ABE^D A ADC^A ABC分别沿着AB AC边
翻折180° 形成的,若/ 1: / 2: / 3 = 28 : 5 : 3 ,
则/a的度数()
A. 80°
B. 100°
C. 60°
D. 45°
9、下列各条件中,不能作出惟一三角形的是
A .已知两边和夹角.已知两角和夹边
C .已知两边和其中一边的对角
D .已知三边
10、已知△ ABC中, / B是/ A的2倍,/ C比/ A大20°,则/ A等于()
A、40 ° B 、60 ° C、80 ° D 、90 °
二、填空题(每小题3分,共30分)
11、如图所示,AD是厶ABC中BC边上的中线,若AB=2, AC=4贝U AD的取值范围是___________________ 。
12、如图,AB// CD, AD// BC, 0E=0F 图中全等三角形共有 _________ 对.
13、 已知等腰厶ABC 的两边长分别为 3cm 和6cm 则厶ABC 的周长是 . 14、 如图,点 D,E,F,B 在同一条直线上, AB 〃 CD ,AE 〃 CF ,且 AE CF ,若 BD 10,BF 2,则 EF ______________ 。
15、如图,在等腰 Rt ABC 中,C 90o ,AC BC ,AD 平分 BAC 交BC 于D ,DE AB 于E ,若AB 10,贝U BDE 的周长等于
三角形。
18、命题"互为相反数的两数之和为 0 ”的逆命题
19、在厶ABC 中,若/ A=40°,Z B=Z C ,则/ C 的度数为 _______________ 20、如图在△ ABC 中,AB=AC, BC=6, ADL BC 于 D,贝U BD=
(第14题图)
(第15题图)
16、如图,在△ ABC 中,DE FG 分别是
( 第16题图) AB AC 的垂直平分线,若△ AEG 17、若一个三角形是轴对称图形且有一个角为 60。
,则该三角形是 (第 1D 题图) (第12题图)
三、证明与计算:
(60 分) 且BM CN ,AM 与BN 交于Q 点。
求 AQN 的度数。
22、(10分)如图,A C F 、D 在同一直线上,AF = DC, AB= DE BC= EF, 求证:△ ABC2A DEF
24、(15分,9+6 )两个大小不同的等腰直角三角形三角板如图 1所示放置, (第 21题图) 21、(10分)如图,
ABC 为等边三角形,点 M ,N 分别在BC, AC 上,
(第 20题图)
图2是由它抽象出的几何图形,B, C, E在同一条直线上,连结DC.
(1 )请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)证明:DCL BE。