人教新课标A版高中数学必修5 第三章不等式 3.4基本不等式 同步测试B卷
最新人教版高中数学必修5第三章不等式单元测试题及答案
人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分)5、不等式0322>-+x x 的解集是 ( )A {x|-1<x <3}B {x|x >3或x <-1}C {x|-3<x <1}D {x|x>1或x <-3}6、二次不等式20ax bx c ++>的解集是全体实数的条件是 ( )A ⎩⎨⎧>∆>00aB ⎩⎨⎧<∆>00aC ⎩⎨⎧>∆<00aD ⎩⎨⎧<∆<00a2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-3 8.已知集合A ={x |x 2-x-2<0},B ={x |-1<x <1},则( )A. A B ⊆B.B AC. A = BD. A ∩B =∅8、已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A 1B 21C 22D 41 10、设b a ,为实数且,3=+b a 则ba22+的最小值是 ( )A 6B 24C 22D 6211、不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 ( )A.右上方B.右下方C.左上方D.左下方 10. 设U =R ,M ={x |x 2-2x >0},则 C U M =( )A.[0,2]B.RC.(-∞,0)∪(2,+∞)D.(-∞,0]∪[2,+∞)12、在直角坐标系内,满足不等式x 2-y 2≥0的点(x ,y )的集合(用阴影表示)是( )二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15、不等式255122x x -+>的解集是 .三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0; (3) 0322322≤--+-x x x x18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.19、当1>x 时,求11222-+-=x x x y 的最小值. (12分)20、已知15,13a b a b ≤+≤-≤-≤,求32a b -的取值范围。
高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2课时作业(含解析)新人教A版必修5-新人
课时作业24 基本不等式:ab ≤a +b 2时间:45分钟——基础巩固类——一、选择题1.下列不等式中正确的是( D )A .a +4a≥4 B .a 2+b 2≥4ab C.ab ≥a +b 2D .x 2+3x 2≥2 3 解析:a <0,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b 2,故C 错;由基本不等式可知D 项正确. 2.若lg x +lg y =2,则1x +1y的最小值为( D ) A .10 B.110C .5 D.15解析:∵lg x +lg y =2,∴xy =100.且x >0,y >0.1x +1y ≥21xy =15. 3.已知f (x )=x +1x-2(x <0),则f (x )有( C ) A .最大值为0 B .最小值为0C .最大值为-4D .最小值为-4解析:∵x <0,∴-x >0.∴x +1x -2=-[(-x )+1(-x )]-2≤-2·(-x )·1(-x )-2=-4,等号成立的条件是-x =1-x ,即x =-1.4.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m 、n 的大小关系是( A ) A .m >n B .m <nC .m =nD .不确定解析:∵a >2,∴a -2>0,又∵m =a +1a -2=(a -2)+1a -2+2≥2(a -2)·1a -2+2=4, 当且仅当a -2=1a -2,即a =3时取等号. ∴m ≥4.∵b ≠0,∴b 2>0,∵2-b 2<2,∴22-b 2<4,即n <4,∴m >n .5.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( A )A .5 km 处B .4 km 处C .3 km 处D .2 km 处 解析:设仓库建在离车站x km 处,则土地费用y 1=k 1x(k 1≠0),运输费用y 2=k 2x (k 2≠0),把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45,故总费用y =20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时等号成立. 6.已知x >1,y >1且xy =16,则log 2x ·log 2y ( D )A .有最大值2B .等于4C .有最小值3D .有最大值4解析:因为x >1,y >1,所以log 2x >0,log 2y >0.所以log 2x ·log 2y ≤⎝ ⎛⎭⎪⎫log 2x +log 2y 22=⎣⎡⎦⎤log 2(xy )22=4,当且仅当x =y =4时取等号.故选D.二、填空题7.已知x 、y 都是正数,(1)如果xy =15,则x +y 的最小值是215;(2)如果x +y =15,则xy 的最大值是2254. 解析:(1)x +y ≥2xy =215,即x +y 的最小值是215;当且仅当x =y =15时取最小值.(2)xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1522=2254, 即xy 的最大值是2254. 当且仅当x =y =152时xy 取最大值. 8.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值X 围是⎣⎡⎭⎫15,+∞. 解析:因为x >0,所以x +1x≥2. 当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x+3≤12+3=15即x x 2+3x +1的最大值为15,故a ≥15. 9.若a >0,b >0,a +b =2,则下列不等式①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④1a +1b≥2,对满足条件的a ,b 恒成立的是①③④.(填序号) 解析:因为ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,所以①正确;因为(a +b )2=a +b +2ab =2+2ab ≤2+a +b =4,故②不正确;a 2+b 2≥(a +b )22=2,所以③正确;1a +1b =a +b ab =2ab ≥2,所以④正确.三、解答题10.