高二数学曲线上一点处的切线

合集下载

高二数学函数试题答案及解析

高二数学函数试题答案及解析

高二数学函数试题答案及解析1.若定义在R上的函数满足:,且对任意满足,则不等式的解集为().A.B.C.D.【答案】C【解析】构造,则;因为对任意满足,所以恒成立,即在上为减函数;又因为,所以的解集为.【考点】抽象不等式的解集.2.设函数在区间上的导函数为,在区间上的导函数为,若在区间上恒成立,则称函数在区间上为“凸函数”.已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为()A.4B.3C.2D.1【答案】C【解析】由题意,得,.令对上恒成立,∴,解得,∴,故选C【考点】1、利用导数求最值;2、二次函数的图象应用.3.已知函数在与时都取得极值.(1)求的值与函数的单调区间(2)若对,不等式恒成立,求的取值范围.【答案】(1),函数的递增区间是与,递减区间是;(2)或.【解析】(1)先求出,进而得到,从中解方程组即可得到的值,然后再通过求出函数的增区间,通过求出函数的减区间; (2)要使对,不等式恒成立问题,则只需,从而目标转向函数的最大值,根据(1)中所得的值,确定函数在区间的最大值,进而求解不等式即可. 试题解析:(1)由,得,函数的单调区间如下表:-极大值¯极小值-所以函数的递增区间是与,递减区间是(2),当时,为极大值,而,则为最大值,要使恒成立,则只需要,得或.【考点】1.函数的极值与导数;2.函数的单调性与导数;3.函数的最值与导数.4.已知函数的导函数的图象如图所示,则关于函数,下列说法正确的是 ( )A.在处取得最大值B.在区间上是增函数C.在区间上函数值均小于0D.在处取得极大值【答案】D【解析】因为函数的导函数的图象如图所示,导函数在,的值小于零,所以函数在,上递减;导函数在的值大于零,所以函数在递增.所以A,B,C选项都错了,所以选D.【考点】1.导函数的图像.2.导函数的几何意义.3.利用导数解决函数的性质.5.已知函数.(1)解关于的不等式;(2)若在区间上恒成立,求实数的取值范围.【答案】(1)当时,原不等式的解集为或;当时,解集为且;当时,解集为或;(2)的取值范围是.【解析】(1)本小题是含参数的一元二次不等式问题,求解时先考虑因式分解,后针对根的大小进行分类讨论,分别写出不等式的解集即可;(2)不等式的恒成立问题,一般转化为函数的最值问题,不等式即在上恒成立可转化为(),而函数的最小值可通过均值不等式进行求解,从而可求得的取值范围.试题解析:(1)由得,即 1分当,即时,原不等式的解为或 3分当,即时,原不等式的解为且 4分当,即时,原不等式的解为或综上,当时,原不等式的解集为或;当时,解集为且;当时,解集为或 6分(2)由得在上恒成立,即在上恒成立,所以() 8 分令,则 10分当且仅当等号成立,即故实数的取值范围是 12分.【考点】1.一元二次含参不等式;2.分类讨论的思想;3.分离参数法;4.均值不等式.6.设F(x)=3a+2bx+c,若a+b+c=0,且F(0)>0,F(1)>0.求证:a>0,且—2<<—1.【答案】主要求出F(0)和F(1)【解析】证明:由题意,又,所以.注意到,又,所以,即,又,,所以,即.综上:,且【考点】不等关系与不等式.点评:本题主要考查二次函数的基本性质与不等式的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.7.若函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I 上是“弱增函数”.已知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”,则实数b的值为.【答案】【解析】根据题意,由于函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I 上是“弱增函数”,则可知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”则在给定区间是递减函数,则利用对称轴x=,开口向上,利用定义域和对称轴的关系可知,b的值为1,故可知答案为1.【考点】函数的单调性点评:主要是考查了函数的单调性的运用,属于基础题。

高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.若曲线在点处的切线方程是,则.【答案】2【解析】,又在点处的切线方程是,.【考点】三角函数化简求值.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】,因此切线方程为,即.【考点】(1)导数的运算法则;(2)导数的几何意义.3.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”,下列方程:①x2﹣y2=1②x2﹣|x﹣1|﹣y=0③xcosx﹣y=0④|x|﹣+1=0其中所对应的曲线中存在“自公切线”的有()A.①②B.②③C.①④D.③④【答案】B【解析】①x2﹣y2=1是一个等轴双曲线,没有自公切线;②x2﹣|x﹣1|﹣y="0" ,由两圆相交,可知公切线,满足题意,故有自公切线;③xcosx﹣y=0的图象过(2π,2π ),(4π,4π),图象在这两点的切线都是y=x,故此函数有自公切线;④|x|﹣+1=0,其表示的图形为图中实线部分,不满足要求,故不存在.故选:B【考点】利用导数研究曲线上某点切线方程.4.抛物线在点处的切线的倾斜角是( )A.30B.45C.60D.90【答案】B【解析】设抛物线在点处的切线的倾斜角为,因为,由导数几何意义得:,故选B.【考点】导数几何意义.5.已知函数,若曲线存在与直线平行的切线,则实数的取值范围是()A.B.C.D.【答案】A【解析】对函数求导可得,存在与直线平行的切线,即有实数解,则,,则,得.故选A.【考点】导数的几何意义.6.函数是定义在R上的可导函数,则下列说法不正确的是()A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数【答案】B.【解析】对于B,可以构造函数,则,而并不是的极值点,而A,C,D均正确,∴选B.【考点】导数的性质.7.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。

高二数学导数试题答案及解析

高二数学导数试题答案及解析

高二数学导数试题答案及解析1.若曲线的一条切线l与直线垂直,则切线l的方程为 ( )A.B.C.D.【答案】A【解析】设切点为,因为,所以,由导数的几何意义可知切线的斜率为。

直线的斜率为。

由题意可得,解得,切点为,切线的斜率为4,所以切线的方程为,即。

故A正确。

【考点】1导数的几何意义;2两直线垂直时斜率的关系;3直线方程。

2.曲线在点(1,1)处的切线方程为 .【答案】【解析】∵y=lnx+x,∴,∴切线的斜率k=2,所求切线程为.【考点】导数的几何意义.3.已知是定义在上的非负可导函数,且满足,对任意正数,若,则的大小关系为A.B.C.D.【答案】A【解析】因为,是定义在上的非负可导函数,且满足,即,所以,在是增函数,所以,若,则的大小关系为。

选A。

【考点】导数的运算法则,应用导数研究函数的单调性。

点评:中档题,在给定区间,如果函数的导数非负,则函数为增函数,如果函数的导数非正,则函数为减函数。

比较大小问题,常常应用函数的单调性。

4.已知函数的导函数为,1,1),且,如果,则实数的取值范围为()A.()B.C.D.【答案】B【解析】由于,1,1),故函数在区间上为增函数,且为奇函数,由得:,则,解得。

故选B。

【考点】函数的性质点评:求不等式的解集,常结合到函数的单调性,像本题解不等式就要结合到函数的单调性。

5.已知函数在上是单调函数,则实数a的取值范围是()A.B.C.D.【答案】B【解析】因为,函数在上是单调函数,所以,=0无不等实数解,即,解得,,故选B。

【考点】利用导数研究函数的单调性。

点评:简单题,在某区间,导数非负,函数为增函数,导数非正,函数为减函数。

6.已知曲线方程,若对任意实数,直线,都不是曲线的切线,则实数的取值范围是【答案】【解析】把已知直线变形后找出直线的斜率,要使已知直线不为曲线的切线,即曲线斜率不为已知直线的斜率,求出f(x)的导函数,由完全平方式大于等于0即可推出a的取值范围解:把直线方程化为y=-x-m,所以直线的斜率为-1,且m∈R,所以已知直线是所有斜率为-1的直线,即曲线的斜率不为-1,由得:f′(x)=x2-2ax,对于x∈R,有x2-2ax≥,根据题意得:-1<a<1.故答案为【考点】求曲线上过某点曲线方程点评:此题考查学生会利用导数求曲线上过某点曲线方程的斜率,是一道基础题.7.曲线在点(1,2)处的切线方程是____________---------【答案】【解析】,直线斜率为1,直线方程为【考点】导数的几何意义点评:几何意义:函数在某一点处的导数值等于该点处的切线的斜率8.已知函数.(1)当时,求曲线在点处的切线方程;(2)对任意,在区间上是增函数,求实数的取值范围.【答案】(1)(2)【解析】(Ⅰ)解:当时,, 2分,又 4分所以曲线在点处的切线方程为即 6分(Ⅱ)= 8分记,则,在区间是增函数,在区间是减函数,故最小值为 -10分因为对任意,在区间上是增函数.所以在上是增函数, 12分当即时,显然成立当综上 15分【考点】导数的几何意义与函数单调性点评:第一问利用导数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,可求得切线斜率,进而得到切线方程;第二问也可用参变量分离法分离,通过求函数最值求的取值范围9.已知函数,则()A.0B.1C.-1D.2【答案】C【解析】根据题意,由于,则可知-1+0=-1,故答案为C.【考点】导数的运算点评:主要是考查了导数的运算法则的的运用,属于基础题。

专题3-1 切线、公切线及切线法应用-(原卷版)

专题3-1 切线、公切线及切线法应用-(原卷版)

