东南大学高等数学数学实验报告上

合集下载

《高等数学实验》实验报告

《高等数学实验》实验报告

精品文档高等数学实验报告实验四:微分方程实验五:空间解析几何实验六:多元函数微积分班级:姓名:学号:指导教师:李老师实验成绩:完成日期: 2010 年 4 月 27 日实验四微分方程一、实验目的1.理解常微分方程解的概念;2.掌握求微分方程及方程组解的常用命令和方法。

二、实验类型验证型。

三、必做实验四、选做实验实验五空间解析几何一、实验目的1.掌握绘制空间曲面和曲线的方法;2.熟悉常用空间曲线和空间曲面的图形特征,提高空间想像能力; 3.深入理解二次曲面方程及其图形。

二、实验类型验证型。

三、必做实验>> > t=0:pi/50:10*pi;>> plot3(cos(t),sin(t),t)>> xlabel('x');ylabel('y');zlabel('z');grid onxyz> t=0:0.05:100;>> x=t;y=sin(t);z=sin(2*t); >> plot3(x,y,z)>> xlabel('x');ylabel('y');zlabel('z')xyzezsurf('f')>> ezsurf('-cos(2*x)*sin(3*y)',[-3,3])-1-0.50.51x-cos(2 x) sin(3 y)yezsurf('sin(pi*(x^2+y^2)^(1/2))')-1-0.50.51xsin( (x 2+y 2)1/2)yezsurf('(x*y)/(x^2+y^2)',[-2,2])x(x y)/(x 2+y 2)y> ezsurf('(3+cos(u))*cos(v)','(3+cos(u))*sin(v)','sin(u)',[0,2*pi])-1-0.500.51xx = (3+cos(u)) cos(v), y = (3+cos(u)) sin(v), z = sin(u)yzezsurf('u*cos(v)','u*sin(v)','v/3',[-1,1],[0,8])0.511.522.53xx = u cos(v), y = u sin(v), z = v/3yz>> ezsurf('cos(u)','sin(u)','v') >> hold on>> ezsurf('cos(u)','v','sin(u)')-1-0.500.51z实验六 多元函数微积分一、实验目的1.掌握计算多元函数偏导数和全微分的方法; 2.掌握计算二重积分与三重积分的方法;3.提高应用重积分和曲线、曲面积分解决各种问题的能力。

最新东南大学高等数学数学实验报告资料

最新东南大学高等数学数学实验报告资料

高等数学A(下册)数学实验实验报告姓名:刘川学号:02A13306实验一:空间曲线与曲面的绘制实验题目利用参数方程作图,作出由下列曲面所围成的立体(1)Z =,= x及xOy面;(2)z = xy, x + y – 1 = 0及z = 0.实验方案:(1)输入如下命令:s1=ParametricPlot3D[{u,v,u*v},{u,-1,1},{v,-1,2},DisplayFuncti on→Identity];s2=ParametricPlot3D[{1-u,u,v},{u,-1,1},{v,-1,2},DisplayFuncti on→Identity];s3=ParametricPlot3D[{u,v,0},{u,-1,1},{v,-1,1},DisplayFunction →Identity];Show[s3,s2,s1,DisplayFunction→$DisplayFunction] 运行输出结果为:(2)输入如下命令:s1=ParametricPlot3D[{u,v,u*v},{u,-1,1},{v,-1,2},DisplayFuncti on→Identity];s2=ParametricPlot3D[{1-u,u,v},{u,-1,1},{v,-1,2},DisplayFuncti on→Identity];s3=ParametricPlot3D[{u,v,0},{u,-1,1},{v,-1,1},DisplayFunction →Identity];Show[s3,s2,s1,DisplayFunction→$DisplayFunction] 运行输出结果为:实验二:无穷级数与函数逼近实验题目1、观察级数的部分和序列的变化趋势,并求和。