(1)已知0<x <12,求y =12x (1-2x )的最大值. (2)已知x <3,求f (x )=4x -3+x 的最大值. (3)已知x ,y ∈R +,且x +y =4,求1x +3y的最小值; 解:(1)∵0<x <12,∴1-2x >0. y =14·2x ·(1-2x )≤14⎝ ⎛⎭⎪⎫2x +1-2x 22 =14×14=116. ∴当且仅当2x =1-2x ,即x =14时,y 最大值=116. (2)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3 ≤-243-x ·(3-x )+3=-1, 当且仅当43-x=3-x ,即x =1时取等号, ∴f (x )的最大值为-1.(3)法一:∵x ,y ∈R +,∴(x +y )⎝⎛⎭⎫1x +3y=4+⎝⎛⎭⎫y x +3x y ≥4+2 3.当且仅当y x =3x y ,即x =2(3-1), y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 法二:∵x ,y ∈R +,且x +y =4, ∴1x +3y =x +y 4x +3(x +y )4y=1+⎝⎛⎭⎫y 4x +3x 4y ≥1+2y 4x ·3x 4y=1+32. 当且仅当y 4x =3x 4y, 即x =2(3-1),y =2(3-3)时取“=”号.∴1x +3y 的最小值为1+32. 11.设a ,b ,c ∈R +.求证:(1)ab (a +b )+bc (b +c )+ca (c +a )≥6abc ;(2)(a +b +c )⎝⎛⎭⎫1a +1b +c ≥4. 证明:(1)∵a ,b ,c ∈R +,∴左边=a 2b +ab 2+b 2c +bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc =右边,当且仅当a =b =c 时,等号成立.(2)∵a ,b ,c ∈R +,∴左边=[a +(b +c )]⎝ ⎛⎭⎪⎫1a +1b +c≥2a (b +c )·21a (b +c )=4=右边, 当且仅当a =b +c 时,等号成立.——能力提升类——12.若f (x )=⎝⎛⎭⎫12x ,a ,b 均为正数,P =f ⎝⎛⎭⎫a +b 2,G =f (ab ),H =f ⎝⎛⎭⎫2ab a +b ,则( A ) A .P ≤G ≤H B .P ≤H ≤GC .G ≤H ≤PD .H ≤G ≤P解析:因为a ,b 均为正数,所以a +b 2≥ab =ab ab ≥ab a +b 2=2ab a +b,当且仅当a =b 时等号成立.又因为f (x )=⎝⎛⎭⎫12x 为减函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,所以P ≤G ≤H . 13.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( C ) A .8 B .7C .6D .5解析:由已知,可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a时等号成立,所以9m ≤54,即m ≤6,故选C.14.设a ,b >0,a +b =5,则a +1+b +3的最大值为3 2. 解析:令t =a +1+b +3,则t 2=a +1+b +3+2(a +1)(b +3)=9+2(a +1)(b +3)≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. 15.如图,如在公园建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现有44米铁丝网可供使用(铁丝网可以剩余),若利用x 米墙,(1)求x 的取值X 围;(2)求最少需要多少米铁丝网(精确到0.1米).解:(1)由于矩形草地的面积是144平方米,一边长是x 米,则另一边长为144x米, 则矩形草地所需铁丝网长度为y =x +2×144x. 令y =x +2×144x≤44(x >0), 解得8≤x ≤36,则x 的取值X 围是[8,36].(2)由基本不等式,得y =x +288x≥24 2. 当且仅当x =288x,即x ≈17.0时,等号成立, 则y 最小值=242≈34.0,即最少需要34.0米铁丝网.。
人教新课标A版高中数学必修5第三章不等式单元测试题(含答案)
绝密★启用前人教新课标A版高中数学必修5第三章不等式单元测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间150分钟。
一、选择题(共12小题,每小题5.0分,共60分)1.某高速公路对行驶的各种车辆的最大限速为120km/h,行驶过程中,同一车道上的车间距d不得小于10 m.用不等式表示为()A.v≤120 km/h或d≥10 mB.C.v≤120 km/hD.d≥10 m2.若a>0,b>0,则下列不等式中不成立的是()A.a2+b2≥2abB.a+b≥2C.a2+b2≥(a+b)2D.+<(a≠b)3.设a=2-1,b=-1(t∈R),则a与b的大小关系是()A.a≥bB.a≤bC.a<bD.a>b4.不等式组的解集为()A. {x|-2<x<-1}B. {x|-1<x<0}C. {x|0<x<1}D. {x|x>1}5.设f(x)=x2+bx-3,且f(-2)=f(0),则f(x)≤0的解集为()A. (-3,1)B. [-3,1]C. [-3,-1]D. (-3,-1]6.函数y=的定义域是()A. {x|x<-4或x>3}B. {x|-4<x<3}C. {x|x≤-4或x≥3}D. {x|-4≤x≤3}7.若不等式mx2+2mx-4<2x2+4x的解集为R,则实数m的取值范围是()A. (-2,2)B. (-2,2]C. (-∞,-2)∪[2,+∞)D. (-∞,2)8.若a>0,b>0,则不等式-b<<a等价于()A.-<x<0或0<x<B.-<x<C.x<-或x>D.x<-或x>9.当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A. (0,+∞)B. [0,+∞)C. [0,4)D. (0,4)10.在平面直角坐标系中,点在直线的右上方,则的取值范围是()A.(1,4)B.(-1,4)C.(-∞,4)D.(4,+∞)11.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z=x+ay取得最小值的最优解有无数个,则a的一个可能值为()A.-3B. 3C.-1D. 112.设正实数x,y,z满足x2-3xy+4y2-z=0,则当取得最大值时,+-的最大值为() A. 0B. 1C.D. 3第ⅠⅠ卷二、填空题(共4小题,每小题4.0分,共16分)13.已知|a|<1,则与1-a的大小关系为________.14.已知关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,则实数a的取值范围是________.15.记不等式组所表示的平面区域为D,若直线y=a(x+1)与D有公共点,则a的取值范围是________.16.设x,y为实数,若,则的最大值是________.三、解答题(共6小题,第17-21题每小题12.0分,第22题14分,共74分)17.