专题3-1 切线、公切线与“切线法”应用目录【题型一】“在点”切线1:有切点.......................................................................................................... 1 【题型二】“在点”切线2:无切点.......................................................................................................... 2 【题型三】“在点”切线3:双参型.......................................................................................................... 2 【题型四】“在点”切线4:分段函数切线 .............................................................................................. 3 【题型三】“过点”切线1 ......................................................................................................................... 4 【题型四】“过点”切线2:切线条数...................................................................................................... 5 【题型五】“过点”切线3:最值与范围 .................................................................................................. 5 【题型六】双函数公切线 .......................................................................................................................... 5 【题型七】三角函数的切线 ...................................................................................................................... 6 【题型八】切线与倾斜角 .......................................................................................................................... 7 【题型九】“切线法应用”题型1:直线上点到曲线距离 ...................................................................... 7 【题型十】“切线法应用”题型2:两曲线上点距离最值 ...................................................................... 8 【题型十一】“切线法应用”题型3:恒成立与存在求参 ...................................................................... 9 【题型十二】“切线法应用”题型4:零点(交点)求参 ...................................................................... 9 【题型十三】“切线法应用”题型5:等式(不等式)整数解求参 .................................................... 10 【题型十四】“切线法应用”题型6:恒等式、不等式等 .................................................................... 11 【题型十五】综合应用 ............................................................................................................................ 11 二、真题再现 ............................................................................................................................................ 12 三、模拟检测 .. (13)【题型一】“在点”切线1:有切点【典例分析】已知函数1()(3)e ln x f x ax x x -=++(其中e 为自然对数的底数)的图象在(1,(1))f 处的切线的斜率为8,则实数a 的值为( )A .1B .2C .eD .31.已知函数2()2(1)f x x xf =-',则曲线()y f x =在点(2,(2))f 处的切线方程为( ) A .680x y --= B .680x y -+= C .680x y ++= D .680x y +-=2.已知函数()(0)xf x e ax a =+<在0x =处的切线与两坐标轴围成的三角形面积为14,则实数a 的值为( ) A .1 B .1- C .3- D .33.已知函数()()212f x x f x '=-+,则()f x 的图象在点()()22f ,处的切线的斜率为( ) A .-3 B .3 C .-5 D .5【题型二】“在点”切线2:无切点【典例分析】已知四条直线1:l y x =,2:32l y x =-,3:32l y x =+,从这三条直线中任取两条,这两条直线都与函数3()f x x =的图象相切的概率为( )A .16B .13C .12D .23【变式演练】1.以下曲线与直线e e y x =-相切的是( ) A .221x y +=B .e x y =C .e ln x y x =D .21e 2y x =2.若曲线e x y a x =+与y =2x +1相切,则实数a =( ) A .1 B .2 C .3 D .43.直线12y x b =-与曲线1ln 2y x x =-+相切,则b 的值为( )A .2B .-2C .-1D .1【题型三】“在点”切线3:双参型【典例分析】已知,a b 为正实数,直线y x a =-与曲线()ln y x b =+相切,则11a b+的最小值为( ) A .2 B .4C .5D .6【变式演练】1.若曲线3y x ax =+在点(1,(1))f 处的切线方程为6y x m =-,则m =( ) A .3 B .3- C .2 D .2-2.已知函数()2ln f x ax b x =-在点()()1,1f 处的切线为1y =,则a b +的值为( ) A .1 B .2 C .3 D .43.已知函数2()ln f x a x bx =-的图象在1x =处与直线12y =-相切,则函数()f x 在[]1,e 上的最大值为( )A .1-B .0C .12- D .1【题型四】“在点”切线4:分段函数切线【典例分析】已知函数2(2),0()3(),0f x x x f xg x x ⎧->⎪=⎨⎪<⎩图像关于原点对称,则()f x 在1x =-处的切线方程为( )A .320x y -+=B .320x y --=C .340x y ++=D .340x y +-=【变式演练】1.已知函数()()ln 1,0,0x x f x kx x ⎧+>=⎨≤⎩,曲线()y f x =与直线1ln 222x y =-+有且仅有一个交点,则实数k 的取值范围为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .[)1,+∞2.已知函数()f x 满足()(),11ln 1,1ax a x f x x x +≤-⎧+=⎨+>-⎩函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为( ) A .1,0e ⎛⎫- ⎪⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .11,e e ⎛⎫- ⎪⎝⎭D .1,e ∞⎛⎫+ ⎪⎝⎭3.已知函数2,0()1,0x x a x f x x x⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点A B 、,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是___________.【题型三】“过点”切线1【典例分析】设01x >,曲线()ln 32f x a x x a =-+在点()0,0P x 处的切线经过点()0,2e ,则0a x +=( ) A .eBCD .2e【变式演练】1.写出a 的一个值,使得直线0x ay a +-=是曲线sin xy x=的切线,则a =______.2.已知直线(R)y ax a =∈与曲线ln y x =相交于两点,则a 的取值范围是___________3.函数2()e x f x =过原点的切线方程是_______.【题型四】“过点”切线2:切线条数【典例分析】若过点(),s t 可以作曲线ln y x =的两条切线,则( )A .ln s t >B .ln s t <C .ln t s <D .ln t s >【变式演练】1.已知函数()()1e xf x x =+,过点M (1,t )可作3条与曲线()y f x =相切的直线,则实数t 的取值范围是( )A .24,0e ⎛⎫- ⎪⎝⎭ B .242,e e ⎛⎫- ⎪⎝⎭ C .36,2e e ⎛⎫- ⎪⎝⎭D .36,0e ⎛⎫- ⎪⎝⎭2.若过点(,)m n 可以作曲线2log y x =的两条切线,则( )A .2log m n >B .2log n m >C .2log m n <D .2log n m <3.过点()0,b 作曲线e x y =的切线有且只有两条,则b 的取值范围为( ) A .()0,1B .(),1-∞C .(],1-∞D .(]0,1【题型五】“过点”切线3:最值与范围【典例分析】已知函数()e xf x b =+的一条切线为y ax a =+,则ab 的最小值为( )A .12e- B .C .12eD【变式演练】1.已知曲线()|ln |f x x =在点()()11,x f x 与()()22,x f x 处的切线互相垂直且相交于点()00,P x y ,则( ) A .121x x ⋅=-B .12⋅=x x eC .1202x x x +=D .0122=+x x x2.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.3.过直线1y x =-上一点P 可以作曲线()ln f x x x =-的两条切线,则点P 横坐标t 的取值范围为( ) A .01t << B .1t e <<C .0t e <<D .11t e<<【题型六】双函数公切线【典例分析】若函数1()33(0)f x x x x =+->的图象与函数()e xg x tx =的图象有公切线l ,且直线l 与直线122y x =-+互相垂直,则实数t =( )A .1e B .2e C .1e 或D .1e 或【变式演练】1.若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( )A .e 2B .eCD .2e2.若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则k =( ) A .2 B .4 C .2e D .2e -3..若曲线ln y x =与曲线:y =2x -k 有公切线,则实数k 的最大值为( )A .78+1ln22B .78-1ln22C .12+1ln22D .121ln22-【题型七】三角函数的切线【典例分析】函数()2cos 2sin f x x x x =-在πx =处的切线在y 轴上的截距为( )A .2π2π-B .2πC .2π2-D .22ππ22π--【变式演练】1.设函数321()(1)sin 3f x x a x a x =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线斜率为( )A .3B .2C .1D .122.过曲线cos y x =上一点1,32P π⎛⎫⎪⎝⎭且与曲线在P 点处的切线垂直的直线的方程为( )A .2203x π-=B .212032x y π+--=C.2203x π-= D .212032x y π--+=3.已知函数()3sin 4cos f x x x =-,则曲线()y f x =在点()()0,0f 处的切线方程为( ) A .34y x =- B .0y = C .4y =- D .43y x =-+【题型八】切线与倾斜角【典例分析】设点P是曲线32y x =-+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.【变式演练】1.函数()2ln 1sin y x x=++的图象在0x =处的切线对应的倾斜角为α,则sin2α=( ) A .310B .±310C .35D .±352.已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( ) A .)⎡⎣ B .)⎡⎣C .(,-∞D .(-∞3.已知M 是曲线()21ln 12y x x a x =++-上的任一点,若曲线在M 点处的切线的倾斜角均是不小于4π的锐角,则实数a 的取值范围是( ) A .[)2,+∞ B .[)4,+∞C .(],2-∞D .(],4-∞【题型九】“切线法应用”题型1:直线上点到曲线距离【典例分析】已知111ln 20x x y --+=,22252ln 20x y +--=,则()()221212x x y y -+-的最小值为( ) A B C .95D .165【变式演练】1.曲线e x y =上到直线e y x =12的点的个数为( ) A .4 B .3 C .2 D .12.曲线ln y x =上的点到直线2y x =+的最短距离是( )A.B C D3.已知实数a ,b ,c ,d 满足:2e 111a a cb d --==-,其中e 是自然对数的底数,则22()()ac bd -+-的最小值是( ) A .7 B .8 C .9 D .10【题型十】“切线法应用”题型2:两曲线上点距离最值【典例分析】设P 为曲线e x y =上一点,Q 为曲线ln y x =上一点,则|PQ |的最小值为( )AB .1CD .2【提分秘籍】基本规律两曲线最短距离数学思想,可以借鉴如下“双飞燕”思维图【变式演练】1.已知函数43e x y -=的图象与函数ln(1)14x y --=的图象关于某一条直线l 对称,若P ,Q 分别为它们上的两个动点,则这两点之间距离的最小值为______.2.已知点P 为曲线ln exy =上的动点,O 为坐标原点.当OP 最小时,直线OP 恰好与曲线ln y a x =相切,则实数a =___.3.若12,x x R ∈,则()()212212e e x x x x -+-的最小值是 A .1B .2C .3D .4【题型十一】“切线法应用”题型3:恒成立与存在求参【典例分析】已知函数()0,ln ,0,x f x x x x ⎧=⎨>⎪⎩,若关于x 的不等式()e f x ax >-(e 是自然对数的底数)在R 上恒成立,则a 的取值范围是( )A .21e 1,3e 2⎡⎤-⎢⎥⎣⎦ B .21e 1,3e 2⎛⎫-⎪⎝⎭ C .21e ,22e ⎡⎤-⎢⎥⎣⎦ D .21e ,22e ⎛⎫- ⎪⎝⎭【变式演练】1.已知函数()2e 2xf x ax ax =++在()0,x ∈+∞上有最小值,则实数a 的取值范围为( )A .1,2⎛⎫+∞ ⎪⎝⎭B .e 1,22⎛⎫-- ⎪⎝⎭C .()1,0-D .1,2⎛⎫-∞- ⎪⎝⎭2.已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣ B .)⎡⎣C .(,-∞D .(-∞3.若曲线e x y =过点(2,0)-的切线恒在函数212()e 31e e x f x a x x ⎛⎫=-+-+- ⎪⎝⎭的图象的上方,则实数a 的取值范围是__________.【题型十二】“切线法应用”题型4:零点(交点)求参【典例分析】若函数()ln 1f x x ax =-+有3个零点,则实数a 的取值范围是( ) A .()0,1 B .(]0,1 C .()1,1- D .()()1,00,1-【变式演练】1.已知函数()22,01,0x x x f x x x⎧-≥⎪=⎨<⎪⎩,若函数()()g x f x x m =-+恰有三个零点,则实数m 的取值范围是( )A .()1,2(,0]4-∞-⋃-B .()12,0,,4⎛⎫+∞⋃ ⎪⎝⎭C .[)12,0,4⎛⎤--⋃+∞ ⎥⎝⎦D .[)1,20,4⎛⎫⋃+∞ ⎪⎝⎭2.已知函数()eln ||f x x x a =--,2[1,e ]x ∈.若()y f x =的图象与x 轴有且仅有两个交点,则实数a 的取值范围是( ) A .[1,e] B .(0,e]C .2[1,e 2e]-D .2(0,e 2e]-3.函数234,2()log (1),2x x f x x x ⎧-≤=⎨->⎩,()3g x kx k =-,若函数()f x 与()g x 的图象有三个交点,则实数k 的取值范围为( )A .6,0)B .6,0)C .(2,0)-D .6,0)【题型十三】“切线法应用”题型5:等式(不等式)整数解求参【典例分析】已知函数()()1ln f x kx x x =+-,若()0≤f x 有且只有两个整数解,则k 的取值范围是( ) A .ln 5ln 2,3010⎛⎤ ⎥⎝⎦ B .ln 5ln 2,3010⎛⎫⎪⎝⎭ C .ln 2ln 3,1012⎛⎤⎥⎝⎦ D .ln 2ln 3,1012⎛⎫⎪⎝⎭ 【变式演练】1.已知函数()2e 2xx f x a x =-+,若有且仅有两个正整数,使得()0f x <成立,则实数a 的取值范围是( )A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭2..已知不等式ln (1)2ln 2++<x x x k x 的解集中仅有2个整数,则实数k 的取值范围是( )A .340,ln 43⎛⎫ ⎪⎝⎭B .342ln ,ln 2433⎛⎫ ⎪⎝⎭C .2ln 2,3⎡⎫+∞⎪⎢⎣⎭D .342ln ,ln 2433⎡⎫⎪⎢⎣⎭3.若关于x 的不等式()()1e 21x a x x ->-(其中1a ≥-),有且只有两个整数解,则实数a 的取值范围是( ) A .235,43e ⎛⎤- ⎥⎝⎦B .31,2e ⎛⎤- ⎥⎝⎦C .235,43e ⎛⎤-- ⎥⎝⎦D .235,2e 3e ⎛⎤-- ⎥⎝⎦【题型十四】“切线法应用”题型6:恒等式、不等式等【典例分析】已知直线()R y ax a =∈与曲线ln y x =相交于11(,)M x y 、22(,)N x y 两点,若12x x <,则下列结论错误的是( ) A .10e x <<B .122e x x +>C .21y >D .122y y +<【变式演练】1.已知m ,n 为实数,不等式ln 0x mx n --≤恒成立,则nm的最小值为______.2.若直线l 与函数()e xf x =,()lng x x =的图象分别相切于点()()11,A x f x ,()()22,B x g x ,则1212x x x x -+=______.3.若曲线ln y x =在点()11,P x y 处的切线与曲线x y e =相切于点()22,Q x y ,则12111x x x ++=-__________.【题型十五】综合应用【典例分析】过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( )A .25e e m -<<B .250e m -<<C .10em -<< D .e m <【变式演练】1.已知函数()2ln ,021,0x x f x x x x ⎧>=⎨+-≤⎩,若方程()1f x ax =-有且仅有三个实数解,则实数a 的取值范围为( )A .01a <<B .02a <<C .1a >D .2a >2.已知函数()ln f x x =,()1g x ax =+,若存在01x e≥使得()()00f x g x =-,则实数a 的取值范围是( )A .212,e e ⎡⎤-⎢⎥⎣⎦B .21,2e e ⎡⎤-⎢⎥⎣⎦C .21,2e e ⎡⎤⎢⎥⎣⎦D .21,2e e ⎡⎤⎢⎥⎣⎦3.已知方程cos (0)xk k x=>有且仅有两个不同的实数解θ,()ϕθϕ>,则以下有关两根关系的结论正确的是A .cos sin ϕϕθ=B .sin cos ϕϕθ=-C .cos cos θθϕ=D .sin sin θθϕ=-1.若过点(),a b 可以作曲线e xy =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b << 2021年全国新高考I 卷数学试题2.若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +122020年全国统一高考数学试卷(理科)(新课标①)3.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+ 2020年全国统一高考数学试卷(理科)(新课标①)4.曲线212x y x -=+在点()1,3--处的切线方程为__________.2021年全国高考甲卷数学(理)试题5.曲线cos 2xy x =-在点()0,1处的切线方程为__________.2019年天津市高考数学试卷(文科)6.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==- B .,1a e b == C .1,1a e b -== D .1,1a e b -==- 2019年全国统一高考数学试卷(理科)(新课标①)7.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =- B .y x =- C .2y x = D .y x = 2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)8.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.2019年江苏省高考数学试卷9.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 2019年江苏省高考数学试卷10.设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P­2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则①PAB 的面积的取值范围是 A .(0,1) B .(0,2) C .(0,+∞) D .(1,+∞) 2016年全国普通高等学校招生统一考试文科数学(四川卷精编版)11.已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 2021年全国新高考II 卷数学试题1.函数()ln f x x ax =+存在与直线20x y -=平行的切线,则实数a 的取值范围是( ) A .(,2]-∞B .11,22,2e e ∞⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭C .()2,+∞D .()0,∞+2.如图所示,函数()y f x =的图像在点P 处的切线方程是210y x =-+,则()()44f f +'的值为( )A .0B .1C .-1D .23.曲线213ln 2y x x =-在点P 处的切线与直线220x y +-=垂直,则点P 的横坐标为( ) A .e B .1 C .3 D .2e4.已知函数()sin f x x x =+.曲线()y f x =在点,33f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为( )A .223y x π=-B .223y x π=-C .3y x π=-+D .3y x π=-+5.函数2ln(1)cos y x x =++的图象在0x =处的切线对应的倾斜角为α,则cos2=α( )A .310B .310±C .35D .35.6.已知0a >,0b >,直线y x b =+与曲线e x a y -=相切,则41a b+的最小值是( )A .6B .7C .8D .97.若过点(1,2)可作曲线3y x ax =+的三条切线,则实数a 的取值范围是( ) A .(3,1)-- B .(2,1)-- C .(1,2) D .(1,3)8.曲线2ln y x =上的点到直线2ln20x y -+=的最短距离是( ) A.2 B .2ln2-C .ln2D9.已知过原点的直线与函数()e ,0ln ,0x x f x x x -⎧≤=⎨>⎩的图像有两个公共点,则该直线斜率的取值范围( )A .()1,e e ⎧⎫-∞-⎨⎬⎩⎭B .{}1e 0,e ⎛⎫- ⎪⎝⎭C .1e,e ⎧⎫-⎨⎬⎩⎭D .()1,e 0,e ⎛⎫-∞- ⎪⎝⎭10.已知曲线()1f x x=-在点()()1,1f --处的切线l 与曲线()ln g x a x =相切,则实数a 所在的区间为(ln 20.69≈,ln5 1.61≈)( )A .()2,3B .()3,4C .()4,5D .()5,611.已知函数2ln ()2x f x x x =-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( )A B C D12.已知曲线()ln()1(1)=-+>f x mx nx m 的一条切线为直线:210l x y -+=,则mn 的最小值为________. 江西省抚州市七校联考2021-2022学年高二下学期期中考试数学(理)试题13.若对0x ∀>,关于x 的不等式21ln 12mx mx x x +-≥+恒成立,则整数m 的最小值为___________.14.已知a ,b 为正实数,若对任意的()0,x ∈+∞,都有ln ax b x -≥成立,则2ba的最大值是______.15.设函数()()sin 12sin 223f x x x αα--=+-(R α∈)图象在点(1,()1f )处切线为l ,则l 的倾斜角θ的最小值是( ) A .4πB .3π C .56π D .34π16..已知函数()21f x x =+,()ln g x x =,若曲线()y f x =与()y g x =的公切线与曲线()y f x =切于点()11,x y ,则()211ln 2x x -=___________.。

高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A.2B.C.D.4【答案】D【解析】因为曲线在点处的切线方程为,所以;由可得所以曲线在点处切线的斜率为.【考点】导数的几何意义.2.函数f(x)在定义域R内可导,若f(x)=f(2-x),且(x-1)f ′(x)>0,a=f(0),b =f(),c=f(3),则a,b,c的大小关系是A.a>b>c B.c>a>b C.b>a>c D.c>b>a【答案】B【解析】由于函数,因此,,当,,函数在区间为增函数,因此,所以.【考点】函数的导数与单调性.3.曲线y=e2x在点(0,1)处的切线方程为().A.y=x+1B.y=﹣2x+1C.y=2x﹣1D.y=2x+1【答案】D.【解析】,,则切线斜率,切线方程为,即.【考点】导数的几何意义.4.已知曲线(1)求曲线在点处的的切线方程;(2)过原点作曲线的切线,求切线方程.【答案】(1);(2).【解析】解题思路:(1)求导,得到切线的斜率,利用直线的点斜式方程写出切线方程,再化成一般式即可;(2)设切点坐标,求切线斜率,写出切线方程,代入(0,0)求即可.规律总结:利用导数的几何意义求的切线方程:.注意点:要注意区分“在某点处的切线”与“过某点的切线”.试题解析:(1),,则,所以曲线在点处的的切线方程为,即;设切点为,切线斜率;则切线方程,又因为切线过原点,所以,即,所以,即切线斜率为,切线方程为,即.【考点】导数的几何意义.5.已知函数的导函数为,.求实数的取值范围。