实验方案输入如下命令:s[n_]:=Sum[k!/k k,{k,1,n}];data=Table[s[n],{n,0,20}];ListPlot[data]运行输出结果为:1.81.71.61.55101520输入如下命令:运行输出结果为:实验结论:由上图可知,该级数收敛,级数和大约为 1.87;运行求和命令后,得近似值:1.887985.实验题目:2、改变函数中m及x0的数值来求函数的幂级数及观察其幂级数逼近函数的情况:实验方案:输入如下命令:m=-3;f[x_]:=(1+x)^m;x0=1;g[n_,x0_]:=D[f[x],{x,n}]/.x→x0;s[n_,x_]:=Sum[g[k,x0]/k!*(x-x0)^k,{k,0,n}];t=Table[s[n,x],{n,20}];p1=Plot[Evaluate[t],{x,-1/2,1/2}];p2=Plot[(1+x)^m,{x,-1/2,1/2},PlotStyle→RGBColor[0,0,1]];Show[p1,p2]运行输出结果为:543210.40.20.20.4输入如下命令:m=-2;f[x_]:=(1+x)^m;x0=2;g[n_,x0_]:=D[f[x],{x,n}]/.x→x0;s[n_,x_]:=Sum[g[k,x0]/k!*(x-x0)^k,{k,0,n}];t=Table[s[n,x],{n,20}];p1=Plot[Evaluate[t],{x,-1/2,1/2}];p2=Plot[(1+x)^m,{x,-1/2,1/2},PlotStyle→RGBColor[0,0,1]]; Show[p1,p2]运行输出结果为:3.53.02.52.01.51.00.50.40.20.20.4输入如下命令:m=-5;f[x_]:=(1+x)^m;x0=2;g[n_,x0_]:=D[f[x],{x,n}]/.x→x0;s[n_,x_]:=Sum[g[k,x0]/k!*(x-x0)^k,{k,0,n}];t=Table[s[n,x],{n,20}];p1=Plot[Evaluate[t],{x,-1/2,1/2}];p2=Plot[(1+x)^m,{x,-1/2,1/2},PlotStyle→RGBColor[0,0,1]];Show[p1,p2]运行输出结果为:43210.40.20.20.4实验结论:由以上各图可知:当x趋近于某个值时,幂级数逼近原函数实验题目:3、观察函数展成的Fourier级数的部分和逼近的情况。

高等数学数学实验报告(两篇)

高等数学数学实验报告(两篇)

引言概述:高等数学数学实验报告(二)旨在对高等数学的相关实验进行探究与研究。

本次实验报告共分为五个大点,每个大点讨论了不同的实验内容。

在每个大点下,我们进一步细分了五到九个小点,对实验过程、数据收集、数据分析等进行了详细描述。

通过本次实验,我们可以更好地理解高等数学的概念和应用。

正文内容:一、微分方程实验1.利用欧拉法求解微分方程a.介绍欧拉法的原理和步骤b.详细阐述欧拉法在实际问题中的应用c.给出具体的实例,展示欧拉法的计算步骤2.应用微分方程建立模型求解实际问题a.介绍微分方程模型的建立方法b.给出一个具体的实际问题,使用微分方程建立模型c.详细阐述模型求解步骤和结果分析3.使用MATLAB求解微分方程a.MATLAB求解微分方程的基本语法和函数b.给出一个具体的微分方程问题,在MATLAB中进行求解c.分析结果的准确性和稳定性二、级数实验1.了解级数的概念和性质a.简要介绍级数的定义和基本概念b.阐述级数收敛和发散的判别法c.讨论级数的性质和重要定理2.使用级数展开函数a.介绍级数展开函数的原理和步骤b.给出一个函数,使用级数展开进行近似计算c.分析级数近似计算的精确度和效果3.级数的收敛性与运算a.讨论级数收敛性的判别法b.介绍级数的运算性质和求和法则c.给出具体的例题,进行级数的运算和求和三、多元函数极值与最值实验1.多元函数的极值点求解a.介绍多元函数的极值点的定义和求解方法b.给出一个多元函数的实例,详细阐述求解过程c.分析极值点对应的函数值和意义2.多元函数的条件极值与最值a.讨论多元函数的条件极值的判定法b.给出一个具体的多元函数,求解其条件极值和最值c.分析条件极值和最值对应的函数值和意义3.利用MATLAB进行多元函数极值与最值的计算a.MATLAB求解多元函数极值与最值的基本语法和函数b.给出一个多元函数的具体问题,在MATLAB中进行求解c.分析结果的准确性和可行性四、曲线积分与曲面积分实验1.曲线积分的计算方法与应用a.介绍曲线积分的定义和计算方法b.给出一个具体的曲线积分问题,详细阐述计算过程c.分析曲线积分结果的几何意义2.曲线积分的应用举例a.讨论曲线积分在实际问题中的应用b.给出一个实际问题,使用曲线积分进行求解c.分析曲线积分结果的实际意义和应用价值3.曲面积分的计算方法与应用a.介绍曲面积分的定义和计算方法b.给出一个具体的曲面积分问题,详细阐述计算过程c.分析曲面积分结果的几何意义五、空间解析几何实验1.空间曲线的参数方程表示与性质a.介绍空间曲线的参数方程表示和性质b.给出一个具体的空间曲线,转化为参数方程表示c.分析参数方程对应的几何意义和性质2.平面与空间直线的位置关系a.讨论平面与空间直线的位置关系的判定方法b.给出一个具体的平面与空间直线的问题,判定其位置关系c.分析位置关系对应的几何意义和应用实例3.空间直线与平面的夹角和距离计算a.介绍空间直线与平面的夹角和距离的计算方法b.给出一个具体的空间直线和平面,计算其夹角和距离c.分析夹角和距离计算结果的几何意义总结:通过本次高等数学数学实验报告(二),我们深入了解了微分方程、级数、多元函数极值与最值、曲线积分、曲面积分以及空间解析几何的相关概念和应用。