(1)设x≥1,y≥1,证明:x+y+≤++xy;(2)设1<a≤b≤c,证明:log a b+log b c+log c a≤log b a+log c b+log a c.18.已知a>0,b>0,m>0,n>0,求证:a m+n+b m+n≥a m b n+a n b m.19.已知定义在R上的函数f(x)=x2-(3-a)x+2(1-a)(其中a∈R).(1)解关于x的不等式f(x)>0;(2)若不等式f(x)≥x-3对任意x>2恒成立,求a的取值范围.20.营养学家指出,成人良好的日常饮食应该至少提供0.075 kg的碳水化合物,0.06 kg的蛋白质,0.06 kg的脂肪,1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋白质,0.14 kg脂肪,花费28元;而1 kg食物B含有0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?将已知数据列成下表:21.已知实数x,y满足(1)试求z=的最大值和最小值;(2)试求z=x2+y2的最大值和最小值.22.已知函数.(1) 当时,求函数f(x)的最小值;(2) 若对任意,恒成立,试求实数的取值范围.答案解析1.【答案】B【解析】考虑实际意义,知v≤120 km/h且d≥10 m.2.【答案】D【解析】显然有a2+b2≥2ab,a+b≥2,又a2+b2-(a+b)2=a2+b2-ab=(a-b)2≥0,所以a2+b2≥(a+b)2,故选D.3.【答案】B【解析】∵t2≥0,∴t2-1≥-1,∵函数y=2x在x∈R上是单调递增的,∴2-1≤-1,即a≤b,故选B.4.【答案】C或【解析】由得所以0<x<1,所以原不等式组的解集为{x|0<x<1},故选C.5.【答案】B【解析】∵f(-2)=f(0),∴x=-==-1,∴b=2,∴f(x)≤0⇒x2+2x-3≤0⇒(x+3)(x-1)≤0,∴-3≤x≤1.6.【答案】C【解析】由x2+x-12≥0,即(x+4)(x-3)≥0,x≥3或x≤-4.7.【答案】B8.【答案】D【解析】-b<<a⇔或⇔或⇔x>或x<-.9.【答案】C【解析】当k=0时,不等式变为1>0,成立;当k≠0时,不等式kx2-kx+1>0恒成立,则即0<k<4,所以0≤k<4.10.【答案】D【解析】取原点(0,0),因为,且原点在直线的左下方,所以不等式表示的区域在直线的左下方.11.【答案】A【解析】-==,∴a=-3.12.【答案】B【解析】由已知得z=x2-3xy+4y2(*)则==≤1,当且仅当x=2y时取等号,把x=2y代入(*)式,得z=2y2,所以+-=+-=-2+1≤1.13.【答案】≥1-a【解析】-(1-a)=+a-1==,∵|a|<1,即-1<a<1,∴a+1>0,a2≥0,∴≥0,故≥1-a.14.【答案】[-2,)【解析】由题意知(a2-4)x2+(a+2)x-1<0恒成立,当a=-2时,不等式化为-1<0,显然恒成立;当a≠-2时,则即-2<a<,综上实数a的取值范围是[-2,).15.【答案】【解析】直线y=a(x+1)恒过定点P(-1,0)且斜率为a,作出可行域后数形结合可解.不等式组所表示的平面区域D为如图所示阴影部分(含边界),且A(1,1),B(0,4),C.直线y=a(x+1)恒过定点P(-1,0)且斜率为a.由斜率公式可知kAP=,kBP=4.若直线y=a(x+1)与区域D有公共点,数形结合可得≤a≤4.16.【答案】【解析】∵,∴,即∴,∴,即.17.【答案】证明(1)由于x≥1,y≥1,所以要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2,只需证[y+x+(xy)2]-[xy(x+y)+1]≥0,即(xy-1)(x-1)(y-1)≥0,因为x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设log a b=x,log b c=y,由对数的换底公式得log c a=,log b a=,log c b=,log a c=xy,于是,所要证明的不等式即为x+y+≤++xy,其中x=log a b≥1,y=log b c≥1.故由(1)可知所要证明的不等式成立.18.【答案】证明a m+n+b m+n-(a m b n+a n b m)=(a m+n-a m b n)-(a n b m-b m+n)=a m(a n-b n)-b m(a n-b n)=(a m-b m)(a n-b n).当a>b时,a m>b m,a n>b n,∴(a m-b m)(a n-b n)>0;当a<b时,a m<b m,a n<b n,∴(a m-b m)(a n-b n)>0;当a=b时,a m=b m,a n=b n,∴(a m-b m)(a n-b n)=0.综上,(a m-b m)(a n-b n)≥0.故a m+n+b m+n≥a m b n+a n b m.19.【答案】(1)f(x)=(x-2)[x-(1-a)],设函数f(x)=0的两根为x1=2,x1=1-a,且x1-x2=2-1+a=a+1,f(x)>0等价于(x-2)[x-(1-a)]>0,于是当a<-1时,x1<x2,原不等式的解集为(-∞,2)∪(1-a,+∞);当a=-1时,x1=x2,原不等式的解集为(-∞,2)∪(2,+∞);当a>-1时,x1>x2,原不等式的解集为(-∞,1-a)∪(2,+∞).(2)不等式f(x)≥x-3,即a≥-恒成立,又当x>2时,-=-(x-2+)≤-2(当且仅当x=3时取“=”号),∴a≥-2.20.【答案】每天食用食物A kg,食物B kg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【解析】设每天食用x kg食物A,y kg食物B,总成本为z,那么⇒目标函数为z=28x+21y.作出二元一次不等式组所表示的平面区域,把目标函数z=28x+21y变形为y=-x+,它表示斜率为-且随z变化的一族平行直线.是直线在y轴上的截距,当截距最小时,z的值最小.如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小.解方程组得M点的坐标为.所以z min=28x+21y=16.21.【答案】(1)z=的最大值为3和最小值为;(2)z=x2+y2的最大值为13和最小值为.【解析】解(1)由于z==,所以z的几何意义是点(x,y)与点M(-1,-1)连线的斜率,因此的最值就是点(x,y)与点M(-1,-1)连线的斜率的最值,如图所示,直线MB的斜率最大,直线MC的斜率最小,又∵B(0,2),C(1,0),∴z max=kMB=3;z min=kMC=.∴z的最大值为3,最小值为.(2)z=x2+y2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点A的距离最大,原点到直线BC的距离最小.故z max=|OA|2=13,z min=2=2=.反思与感悟当斜率k,两点间的距离,点到直线的距离与可行域相结合求最值时,注意数形结合思想方法的灵活运用.22.【答案】【解析】(1) ∵,∴, 当时取等号.即当时,.(2),恒成立,即,恒成立.等价于在上恒成立,令,,∴,即.∴的取值范围是。