【答案】或。

【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.6.抛物线在点处的切线的倾斜角是 ( )A.30B.45C.60D.90【答案】B.【解析】已知抛物线,对其进行求导,即,当时,,即切线的斜率为,从而问题解决.【考点】导数的几何意义;利用导数研究曲线上某点切线方程.7.已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围.【答案】(1);(2)实数的取值范围是;(3)实数的取值范围.【解析】(1)求的导数,找出处的导数即切线的斜率,由点斜式列出直线的方程即可;(2)求出函数的定义域,在定义域内利用导数与函数增减性的关系,转化为恒成立问题进行求解即可;(3)讨论在定义域上的最值,分情况讨论的增减性,进而解决存在成立的问题即可.(1)当时,函数,,曲线在点处的切线的斜率为从而曲线在点处的切线方程为,即 3分(2)令,要使在定义域内是增函数,只需在内恒成立由题意,的图象为开口向上的抛物线,对称轴方程为∴,只需,即时,∴在内为增函数,正实数的取值范围是 7分(3)∵在上是减函数∴时,;时,,即①当时,,其图象为开口向下的抛物线,对称轴在轴的左侧,且,所以在内是减函数当时,,因为,所以,此时,在内是减函数故当时,在上单调递减,不合题意②当时,由,所以又由(Ⅱ)知当时,在上是增函数∴,不合题意 12分③当时,由(Ⅱ)知在上是增函数,又在上是减函数,故只需,而,即,解得所以实数的取值范围是 15分.【考点】1.导数的几何意义;2.函数的单调性与导数;3.二次函数的图像与性质;4.分类讨论的思想.8.已知.(1)若曲线在处的切线与直线平行,求a的值;(2)当时,求的单调区间.【答案】(1);(2)单调递增区间为,;单调递减区间为【解析】(1)先求导,由直线方程可知此直线斜率为2,则曲线在处的切线的斜率也为2.由导数的几何意义可知。

【教案】变化率问题(第2课时)教学设计高二下学期数学人教A版(2019)选择性必修第二册

【教案】变化率问题(第2课时)教学设计高二下学期数学人教A版(2019)选择性必修第二册

第五章一元函数的导数及其应用《5.1.1变化率问题》教学设计第2课时◆教学目标1.通过求曲线上某点处切线斜率的过程,体会求切线斜率的一般方法.2. 理解函数的平均变化率,瞬时变化率的概念.◆教学重难点◆教学重点:理解曲线上某点处切线斜率的概念及算法教学难点:理解函数的平均变化率,瞬时变化率的概念◆课前准备PPT课件.◆教学过程【新课导入】问题1:阅读课本第62~64页,回答下列问题:(1)本节将要探究哪类问题?(2)本节探究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,并在本节课中回答相应问题.(1)本节课主要学习变化率问题:曲线上某点处切线斜率的问题.(2)总结归纳出一般函数的平均变化率概念和瞬时变化率的概念,在此基础上,要求学生掌握函数平均变化率和瞬时变化率解法的一般步骤.平均变化率是个核心概念,它在整个高中数学中占有及其重要的地位,是研究瞬时变化率及其导数概念的基础.在这个过程中,注意特殊到一般、数形结合等数学思想方法的渗透.一般曲线的切线的概念与学生熟悉的圆的切线的定义方式不同,学生不易理解,因此曲线的切线概念是本节的教学难点.通过本节的学习,学生的数学抽象和直观想象素养将得以提升.设计意图:通过阅读读本,让学生明晰本阶段的学习目标,初步搭建学习内容的框架.问题2:什么叫直线与圆相切?师生活动:学生回顾并回答.预设的答案:如果一条直线与一个圆只有一个公共点,那么这条直线与这个圆相切.对于一般的曲线C,如何定义它的切线呢?设计意图:通过复习直线与圆相切,引出问题,进入新课.【探究新知】知识点1:曲线在某点处的切线 我们以抛物线f (x )=x 2为例进行研究.问题3:如何定义抛物线2()f x x =在点0(11)P ,处的切线? 师生活动:学生思考,尝试回答,教师讲解.与研究瞬时速度类似,为了研究抛物线2()f x x =在点0(11)P ,处的切线,我们通常在点0(11)P ,的附近任取一点2()P x x ,,考察抛物线2()f x x =的割线0P P 的变化情况.如图,当点P 无限趋近于点0P 时,割线0P P 无限趋近于一个确定的位置,这个确定位置的直线0PT 称为抛物线2()f x x =在点0(11)P ,处的切线. 知识点2:曲线在某点处的切线斜率抛物线2()f x x =在点0(11)P ,处的切线0PT 的斜率与割线0P P 的斜率有内在联系.记1x x ∆=-,则点P 的坐标是2(1Δ(1Δ))x x ++,.于是,割线0P P 的斜率2()(1)(1Δ)1Δ21(1Δ)1f x f x k x x x -+-===+-+-.我们可以用割线0P P 的斜率k 近似地表示切线0PT 的斜率0k ,并且可以通过不断缩短横坐标间隔||x ∆来提高近似表示的精确度,得到如下表格.0x ∆< 0x ∆>x ∆ Δ2k x =+ x ∆ Δ2k x =+ 0.01-1.990.012.010.001-1.9990.0012.0010.0001- 1.9999 0.0001 2.0001 0.00001- 1.99999 0.00001 2.00001 0.000001-1.9999990.0000012.000001…… ……当x ∆1时,割线0P P 的斜率k 都无限趋近于2.事实上,由(1Δ)(1)Δ2Δf x f k x x+-==+可以直接看出,当x ∆无限趋近于0时,Δ2x +无限趋近于2.我们把2叫做“当x ∆无限趋近于0时,(1Δ)(1)Δf x f k x +-=的极限”,记为Δ0(1Δ)(1)lim 2Δx f x f x→+-=.从几何图形上看,当横坐标间隔||x ∆无限变小时,点P 无限趋近于点0P ,于是割线0P P 无限趋近于点0P 处的切线0PT .这时,割线0P P 的斜率k 无限趋近于点0P 处的切线0PT 的斜率0k .因此,切线0PT 的斜率02k =.【巩固练习】例1 已知函数1y x x=-,求该函数在点x =1处的切线斜率. 师生活动:学生分组讨论,每组派一代表回答,教师完善. 预设的答案:∵11(1)(1)11y x x ∆=+∆---+∆111x x =+∆-+∆1xx x ∆=∆++∆111y x x ∆=+∆+∆,∴斜率k =001lim lim(1)1121x x y x x∆→∆→∆=+=+=∆+∆.设计意图:通过求曲线上某点处切线斜率的问题,加深学生对曲线在某点处的切线和切线斜率的理解,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养. 方法总结:求曲线y =f (x )在点(x 0,f (x 0))处的切线斜率 (1)计算00()()f x x f x y x x+∆-∆=∆∆, (2)计算0limx yx∆→∆∆,该值即为曲线y =f (x )在点(x 0,f (x 0))处的切线斜率.例2已知函数f (x )=3x 2+5,曲线y =f (x )在点((x 0,f (x 0))处的切线方程. 师生活动:学生分组讨论,每组派一代表回答,教师完善. 预设的答案:因为f (x )=3x 2+5,所以Δy = f (x 0+Δx )-f (x 0)=3(x 0+Δx )2+5-(3x 02+5) =3 x 02+6 x 0Δx +3(Δx )2+5-3 x 02-5=6 x 0Δx +3(Δx )2. 所以063yx x x∆=+∆∆, 所以0000limlim(6)6x x yx x x x ∆→∆→∆=+∆=∆,所以曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为6 x 0,所以曲线y =f (x )在点(x 0,f (x 0))处的切线方程为000()6()y f x x x x -=-, 即200635y x x x =-+. 方法总结:求曲线y =f (x )在点(x 0,f (x 0))处的切线方程(1)计算00()()f x x f x y x x+∆-∆=∆∆, (2)计算0limx y x ∆→∆∆,即曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0lim x yk x∆→∆=∆.(3)写出切线方程00()()y f x k x x -=-.设计意图:通过求曲线上某点处切线的方程问题,进一步加深学生对曲线在某点处的切线的理解,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养. 练习:教科书P 64 练习1、2设计意图:通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养.【课堂总结】1.板书设计:5.1.1变化率问题新知探究巩固练习 知识点1:曲线在某点处的切线 例1 知识点2:曲线在某点处的切线斜率例22.总结概括:(1)什么叫曲线在某点处的切线; (2)如何求曲线在某点处的切线斜率. 师生活动:学生总结,老师适当补充.设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力. 3.课堂作业:教科书P 70 习题5.1 2、4、7【目标检测设计】1.在曲线2y x =上取一点(1)1,及附近一点()11x y +∆+∆,,则曲线在点(1)1,处的切线的斜率为( ) A.12x x∆++∆ B.2 C .2x ∆+ D.12x x+∆-∆ 设计意图:让学生进一步理解曲线在某点处的切线及切线斜率的求解. 2.已知曲线11y x =-上两点112222A B x y ⎛⎫⎛⎫-+∆-+∆ ⎪ ⎪⎝⎭⎝⎭,,,,当1x ∆=时,割线AB 的斜率为_______. 3.求曲线24y x =在x =2处的切线的方程. 设计意图:让学生进一步理解曲线在某点处的切线方程的求法.参考答案:1. B 设2()f x x =,则2000(1)(1)(1)1limlim lim(2)2x x x f x f x x x x∆→∆→∆→+∆-+∆-==∆+=∆∆.故选B.2.16-设1()1f x x =-,则1111(2)(2)1122222(2)x f x f x x x -∆⎛⎫⎛⎫+∆-=---=-= ⎪ ⎪+∆+∆+∆⎝⎭⎝⎭, 则(2)(2)12(2)2(2)xf x f x xx x ∆-+∆--+∆==∆∆+∆, 当1x ∆=时,割线AB 的斜率112(21)6k -==-⨯+.3.解:∵2222()4(2)2(24)4x xy x x -∆-∆∆=-=+∆+∆,24(2)y x x x ∆-∆-=∆+∆ ∴20044limlim 1(2)4x x y x x x ∆→∆→∆-∆--===-∆+∆,∴曲线24y x=在x =2处的切线的斜率为-1, ∴曲线24y x=在x =2处的切线的方程为y -1=-1(x -2),即y =-x +3.。

高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对x求导数,得于是,运用此方法可以求得函数在(1,1)处的切线方程是 .【答案】【解析】:仿照题目给定的方法,所以,所以,所以,即:函数在处的切线的斜率为1,故切线方程为:,即,故答案为:.【考点】归纳推理.2.曲线y=e2x在点(0,1)处的切线方程为().A.y=x+1B.y=﹣2x+1C.y=2x﹣1D.y=2x+1【答案】D.【解析】,,则切线斜率,切线方程为,即.【考点】导数的几何意义.3.设函数的图像在点处切线的斜率为,则函数的部分图像为()【答案】B【解析】 =xcosx,所以k=g(t)=tcost,是奇函数,图像关于原点对称,所以排除A,C,在t>0时,cost的值是先正后负的连续变换,故选B.【考点】导数,函数图像.4.已知函数的导函数为,.求实数的取值范围。

【答案】或。

【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.5.已知函数在上可导,且,则函数的解析式为()A.B.C.D.【答案】B【解析】由得,当时,有,进而得,所以,故选择B.【考点】导数的应用.6.曲线y=-在点M处的切线的斜率为()A.-B.C.-D.【答案】B【解析】因为==,所以曲线在M处的切线的斜率为=,故选B.考点:常见函数的导数,导数的运算法则,导数的几何意义7.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.8.抛物线在点处的切线的倾斜角是 ( )A.30B.45C.60D.90【答案】B.【解析】已知抛物线,对其进行求导,即,当时,,即切线的斜率为,从而问题解决.【考点】导数的几何意义;利用导数研究曲线上某点切线方程.9.已知抛物线,和抛物线相切且与直线平行的的直线方程为()A.B.C.D.【答案】D【解析】由题得,与直线平行,则斜率为2,可得切点为,所以直线方程为.【考点】导数的几何意义,直线方程.10.曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】,则在点(1,-)处切线的斜率为,所以倾斜角为45°.【考点】导数的几何意义.特殊角的三角函数值.11.函数在点处的切线的斜率为()A.B.C.D.【答案】B【解析】令,则,所以。

高中导数知识点总结大全

高中导数知识点总结大全

高中导数知识点总结大全追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。

那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。

高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

函数图像的切线问题(最新整理)

函数图像的切线问题(最新整理)

设切点为 P(x0,y0),利用导数将切线方程表示为 y-f(x0)=f′(x0)(x-x0),再将
A(s,t)代入求出 x0. 2.两个函数图像的公切线
函数 y=f(x)与函数 y=g(x) 存在公切线,
若切点为同一点 P(x0,y0),则有 Error!
若切点分别为(x1,f(x1)),(x2,g(x2)),则有
y
kx
与曲线
y
l8n
x
有公共点,则
k
6
的最大值为
15 5
30
20 10
.
解:根据题8意画出右图,由图可知,当直线和曲线相切时, k 取8 得最大值.
设切点坐标为 x0,
y0
,则
y0
ln
x0

y
'
1 x
y ' 1 ,切线方程为
x 10x0
x0
y
ln
x0
1 x0
(x
x0 ) ,原点在切线上,ln
x0
4
A. 1 或 25 64
B. 1 或 21 4
C. 7 或 25 4 64
D. 7 或 7 4
思路:本题两条曲线上的切点均不知道,且曲线 y ax2 15 x 9 含有参数,所以考虑 4
先 从 常 系 数 的 曲 线 y x3入 手 求 出 切 线 方 程 , 再 考 虑 在 利 用 切 线 与 曲 线
1, x0
e12
斜率的最大值为
1
.
e
例 10.曲线 y ex 在点 2, e2 处的切线与坐标轴所围三角形的面积为( )
A. e2
B. 2e2
C. 4e2
e2
D.