东南大学数学实验报告

东南大学数学实验报告

东南大学数学实验报告
实验题目:热传导
实验目的:
1. 通过实验探究热传导的规律以及热传导的特性;
2. 认识热传导的概念与重要性,在实验中了解其应用;
3. 学习使用实验仪器并掌握相应的实验操作方法。

实验流程和原理:
在实验室准备好实验所需的仪器材料,包括热传导仪器、测试温度计、计时器、热导特性测试样品等。

1. 首先,准备好两个相同的热导测试样品,将它们连接到仪器的不同端口,并将一个温度计夹在热导测试样品的中间,另一个温度计则放在测试样品的一侧。

2. 然后,通电使得热传导仪器工作,在一段时间内观察测量的
数据的变化,并记录下来。

3. 在得到足够多的数据之后,按照实验流程进行数据处理和分析,计算出热传导系数以及对获得的结果进行解释和分析。

实验结果:
通过实验,我得到了两个样品之间热传导系数的实验结果,结
果显示,在热导测试样品中,热传导系数随着时间的递增而增加,且两样品热传导系数不同,在测试过程中,样品之间的温度差也
随之增加。

实验结论:
从实验结果中可以得到,热传导系数和材料本身的热导率,温度、时间和热导特性等因素有着密切的关系。

此外,通过实验,
我还对于热传导技术的使用和应用有了更深的认识,它在工业生产、环境监测等各个领域有着重要的应用价值。

实验总结:
通过本次实验,我学习了热传导的基本概念和特性,同时也掌握了使用实验仪器进行实验的方法和技巧。

对于数学和物理等领域的学科知识,有了更加深入的了解和认识。

同时,我也注意到实验结果的不确定性和误差存在,需要在日后的实验学习中加以注意和掌握。

东南大学计算方法实验报告

东南大学计算方法实验报告

计算方法与实习实验报告学院:电气工程学院指导老师:***班级:160093******学号:********实习题一实验1 拉格朗日插值法一、方法原理n次拉格朗日插值多项式为:L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x)n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0)n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。

对节点x i(i=0,1,…,n)中任一点x k(0<=k<=n)作一n 次多项式l k(x k),使它在该点上取值为1,而在其余点x i(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) 上式表明:n 个点x i(i=0,1,…,k-1,k+1,…,n)都是l k(x)的零点。

可求得l k三.计算方法及过程:1.输入节点的个数n2.输入各个节点的横纵坐标3.输入插值点4.调用函数,返回z函数语句与形参说明程序源代码如下:#include<iostream>#include<math.h>using namespace std;#define N 100double fun(double *x,double *y, int n,double p);void main(){int i,n;cout<<"输入节点的个数n:";cin>>n;double x[N], y[N],p;cout<<"please input xiangliang x= "<<endl;for(i=0;i<n;i++)cin>>x[i];cout<<"please input xiangliang y= "<<endl;for(i=0;i<n;i++)cin>>y[i];cout<<"please input LagelangrichazhiJieDian p= "<<endl;cin>>p;cout<<"The Answer= "<<fun(x,y,n,p)<<endl;system("pause") ;}double fun(double x[],double y[], int n,double p){double z=0,s=1.0;int k=0,i=0;double L[N];while(k<n){ if(k==0){ for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);L[0]=s*y[0];k=k+1;}else{s=1.0;for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));for(i=k+1;i<n;i++) s=s*((p-x[i])/(x[k]-x[i]));L[k]=s*y[k];k++;}}for(i=0;i<n;i++)z=z+L[i];return z;}五.实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。

大一高数实验报告

大一高数实验报告
a[0] +Sum [ a[k]*Cos[kx] + b[k]*Sin[kx], {k,1,n}]; 2
g1=Plot[f[x],{x,-2Pi,2Pi},PlotStyle->RGBColor[0,0,1], DisplayFunction->Identity]; m=18; For[i=1, i ≤m, i+=2, g2=Plot[Evaluate[s[x,i]], {x,-2Pi,2Pi}, DisplayFunction->Identity]; Show[g1,g2, DisplayFunction->$ DisplayFunction]]
四、程序运行结果
1 0.75 Z 0.5 0.25 0 -1 -0.5 0 X 0.5 1 -1 -0.5 0 1 0.5 Y
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建
东南大学实验报告
五、结果的讨论和分析
曲面 x 2 + z = 1, y 2 + z = 1 ,z=0 的参数方程分别为:x=u,y=v,z=-u +1;
四、程序设计 ParametricPlot3D[{r*Cos[u],r*Sin[u], r 2 − 1 },{u,0,2*Pi}, {r,1, 2 }, PlotPoints->30] 五、程序运行结果
1 0.75 0.5 0.25 0 0 -1 0 1 -1
1
六、结果的讨论和分析
由解析几何知识,曲面 z = 0, z = 1 与 z 2 + 1 = x 2 + y 2 所围成立体是一个单叶双曲面介于平面
,
实验四 一、实验题目: 演示在 yOz 平面内, z=2y 绕 z 轴旋转一周所得曲面方程的过程。 二、实验目的和意义