人教A版高中数学必修5第三章不等式单元测试(有答案)
不等式单元测试一、选择题(本大题共12小题,每小题5分,共60分) 1.不等式x (x -2)>0的解集是( ) A .(-∞,-2)∪(0,+∞) B .(-2,0) C .(-∞,0)∪(2,+∞)D .(0,2)2.直线a >b >0,那么下列不等式成立的是( )A .-a >-bB .a +c <b +c C.1a >1bD .(-a )2>(-b )23.y =log a ⎝⎛⎭⎪⎫x 2-4x +3·1x 2+x -2的定义域是( )A .{x |x ≤1或x ≥3}B .{x |x <-2或x >1}C .{x |x <-2或x >3}D .{x |x ≤-2或x >3} 4.若x ,y ∈R, x 2+y 2=1,则(1-xy )(1+xy )有( ) A .最小值12和最大值1 B .最小值34和最大值1C .最小值12和最大值34D .最小值15.若x ,y 满足条件⎩⎪⎨⎪⎧x ≥y ,x +y ≤1y ≥-1,,则z =-2x +y 的最大值为( )A .1B .-12 C .2 D .-56.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b 7.已知a >0,b >0,则1a +1b+2ab 的最小值是( )A .2B .2 2C .4D .58.不等式3x 2+2x +2x 2+x +1≥m 对任意实数x 都成立,则实数m 的取值范围是( )A .m ≤2B .m <2C .m ≤3D .m <39.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1 10.在△ABC 中,角A ,B ,C 所对边长分别为a ,b ,c ,若b 2+c 2=2a 2,则cos A 的最小值为( ) A.32 B.22 C.12 D .-1211.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4912.若对满足条件3x +3y +8=2xy (x >0,y >0)的任意x 、y ,(x +y )2-a (x +y )+16≥0恒成立,则实数a 的取值范围是( )A .(-∞,8]B .[8,+∞)C .(-∞,10]D .[10,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.设常数a >0,若9x +a 2x ≥a +1对一切正实数x 成立,则a 的取值范围为________.14.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≤1,x ≥0,y ≥0,则w =4x +2y -16x -3的取值范围是________.15.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.16.已知x >0,y >0,且2x +8y -xy =0,则x +y 的最小值为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知a ,b ,c 为不相等的正数,且abc =1.求证:a +b +c <1a +1b +1c.18.(12分)解不等式0<x -12x +1<1,并求适合此不等式的所有整数解.19.(12分)(1)已知x >0,求f (x )=2x+2x 的最小值和取到最小值时对应x 的值;(2)已知0<x <13,求函数y =x (1-3x )的最大值.20.(12分)已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.21.(12分)设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的整点个数为a n (n ∈N +).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.22.(12分)某糖果厂生产A 、B 两种糖果,A 种糖果每箱可获利润40元,B 种糖果每箱可获利润50元.其生产过程分混合、烹调、包装三道工序.下表为每箱糖果生产过程中所需平均时间(单位:min).混合 烹调 包装 A 1 5 3 B24130 h ,包装的设备最多只能用机器15 h ,每种糖果各生产多少箱可获得最大利润?答案与解析1.C 不等式x (x -2)>0, ∴x <0或x >2,故选C.2.D ∵a >b >0,∴a 2>b 2,(-a )2=a 2,(-b )2=b 2,∴D 成立.3.C 由题意得⎩⎪⎨⎪⎧x 2-4x +3>0,1x 2+x -2>0,即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2+x -2>0,解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-2,∴x >3或x <-2,故选C.4.B 由x 2+y 2=1, 0≤y 2=1-x 2≤1, ∴(1+xy )(1-xy )=1-x 2y 2=1-x 2(1-x 2)=x 4-x 2+1=⎝⎛⎭⎪⎫x 2-122+34.∵0≤x 2≤1, ∴当x 2=12时有最小值34.当x 2=0或1时有最大值1,故选B. 5.A 不等式组所表示的平面区域如图示.直线z =-2x +y 过B 点时z 有最大值,由⎩⎪⎨⎪⎧y =x ,y =-1,得B (-1,-1),∴z max =1.6.B ∵a =log 37,∴1<a <2.∵b =21.1,∴b >2.∵c =0.83.1,∴0<c <1.故b >a >c . 7.C 1a +1b +2ab ≥21ab+2ab ≥22×2=4,当且仅当1a =1b且21ab=2ab ,即a =b =1时,“=”号成立,故选C.8.A ∵x 2+x +1>0恒成立,∴不等式可化为3x 2+2x +2≥m (x 2+x +1),即(3-m )x 2+(2-m )x +2-m ≥0对任意实数x 都成立,当m =3时,不等式化为-x -1≥0不恒成立.当m ≠3时,有⎩⎪⎨⎪⎧3-m >0,2-m 2-4×3-m ×2-m ≤0,即m ≤2.综上,实数m 的取值范围是m ≤2,故选A. 9.D 作出可行域如图中阴影部分所示.由z =y -ax 得y =ax +z ,知z 的几何意义是直线在y 轴上的截距. 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.10.C cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+c 222bc =b 2+c 24bc ≥2bc 4bc =12,当且仅当b =c 时等号成立,故选C.11.C 作出可行域如图(阴影部分).由题意知,圆心C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.