高二数学导数的概念和几何意义试题

高二数学导数的概念和几何意义试题

高二数学导数的概念和几何意义试题1.已知函数(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,若在区间上的最小值为,其中是自然对数的底数,求实数的取值范围;【答案】(Ⅰ)(Ⅱ).【解析】解题思路:(Ⅰ)求导,利用导数的几何意义求解;(Ⅱ)求导,讨论的取值范围求函数的最值.规律总结:(1)导数的几何意义求切线方程:;(2)求函数最值的步骤:①求导函数;②求极值;③比较极值与端点值,得出最值.试题解析:(Ⅰ)当时, ,因为.所以切线方程是(Ⅱ)函数的定义域是当时,令得当时,所以在上的最小值是,满足条件,于是;②当,即时,在上的最小最小值,不合题意;③当,即时,在上单调递减,所以在上的最小值是,不合题意.综上所述有,.【考点】1.导数的几何意义;2.利用导数研究函数的最值.2.函数上过点(1,0)的切线方程()A.B.C.D.【答案】B【解析】因为,在点(1,0)处的斜率为,所以在点(1,0)处的切线方程为y-0=3(x-1),即y=3x-3.【考点】导数的几何意义.3.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.4.设曲线在点(3,2)处的切线与直线垂直,则A.2B.C.D.【答案】C【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:C.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.若,则()A.B.C.D.【答案】D【解析】,故选D.【考点】导数的定义6.已知函数(1)当时,求曲线在点处的切线方程;(2)求函数的极值.【答案】(1) ;(2)详见解析.【解析】(1)根据导数的几何意义,当时,,得出,再代入点斜式直线方程;(2)讨论,当和两种情况下的极值情况.试题解析:解:函数的定义域为,.(1)当时,,,,在点处的切线方程为,即.(2)由可知:①当时,,函数为上的增函数,函数无极值;②当时,由,解得;时,,时,在处取得极小值,且极小值为,无极大值.综上:当时,函数无极值当时,函数在处取得极小值,无极大值.【考点】1.导数的几何意义;2.利用导数求极值.7.若曲线f(x)=ax3+ln x存在垂直于y轴的切线,则实数a的取值范围是________.【答案】(-∞,0)【解析】f′(x)=3ax2+,∵f(x)存在垂直于y轴的切线,∴f′(x)=0有解,即3ax2+=0有解,∴3a=-,而x>0,∴a∈(-∞,0).8.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.【答案】2x-y-1=0【解析】设点P(x0,y),=d+2x,d→0时,d+2xo →2x.抛物线在点P处的切线的斜率为2x,由于切线平行于2x-y+4=0,∴2x0=2,x=1即P点坐标为(1,1)切线方程为y-1=2(x-1),即为2x-y-1=09.曲线y=2lnx在点(e,2)处的切线与y轴交点的坐标为_________.【答案】(0,0)【解析】有已知可知在处切线方程为,y轴交点的坐标即所求.【考点】在一点处切线方程.10.函数在点处的切线方程是()A.B.C.D.【答案】A【解析】曲线切线的斜率,等于在切点的导函数值。

高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析1.设函数,,当时,取得极值;(1) 求的值,并判断是函数的极大值还是极小值;(2) 当时,函数与的图象有两个公共点,求的取值范围;【答案】是函数的极小值;,【解析】解:(1)由题意当时,取得极值,即此时当时,,当时,,是函数的极小值; ---------------------4分(2)设,则,设,,令解得或,列表如下:4__0+函数在和上是增函数,在上是减函数;当时,有极大值;当时,有极小值;函数与的图象有两个公共点,函数与的图象有两个公共点或 ---------------------14分..2.若幂函数的图象经过点(4,2),则函数的单调递增区间为。

【答案】(0,+)【解析】略3.设函数若曲线的斜率最小的切线与直线平行。

(1)求的值;(2)求函数的单调区间。

【答案】(1)(2)当,所以为单调增区间.当,所以为单调减区间.【解析】略4.设是奇函数,对任意的实数,有则在区间上()A.有最大值B.有最小值C.有最大值D.有最小值【答案】A【解析】任取,所以是单调递减函数,所以函数最大值为【考点】抽象函数单调性与最值5.已知函数的导数为,()A.B.C.D.【答案】C【解析】因为,故选C.【考点】导数公式应用研究.6.(本小题满分12分)已知函数,是函数的导函数,有且只有四个单调区间.(Ⅰ)设的导数为,分别求和(两个结果都含);(Ⅱ)求实数的取值范围;(Ⅲ)设,试比较与的大小.【答案】(Ⅰ),;(Ⅱ);(Ⅲ).【解析】(Ⅰ)由导数公式直接求解即可;(Ⅱ)有且只有四个单调区间关于的方程有三个解,求二阶导数,研究的单调性与极值,由极大值大于,极小值小于可求的范围;(Ⅲ)由在上是增函数可得时,不等式恒成立得,计算,利用放缩比较两个数的大小.试题解析:(Ⅰ)∵,∴的定义域是,且,∴.(Ⅱ)∵有且只有四个单调区间,∴关于的方程有三个解.∴关于的方程有两个不同实根,设这两个根为,根据条件,这两个根是正根,且.∵,∴且,解得.下面验证时,.不妨假定,(方法一)由条件得,∴,∵,∴当变化时,函数,变化情况如下表:极大极小∵,∴极大,极小.由于,∴时,.又,令,则时,,即在区间上单调递增,∴时,,∴,∴有三个零点.综上所述,实数的取值范围是.(方法二)∴,.设,则时,,∴是区间上的单调增函数,∴当时,,∴∴,即,.∵,∴当变化时,函数,变化情况如下表:极大值(大于极小值(小于由于,∴时,.又,令,则时,,即在区间上单调递增,∴时,,∴,∴有三个零点.综上所述,实数的取值范围是.(Ⅲ)设,当时,,∴在上是增函数,即时,,即∴.由(Ⅰ)知,,∴.∵,∴∴.【考点】1.导数公式的应用;2.导数与函数单调性、极值;3.函数与方程、不等式.7.函数的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)【答案】C【解析】判定端点值是否异号,,,,,都是同号,所以不选,,,所以零点必在区间内.【考点】函数的零点8.已知函数,则在点处的线方程为.【答案】【解析】根据题意,可知点,而,所以,所以在点处的线方程为,即.【考点】导数的几何意义,切线方程的求法,直线方程的点斜式,商函数的求导法则.9.函数在上的极小值点为()A.0B.C.D.【答案】C【解析】因为所以,令,则或由得:;由得:或所以函数在区间上为减函数,在区间和区间上均为增函数,所以函数的极小值点为.故选C.【考点】1、导数在研究函数性质中的应用.10.函数在上的最大值为1,最小值为,则.【答案】【解析】由题意,,则;时,,不成立.【考点】函数的最值及其几何意义.11.定义区间的区间长度为,如图是某圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度,拱高,建造时每间隔需要用一根支柱支撑,求支柱的高度所处的区间.(要求区间长度为)【答案】支柱的高度大约为,从而得出其对应的区间,答案不唯一.【解析】该题让球支柱的高度所处的区间,只要求出的高度的大约值即可,而其高度需要借助于坐标来完成,所以在解题的过程中,需要建立相应的坐标系,求得圆拱桥对应的圆拱所在的抛物线方程,根据题中所给的有关长度,确定出点的横坐标,将其代入,求得对应的纵坐标,求得大约值,从而确定出其所在的相应的区间,答案是不唯一的.试题解析:建系如图:,则设圆拱所在的圆半径为,利用勾股定理,,圆心坐标为,故圆方程为:,点的横坐标为,故代入圆方程求出纵坐标为.故.注:答案不唯一哈.最后的答案估算占分.【考点】利用曲线方程,求点的坐标,解决实际问题.12.(本题12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1)(2)当时,当时,有当时,(3)【解析】(1)将代入不等式,结合二次函数图像求解;(2)比较大小一般采用作差法,将结果与0比较,求解时注意分情况讨论;(3)中首先将不等式化为,通过讨论的大小得到不等式的解集试题解析:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.一元二次不等式解法;2.分情况讨论13.设函数,若,则()A.B.C.D.【答案】D【解析】,当即时,,解得,舍;当即时,,所以,解得.综上可得.故D正确.【考点】分段函数.14.已知函数.(1)求的单调区间;(2)若方程有四个不等实根,求实数的取值范围.【答案】(1)的单调递减区间是和,单调递增区间是;(2).【解析】(1)根据绝对值的含义,分区间把绝对值符号去掉,写成分段函数的形式,分离常数,再由反比例函数研究每个区间上的单调性即可;(2)分讨论,结合函数的图象特点,分段讨论,结合二次方程根的分布原理,可求的取值范围.试题解析:(1).由反比例函数的单调性知:的单调递减区间是和,单调递增区间是.(2)①若,则方程,即,由(1)知,仅唯一零点,不合题意;②若,有四个实根即函数与开口向下的抛物线有四个交点.当时,单调递减,单调递增,故最多一个交点,当时,,,仅有一个交点,这与他们有四个交点不符;③若,由知,是其一根.当时,有,即.因为,所以该方程在实数范围有两根,而,故方程在上仅有一根,因此在上有两实数根,即在上有两实数根,等价于有两个不等的负实根,令,又,故,此时由韦达定理知有两个不等负根,且均不等于.综上可知的取值范围是.【考点】1.分段函数的表示及单调性;2.函数与方程.15.函数在处有极值10,则.【答案】7【解析】对原函数求导可得,由题得,当时,,此时不是极值点,不合题意,经检验符合题意,所以【考点】函数的极值16.已知二次函数的图象如图所示,则其导函数的图象大致形状是()【答案】B【解析】由的图象可知,在上是增函数,在上是减函数,从而在上恒成立,在上恒成立,从而知的图象应如图B所示.故选B.【考点】导数在研究函数的应用.17.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x·f′(x)<0的解集为()A.B.C.D.【答案】A【解析】根据图像,的解集是或,的解集是,所以的解集是或,所以不等式组的解集是或,故选A.【考点】导数的应用【方法点睛】主要考察了利用导数与函数的图像,属于基础题型,导数与函数单调性的关系是在某一区间内,函数单调递增,,函数单调递减,,所以由函数的图像就能确定导函数大于或小于0的区间,最后再解不等式.18.若曲线在处的切线与曲线在处的切线互相垂直,则实数的值为________.【答案】【解析】分别求出两个函数的导函数,求得两函数在x=1处的导数值,由题意知两导数值的乘积等于-1,由此求得a的值.根据在处的切线与曲线在处的切线互相垂直,可得.【考点】利用导数研究曲线上某点处的切线方程【方法点睛】函数f(x)在点x0处的导数f′(x)的几何意义是在曲线y=f(x)上点P(x,y)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y=f′(x0)(x-x).求曲线切线时,要分清在点P处的切线与过P点的切线的不同.19.已知曲线上一点,则过点的切线的倾斜角为()A.30°B.45°C.135°D.165°【答案】B【解析】由,因此,由导数的几何意义知,曲线上过点的切线的斜率为,因此过点的切线的倾斜角为45°【考点】导数的几何意义;20.已知f(x)=x3+x2-6x+c,若x[0,2]都有f(x)>2c-恒成立,则c的取值范围是【答案】【解析】,令,解得(舍)或,所以当时;当时,所以函数在上单调递减,在上单调递增.所以上,要使都有恒成立,只需,解得.【考点】1用导数求最值;2恒成立问题.21.设,函数的导函数是,且是奇函数,则的值为()A.1B.C.D.-1【答案】A【解析】求导数可得,是奇函数,,解得,故选A.【考点】1、函数的求导法则;2、函数的奇偶性.22.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则b的值为.【答案】3【解析】由于切点在直线与曲线上,将切点的坐标代入两个方程,得到关于a,b,k 的方程,再求出在点(1,3)处的切线的斜率的值,即利用导数求出在x=1处的导函数值,结合导数的几何意义求出切线的斜率,再列出一个等式,最后解方程组即可得.从而问题解决.解:∵直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),∴…①又∵y=x3+ax+b,∴y'=3x2+ax,当x=1时,y'=3+a得切线的斜率为3+a,所以k=3+a;…②∴由①②得:b=3.故答案为:3.【考点】利用导数研究曲线上某点切线方程.x的图象是()23.当0<a<1时,在同一坐标系中,函数y=a﹣x与y=loga【答案】C【解析】先将函数y=a﹣x化成指数函数的形式,再结合函数的单调性同时考虑这两个函数的单调性即可判断出结果解:∵函数y=a﹣x与可化为函数y=,其底数大于1,是增函数,x,当0<a<1时是减函数,又y=loga两个函数是一增一减,前增后减.故选C.【考点】对数函数的图象与性质;指数函数的图象与性质.24.二次函数f(x)的图像经过点,且,则不等式的解集为()A.(-3,1)B.(-lg3,0)C.D.(-∞,0)【答案】D【解析】设,则,并且,由于,所以,所以,由,可得,解得所以不等式的解集为,故选D.【考点】1、二次函数及二次不等式;2、指数函数.【思路点睛】本题是一个二次函数、导数以及二次不等式的综合应用问题,属于中档题.解决本题的基本思路是,首先要设出二次函数的一般式,再根据题目条件确定二次函数的解析式,这样就得到一个关于的二次不等式,最后解这个关于的不等式,就可得出不等式的解集,使问题得以解决.25.已知函数,.⑴求函数的极大值和极小值;⑵求函数图象经过点的切线的方程;⑶求函数的图象与直线所围成的封闭图形的面积.【答案】(1)极大值1,极小值;(2)y=1或;(3)【解析】(1)f′(x)=x(x-1),分别令f′(x)>0,f′(x)<0,可得其单调性与极值;(2)由(1)可得,由点为切点时,可得切线方程;若点不为切点时,设切点为P,则切线方程为:把点代入解得,即可得出切线方程;(3)由,解得x=0或.可得函数的图象与直线y=1所围成的封闭图形的面积为:,利用微积分基本定理即可得出试题解析:(1),令,解得x=0或x=1,令,得x<0或x>1,,解得0<x<1,∴函数f(x)在上单调递增,在(0,1)上单调递减,在上单调递增∴x=0是其极大值点,x=1是极小值点,所以f(x)的极大值为f(0)=1;f(x)的极小值为(2)设切点为P,切线斜率∴曲线在P点处的切线方程为,把点代入,得,所以切线方程为y=1或;(3)由,所以所求的面积为.【考点】利用导数研究函数的极值;定积分;定积分在求面积中的应用;利用导数研究曲线上某点切线方程26.设函数是奇函数的导函数,,当x>0时,,则使得成立的的取值范围是( )A.B.C.D.【答案】A【解析】设,则g(x)的导数为:,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数为减函数,又∵,∴函数g(x)为定义域上的偶函数又∵,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x g(x)>0⇔或,【考点】函数的单调性与导数的关系27.函数,若对,求实数的最小值.【答案】【解析】任意存在型命题关键转化为对应函数最值问题:再分别求出对应函数最值,,最好解对应不等式即可试题解析:解:由题意,在递减,在递增,所以,在单调递增,,;【考点】恒成立问题28.已知函数在单调递增,则实数的取值范围是_______________.【答案】【解析】依题意在区间上恒成立,,所以.【考点】函数导数与单调性.29.已知直线与曲线相切,则的值为()A.B.C.D.【答案】C【解析】设切点为,,所以切线方程为,依题意,切线过点,代入切线方程得,解得,故.【考点】利用导数求切线.30.若偶函数,当,满足,且,则的解集是 .【答案】【解析】由得,因为,所以,设,则,所以时,,即在上单调递增,因为,所以时,,当时,,又是偶函数,则是奇函数,因此当时,也有,所以不等式的解集是.【考点】导数与函数的单调性.构造法解函数不等式.31.某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求的值;(2)若该商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.【答案】(1)(2)【解析】(Ⅰ)由f(5)=11代入函数的解析式,解关于a的方程,可得a值;(Ⅱ)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值试题解析:(1)因为时,所以∴;(2)由(1)知该商品每日的销售量,所以商场每日销售该商品所获得的利润:;.令得.当时,,当时,函数在上递增,在上递减,所以当时函数取得最大值答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42.【考点】函数模型的选择与应用;利用导数研究函数的单调性32.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?【答案】.【解析】通过假设广告矩形栏目的长、宽,表达广告栏目的矩形面积,进而利用基本不等式求解面积的最小值.试题解析:解法1:设矩形栏目的高为a cm,宽为b cm,则ab="9000." ①广告的高为a+20,宽为2b+25,其中a>0,b>0.广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18500+25a+40b≥18500+2=18500+当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24500.故广告的高为140 cm,宽为175 cm时,可使广告的面积最小.解法2:设广告的高为宽分别为x cm,y cm,则每栏的高和宽分别为x-20,其中x>20,y>25两栏面积之和为2(x-20),由此得y=广告的面积S=xy=x()=x,整理得S=因为x-20>0,所以S≥2当且仅当时等号成立,此时有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,即当x=140,y=175时,S取得最小值24500,故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.【考点】基本不等式的应用.【思路点睛】本题主要考查函数表达式及基本不等式的应用.由题已知,可通过假设矩形的长与宽,进而表示广告面积的表达式,利用基本不等式,求出面积的最小值.在应用不等式求最值时,需要满足一正二定三相等的原则,即①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.若使用基本不等式时,等号取不到,可以通过“对勾函数”,利用单调性求最值.33.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?【答案】.【解析】通过假设广告矩形栏目的长、宽,表达广告栏目的矩形面积,进而利用基本不等式求解面积的最小值.试题解析:解法1:设矩形栏目的高为a cm,宽为b cm,则ab="9000." ①广告的高为a+20,宽为2b+25,其中a>0,b>0.广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18500+25a+40b≥18500+2=18500+当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24500.故广告的高为140 cm,宽为175 cm时,可使广告的面积最小.解法2:设广告的高为宽分别为x cm,y cm,则每栏的高和宽分别为x-20,其中x>20,y>25两栏面积之和为2(x-20),由此得y=广告的面积S=xy=x()=x,整理得S=因为x-20>0,所以S≥2当且仅当时等号成立,此时有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,即当x=140,y=175时,S取得最小值24500,故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.【考点】基本不等式的应用.【思路点睛】本题主要考查函数表达式及基本不等式的应用.由题已知,可通过假设矩形的长与宽,进而表示广告面积的表达式,利用基本不等式,求出面积的最小值.在应用不等式求最值时,需要满足一正二定三相等的原则,即①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.若使用基本不等式时,等号取不到,可以通过“对勾函数”,利用单调性求最值.34.已知函数.(I)求函数的单调区间;(II)若函数上是减函数,求实数a的最小值.【答案】(I)当时,,所以函数的增区间是,当且时,,所以函数的单调减区间是;(II)【解析】(I)先求出函数的定义域为, 再求出,由,得到函数的增区间,由,可得函数的单调减区间(II)因f(x)在上为减函数,在上恒成立,可得当时,.从而可得a的最小值试题解析:(I)由已知得函数的定义域为,函数,当时,,所以函数的增区间是;当且时,,所以函数的单调减区间是,(II)因f(x)在上为减函数,且.故在上恒成立.所以当时,.又,故当,即时,.所以于是,故a的最小值为.【考点】函数的单调性及导数的关系,求参数的取值范围【方法点睛】(1)函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数的定义域优先意识;(2)可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到. (3)对于恒成立的问题,常用到以下两个结论:(1),(2)35.设是定义在R上的奇函数,当x≤0时,=,则 .【答案】【解析】由函数是奇函数可得【考点】函数奇偶性与函数求值36.已知函数的图象如图所示,则不等式的解集为()A.(-∞,)∪(,2)B.(-∞,0)∪(,2)C.(-∞,∪(,+∞)D.(-∞,)∪(2,+∞)【答案】B【解析】由的图象可知,在上,在上,,所以等价于或,即或或,解得或,故选B.【考点】导数与函数单调性的关系.37.已知f(x)为偶函数,当时,,则曲线y=f(x)在点(1,−3)处的切线方程是_______________.【答案】【解析】当时,,则.又因为为偶函数,所以,所以,则切线斜率为,所以切线方程为,即.【考点】函数的奇偶性与解析式,导数的几何意义.【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为.38.f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f=f(x)-f(y),当x>1时,有f(x)>0.(1)求f(1)的值;(2)判断f(x)的单调性并证明;(3)若f(6)=1,解不等式.【答案】(1)0;(2)证明见解析;(3)0<x<4.【解析】(1)应用已知不等式,令则(2)应用单调性的定义判断.(3)对于解析式不清楚的抽象函数,当单调递增时当单调递减时试题解析:(1)f(1)=f=f(x)-f(x)=0,x>0.(2)f(x)在(0,+∞)上是增函数.证明:设0<x1<x2,则由f=f(x)-f(y),得f(x2)-f(x1)=f,∵>1,∴f>0.∴f(x2)-f(x1)>0,即f(x)在(0,+∞)上是增函数.(3)∵f(6)=f=f(36)-f(6),又f(6)=1,∴f(36)=2,原不等式化为:f(x2+5x)<f(36),又∵ f(x)在(0,+∞)上是增函数,∴解得0<x<4.【考点】1、函数的单调性;2、函数单调性的应用.39.已知函数,为常数,且函数的图象过点.(1)求的值;(2)若,且,求满足条件的的值.【答案】(1);(2).【解析】(1)由函数过点,代入表达式可得值;(2)由将两函数表代入,转化为关于的指数型复合方程.利用换元法,将指数型方程化为一元二次方程,解一元二次方程后再解指数方程,可得值.试题解析:(1)由已知得,解得.(2)由(1)知,又,则,即,即,令,则,即,又,故,即,解得.【考点】1.指数运算;2.一元二次方程的解法;3.换元法.40.设定义在上的函数,且对任意有,且当时,.(1)求证:,且当时,有;(2)判断在上的单调性;(3)设集合,集合,若,求的取值范围.【答案】(1)证明见解析;(2)在上单调递减;(3).【解析】(1)由所给函数满足的条件,用特殊值法令,可得,再利用,可得与之间的关系,由时,范围,可得时,范围;(2)由函数单调性的定义出发,可判断函数单调性;(3)结合条件由可得,由可得,由,将两式联立可得一元二次不等式无解,可得关于的不等式,解可得的范围. 试题解析:(1)由题意知,令,则,因为当时,,所以,设,则,所以即当时,有.(2)设是上的任意两个值,且,则,所以,因为,且,所以,即,即.所以在上单调递减.(3)因为,所以,由(2)知在上单调递减,则,又,所以,因为,又由得,由题可知上式无解即,即,解得:,故的取值范围为.【考点】1.函数单调性;2.一元二次不等式;3.集合的交集.41.已知函数(Ⅰ)讨论函数的单调性;(Ⅱ)若对任意的,都存在使得不等式成立,求实数的取值范围。