东南大学高数实验报告(大一上)

东南大学高数实验报告(大一上)

高等数学数学实验报告
实验题目1:设数列{n x }由下列关系出: ),2,1(,2
1
211 =+==+n x x x x n n n ,观察数列
1
1
111121++
++++n x x x 的极限。

解:根据题意,编写如下程序求出数列的值
运行结果为:
0.66,
1.,
1.6,
1.9,
1.9,
1.9,,
,,,,
,,.
根据观察分析易得出,数列的极限为2.
实验题目2:已知函数)45(21
)(2
≤≤-++=x c
x x x f ,作出并比较当c 分别取-1,0,1,2,3时的图形,并从图上观察极值点、驻点、单调区间、凹凸区间以及渐进线。

解:根据题意,编写如下程序绘制函数
所得图像如下图所示,为c分别取-1,0,1,2,3时的图形:
c的值影响着函数图形上的极值点、驻点、单调区间、凹凸区间以及渐进线,c的值决定了函数图像。

实验题目3:对f(x)=cosx求不同的x处的泰勒展开的表达形式。

解:编写程序如下:
(1)
(2)
(3)
(4)
程序运行结果如下图所示:(1)
(2)
(3)
(4)
由图像可知,函数的泰勒多项式对于函数的近似程度随着阶数的提高而提高,但对于任意确定的次数的多项式,它只在展开点附近的一个局部范围内才有较好的近似精确度。

东大2024高数实验报告(二)2024

东大2024高数实验报告(二)2024

东大2024高数实验报告(二)引言概述:本文是关于东大2024高数实验报告(二)的文档,旨在详细介绍实验过程、实验结果以及相关分析。

本次实验主要涉及高数实验的第二部分,通过理论和实际操作,探索了相关概念和计算方法。

正文:一、实验目的\t1.1 掌握函数的空间曲线的绘制方法;\t1.2 理解函数的周期性和奇偶性;\t1.3 学习利用反函数求解方程;\t1.4 进一步熟悉函数的极限和连续性;\t1.5 学习使用泰勒级数近似计算函数值。

二、实验方法\t2.1 准备实验仪器和材料;\t2.2 绘制函数的空间曲线;\t2.3 分析函数的周期性和奇偶性;\t2.4 求解方程的反函数;\t2.5 进行函数极限和连续性的实验;\t2.6 使用泰勒级数近似计算函数值。

三、实验结果\t3.1 绘制了不同函数的空间曲线并进行了详细分析;\t3.2 确定了函数的周期性和奇偶性,得出相应结论;\t3.3 成功求解了多个方程的反函数,并验证了其正确性;\t3.4 实验得出了函数的极限和连续性的结果,并与理论知识进行了比较;\t3.5 利用泰勒级数近似计算了多个函数值,并与准确值进行了对比。

四、分析和讨论\t4.1 通过绘制空间曲线,我们更直观地理解了函数的变化规律;\t4.2 通过分析周期性和奇偶性,我们对函数的对称性有了更深入的认识;\t4.3 反函数的求解为我们解方程提供了另一种方法,提高了问题的解决效率;\t4.4 实验结果与理论知识的一致性表明,我们掌握了函数的极限和连续性的基本概念;\t4.5 泰勒级数的使用使我们更方便地近似计算各种函数值,提高了计算的准确性。

五、总结\t通过本次实验,我们进一步学习和巩固了高数实验的相关知识和技能。

通过实践,我们熟练掌握了函数的空间曲线绘制方法,理解并应用了周期性和奇偶性的概念,掌握了反函数的求解方法,加深了对函数的极限和连续性的理解,学会了使用泰勒级数近似计算函数值。

这些实验结果对于我们今后的学习和应用中都具有重要的指导作用。

高数实验报告(上)

高数实验报告(上)

高等数学 数学实验报告实验人员:院(系) :电子科学与工程学院 学号: 姓名:成绩_________ 实验时间:2015.11实验一:观察数列的极限一、 实验题目通过作图,观察重要极限 e nn n =+∞→)11(lim二、实验目的和意义利用数形结合的方法观察数列的重要极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过点图可以得出极限值为e 。

此实验得出了数列的一个重要极限。

三、计算公式(1+1/i)i i取50个点观察收敛值四、程序设计data=Table[(1+1/i)i ,{i,50}];ListPlot[data,PlotRange →{1,3},PlotStyle →PointSize[0.018]]五、程序运行结果六、结果的讨论和分析通过实验结果,更加了解重要极限的值的产生,初步体验程序的编写过程,实现求极限值。