由⎩⎪⎨⎪⎧x +y -7=0,y =1,得A (6,1),由⎩⎪⎨⎪⎧x -y +3=0,y =1,得B (-2,1),而目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与A (6,1)重合时,a 2+b 2取到最大值37.12.C ∵xy ≤⎝⎛⎭⎪⎫x +y 22,∴3x +3y +8=2xy ≤x +y22,∴x +y22-3(x +y )-8≥0,解得x +y ≥8,∵(x +y )2-a (x +y )+16≥0恒成立,即a ≤x +y +16x +y, 又x +y +16x +y≥10.∴只需a ≤10,故选C. 13.⎣⎢⎡⎭⎪⎫15,+∞ 解析:∵a >0,x >0,∴9x +a 2x ≥29x ·a 2x =6a .当且仅当9x =a 2x,即3x =a 时取等号,要使9x +a 2x≥a +1成立,只要6a ≥a +1,即a ≥15.∴a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞.14.[5,6]解析:w =4x +2y -16x -3=4x -3+2y -4x -3=4+2×y -2x -3,设k =y -2x -3.则k 的几何意义是区域内的点到定点D (3,2)的斜率, 作出不等式组对应的平面区域如图:由图象得AD 的斜率最小,BD 的斜率最大,其中A ⎝ ⎛⎭⎪⎫0,12,B (1,0),此时k AD =12-20-3=12,此时w 最小为w =4+2×12=4+1=5,k BD =0-21-3=1,此时w 最大为w =4+2×1=6, 故5≤w ≤6. 15.6解析:画出可行域如图所示,其中z =x +y 取得最小值时的整点为(0,1),取得最大值时的整点为(0,4),(1,3)(2,2)(3,1)及(4,0)共5个整点.故可确定5+1=6条不同的直线.16.18解析:由2x +8y -xy =0得2y +8x=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫2y +8x =10+2x y +8y x≥18.当且仅当2x 2=8y 2,即x =2y 时,等号成立.17.证明:证法一:∵a ,b ,c 为不等正数,且abc =1,∴a +b +c = 1bc+1ca+1ab <1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c.故原不等式成立. 证法二:∵a ,b ,c 为不等正数,且 abc =1,∴1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc 2>abc 2+a 2bc +ab 2c =a +b +c .故原不等式成立. 18.解:∵0<x -12x +1<1,∴⎩⎪⎨⎪⎧x +1>0,x -12<x +1,x -1≠0,∴0<x <3,且x ≠1.故不等式的解集为{x |0<x <3,且x ≠1}, ∴适合此不等式的所有整数解为x =2.19.解:(1)f (x )=2x +2x ≥22x·2x =4,当且仅当2x=2x ,即x =1时,等号成立,∴f (x )的最小值为4,此时对应的x 的值为1. (2)∵0<x <13,∴1-3x >0.y =x (1-3x )=13·3x (1-3x )≤13·⎝⎛⎭⎪⎫3x +1-3x 22=112,当且仅当3x =1-3x ,∴x =16时,等号成立,∴y =x (1-3x )的最大值为112.20.解:(1)由已知得f (1)=-a 2+6a +3>0. 即a 2-6a -3<0.解得3-23<a <3+2 3.∴不等式f (1)>0的解集为{a |3-23<a <3+23}.(2)∵f (x )>b ,∴3x 2-a (6-a )x +b -6<0,由题意知,-1,3是方程3x 2-a (6-a )x +b -6=0的两根,∴⎩⎪⎨⎪⎧a 6-a3=2,b -63=-3.∴⎩⎨⎧a =3±3,b =-3.21.解:(1)由x >0, y >0, y =3n -nx >0, 得0<x <3.所以x =1或x =2,即D n 内的整点在直线x =1和x =2上.记y =-nx +3n 为l, l 与x =1, x =2的交点的纵坐标分别为y 1, y 2, 则y 1=2n, y 2=n, ∴a n =3n (n ∈N +).(2)∵S n =3(1+2+…+n )=3nn +12,∴T n =n n +12n. 又T n +1T n =n +22n>1⇒n <2, ∴当n ≥3时, T n >T n +1,且T 1=1<T 2=T 3=32.所以实数m 的取值范围为⎣⎢⎡⎭⎪⎫32, +∞. 22.解:设生产A x 箱,生产B y 箱,可获利润z 元,即求z =40x +50y 在约束条件⎩⎪⎨⎪⎧x +2y ≤720,5x +4y ≤1 800,3x +y ≤900,x ≥0, y ≥0下的最大值.解得z max =40×120+50×300=19 800.所以生产A 120箱,生产B 300箱时,可以获得最大利润19 800元.。
2018人教A版高中数学必修五第三章3.4基本不等式:ab≤a+b2练习.docx
[ 课时作业 ][A 组 基础巩固 ]1.下列不等式正确的是 ( )A . a + 1≥ 2a 2 1 C . a + a 2≥ 221a + 2解析 :因为 a 2+ 12中 a 2>0,所以a ≥a21 2121即 2 a + a 2 ≥ 1,所以 a + a 2≥ 2.答案 : C1B . (-a)+ - a ≤- 2D .(-a)2 + -1a 2≤- 221,a ·2a2.已知 m = a +1+ 1(a>0), n = 3x(x<1),则 m , n 之间的大小关系是 (aA . m>nB .m<nC . m = nD .m ≤n1 1解析 :因为 a>0,所以 m =a + + 1≥2a ·+ 1= 3,当且仅当 a = 1aax<1,所以 n =3 x <3 1= 3,所以 m>n.答案 : A3.已知 0<x<1 ,则 x(3- 3x)取得最大值时 x 的值为 ()1 1 A. 3B.232C.4D.3解析: 由 x(3-3x)= 1× 3x(3- 3x)≤1× 9=3,当且仅当 3x = 3- 3x ,即 3 3 4 4 答案: B4.已知 f(x)=x + 1- 2(x<0) ,则 f(x)有 ()xA .最大值为 0B .最小值为 0C .最大值为- 4D .最小值为- 4解析: ∵ x<0 ,∴ f(x)=- - x + 1- 2≤ - 2- 2=- 4,当且仅当- - x 时取等号.答案: C5.下列不等式中正确的是())时等号成立.又因为x = 12时等号成立.1x = - x ,即 x =- 1A . a +4≥ 4B . a 2 +b 2 ≥4abaa + b23C. ab ≥2D .x+ 2≥ 2 3x解析: a<0 ,则 a +4≥ 4 不成立,故 A 错; a = 1, b =1, a 2+ b 2<4ab ,故 B 错, a = 4, b =aa + b,故 C 错;由基本不等式可知 D 项正确. 16,则 ab< 2答案: Da - c6.已知 a>b>c ,则 a - b b - c 与 2 的大小关系是 ________.解析 :因为 a - b>0,b - c>0, a - c>0.所以 a - b b - c ≤ a - b + b -ca - c2= 2 .