高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析1.函数的导数是()A.B.C.D.【答案】D【解析】===【考点】基本函数的求导公式、积的求导法则点评:本题比较简单,直接代入求导公式运算。

要求学生熟记公式。

2.已知直线是的切线,则的值为()A.B.C.D.【答案】C【解析】,则∴切点为,曲线过∴,。

【考点】切线方程、对数运算。

点评:根据导数的几何意义,先把切点利用k表示,再利用切点是切线和曲线的公共点代入已知方程求值。

3.在曲线y=2x2-1的图象上取一点(1, 1)及邻近一点(1+Δx,1+Δy),则等于A.4Δx+2Δx2B.4+2Δx C.4Δx+Δx2D.4+Δx【答案】B【解析】∵△y=2(1+△x)2-1-1=2△x2+4△x,∴=4+2△x,故选B.【考点】本题主要考查导数的概念。

点评:遵循“算增量,求比值”,细心计算。

4.(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。

(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【答案】(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。

(II)当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【解析】分析:结合物理知识进行求解.解:(I)当时,汽车从甲地到乙地行驶了小时,要耗没(升)。

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。

(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时,是减函数;当时,是增函数。

当时,取到极小值因为在上只有一个极值,所以它是最小值。

答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【考点】本小题主要考查函数、导数及其应用。

江苏省宿迁市高中数学 第3章 导数及其应用 第2课时 曲

江苏省宿迁市高中数学 第3章 导数及其应用 第2课时 曲

第2课时 曲线上一点处的切线学习目标:1. 理解并掌握曲线在一点处的切线的斜率的概念、求法及切线方程的求法;2. 掌握“局部以直代曲”和“用割线的逼近切线”的思想方法. 问题情境:1. 什么叫做平均变化率?2.如何精确地刻画曲线上某一点处的变化趋势呢?(点P 附近的曲线的研究)(1)观察“点P 附近的曲线”,随着图形放大,你看到了怎样的现象?(2)“几乎成了一条直线”,这么一条特殊的直线有明确位置么?(趋势)又为什么说是“几乎”?(逼近) Ⅱ.建构数学1.割线逼近切线2.割线斜率逼近切线斜率合作探究:展示点拨:例1:已知2()f x x =,求曲线()y f x =在2x =处的切线斜率.练习:已知2()f x x =+1,求曲线()y f x =在1x =-处的切线斜率.例2:已知2()f x x =,求曲线()y f x =在1x =-处的切线方程.练习:已知1()f x x -=,求曲线()y f x =在1x =-处的切线斜率和切线方程.思考:已知()f x =()y f x =在12x =处的切线斜率是多少?学以致用:1.抛物线y =14x 2在点Q (2,1)处的切线方程是________.【解析】 ∵Δy Δx =f (2+Δx )-f (2)Δx =14Δx +1,∴当Δx →0时,ΔyΔx →1,∴k =f ′(2)=1,∴切线方程为y -1=x -2,即x -y -1=0. 【答案】 x -y -1=02.在曲线y =x 2上切线倾斜角为π4的点是( )A .(0,0)B .(2,4)C .(14, 116)D .(12,14)解析 由导数的定义,知y ′=2x ,∴tan π4=1,y ′|x =x 0=2x 0=1,∴x 0=12,则y 0=14,故选D. 答案 D3.某物体走过的路程S (单位:m)是时间t (单位:s)的函数:S =t 2-1,则该物体在t =2 s 时的瞬时速度为________.【解析】S (2+Δt )-S (2)Δt=(Δt )2+4Δt +4-1-4+1Δt=Δt +4,当Δt →0时,S (2+Δt )-S (2)Δt=Δt +4→4,即所求瞬时速度为4 m/s. 【答案】 4 m/s4.一木块沿某一斜面自由下滑,测得下滑的水平距离s 与时间t 之间的函数关系为s =18t 2,则当t =2时,此木块在水平方向的瞬时速度为( )A. 2B. 1C.12D.14答案 C5.已知曲线y =x 2的切线分别满足下列条件,请求出切点的坐标.(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.【解】 设切点坐标为P(x 0,y 0),则Δy =(x 0+Δx)2-x 20=2x 0·Δx +(Δx)2, ∴Δy Δx =2x 0·Δx +(Δx )2Δx =2x 0+Δx , 当Δx →0时,ΔyΔx →2x 0,∴f ′(x 0)=2x 0,即过点P(x 0,y 0)的切线的斜率为2x 0. (1)因为切线与直线y =4x -5平行, 所以2x 0=4,x 0=2,得P(2,4).(2)因为切线与直线2x -6y +5=0垂直,所以2x 0·26=-1,得x 0=-32,即P(-32,94).(3)因为切线与x 轴成135°的倾斜角,所以其斜率为-1,即2x 0=-1,得x 0=-12,即P(-12,14).同步训练2.如图3-1-5所示,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)=________,f′(5)=________.【解析】f(5)=-5+8=3,f′(5)=k切线=-1.【答案】 3 -17.已知函数y=f(x)在点(2,1)处的切线与直线x-y+2=0平行,则f′(2)等于________.【解析】由题意知k=1,∴f′(2)等于1.【答案】 13.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( )A .1 B.12 C .-12D .-1解析 由导数的定义知y ′=2ax ,∴f ′(1)=2a =2. ∴a =1. 答案 A4.若曲线y =h (x )在点P (a ,h (a ))处切线方程为2x +y +1=0,则( ) A .h ′(a )<0 B .h ′(a )>0 C .h ′(a )=0 D .h ′(a )的符号不定答案 A6.(2013·陇西高二检测)如图3-1-5所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)=________,f ′(5)=________.图3-1-5 【解析】 f (5)=-5+8=3,f ′(5)=k 切线=-1. 【答案】 3 -17.已知函数y =f (x )在点(2,1)处的切线与直线x -y +2=0平行,则f ′(2)等于________.【解析】 由题意知k =1,∴f ′(2)等于1. 【答案】 18.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是________. 【解析】 ∵点P (1,12)在曲线y =x 3+11上,∴曲线在点P 处的切线斜率等于y =x 3+11在x =1处的导数.∴Δy Δx =f (1+Δx )-f (1)Δx =(1+Δx )3+11-(13+11)Δx =(Δx )2+3Δx +3, 当Δx →0时,ΔyΔx →3,∴k =f ′(1)=3.又∵过点P 的切线方程为y -12=3(x -1), 即3x -y +9=0,令x=0,则y=9.【答案】9Ⅳ.课时小结:Ⅴ.课堂检测Ⅵ.课后作业书本P62 1,2,3,41.已知()3x x f =,求曲线()y f x =在1x =-处的切线斜率和切线方程.3.(2013·烟台高二检测)曲线y =x e x+2x +1在点(0,1)处的切线方程为________. 【解析】 y ′=e x+x e x+2,则曲线在点(0,1)处的切线的斜率k =e 0+0+2=3,所以所求切线方程为y =3x +1.【答案】 y =3x +12. 5.已知曲线y =x 6在点P 处的切线与直线y =16x +3垂直,则此切线的方程为________.【解析】 ∵y ′=6x 5,设切点为(x 0,x 60),则6x 50×16=-1,∴x 0=-1,∴切点为(-1,1),切线斜率为-6,∴切线方程为y -1=-6(x +1),即6x +y +5=0. 【答案】 6x +y +5=06.曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为________.【解析】 y ′=cos x (sin x +cos x )-(cos x -sin x )sin x(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12, ∴曲线在点M (π4,0)处的切线的斜率为12.【答案】 127.(2013·杭州高二检测)设点P 是曲线y =x 3-3x +23上的任意一点,曲线在点P 处切线的倾斜角为α,则角α的取值范围是________.【解析】 ∵y ′=3x 2-3,又∵k =f ′(x )=3x 2-3, ∴k ≥- 3.结合正切函数图象可知: 0≤α<π2或2π3≤α<π.【答案】 [0,π2)∪[2π3,π)8.对正整数n ,设曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列{a nn +1}的前n 项和为________.【解析】 y ′=(x n-x n +1)′=nxn -1-(n +1)x n ,曲线在x =2处的切点为(2,-2n),则切线方程为y =y ′|x =2(x -2)-2n,当x =0时,a n =2n(n +1),则a nn +1=2n, ∴S n =2(1-2n)1-2=2n +1-2.【答案】 2n +1-210.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴所围成的三角形的面积. 【解】 (1)∵y ′=2x +1, ∴直线l 1的方程为y =3x -3,设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), ∵l 1⊥l 2,∴y ′|x =b =2b +1=-13,∴b =-23,∴点B 的坐标为(-23,-209),∴直线l 2的方程为y =-13x -229.(2)由⎩⎪⎨⎪⎧y =3x -3,y =-13x -229, 解得⎩⎪⎨⎪⎧x =16,y =-52.∴直线l 1和l 2的交点坐标为(16,-52);又l 1,l 2与x 轴交点的坐标分别为(1,0),(-223,0),∴所求三角形的面积S =12×[1-(-223)]×|-52|=12512.11.设函数f (x )=ax 3+bx +c (a >0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f ′(x )的最小值是-12,求a ,b ,c 的值.【解】 ∵f (x )是奇函数,∴f (-x )=-f (x ),即-ax 3-bx +c =-ax 3-bx -c , ∴c =0.∵f ′(x )=3ax 2+b 的最小值为-12且a >0,∴b =-12. 又直线x -6y -7=0的斜率为16,∴f ′(1)=3a +b =-6,∴a =2,综上可知,a =2,b =-12,c =0.曲线的切线一、学习目标1.知识目标:研究曲线的切线,从几何学的角度了解导数概念的背景,明确瞬时变化率就是导数,掌握求曲线切线斜率的一般方法.2.能力目标:通过嫦娥一号绕月探测卫星变轨瞬间的瞬时速度和运动的方向为背景,从极限入手,培养学生的创新意识和数形转化能力.3.情感目标:通过运动的观点,体会曲线切线的内涵,挖掘数形关系,激发学生学习数学的热情. 二、教学重点曲线切线的概念形成,导数公式的理解和运用. 三、教学难点理解曲线切线的形成是通过逼近的方法得出的.引导学生在平均变化率的基础上探求瞬时变化率. 四、教学过程1.新课引入,创设情景①(大屏幕显示)嫦娥一号绕月探测卫星运行轨迹以及四次变轨的全过程.②讨论问题:卫星在每次变轨的瞬间不仅有瞬时速度,而且要研究它运动的方向.引出本节课主要研究的课题——曲线的切线. 2.概念形成,提出问题①(大屏幕显示)分析卫星在变轨瞬间与变轨前的位置关系,引出曲线的割线. ②由运动的观点、极限的思想,归纳出曲线切线的概念.以及求曲线切线斜率的一种方法.3.转换角度,分析问题①引入增量的概念,在曲线C 上取P (x 0、y 0)及邻近的一点Q (x 0+△x ,y 0+△y ),过P 、Q 两点作割线,分别过P 、Q 作y 轴,x 轴的垂线相交于点M ,设割线PQ 的倾斜角β,tan y xβ∆=∆. ②割线斜率用增量表示的形式不变.(大屏幕显示) 改变P 的邻近点Q 的位置、曲线的类型、倾斜角的性质,发现tan βy x ∆=∆表示的形式始终不变.左、右邻近点的讨论,为下面说明极限的存在做准备.4.归纳总结,解决问题①(大屏幕显示)由于△x 可正可负,但△x ≠0,研究△x 无限趋近于0,用极限的观点导出曲线切线的斜率.②讨论问题:引导学生将这一运动过程 转化为已学的代数问题.k ==0000()()lim lim x x f x x f x y x x ∆→∆→+∆-∆=∆∆ 点评公式,重点强调平均变化率和瞬时变化率之间的关系,提出导数.同时引导学生归纳出求曲线切线斜率的一般方法和步骤5.例题剖析,深化问题例:曲线的方程f (x )=x 2+1 求此曲线在点P (1,2)处的切线的方程6.学生演板,落实问题①已知曲线y =2x 2上一点A(1,2),求(1)点A 处的切线的斜率;(2)点A 处的切线的方程.②求曲线y =x 2+1在点P (-2,5)处的切线方程.7.课堂小结8.作业P125 第6、7、8、9题。