在试验中,出现了因取点过少而无法观察极限的问题,在修正取点数后得到解决。

实验二:一元函数图形及其性态一、实验题目制作函数y=sincx的图形动画,并观察参数c对函数图形的影响。

二、实验目的和意义通过绘制图像,简单直观地展现函数图像,观察出参数c对函数图形的影响。

通过编程可以改变参数c的值,以此来发现参数改变对正弦函数周期的影响。

此实验使对正弦函数理解更为直观、明了。

三、计算公式y=sincx四、程序设计Do[Plot[Sin[c*x],{x,-3,3},PlotRange {-1,1}],{c,1,3,1/ 2}]五、程序运行结果六、结果的讨论和分析参数c 从1到3以1/2为步长,改变参数值c 使得正弦函数的周期发生变化,C 值越大,周期越小。

通过程序展示参数改变过程中图形变化情况,要使之更加生动,可以对这些图形进行动画演示。

实验三:泰勒公式与函数逼近一、 实验题目(根据图形观察泰勒展开的误差)观察sx x f co )(=的各阶泰勒展开的图形。

二、 实验目的和意义利用Mathematica 计算函数)(x f 的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。

数学建模实验报告-AHP方法的建模与求解

数学建模实验报告-AHP方法的建模与求解
[V,D]=eig(a);
tbmax=max(D(:));
L=tbmax;
CI=(L-n)/(n-1);
end
CR=CI/0.58;
clear
forn=3
a=[1 1/5 1/3;5 1 3;3 1/3 1];
[V,D]=eig(a);
tbmax=max(D(:));
L=tbmax;
CI=(L-n)/(n-1);
1.6157 1.6245 1.6334 1.6410 1.6480 1.6542 1.6581 14 1.6710 1.6754 1.6779 1.6825 1.6836
(2)建立一个AHP模型,并将结果填入下表
AHP模型
模型解释
现有一学生考虑出国读研,目前可供选择的学校有:学校甲、学校乙,学校丙。
选择最佳的学校为的是获得更好的学习机会,目的都是相同的,因此可以利用层次分析法来建立模型。
准侧:C1学费C2学校实力
C3地理位置
目标层合理选择国外大学
准则层学费学校实力地理位置
方案层学校甲学校乙学校丙
判断矩阵表:
Z C1 C2 C3
C1 1 1/9 1/4
C2 9 1 9
C3 4 1/91
最大特征值为:3.0385
Columns 1 through 8
0 0 0.5246 0.8676 1.0795 1.2227 1.3232 1.3927
Columns 9 through 16
1.4436 1.4853 1.5158 1.5401 1.5610 1.5775 1.5919 1.6067
Columns 17 through 24
fori=1:n
forj=i:n

东南大学高等数学数学实验报告

东南大学高等数学数学实验报告

高等数学数学实验报告实验人员:院(系) 经济管理学院 学号 14B13310 姓名 夏清晨 实验地点:计算机中心机房实验一空间曲线与曲面的绘制一、实验题目利用参数方程作图,做出由下列曲面所围成的立体:二、实验目的和意义利用数学软件mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特点,以加强几何的直观性。

三、计算公式● v u x sin *cos = v v y sin *sin = v z cos = (0<u<2∏ 0<v<0.5∏) ● u x sin *5.0= u y cos = z=v (0<u<2∏ -1<v<2) ● x=u y=v z=0 (-2<u<2 -2<v<2)四、程序设计s1=ParametricPlot3D[{u,v,1u 2v 2},{u,-1,1},{v,-1,1},PlotRange →{-1,1},AxesLabel →{"X","Y","Z"},DisplayFunction →Identity]; s2=ParametricPlot3D[{u 2+v 2-u,u,v},{u,-1,1},{v,-1,1},AxesLabel →{"X","Y","Z"},DisplayFunction →Identity]; s3=ParametricPlot3D[{u,v,0},{u,-1,1},{v,-1,1},AxesLabel →{"X","Y","Z"},DisplayFunction →Identity]; Show [s1,s2,s3,DisplayFunction →$DisplayFunction]五、程序运行结果六、结果的讨论和分析利用Mathematica,直观地展示了图形的空间结构以及交界情况。

东南大学几代数学实验(比赛排名问题)

东南大学几代数学实验(比赛排名问题)

《几何与代数》数学实验报告比赛排名问题在有n 位选手参加的单循环比赛中,比赛胜一场得1分,负一场得0分,我们可以构造一个对角线元素为零的n 阶矩阵()ij m M =表示比赛结果,其中⎩⎨⎧=ji j i m ij 负于选手选手胜选手选手01矩阵M 的第i 行表示选手i 的比赛胜负情况,该行元素之和为选手i 的取胜次数,即选手i 在比赛中的积分。

