等可能事件的概率PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2一个口袋内装有大小相等的1个白球和已编有不 同号码的3个黑球,从中摸出2个球. (1)共有多少种不同的结果? (2)摸出2个黑球有多少种不同的结果? (3)摸出2个黑球的概率是多少?
例3在100件产品中,有95件合格品,5件次品. 从中任取2件,计算: (1)2件都是合格品的概率; (2)2件都是次品的概率; (3)1件是合格品,1件是次品的概率.
⑵如果一次试验由n个基本事件组成,而且所有的基本事件 出现 的可能性都相等,那么每一个基本事件的概率都是 1/n 。
事件A:试验中的一个事件,它由一个或几个基本 事件构成
⑶如果一次试验中共有n种基本事件,而且所有的基本事件 出现的可能性都相等,其中事件A包含的结果有m种,那 么事件A的概率P(A)是m/n(m≤n)
小结: 计算等可能事件的概率的步骤: ⑴计算所有基本事件的总结果数n;
⑵计算事件A所包含的结果数m;
⑶计算P(A)=m/n
例2.一次掷出一分、二分、五分的硬币各一枚, (1)写出可能出现向上的所有结果.
(正,正,正),(正,正,反),(正,反,正), (反,正,正),(正,反,反),(反,正,反), (反,反,正),(反,反,反).
(2)有两枚正面1枚反面的概率为多少
计算等可能事件的概率的步骤:
⑴计算所有基本事件的总结果数n;
例如:抛掷一个骰子,它落地时 向上的数可能是……可能是情形1, 2,3,4,5,6之一.
即可能出现的结果有6种,且每
种结果出现的机会……均等的(因为骰子 是均匀的) 也就是说,出现每一种结果的概率都是
这种分析也与大量重复试验的结果 是一致的.
等可能事件概率:
⑴基本事件:一次试验连同其中可能出现的每一个结果称 为一个基本事件。 如抛掷硬币的试验中,由2个基本事件组成。抛掷一个均 匀的正方体玩具试验中,由6个基本事件组成。
对于随机事件,我们是否只 能通过大量重复试验才能求 其概率呢
有的情况下的大量重复的试验 是否可以避免?
例如:抛一枚均匀的硬币,可能出现的结 果有:正面向上,反面向上。
由于硬币是均匀的,可以认为出现这 2种结果的可能性是相等的,即可以认 为出现“正面向上”的概率是 出现“反面向上”的概率也是
.这与大量重复试验的结果是一致的.
一.复习:随机事件及其概率
1.在一定的条件下必然要发生 的事件; 2.在一定的条件下不可能发生的事件; 叫必然事件; 叫不可能事件;
3.在一定的条件下可能发生也可能不发生的事件;叫随机事件. 4.随机事件的概率 在大量重复进行同一试验时,事件A发生的频率 总是接近 于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概 率,记作P(A). 5.随机事件的概率性质 1)0≤P(A)≤1, 2)不可能事件的概率为0, 必然事件的概率为1, 随机事件的概率大于0而小于1.
⑵计算事件A所包含的结果数m; ⑶计算P(A)=m/n
例3 将骰子先后抛掷2次,计算: (1)一共有多少种不同的结果? (2)其中向上的数之和是5的结果有多少种? (3)向上的数之和是5的概率是多少? (4)向上的数之和是2,3,4,5,6,7, 8,9,10,11,12的概率是多少? (5)向上的数之和是5的的倍数概率是多少? (6)向上的数之和是3的的倍数概率是多少?
例1 为了考察玉米种子的发芽情况,在1号、2号、3号培养皿 中各种一粒玉米. ⑴列举全体基本事件; ⑵下列随机事件由哪些基本事件构成: 事件A:三粒都发芽; 事件B:恰有两粒发芽; 事件C:至少有一粒发芽.
Байду номын сангаас
⑴按 1号、 2号、3 号培养皿的顺序,玉米种子发芽的情况可能出 现的结果有:(发芽,发芽,发芽),(发芽,发芽,不发芽), (发芽,不发芽,发芽),(不发芽,发芽,发芽), (发芽,不发芽,不发芽),(不发芽,发芽,不发芽), (不发芽,不发芽,发芽),(不发芽,不发芽,不发芽). 共有23=8个基本事件.
相关文档
最新文档