高二数学瞬时变化率 导数教案 苏教版

高二数学瞬时变化率 导数教案 苏教版

高二数学瞬时变化率 导数教案教学目标:(1)理解并掌握曲线在某一点处的切线的概念(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度(3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处 的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想一、复习引入1、什么叫做平均变化率;2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率3、如何精确地刻画曲线上某一点处的变化趋势呢?下面我们来看一个动画。

从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。

所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势二、新课讲解1、曲线上一点处的切线斜率不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0, ∴xx f x x f k PQ ∆-∆+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,xx f x x f k PQ ∆-∆+=)()(00无限趋近点Q 处切线斜率。

2、曲线上任一点(x 0,f(x 0))切线斜率的求法:xx f x x f k ∆-∆+=)()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的斜率。

3、瞬时速度与瞬时加速度(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度(2) 位移的平均变化率:tt s t t s ∆-∆+)()(00 (3)瞬时速度:当无限趋近于0 时,tt s t t s ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时速度求瞬时速度的步骤:1.先求时间改变量t ∆和位置改变量)()(00t s t t s s -∆+=∆2.再求平均速度ts v ∆∆= 3.后求瞬时速度:当t ∆无限趋近于0,t s ∆∆无限趋近于常数v 为瞬时速度 (4)速度的平均变化率:tt v t t v ∆-∆+)()(00 (5)瞬时加速度:当t ∆无限趋近于0 时,t t v t t v ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时加速度注:瞬时加速度是速度对于时间的瞬时变化率三、数学应用例1、已知f(x)=x 2,求曲线在x=2处的切线的斜率。

导数中八大切线问题题型总结(学生版)--高中数学

导数中八大切线问题题型总结(学生版)--高中数学

导数中八大切线问题题型总结【考点预测】1.在点的切线方程切线方程y-f(x0)=f (x0)(x-x0)的计算:函数y=f(x)在点A(x0,f(x0))处的切线方程为y-f(x0)=f(x0)(x-x0),抓住关键y0=f(x0) k=f (x0) .2.过点的切线方程设切点为P(x0,y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(m,n),所以n-y0=f (x0)(m-x0)然后解出x0的值.(x0有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型目录】题型一:导数与切线斜率的关系题型二:在点P处切线(此类题目点P即为切点)题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)题型四:已知切线求参数问题题型五:切线的条数问题(判断切线条数以及由切线条数求范围)题型六:公切线问题题型七:切线平行、垂直、重合问题题型八:与切线相关的最值问题【典例例题】题型一:导数与切线斜率的关系【例1】(2022·全国·高三专题练习(文))函数y=f(x)的图像如图所示,下列不等关系正确的是( )A.0<f (2)<f (3)<f(3)-f(2)B.0<f (2)<f(3)-f(2)<f (3)C.0<f (3)<f(3)-f(2)<f (2)D.0<f(3)-f(2)<f (2)<f (3)【例2】函数y=f x 的图象如图所示,f′x 是函数f x 的导函数,则下列大小关系正确的是( )A.2f′4 <f4 -f2 <2f′2B.2f′2 <f4 -f2 <2f′4C.2f′4 <2f′2 <f4 -f2D.f4 -f2 <2f′4 <2f′2【题型专练】1.(2021·福建·泉州鲤城北大培文学校高三期中)(多选题)已知函数f x 的图象如图所示,f x 是f x 的导函数,则下列数值的排序正确的是()A.f 3 <f 2B.f 3 <f 3 -f 2C.f 2 <f 3 -f 2D.f 3 -f 2 <02.(2022·黑龙江齐齐哈尔·高二期末)函数y =f x 的图象如图所示,f x 是函数f x 的导函数,则下列数值排序正确的是( )A.2f 3 <f 5 -f 3 <2f 5B.2f 3 <2f 5 <f 5 -f 3C.f 5 -f 3 <2f 3 <2f 5D.2f 3 <2f 5 <f 5 -f 3题型二:在点P 处切线(此类题目点P 即为切点)【例1】【2019年新课标3卷理科】已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-1【例2】(2022·全国·高三专题练习(文))已知函数f (x )是定义在R 上的奇函数,且f (x )=-2x 3+3ax 2-f (1)x ,则函数f (x )的图象在点(-2,f (-2))处的切线的斜率为( )A.-21B.-27C.-24D.-25【例3】(2022·河南省浚县第一中学模拟预测(理))曲线y =x ln (2x +5)在x =-2处的切线方程为( )A.4x -y +8=0B.4x +y +8=0C.3x -y +6=0D.3x +y +6=0【例4】过函数f (x )=12e 2x-x 图像上一个动点作函数的切线,则切线领斜角范围为( )A.0,3π4B.0,π2∪3π4,π C.3π4,π D.π2,3π4【例5】(2022·安徽·巢湖市第一中学模拟预测(文))曲线y =2x +ax +2在点1,b 处的切线方程为kx -y +6=0,则k 的值为( )A.-1B.-23C.12D.1【例6】(2022·江西·丰城九中高二期末(理))已知函数f x =f 2 3x 2−x ,x >0g x ,x <0图像关于原点对称,则f (x )在x=-1处的切线方程为( )A.3x-y+2=0B.3x-y-2=0C.3x+y+4=0D.3x+y-4=0【题型专练】1.【2018年新课标1卷理科】设函数f x =x3+a-1x2+ax.若f x 为奇函数,则曲线y=f x 在点0,0处的切线方程为( )A.y=-2xB.y=-xC.y=2xD.y=x2.【2021年甲卷理科】曲线y=2x-1x+2在点-1,-3处的切线方程为__________.3.【2019年新课标1卷理科】曲线y=3(x2+x)e x在点(0,0)处的切线方程为___________.4.【2018年新课标2卷理科】曲线y=2ln(x+1)在点(0,0)处的切线方程为__________.5.【2018年新课标3卷理科】曲线y=ax+1e x在点0,1处的切线的斜率为-2,则a=________.题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)【例1】【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,_____ _______.【例2】(2022·四川·广安二中二模(文))函数f x =x2e x过点0,0的切线方程为( )A.y=0B.ex+y=0C.y=0或x+ey=0D.y=0或ex+y=0【例3】(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点12,0的直线与函数f(x)=xe x的图象相切,则所有可能的切点横坐标之和为( )A.e+1B.-12C.1D.12【例4】(2022·广东·佛山市南海区九江中学高二阶段练习)直线y=12x-b与曲线y=-12x+ln x相切,则b的值为( )A.2B.-2C.-1D.1【题型专练】1.(2022·陕西安康·高三期末(文))曲线y=2x ln x+3过点-12,0的切线方程是( )A.2x+y+1=0B.2x-y+1=0C.2x+4y+1=0D.2x-4y+1=02.(2022·广东茂名·二模)过坐标原点作曲线y=ln x的切线,则切点的纵坐标为( )A.eB.1C.1eD.1e3.过点(0,-1)作曲线f(x)=x ln x的切线,则切线方程为()A.x+y+1=0B.x-y-1=0C.x+2y+2=0D.2x-y-1=04.已知f (x )=x 2,则过点P (-1,0)且与曲线y =f (x )相切的直线方程为( )A.y =0B.4x +y +4=0C.y =0或4x +y +4=0D.y =0或4x -y +4=0题型四:已知切线求参数问题【例1】(2022·湖南·模拟预测)已知P 是曲线C :y =ln x +x 2+3-a x 上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若π3≤θ<π2,则实数a 的取值范围是( )A.23,0B.22,0C.-∞,23D.-∞,22【例2】(2022·广东·石门高级中学高二阶段练习)若直线y =kx +1-ln2是曲线y =ln x +2的切线,则k =________.【例3】(2022·陕西·千阳县中学高三阶段练习(文))已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则b =_____【例4】(2022·江苏苏州·模拟预测)已知奇函数f x =x 2-2x ax +b a ≠0 在点a ,f a 处的切线方程为y =f a ,则b =( )A.-1或1B.-233或233C.-2或2D.-433或433【题型专练】1.(2022·云南·丽江市教育科学研究所高二期末)已知曲线f (x )=(x +a )e x 在点(-1,f (-1))处的切线与直线2x +y -1=0垂直,则实数a 的值为_________.2.(2022·云南昆明·模拟预测(文))若函数f x =a x +ln x 的图象在x =4处的切线方程为y =x +b ,则( )A.a =3,b =2+ln4B.a =3,b =-2+ln4C.a =32,b =-1+ln4D.a =32,b =1+ln43.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线C 1:y =x 1+ln x 和圆C 2:x 2+y 2-6x +n =0均相切,则n =( )A.-4B.-1C.1D.4题型五:切线的条数问题(判断切线条数以及由切线条数求范围)【例1】(2022·河南洛阳·三模(文))若过点P 1,0 作曲线y =x 3的切线,则这样的切线共有( )A.0条B.1条C.2条D.3条【例2】(2022·全国·高三专题练习)若过点(a ,b )可以作曲线y =ln x 的两条切线,则( )A.a <ln bB.b <ln aC.ln b <aD.ln a <b【例3】【2021年新高考1卷】若过点a ,b 可以作曲线y =e x 的两条切线,则( )A.e b <aB.e a <bC.0<a <e bD.0<b <e a【例4】(2022·河南洛阳·三模(理))若过点P 1,t 可作出曲线y =x 3的三条切线,则实数t 的取值范围是( )A.-∞,1B.0,+∞C.0,1D.0,1【例5】(2022·河北·高三阶段练习)若过点P (1,m )可以作三条直线与曲线C :y =xe x相切,则m 的取值范围为( )A.-∞,3e 2B.0,1eC.(-∞,0)D.1e ,3e 2【例6】(2022·黑龙江·哈尔滨市第六中学校高二期末)过直线y =x -1上一点P 可以作曲线f x =x -ln x 的两条切线,则点P 横坐标t 的取值范围为( )A.0<t <1B.1<t <eC.0<t <eD.1e<t <1【题型专练】1.(2022·内蒙古呼和浩特·二模(理))若过点P -1,m 可以作三条直线与曲线C :y =xe x 相切,则m 的取值范围是( )A.-3e 2,+∞ B.-1e,0 C.-1e ,-1e2 D.-3e2,-1e 2.(2022·广东深圳·二模)已知a >0,若过点(a ,b )可以作曲线y =x 3的三条切线,则( )A.b <0B.0<b <a 3C.b >a 3D.b b -a 3 =03.(2022·安徽·安庆市第二中学高二期末)若过点a ,b a >0 可以作曲线y =xe x 的三条切线,则()A.0<a <be bB.-ae a <b <0C.0<ae 2<b +4D.-a +4 <be 2<04.(2022·山东枣庄·高二期末)已知函数f x =x +1 e x ,过点M (1,t )可作3条与曲线y =f x 相切的直线,则实数t 的取值范围是( )A.-4e 2,0B.-4e 2,2eC.-6e 3,2e D.-6e 3,05.(2022·山东潍坊·三模)过点P 1,m m ∈R 有n 条直线与函数f x =xe x 的图像相切,当n 取最大值时,m 的取值范围为( )A.-5e 2<m <e B.-5e 2<m <0 C.-1e<m <0 D.m <e题型六:公切线问题【例1】(2023届贵州省遵义市新高考协作体)高三上学期入学质量监测数学(理)试题)若直线y =kx +b 是曲线y =e x +1的切线,也是y =e x +2的切线,则k =( )A.ln2B.-ln2C.2D.-2【例2】(2022·全国·高三专题练习)若函数f x =ln x 与函数g (x )=x 2+x +a (x <0)有公切线,则实数a 的取值范围是( )A.ln12e,+∞ B.-1,+∞C.1,+∞D.ln2,+∞【例3】(2022·河北石家庄·高二期末)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值可能是( )A.1.2B.4C.5.6D.2e【例4】(2022·全国·高三专题练习)已知曲线C 1:f x =e x +a 和曲线C 2:g x =ln (x +b )+a 2a ,b ∈R ,若存在斜率为1的直线与C 1,C 2同时相切,则b 的取值范围是( )A.-94,+∞B.0,+∞C.-∞,1D.-∞,94【例5】(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( )A.0,2eB.0,eC.2e ,+∞D.e ,2e【例6】(2022·重庆市育才中学高三阶段练习)若直线l :y =kx +b (k >1)为曲线f x =e x -1与曲线g x =e ln x的公切线,则l 的纵截距b =( )A.0B.1C.eD.-e【例7】(2022·河南·南阳中学高三阶段练习(理))若直线y =k 1x +1 -1与曲线y =e x 相切,直线y =k 2x +1 -1与曲线y =ln x 相切,则k 1k 2的值为( )A.12B.1C.eD.e 2【题型专练】1.已知函数f x =x ln x ,g x =ax 2-x .若经过点A 1,0 存在一条直线l 与曲线y =f x 和y =g x 都相切,则a =( )A.-1B.1C.2D.32.【2020年新课标3卷理科】若直线l 与曲线y =x 和x 2+y 2=15都相切,则l 的方程为( )A.y =2x +1B.y =2x +12C.y =12x +1D.y =12x +123.(2022·河北省唐县第一中学高三阶段练习)已知函数f x =a ln x ,g x =be x ,若直线y =kx k >0 与函数f x ,g x 的图象都相切,则a +1b 的最小值为( )A.2B.2eC.e 2D.e4.(2022·全国·高三专题练习)若两曲线y =ln x -1与y =ax 2存在公切线,则正实数a 的取值范围是( )A.0,2eB.12e -3,+∞C.0,12e -3 D.2e ,+∞5.(2022·全国·高三专题练习)若仅存在一条直线与函数f (x )=a ln x (a >0)和g (x )=x 2的图象均相切,则实数a =( )A.eB.eC.2eD.2e6.若曲线y =ln x 与曲线:y =x 2−k 有公切线,则实数k 的最大值为( )A.78+12ln2 B.78-12ln2 C.12+12ln2 D.12+12ln2题型七:切线平行、垂直、重合问题【例1】(2023·全国·高三专题练习)函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( )A.(-∞,2] B.-∞,2-1e ∪2-1e ,2C.2,+∞D.0,+∞【例2】(2022·安徽·合肥一中模拟预测(文))对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y=xf (x )在点(1,2)处点的切线重合,则f ′(2)=( )A.-34B.-14C.-4D.14【例3】(2022·全国·高三专题练习)若直线x =a 与两曲线y =e x ,y =ln x 分别交于A ,B 两点,且曲线y =e x 在点A 处的切线为m ,曲线y =ln x 在点B 处的切线为n ,则下列结论:①∃a ∈0,+∞ ,使得m ⎳n ;②当m ⎳n 时,AB 取得最小值;③AB 的最小值为2;④AB 最小值小于52.其中正确的个数是( )A.1 B.2C.3D.4【题型专练】1.(2022·山西太原·二模(理))已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23B.22C.3D.22.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12B.1C.32D.23.(2022·全国·高三专题练习)已知函数f (x )=x 2+x +2a (x <0)-1x(x >0)的图象上存在不同的两点A ,B ,使得曲线y =f (x )在这两点处的切线重合,则实数a 的取值范围是( )A.-∞,-18B.-1,18C.(1,+∞)D.(-∞,1)∪18,+∞题型八:与切线相关的最值问题【例1】(2022·全国·高三专题练习)若点P 是曲线y =32x 2-2ln x 上任意一点,则点P 到直线y =x -3的距离的最小值为( )A.724B.332C.2D.5【例2】(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线y =2x -1,曲线y =32x 2-ln x 相交于A ,B 两点,则AB 的最小值为( )A.510B.55C.1D.5【例3】(2022·河南·许昌高中高三开学考试(理))已知函数y =e 2x +1的图象与函数y =ln x +1 +12的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A.2ln22B.2ln24C.24+ln22D.24+ln2【例4】(2022·山东聊城·二模)实数x 1,x 2,y 1,y 2满足:x 21-ln x 1-y 1=0,x 2-y 2-4=0,则x 1-x 2 2+y 1-y 22的最小值为( )A.0B.22C.42D.8【题型专练】1.(2022·山西·高二期末)已知点P 是曲线y =x 2-3ln x 上一点,若点P 到直线2x +2y +3=0的距离最小,则点P 的坐标为___________.2.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y =x -a 与曲线y =ln (x +b )相切,则a 22-b的取值范围是()A.(0,+∞)B.(0,1)C.0,12D.[1,+∞)3.(2022·全国·高三专题练习)曲线y =e 2x 上的点到直线2x -y -4=0的最短距离是( )A.5B.3C.2D.14.(2022·河北衡水·高三阶段练习)已知函数f(x)=ln x x-2x2在x=1处的切线为l,第一象限内的点P(a,b)在切线l上,则1a+1+1b+1的最小值为( )A.2+324 B.3+424 C.4+235 D.3+245.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y=kx+b是曲线y=x+1的切线,则k2+b2 -2b的最小值为( )A.-12B.0C.54D.3。