如果e 表示元素全为1的n 维列向量,则向量e M s ⋅=1的每个元素就是每位选手的积分。

可以根据每位选手的积分高低确定比赛名次。

如果有多位选手积分相同,则需要考虑第二级积分e M s M s ⋅=⋅=212,即所战胜选手的积分之和。

根据第二级积分,选手名次的排列可能会出现波动,继续计算第三级、第四级积分……,一般地由e M s M s k k k ⋅=⋅=-1计算第k 级积分。

根据竞赛图理论,如果比赛至少有4位选手参加、并且任意两位选手比赛的负者都可以间接“战胜”其胜者,则对于矩阵M 的最大的特征值)0(>λ和特征向量s ,成立s e M kk =⋅⎪⎭⎫⎝⎛∞→λlim (1) 这表明在一定条件下,积分向量序列收敛到一个固定的排列,我们可以根据积分向量s 各分量的大小确定各选手的成绩排名。

在计算时可以将特征向量s 或者k s 各个分量同时除以一个数,保证s 的分量的绝对值在迭代过程中不趋向于无穷大(零)。

一种常用的方法是对向量进行归一化处理,即使向量各分量绝对值的和为1。

具体求出积分向量s 的方法有两种:方法一:直接计算矩阵M 的最大特征值,及其对应的特征向量s ,并对它们进行归一化处理,并根据特征向量s 确定选手的名次排列;方法二:依次计算各级积分向量,并对它们进行归一化处理,直至相邻两次计算的结果小于指定的精度,并根据最后的积分向量s 确定选手的名次排列。

问题:请自行构造有8名选手参加的单循环比赛成绩矩阵M ,要求有两组选手,他们的积分分别相同,比如一组4人都得4分,一组4人都得3分。

东南大学高等数学(A)上册实验报告

东南大学高等数学(A)上册实验报告

高等数学数学实验报告实验人员:院(系) __________学号___________姓名_________成绩_________ 实验时间:注:部分实验环境为Mathematica 8,另一部分为Mathematica 4.(文档下载者请在安装有Mathematica 4 的电脑打印此报告,否则公式是乱码,打印时请删去这一行文字)实验一 观察数列的极限一、实验题目通过作图,观察重要极限:e n nn =⎪⎭⎫⎝⎛+∞→11lim二、实验目的和意义利用数学软件Mathematica 加深对数列极限概念的理解。

三、计算公式 nn n ⎪⎭⎫⎝⎛+∞→11lim data=Table[,{,}] ListPlot[data,PlotRange {,},PlotStylePointSize[],AxesLabel{,}]四、程序设计①data=Table[(1+(1/n))^n,{n,70}] ListPlot[data,PlotRange {1.5,3}, PlotStyle PointSize[0.018],AxesLabel {n,lim (1+1/n)^n}]②f[x_]:=(1+1/x)^x;For[x=1000,x 10000,x=x+1000,m=N[f[x]];Print["x=",x," ","f[",x,"]","=",m]]五、程序运行结果(Mathematica 8)010203040506070n1.61.82.02.22.42.62.83.0lim1n1n六、结果的讨论和分析通过观察图像和数据可知,极限为e。

实验二一元函数图形及其性态一、实验题目已知函数())45(212≤≤-++=xcxxxf,作出并比较当c分别取-1,0,1,2,3时的图形,并从图上观察极值点、驻点、单调区间、凹凸区间以及渐近线。

东南大学大一下高等数学实验报告1

东南大学大一下高等数学实验报告1

高等数学数学实验报告实验人员:院(系) _ 电子 _学号_ __姓名_ ___成绩_________实验一 一、实验题目利用参数方程作图,作出由下列曲面所围成的立体: (1)221y x z --=,x y x =+22及xOy 面; (2)xy z =,01=-+y x 及0=z 。

二、实验目的和意义利用Mathematics 软件绘制三维图形来观察空间曲线和空间图形的特点,以加强几何的直观性。

时更加了解空间曲面是如何围成一个空间的封闭区域。

三、计算公式 (1)221y x z --=:v u xsin cos ⨯=,v v y sin sin ⨯=, v z cos =(0<u<2π,0<v<0.5π)x y x =+22:u x sin 5.0⨯=,u y cos =,v z =(0<u<2π,-1<v<2)xOy 面 x=u ,y=v ,z=0 (-2<u<2 -2<v<2)(2)xy z = : x=u ,y=v ,z=u ×v (-5<u<5 -5<v<5)01=-+y x : x=u ,y=1-u ,z=v (-5<u<5 -5<v<10)0=z : x=u ,y=v ,z=0 (-4<u<8 -4<v<8)四、程序设计(1)s1ParametricPlot3DCos u Sin v,Sin v Sin u,Cos v ,u,0,2Pi ,v,0,0.5Pi,AxesLabel"X","Y","Z",DisplayFunction Identity;s2ParametricPlot3D 0.5Sin u0.5,0.5Cos u ,v, u,0,2Pi,v,1,2,AxesLabel"X","Y","Z",DisplayFunction Identity ;s3ParametricPlot3D u,v,0,u,2,2,v,2,2,AxesLabel"X","Y","Z",DisplayFunction Identity;Show s1,s2,s3,DisplayFunction$DisplayFunction(2)s1ParametricPlot3D u,v,u v ,u,8,8,v,8,8, AxesLabel "X","Y","Z",DisplayFunction Identity; s2ParametricPlot3D u,1u,v,u,8,8,v,8,8, AxesLabel"X","Y","Z",DisplayFunction Identity; s3ParametricPlot3D u,v,0,u,5,10,v,5,10, AxesLabel"X","Y","Z",DisplayFunction Identity; Show s1,s2,s3,DisplayFunction$DisplayFunction五、程序运行结果(1)(2)六、结果的讨论和分析第一个图形显而易见是由半圆、圆柱及xOy面所组成的图形。