当且仅当 a - b = b - c ,即 2b =a + c 时取等号.所以a -b b -c ≤ a -c2 .答案 : a -b b - c ≤a -c27.当 x>1时,函数 y = x + 8 的最小值为 ________.22x - 11解析 :设 t = 2x -1,∵ x> ,∴ 2x - 1>0,即 t>0,t + 18 t 8 1≥ 2 t 8 19 ∴y =+ = + + ·+= .2 t 2 t 22 t 22当且仅当 2t = 8t ,即 t = 4, x = 52时,取等号.答案 : 928.若 x , y 均为正实数,且x + 4y =1,则 x ·y 的最大值为 ________.解析: 1= x + 4y ≥ 2 4xy = 4 xy ,∴ x y ≤ 1,当且仅当 x =4y 时等号成立.16答案:1169.已知不等式 ax 2- 3x + 2<0 的解集为 A = { x|1<x<b} . (1) 求 a ,b 的值;25(2) 求函数 f(x)= (2a + b) x + b - a x +a (x ∈ A)的最小值.解析 : (1)由题意知, 1, b 是方程 ax 2- 3x + 2= 0 的两根,且 b >1,a - 3+2= 0,a = 1,∴解得b = 2.ab 2- 3b +2= 0,25= 4x +25(2) 由 (1)得 f(x)= (2× 1+ 2)x + 2- 1 x + 1 x +1=4(x +1)+ 25- 4≥ 24 x +1 ·25- 4= 16.x + 1 x +1 当且 当 4(x +1) =25,即 x = 3∈ A 等号成立.x + 12∴函数 f(x) 的最小 16.10.某汽 公司 了4 大客 , 每 200 万元,用于 途客运, 每 每年收入100 万元,每 第一年各种 用 16 万元,且从第二年开始每年比上一年所需 用要 增加 16 万元.(1) 写出 4 运 的 利 y (万元 )与运 年数 x(x ∈ N * ) 的函数关系式;(2) 4 运 多少年,可使年平均运 利 最大?解析: (1)依 意,每x 年 收入100x 万元,支出200+ 16× (1+2+ ⋯ + x)1=200+ 2x(x + 1) ·16(万元 ).1∴ y = 4 100x - 200- 2x x + 1 ·16= 16(- 2x 2+ 23x - 50). (2) 年平均利y=16 23- 2x - 50 = 16 23- 2 x + 25 .x x x 又 x ∈ N * ,∴x +25≥ 2 25x x · =10,x当且 当 x =5 ,等号成立,此 y≤ 16× (23- 20)= 48.x∴运 5 年可使年平均运 利 最大,最大利48 万元.[B能力提升 ]x 2- 2x + 21.若- 4< x<1, f(x)= 2x - 2( )A .有最小 1B .有最大 1C .有最小 - 1D .有最大 - 1x 2-2x + 2 1 1+又∵- 4<x<1,∴ x - 1<0.∴- (x - 1)>0.1 1∴f(x)=- 2 - x - 1 + - x - 1 ≤ - 1.当且仅当 x -1= 1,即 x = 0 时等号成立.x - 1 答案: Da +b 12.设 f(x)= ln x,0<a<b ,若 p = f(ab),q = f(2 ),r = 2(f(a)+ f( b)) ,则下列关系式中正确的是( )A . q =r<pB . q = r>pC . p = r<qD .p = r>q 解析: p = f( ab)= ln ab , q = f(a +ba +b ,2 )= ln211a + br = 2( f(a)+ f(b))= 2ln ab = ln ab ,函数 f( x)= ln x 在 (0,+ ∞ )上单调递增,因为2 > ab ,所以 f( a + b 2 )>f( ab),所以 q>p = r.答案: C2≥ 7 在 x ∈ (a ,+∞ )上恒成立,则实数 a 的最小值为 ________.3.已知关于 x 的不等式 2x + x - a解析 :因为 x > a ,所以 2x + 2 = 2(x - a)+ 2 + 2a ≥ 22 x - a · 2+2a = 2a +4,即x -ax - a x - a332a + 4≥ 7,所以 a ≥ 2.即 a 的最小值为 2.答案 : 324.若正数 a , b 满足 ab - (a + b)= 1,则 a + b 的最小值是 ________. 解析 :由于 ab - (a + b)= 1,所以 ab = a + b + 1,而 ab ≤a +b 2,所以 a + b + 1 221≤( a +b) .4令 a + b = t(t>0),所以 t + 1≤ 1t 2,解得 t ≥2+ 2 2,4 即 a + b ≥ 2 2+ 2.当且仅当 a = b = 1+ 2时取等号.答案 : 2 2+ 25.函数 y =log a (x + 3)- 1(a>0, a ≠ 1)的图象恒过定点 A ,若点 A 在直线 mx + ny + 1= 0 上,其中 m ,n>0 ,则 m 1+ 2n 的最小值为 ________.解析 :函数 y = log (x + 3)- 1(a>0 ,a ≠1)的图象恒过定点A( -2,- 1),且点 A 在直线 mx +ny+ 1= 0 上,∴2m+n= 1, m, n>0,1212∴m+n=m+n·(2m+n)=4+n4m n 4m=8,+≥ 4+ 2·m n m n2m+n= 1,1,m=4当且仅当n =4m,即时等号成立.1m nn=2答案: 8+6.已知 a, b, c∈ R ,且 a+ b+ c= 1.求证:1a+1b+1c≥ 9.证明:∵ a, b, c∈ R+,且 a+ b+ c= 1,∴1+1+1a b c=a+ b+ c+ a+ b+ c+ a+ b+ ca b c=3+b+a+c+a+c+b a ba cb c≥3+ 2+ 2+ 2= 9.1当且仅当a= b= c=时等号成立.。
高中数学《 3.4 基本不等式 》评估训练 新人教A版必修5
3.4 基本不等式:ab ≤a +b2双基达标 限时20分钟1.若x >0,y >0,且x +y =4,则下列不等式中恒成立的是( ).A.1x +y ≤14B.1x +1y≥1C.xy ≥2D.1xy≥1解析 若x >0,y >0,由x +y =4,得x +y4=1,∴1x +1y =14(x +y )⎝ ⎛⎭⎪⎫1x +1y =14⎝ ⎛⎭⎪⎫2+y x +x y ≥14(2+2)=1. 答案 B2.下列各函数中,最小值为2的是( ).A .y =x +1xB .y =sin x +1sin x ,x ∈⎝⎛⎭⎪⎫0,π2C .y =x 2+3x 2+2D .y =x +1x解析 对于A :不能保证x >0, 对于B :不能保证sin x =1sin x ,对于C :不能保证x 2+2=1x 2+2,对于D :y =x +1x≥2.答案 D3.若0<a <b 且a +b =1,则下列四个数中最大的是( ).A.12B .a 2+b 2C .2abD .a解析 a 2+b 2=(a +b )2-2ab ≥(a +b )2-2·⎝⎛⎭⎪⎫a +b 22=12.a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab .∵0<a <b 且a +b =1,∴a <12.∴a 2+b 2最大. 答案 B 4.设a >2,则a +1a -2的最小值是________. 解析 ∵a >2,∴a -2>0. ∴a +1a -2=(a -2)+1a -2+2≥2+2=4. 当且仅当a -2=1a -2,即a =3时,等号成立. 答案 45.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 ab =a +b +3≥2ab +3,∴ab ≥3,即ab ≥9. 答案 [9,+∞)6.已知x >0,y >0,lg x +lg y =1,求2x +5y的最小值.解 法一 由已知条件lg x +lg y =1可得:x >0,y >0,且xy =10. 则2x +5y =2y +5x 10≥210xy 10=2, 所以⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当⎩⎪⎨⎪⎧2y =5x ,xy =10.即⎩⎪⎨⎪⎧x =2,y =5时等号成立.法二 由已知条件lg x +lg y =1可得:x >0,y >0,且xy =10,2x +5y ≥22x ·5y=21010=2(当且仅当⎩⎪⎨⎪⎧2x =5y ,xy =10.即⎩⎪⎨⎪⎧x =2,y =5.时取等号).综合提高 限时25分钟7.设a >0,b >0.若3是3a 与3b的等比中项,则1a +1b的最小值为( ).A .8B .4C .1D.14解析 因为3a ·3b=3,所以a +b =1, 1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +a b ≥2+2 b a ·a b=4,当且仅当b a =a b ,即a =b =12时,“=”成立,故选B.答案 B8.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ).A .6.5 mB .6.8 mC .7 mD .7.2 m解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l=a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).因为要求够用且浪费最少,故选C. 答案 C9.(2011·潍坊高二检测)在4×□+9×□=60的两个□中,分别填入两个自然数,使它们的倒数和最小,应分别填上________和________. 解析 设两数为x ,y ,即4x +9y =60, 又1x +1y =⎝ ⎛⎭⎪⎫1x +1y 4x +9y 60=160⎝ ⎛⎭⎪⎫13+4x y +9y x ≥160×(13+12)=512,当且仅当4x y =9y x,且4x +9y =60,即x =6,y =4时,等号成立. 答案 6 410.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n >0,则1m +2n的最小值为________.解析 函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A (-2,-1),(-2)·m +(-1)·n +1=0, 2m +n =1,m ,n >0, 1m +2n =⎝ ⎛⎭⎪⎫1m +2n ·(2m +n )=4+n m+4m n≥4+2n m ·4mn=8,当且仅当⎩⎪⎨⎪⎧2m +n =1n m=4mn,即⎩⎪⎨⎪⎧m =14n =12时等号成立.答案 811.求函数y =x 2+6x +1x 2+1的值域.解 函数的定义域为R , y =x 2+1+6x x 2+1=1+6x x 2+1. (1)当x =0时,y =1; (2)当x >0时,y =1+6x +1x≤1+62=4. 当且仅当x =1x时,即x =1时,y max =4;(3)当x <0时,y =1+6x +1x=1-6-x +1-x ≥1-62=-2.当且仅当-x =-1x时,即x =-1时,y min =-2.综上所述:-2≤y ≤4,即函数的值域是[-2,4].12.(创新拓展)(2012·济宁高二检测)某建筑公司用8 000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4 000平方米的楼房.经初步估计得知,如果将楼房建为x (x ≥12)层,则每平方米的平均建筑费用为Q (x )=3 000+50x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解 设楼房每平方米的平均综合费用为f (x )元,依题意得f (x )=Q (x )+8 000×10 0004 000x=50x +20 000x+3 000(x ≥12,x ∈N ),f (x )=50x +20 000x+3 000≥250x ·20 000x+3 000=5 000(元).当且仅当50x =20 000x,即x =20时上式取“=”因此,当x =20时,f (x )取得最小值5 000(元).所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用最小值为5 000元.。
山东省人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试
山东省人教新课标A版高中数学必修5 第三章不等式 3.4基本不等式同步测试姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)已知a>1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则mn的最大值为()A . 8B . 4C . 2D . 12. (2分) (2017高二上·邯郸期末) 在等差数列{an}中,a2=3,a5+a7=10,则a1+a10=()A . 9B . 9.5C . 10D . 113. (2分) (2018高三上·太原期末) 设正实数,满足,,不等式恒成立,则的最大值为()A .B .C .D .4. (2分) (2018高一下·石家庄期末) 已知,均为正实数,且直线与直线互相平行,则的最大值为()A . 1B .C .D .5. (2分) (2015高二下·忻州期中) 设f(x)= ,若f(f(1))≥1,则实数a的范围是()A . a≤﹣1B . a≥﹣1C . a≤1D . a≥16. (2分)若函数f(x)=x+(x>2)在x=a处取最小值,则a=()A .B .C . 3D . 47. (2分) (2017高一下·芜湖期末) 若实数x、y满足xy>0,则 + 的最大值为()A . 2﹣B . 2C . 4D . 48. (2分) (2018高二上·湛江月考) 若两个正实数满足,则的最小值为()A .B .C .D .9. (2分) (2016高二上·杭州期中) 已知正项等比数列{an}满足:a7=a6+2a5 ,若存在两项am , an ,使得aman=16a12 ,则+ 的最小值为()A .B .C .D . 不存在10. (2分) (2018高一下·宜宾期末) 如图,在四边形中,已知,,则的最小值为()A . 