高二数学曲线上一点处的切线

高二数学曲线上一点处的切线

英语培训班加盟连锁 /
65~74岁老年人口腔健康的目标是A.养成良好口腔卫生习惯B.至少保持20颗功能牙C.定期口腔健康检查D.戒除不良嗜好E.全口龈上洁治 患者,男性,64岁,右侧腹股沟肿块突出5个月。体格检查:右侧腹股沟可见2cm×3cm的半球形肿块,平卧时肿块消失,压迫内环肿块仍可突出。最可能的诊断是()A.右侧腹股沟直疝B.右侧股疝C.右侧腹股沟斜疝D.腹白线疝E.脐疝 关于呼吸正确的是A.正常的呼吸频率是16~25次/分B.呼吸频率与心率比为1:5C.体温升高1℃,呼吸增加10次/分D.呼吸过速指呼吸频率超过30次/分E.呼吸过缓指呼吸频率低于12次/分 电偶感温组件利用受热后来测量温度。A.电阻值变化B.电势值变化C.电极体积变化D.电流变化 [多选,案例分析题]男性患者,60岁,有高血压痛史10年,平时血压160/90mmHg,不规律应用降压药物,因情绪激动,突然出现呼吸困难而入院。查体:血压210/110mmHg,脉率120次/分,双肺散在哮鸣音及大量水泡音,心率140次/分,节律不整,肝脾未及。心电图P波消失,代之f波,室率1 若欲单视角观察心动D-PC D.3D-PC E.黑血法 论述中国国代收国内工业发展及其特征发展阶段? 下列传染过程哪种感染类型增多,会造成该疾病的传播流行A.病原体被消灭或排出体外B.潜在性感染C.隐性感染D.病原携带状态E.显性感染 压力容器容积 通货膨胀会()。A.提高人们实际收入的总水平B.使收入和财富重新分配C.降低人们实际收入的水平D.是无害的 在人的心理活动中伴随着的心理状态是A.情感B.知觉C.注意D.意志E.认知 医疗机构从业人员违反本规范的,视情节轻重给予处罚,其中不正确的是A.批评教育、通报批评、取消当年评优评职资格B.卫生行政部门依法给予警告、暂停执业或吊销执业证书C.纪检监察部门按照党纪政纪案件的调查处理程序办理D.缓聘、解职待聘、解聘E.涉嫌犯罪的,移送司法机关依法处理 [单选,案例分析题]患者男性,60岁,1年前因心绞痛行冠状动脉造影及搭桥手术,此后未再发作胸痛。10天前晨起胸痛,发作时心电图sT段Ⅱ、Ⅲ、aVF抬高大约3毫米。患者最合适的药物是A.阿司匹林200mgB.氯吡格雷75mgC.低分子肝素D.消心痛E.硝苯地平 [问答题,论述题]试论食品化学在食品科学中的基础地位。 据1998年中华结核病学会的结核病新分类方法,以下不属于继发性肺结核的是A.浸润性肺结核B.干酪性肺炎C.慢性血行播散性肺结核D.结核球E.慢性纤维空洞型肺结核 土地登记的查询人都可以阅读或自行抄录所查到的土地登记信息,同时也可以委托查询机构摘录或复制有关的土地登记资料,应提供这种服务。A.查询机关B.审查机关C.登记机关D.鉴证机关 1966年,手冢治虫推出日本第一部彩色电视动画系列片。 下列不是朱砂安神丸药物组成的是A.莲心B.黄连C.生地D.当归E.炙甘草 2007年2月1日,某次列车上来无票乘坐席别,发、到站均相同的军人25人,办理补票业务。A.应按团体旅客B.如持有师(旅)以上单位公函可比照团体旅客C.应按一般旅客D.应按军运运价 [单选,共用题干题]某计算机的Cache采用相联映像,Cache容量为16KB,每块8个字,每个字32位,并且将Cache中每4块分为一组。若主存最大容量为4GB且按字节编址,则主存地址应为(1)位,组号应为(2)位。若Cache的命中率为0.95,且Cache的速度是主存的5倍,那么与不采用Cache相比较 医疗机构医技人员是指A.除医师之外从事其他技术服务的卫生专业技术人员B.除医师、护士之外从事其他技术服务的卫生专业技术人员C.除医师、药学技术人员之外从事其他技术服务的卫生专业技术人员D.除医师、护士、药学技术人员之外从事其他技术服务的卫生专业技术人员E.以上都不对 字典、词典的特点不包括。A.检索的专指性强B.解释简明、规范C.有一定的前瞻性D.以条目为基本单元 女性,20岁。因哮喘重度发作自服氨茶碱、泼尼松(强的松)已3h不见改善来院急诊。体检见患者端坐呼吸,明显紫绀,两肺呼吸音低,呼气显著延长,少量哮鸣音。下列紧急处理中哪项选择欠合理A.吸氧,吸氧浓度不限于所谓&quot;低流量&quot;B.静脉注射地塞米松C.吸入&beta;受体激动剂, 关于出版活动构成要素的说法,错误的是。A.构成出版活动的基本要素是编辑、复制、发行B.编辑是通过创作作品对信息进行开发C.复制是出版物的商品生产过程D.发行是出版单位通过商品交换将出版物传送给消费者 下列哪种药物不是Ⅰ类抗心律失常药物A.普鲁卡因胺B.利多卡因C.氟卡尼D.莫雷西嗪E.伊布利特 设施从可用状态改变到不可用状态,计为第一类非计划停运。 船舶吃水一定时,横初稳心点M为。A.中纵剖面上的定点B.中横剖面上的定点C.任意剖面上的定点D.一不确定点 对市场价格变动区间较大的资源,可采取合作模式,以利于获得较高的收益。 旨在通过基本分析和技术分析构造投资组合,并通过买卖时机的选择和投资组合结构的调整,获得超过市场组合收益的回报。A.消极型投资策略B.积极型投资策略C.个人投资策略D.集体投资策略 定活两便储蓄存期在一年以内的,整个存期按计息A.活期利率B.支取日整存整取定期储蓄一年期存款利率打六折C.支取日整存整取定期储蓄存款同档次利率打六折D.支取日整存整取定期储蓄一年期存款利率打八折 一患儿头颅大,前额突出,前囟门大,肋骨串珠,血清钙2.00mmol/L,血清磷1.13mmol/L,碱性磷酸酶增高,智力一般。诊断为A.软骨营养不良B.散发性呆小病C.地方性呆小病D.脑积水E.佝偻病 某一所医院正在筹备建设的过程中,医院筹备委员会要求主管护理的委员会成员进行一系列工作。"按照组织设计要求,决定组织的层次及部门结构,形成层次化的组织管理系统"属于组织设计步骤中的A.确立组织目标B.划分业务关系C.提出组织结构的基本框架D.确定职责和权限E.设计组织的运作 周期性胎心率 感染过程中最少见的表现形式是A.健康携带者B.潜伏期携带者C.慢性携带者D.隐性感染E.显性感染 《邮政法》对邮政普遍服务的业务范围做出了规定,以下属于特殊服务业务的是。A.信件B.包裹C.盲人读物D.报刊 公民的民事权利能力始于()。A.出生时B.年满16周岁C.年满18周岁D.法定结婚年龄 左侧偏瘫、右侧外展神经麻痹和右面神经周围性麻痹时,病变部位在A.右延髓B.右脑桥C.左延髓D.右中脑E.右内囊 下列属于社会法的是()。A.未成年人保护法B.安全生产法C.职业病防治法D.消费者权益保护法E.自然资源与环境保护法 项目实施阶段的质量检验“三检制”中专检的内容是()。A.对照工艺,自我把关B.同工序及上下工序交接检C.进料、半成品、成品检验D.自盖工号、自作标记 半贫液流量设计值是Kg/HA.275076B.92374C.383760D.3790