高等数学实验报告 (2)

高等数学实验报告 (2)

高等数学实验报告引言高等数学作为大学数学的一门基础课程,其实验内容十分重要。

本文将针对高等数学实验进行详细报告,通过实验分析和计算,进一步加深对高等数学理论的理解和掌握。

实验目的本次实验的目的是让学生掌握应用高等数学的知识和技巧,通过实验求解数学问题,巩固理论知识。

实验内容本次实验分为以下几个部分:1. 极限与连续通过实验验证极限和连续的相关性质,探究函数极限的计算方法,并通过实验加深对函数连续性的理解。

2. 导数与微分通过实验分析函数的导数和微分,验证微分中的等式,探究函数的单调性和极值,并通过实验加深对导数的理解。

3. 积分与不定积分通过实验求解函数的积分和不定积分,验证积分规则,分析函数的定积分,加深对积分的理解和应用。

4. 二元函数与偏导数通过实验分析二元函数的性质和偏导数的计算方法,探究偏导数在多元函数中的应用,并通过实验加深对多元函数的理解。

实验步骤与数据分析在每个实验部分,我们按照以下步骤进行实验,并对结果进行数据分析。

1. 实验步骤•阅读实验指导书,了解实验要求和内容;•在实验室中,根据实验内容准备实验所需的工具和材料;•按照实验步骤进行实验,进行数据记录和计算;•将实验结果整理并进行分析。

2. 数据分析通过实验得到的数据,我们进行以下分析和计算: - 对于极限和连续的实验,我们可以通过计算和绘制函数图像验证实验结果; - 对于导数和微分的实验,我们可以通过计算导数和微分系数来验证实验结果; - 对于积分和不定积分的实验,我们可以通过计算定积分和不定积分来验证实验结果; - 对于二元函数和偏导数的实验,我们可以通过计算偏导数和绘制二元函数图像来验证实验结果。

实验结果与讨论根据实验步骤和数据分析,我们得出以下实验结果和结论: - 在极限和连续的实验中,通过实验验证了函数极限的性质和函数连续的条件; - 在导数和微分的实验中,通过实验验证了函数导数的计算方法和微分的等式; - 在积分和不定积分的实验中,通过实验验证了积分规则和定积分的计算方法; - 在二元函数和偏导数的实验中,通过实验验证了多元函数的性质和偏导数的计算方法。

高等数学实验报告

高等数学实验报告

高等数学实验报告
实验题目:求解非齐次线性方程组
实验目的:通过实验掌握求解非齐次线性方程组的基本原理和方法,掌握矩阵变换的基本概念和方法。

实验原理:对于非齐次线性方程组Ax=b,A为系数矩阵,b为常数列向量,如果Ax0=0,其中x0为齐次线性方程组Ax=0的通解,则非齐次线性方程组的通解为x=x0+xp,其中xp为Ax=b的一组特解。

实验内容:以3x3线性方程组为例,进行求解非齐次线性方程组的操作。

步骤1:对系数矩阵A进行初等变换,将矩阵化为上三角矩阵U。

此时方程组变为Ux=y,其中y为常数向量b经过初等变换得到的向量。

步骤2:利用回带法(也称为消元法的“回退”版),求出Ux=y 的解。

将求解过程记录在表格中(见表1)。

表1 回带法求解过程表
步骤3:求出非齐次线性方程组的一个特解xp。

由于Ax0=0,
故有(A+B)x0=-b,其中B是一个由U矩阵无法得出的矩阵,A为
U矩阵。

将(A+B)x0=-b解出x0,特解xp=A^(-1)(-b-Bx0)即为一个
特解。

步骤4:得到非齐次线性方程组的通解为x=x0+xp,其中x0为
齐次线性方程组Ax=0的通解,xp为步骤3求解得到的一个特解。

实验结果:用本实验的方法,求解线性方程组
2x1+6x2+10x3=12
0x1+7x2+5x3=-3
0x1+0x2+3x3=7
得到的解为
x1=-1
x2=2
x3=7/3
实验结论:本实验所用方法确实能够求解非齐次线性方程组,并得出正确解。