高二数学曲线上一点处的切线

高二数学曲线上一点处的切线
不锈钢水管加盟 / 下列项目中,不属于土地增值税免税范围的是。A.建造普通标准住宅出售,增值额未超过扣除项目金额之和20%的B.因国家建设需要而自行转让的房地产C.企业转让办公楼D.企事业单位转让旧房作为公共租赁住房房源,且增值额未超过扣除项目金额之和20%的 目前预防乙型病毒性肝炎的最佳措施是A.隔离病人B.定期体检筛查慢性病毒携带者C.做好饮食、饮水及粪便的管理D.乙肝疫苗预防接种E.丙种球蛋白被动免疫 当不动产权属证书记载的事项与不动产登记簿不一致时,以为准。A.不动产登记簿B.不动产权属证书C.时间较早的D.都不能作为依据 下述哪项甲状腺疾病可能与病毒感染有关A.单纯性甲状腺肿B.急性甲状腺炎C.亚急性甲状腺炎D.桥本病E.慢性纤维性甲状腺炎 在理想气体状态方程式Pv=RT中,不是基本状态参数。A.压力B.比容C.热力常数D.温度 [单选,共用题干题]某数据处理流水线如图1-4所示,若每隔3t流入一个数据,连续处理4个数据。此数据处理流水线的实际吞吐率为(1)。此时该流水线的效率为(2)。空白(1)处应选择A.4/(12t)B.4/(13t)C.4/(14t)D.4/(15t) 气体节流过程不变A.温度B.焓值C.熵值D.压力 羊膜腔穿刺一般不得超过几次A.1B.2C.3D.4E.5 当井喷失控时,下列应急程序必须执行。A.现场总负责人或其指定人员向当地政府报告,协助当地政府作好井口500m范围内居民的疏散工作,根据监测情况决定是否扩大撤离范围B.关停生产设施C.设立警戒区,任何人未经许可不得入内D.请求援助 脉络膜A.位于血管膜的前部B.外面与巩膜疏松相连C.薄而柔软D.富有血管和色素细胞E.有营养眼球内组织的作用 不属于主动性异位心律的是A.室性心动过速B.室性期前收缩C.心房扑动D.心室颤动E.预激综合征 下列关于乙型肝炎病毒抵抗力的描述,正确的是。A.100℃5分钟灭活B.煮沸10分钟灭活C.60℃10小时灭活D.-20℃可保存10天E.可被紫外线灭活 低碳钢的破坏发生在拉伸过程中的阶段。A、弹性B、屈服C、强化D、颈缩 催生数字出版产业的内在动力,在于。A.高速发展与迅速普及的数字技术B.数字阅读造就的巨大市场需求C.数字造就的巨大市场需求D.传统出版产业的转型升级 患者就诊时最感痛苦的症状、体征及其持续时间,属A.现在症B.现病史C.主诉D.生活史E.既往史 有一精度为1.0级压力表,其量程为-0.1~1.6MPa,则其允许误差为[1.6-(-0.1)]×1%=1.7×1%=0.017MPa。A.正确B.错误 在基于信息技术的自动的信息系统中,系统进行自动操作来实现对交易信息的创建、记录、处理和报告,并将相关信息保存为电子形式,相关控制活动也可能同时包括手工的分。A.订单的审批和事后审阅以及会计记录调整之类的手工控制B.电子的采购订单C.电子的采购D.电 子的发运凭证和相关会计记录 CCU室,一患有急性心肌梗死3天的病人,突然感到呼吸困难,伴心悸,不能平卧。体检:口唇发绀,强迫端坐位,两肺中、下部可闻及中、小水泡音,心率120次/分,律齐,S1增强,以下哪项体征对合并乳头肌功能失调的诊断最有意义。A.血压下降B.胸骨左缘第三、四肋 间可闻及心包摩擦音C.心尖区收缩中、晚期喀喇音和收缩晚期杂音D.胸骨左缘第三、四肋间可触及收缩期震颤E.心浊音界向左扩大 和少白细胞的红细胞相比,全血的特点是。A.可以同型或相容性输注B.可以以较小的容量提高患者的携氧能力C.含血小板碎屑较少D.保存损害产物较多E.发生非溶血性发热反应的几率较少 在盛装医疗废物前,应对医疗废物包装物或容器进行认真检查,确保无、和其它缺陷。 发表群体力学理论的年份是A.1911年B.1925年C.1933年D.1944年E.1957年 急性肾小管坏死出现下列哪种情况可考虑急诊透析A.急性肺水肿B.血钾&ge;6.5mmol/LC.高分解状态D.无尿2天E.少尿4天 按募集的方式分类,有价证券可以分为。A.政府证券、政府机构证券、公司证券B.公募证券和私募证券C.上市证券与非上市证券D.股票、债券和其他证券 气的根本属性是A.上升B.下降C.外出D.运动E.静止 一患者的静息平衡法门控心室显像如图,正确的诊断是A.心尖缺血B.心尖室壁瘤C.扩张型心肌病D.肥厚型心肌病 结婚戒指应戴在哪个手指上?A.食指B.中指C.无名指 患者男,38岁。近日献血时发现HIV阳性,CD4+T淋巴细胞0.6&times;109/L,总淋巴细胞数2.1&times;109/L,患者无任何症状,5年前曾赴非洲工作1年。此患者为HIV感染的哪一期A.0期B.Ⅰ期C.Ⅱ期D.Ⅲ期E.Ⅳ 关于排泄性尿路造影,正确的描述是A.检查前不需作碘过敏试验B.妊娠病人也可作此检查C.应用胆影葡胺作造影剂D.检查前鼓励病人多饮水E.检查前需作肠道准备 了解法律事实的分类。 不用蜂蜜为丸的丸剂是()A.朱砂安神丸B.天王补心丹C.磁朱丸D.大补阴丸E.以上均不含 休克病人补液后,血压仍低,中心静脉压不高。5~10分钟内静脉输入等渗盐水250ml,如血压升高,而中心静脉压仍低,提示。A.血管张力不足B.血容量过多C.血容量不足D.肾功能不全E.心功能衰竭 下列代表网格技术的是A、WWWB、PCC、GGGD、IT 精气神学说中所谓的“精”主要指A.生殖之精B.后天之精C.自然界之清气D.肾中所藏之精E.水谷精微 蓄涝区设计的正常蓄水位应按下列哪项原则确定?A.蓄涝区内大部分农田能自流排水B.蓄涝区内全部农田能自流排水C.蓄涝区内少部分农田能自流排水D.蓄涝区内1/2农田能自流排水 一般认为,下列哪种情况的脑出血不适合外科治疗。A.血压<26.6/16.0kPaB.小脑出血血肿>10mlC.壳核出血血肿>40mlD.丘脑出血血肿>10mlE.生命体征和心肾功能正常,有脑疝形成可能 神经嵴细胞来自A.口腔上皮层B.固有层C.黏膜下层D.外胚层E.中胚层 表面粗糙度评定参数的选用要根据零件的功能要求、才料性能、结构特点以及适当选用一个或几个评定参数。A、尺寸大小B、公差大小C、测量的条件D、零件的大小 下列各项可以保证地籍资料现势性和准确性的是。A.地籍测量B.初始地籍调查C.变更地籍调查D.变更地籍测量 2船舶实际吃水与平均吃水的概念,商船水尺读数表示。A.水面至水底深度B.水面到船底深度C.水底至船底深度D.水线到甲板的高度 患者,男,71岁,慢性阻塞性肺气肿。上午9时起开始静脉输入5%葡萄糖溶液500ml及0.9%氯化钠溶液500ml,滴速为70滴/分,10时左右,护士来巡房时,发现患者咳嗽、咳粉红色泡沫样痰,呼吸急促,大汗淋漓。根据患者的临床表现,此患者可能出现了下列哪种情况 ()A.发热反应B.过敏反应C.心脏负荷过重的反应D.空气栓塞E.细菌污染反应

曲线上一点处的切线讲解

曲线上一点处的切线讲解

割线PQ 割线PQ的斜率
Q无限逼近P时 Q无限逼近P时 令横坐标无限接近
P点处的切线 P点处的切线斜率
作业:
课课练 第2课时 书本 课后练习
⑵在点P附近你能作出一条比L1,L2更加逼近曲线
的直线L3吗?
⑶在点P附近你能作出一条比L1,L2,L3更加逼近
曲线的直线L4吗?
Q1 L1
L3
L2
Q2
L3
L4
Q3
P
L4 动画
问题3:我们找到了这条切线,我们还得能求这条切 线.怎么求呢?
如何求曲线上一点的切线?
(1)概念:曲线的割线和切线
y=f(x)
例3.已知 f (x) x ,求曲线 y f (x) 在 x x(x 0) 处
的切线的斜率.
解: 设 P(x, x ) , Q(x x, x x) ,
则割线PQ的斜率
kPQ
x x x
x
x x x

( x x x )x
3.9999
0.00001
4.00001 -0.00001
3.99999
求曲线 y f (x)
率的一般步骤:
上一点
P( x ,
f
(x ))处切线斜
1.设曲线上另一点 Q(x x, f (x x))
2.求出割线 PQ 的斜率kPQ
,并化简。

f (x x) x
f (x )
3. 令x无限趋近于0,若上式中的割线斜率“逼近”
一个常数,则其即为所求切线斜率。
例1、已知 f (x) x2 ,求曲线 y f (x)在 x 2 处 的切线的斜率.
练1:已知 f (x) x2,求曲线 y f (x)在 x 3处 的切线的斜率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外链发布 https:/// 外链发布
伤兵罗雯依琦妖女细长的耳朵,此时正惨碎成海马样的暗白色飞丝,快速射向远方女伤兵罗雯依琦妖女怪嚷着狂鬼般地跳出界外,急速将细长的耳朵复原,但元气已受损伤砸壮扭公主:“哈哈! 这位同志的风格极为迷离哦!非常有完美性呢!”女伤兵罗雯依琦妖女:“ 哎!我要让你们知道什么是疯狂派!什么是缠绵流!什么是温柔完美风格!”壮扭公主:“哈哈!小老样,有什么 法术都弄出来瞧瞧!”女伤兵罗雯依琦妖女:“ 哎!我让你享受一下『白冰跳祖牙膏理论』的厉害!”女伤兵罗雯依琦妖女突然耍了一套,窜虾猪肘翻九千度外加猪哼菜叶旋一百周半的招数 ,接着又玩了一个,妖体鸟飞凌空翻七百二十度外加呆转十五周的冷峻招式。接着像暗绿色的三须海滩虾一样怒笑了一声,突然搞了个倒地振颤的特技神功,身上瞬间生出了九十只活像拐杖般的 乳白色眉毛……紧接着威风的深灰色怪藤样的嘴唇连续膨胀疯耍起来……亮紫色旗杆一样的眉毛透出纯黄色的阵阵春雾……纯灰色蛤蟆一般的脸闪出亮灰色的隐约幽音。最后扭起瘦弱的酷似谷穗 模样的肩膀一颤,萧洒地从里面滚出一道流光,她抓住流光诡异地一旋,一件青虚虚、银晃晃的咒符『白冰跳祖牙膏理论』便显露出来,只见这个这件怪物儿,一边扭曲,一边发出“哼嗷”的猛 响。!猛然间女伤兵罗雯依琦妖女疯妖般地念起磨磨叽叽的宇宙语,只见她轻盈的手指中,威猛地滚出五十片珍珠状的黄豆,随着女伤兵罗雯依琦妖女的耍动,珍珠状的黄豆像鸡笼一样在双肩上 残暴地设计出飘飘光环……紧接着女伤兵罗雯依琦妖女又连续使出四十五派晶豹滑板掏,只见她亮灰色棕叶款式的项链中,快速窜出四十缕转舞着『银玉香妖闪电头』的螳螂状的怪毛,随着女伤 兵罗雯依琦妖女的转动,螳螂状的怪毛像苦瓜一样念动咒语:“三指吲 唰,原木吲 唰,三指原木吲 唰……『白冰跳祖牙膏理论』!爷爷!爷爷!爷爷!”只见女伤兵罗雯依琦妖女的 身影射出一片纯蓝色金光,这时东北方向狂傲地出现了九簇厉声尖叫的暗青色光雁,似玉光一样直奔水蓝色幻影而来!,朝着壮扭公主齐整严密的牙齿乱晃过来。紧跟着女伤兵罗雯依琦妖女也狂 耍着咒符像缰绳般的怪影一样向壮扭公主乱晃过来壮扭公主突然来了一出,蹦鹏灯笼翻九千度外加雁乐烟囱旋一百周半的招数!接着又搞了个,团身犀醉后空翻七百二十度外加傻转七周的惊人招 式!接着像灰蓝色的飞臂海湾鹏一样疯喊了一声,突然耍了一套倒立抽动的特技神功,身上忽然生出了九十只美如杠铃一般的暗黑色鼻子!紧接着圆润光滑、无忧无虑的快乐下巴奇特紧缩闪烁起 来……时常露出欢快光
1.1.2 瞬时变化率 __曲线上一点处的切线
1、平均变化率
一般的,函数 f (x在) 区间上 [x1, x2 ]的平均变化率为
例1、已知函数 f (x) 2x 1, g(x) 2x, 分别计算在区间[-3,-1],[0,5]
上 f (x)及 g (x) 的平均变化率。
由本例得到什么结论: 一次函数y=kx+b在区间[m,n]上的 平均变化率就等于k.
问:平均变化率近似地刻画线在某区间 上的变化趋势,那么如何精确地刻画 曲线上某一点处的变化趋势呢?
几何画板演示
如何求曲线上一点的切线?
(1)概念:曲线的割线和切线y=f(x)
y
Q
割 线
T 切线
P o
结论:当Q点无限逼近P点时,此时 x 直线PQ就是P点处的切线.
(2)如何求割线的斜率? y=f(x)
y
Q
o
P
x
kPQ
f
(xx) f(x) (xx)x
f
(xx) x
f
(x)
y=f(x)
(3)如何求切线的斜率?
割 线
y
Q
T 切线
o
P
x
k PQ
f (x x) x
f (x)
例1:已知 f (x) x,2求曲线
y=f(x)在x=2处的切线的斜率.
解 : 先求过(2,4)点的任意一条割线入手
P(2,4),Q(2 2
4
x
当x无限趋近于0时, kPQ无限趋近于常数4
所以点P(2,4)处的切线斜率为4
利用割线求切线
相关文档
最新文档