经过本次实验,我掌握了求解非齐次线性方程组的基本原理和方法,以及矩阵变换的基本概念和方法。

实验报告书3-Hill密码体系

实验报告书3-Hill密码体系

东南大学《数学实验》报告
学号 姓名 成绩 实验内容:Hill n 密码体系
一 实验目的
实现Hill n 密码体系的关键环节(加密、解密、破译)
二 预备知识
熟悉mod 、det 、find 等Matlab 命令
三 实验内容与要求
(1)假设加密矩阵为A =⎪⎪⎭
⎫ ⎝⎛3201,用M A T L A B 编制程序,加密下面一段明文:SHUXUEJIANMOJINGSAI
(2)假设加密矩阵为A =1103⎛⎫ ⎪⎝⎭
,用M A T L A B 编制程序,解密下面一段密文:AXSTZOSAOPBSTKSAN OPSAHAUUNSUUAKGAUZC K KOP D O
(3)甲方截获了一段密文:
BKOPGATRHMMBFC SDJC CAUU
经分析这段密文是用Hill2密码编译的,且这段密文的字母SDJC依次代表字母IJIA,请破
(4)编写通用的Hill密码软件(Matlab或C++)
(5)用实验的方法确定在编制模n倒数表时最少需要真正计算倒数的整数个数。

n=10~30.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Image
Image
高等数学数学实验报告
实验人员:院(系) ___________学号_________姓名____________实验地点:计算机中心机房
实验一
1、 实验题目:
根据上面的题目,通过作图,观察重要极限:lim(1+1/n)n =e
2、 实验目的和意义
方法的理论意义和实用价值。

利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。

通过此实验对数列极限概念的理解形象化、具体化。

三、计算公式 (1+1/n)n
四、程序设计
五、程序运行结果
六、结果的讨论和分析
当n足够
Image
Image
大时,所画出的点逐渐接近于直线,即点数越大,精确度越高。

对于不同解题方法最后均能获得相同结果,因此需要择优,从众多方法中尽可能选择简单的一种。

程序编写需要有扎实的理论基础,因此在上机调试前要仔细审查细节,对程序进行尽可能的简化、改进与完善。

实验二一、实验题目
制作函数y=sin cx的图形动画,并观察参数c对函数图形的影响。

二、实验目的和意义
本实验的目的是让同学熟悉数学软件Mathematica所具有的良好的作图功能,并通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。

三、计算公式:y=sin cx
四、程序设计五、程序运行结果
六、结果的讨论和分析
c的不同导致函数的区间大小不同。

实验三
一、实验题目
观察函数f(x)=cos x的各阶泰勒展开式的图形。

二、实验目的和意义
利用Mathematica计算函数的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。

三、计算公式
Image
Image
Image
四、程序设计
五、程序运行结果
Image Image
Image
Image
Image
Image
Image
Image
六、结果的讨论和分析
函数的泰勒多项式对于函数的近似程度随着阶数的
提高而提高,但是对于任一确定次数的多项式,它只
在展开点附近的一个局部范围内才有较好的近似精确度。

Image
Image
Image
实验四一、实
验题目
计算定积分
的黎曼和
二、实验目的和意义
在现实生活中许多实际问题遇到的定积分,被积函数往往不能用算是给出,而通过图像或表格给出;或虽然给出,但是要计算他的原函数
却很困难,甚至原函数非初等函数。

本实验目的,就是为了解决这些问题,进行定积分近似计算。

三、计算公式
四、程序设计
五、程序运行结果
六、结果的讨论和分析
本实验求的近似值由给出的n的值的不同而不同。

给出的n值越大,得到的结果越接近准确的值,但因而电脑的计算量会变大。

而给出的n 值越小,程序运行的结果越不精确。

因而,使用者可根据自己的实际情况确定n的取值。

实验五
一、实验题目
求在区间[2,5]上初值问题
{ 的数值解,并求出 数值解的图形。

二、实验目的和意义
在实际问题中,需要研究一些变动的量以及它们之间的关系,由于这些量是时刻变化的,因此他们之间的关系不能用简单的代数关系来表达,而要用微分方程来表示。

本实验中,我们求解一些简单常用的微分方程的方法,以及微分方程的数值解的方法。

三、计算公式。

四、程序设计
五、程序运行结果
{{y[x] -> InterpolatingFunction[{{2., 5.}}, <>][x]}}
实验六
一、实验题目
用切线迭代法求方程x2+-3=0的近似解,要求误差不超过10-6二、实验目的和意义
利用切线迭代法,可以更加精确地求出方程的近似解,通过编程可以输出迭代次数及最终近似解。

通过此实验对切线迭代法有更深的了解。

三、计算公式:x n+1=x n--x n-x n-1)
四、程序设计
五、程序运行结果
六、结果的讨论和分析
切线法比二分法收敛的要快,不过切线法要求的前提条件比较强,所以当难以判断是否满足条件时,应采用二分法,可以通过绘制图形知道在隔断区间上是否满足切线法的条件,这样可以免去精确地推导。

相关文档
最新文档