1B . 2C . 3D . 411. (2分)设是内一点,且的面积为2,定义,其中分别是,,的面积,若内一动点满足,则的最小值是()A . 1B . 4C . 9D . 1212. (2分) (2016高二上·驻马店期中) 已知0<x<2,则 + 的最小值为()A . 8B . 2C . 10D . 613. (2分) (2016高二下·黄骅期中) 已知3x+y=10,则x2+y2的最小值为()A .B . 10C . 1D . 10014. (2分) (2016高一下·桃江开学考) 已知点M(a,b)在直线4x﹣3y+c=0上,若(a﹣1)2+(b﹣1)2的最小值为4,则实数c的值为()A . ﹣21或19B . ﹣11或9C . ﹣21或9D . ﹣11或1915. (2分) (2017高二上·信阳期末) 已知正数a,b满足4a+b=3,则e •e 的最小值为()A . 3B . e3C . 4D . e4二、填空题 (共5题;共5分)16. (1分)已知实数m,n,x,y满足m2+n2=1,x2+y2=4,则my+nx的最小值为________17. (1分)周长为 +1的直角三角形面积的最大值为________.18. (1分)(2017·南阳模拟) 在等腰△ABC中,AB=AC,若AC边上的中线BD的长为6,则△ABC的面积的最大值是________.19. (1分) (2018高三上·北京月考) 已知非零实数满足等式,则=________.20. (1分)(2017·天津) 若a,b∈R,ab>0,则的最小值为________.三、解答题 (共5题;共25分)21. (5分)设函数f(x)=|1﹣2x|﹣3|x+1|,f(x)的最大值为M,正数a,b满足+=Mab.(Ⅰ)求M;(Ⅱ)是否存在a,b,使得a6+b6=?并说明理由.22. (5分) (2016高二上·上杭期中) 某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.23. (5分)某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽车费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的平均费用最少?24. (5分) (2016高一上·余杭期末) 如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ 的周长为2,设 AP=x,AQ=y.(1)求x,y之间的函数关系式y=f(x);(2)判断∠PCQ的大小是否为定值?并说明理由;(3)设△PCQ的面积分别为S,求S的最小值.25. (5分)设集合A={x|4﹣x2>0},B={x|y=lg(﹣x2+2x+3)}.(Ⅰ)求集合A∩B;(Ⅱ)若不等式2x2+ax+b<0的解集为B,求a,b的值.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分) 16-1、17-1、18、答案:略19-1、20-1、三、解答题 (共5题;共25分) 21-1、答案:略22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、。
河北省人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试
河北省人教新课标A版高中数学必修5 第三章不等式 3.4基本不等式同步测试姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2017高一下·宿州期中) 在下列函数中,最小值为2的是()A . y=2x+2﹣xB . y=sinx+ (0<x<)C . y=x+D . y=log3x+ (1<x<3)2. (2分)设等差数列的公差为d,若的方差为2,则d等于()A . 1B . 2C . ±1D . ±23. (2分) (2019高二下·蕉岭月考) 中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A .B .C .4. (2分) (2015高一下·湖州期中) 若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A .B .C . 5D . 65. (2分) (2017高二下·平顶山期末) 已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x> },则f(10x)>0的解集为()A . {x|x<﹣1或x>﹣lg2}B . {x|﹣1<x<﹣lg2}C . {x|x>﹣lg2}D . {x|x<﹣lg2}6. (2分) (2018高二上·玉溪期中) 已知m,n R,且m﹣2n+6=0,则的最小值为()A .B . 4C .D . 37. (2分) (2017高一下·晋中期末) 若b>a>0,则的最小值为()B . 3C .D . 28. (2分)已知等比数列中,公比,若,则的最值情况为()A . 有最小值B . 有最大值C . 有最小值12D . 有最大值129. (2分)已知正数x,y满足,则的最小值为()A . 8B . 4C . 2D . 010. (2分)(2020·普陀模拟) 若直线:经过第一象限内的点,则的最大值为()A .B .C .D .11. (2分)若,则的最小值为()A .B .C .D .12. (2分) (2017高二下·温州期中) 设正实数a,b满足a+b=1,则()A . 有最大值4B . 有最小值C . 有最大值D . a2+b2有最小值13. (2分) (2018高二上·泰安月考) 关于的不等式的解集是空集,则实数的范围为()A .B .C .D .14. (2分)设a= ,c=x+y,若对任意正实数x,y都存在以a,b,c为三边的三角形,则实数p的取值范围是()A . (1,3)B . (0,1)∪(3,+∞)C . (2,4)D . (2,3)15. (2分)已知,设函数的零点为m,的零点为,则的最大值为()A . 8B . 4C . 2D . 1二、填空题 (共5题;共5分)16. (1分) (2016高二上·湖州期末) 已知x,y为正实数,且x+2y=1,则的最大值是________,的最小值是________.17. (1分) (2016高三上·江苏期中) 已知正数a,b满足 = ﹣5,则ab的最小值为________.18. (1分) (2018高一下·芜湖期末) 已知函数,,则的最小值是________.19. (1分) (2019高三上·嘉兴期末) 已知正实数,满足,则的最大值为________.20. (1分) (2018高一下·双鸭山期末) 已知,若恒成立,则实数的取值范围________;三、解答题 (共5题;共25分)21. (5分) (2019高二上·郑州期中) 在中,内角,,的对边分别是,,,且.(Ⅰ)求角的大小;(Ⅱ)点满足,且线段,求的最大值.22. (5分) (2017高一上·定州期末) 2015年春,某地干旱少雨,农作物受灾严重,为了使今后保证农田灌溉,当地政府决定建一横断面为等腰梯形的水渠(水渠的横断面如图所示),为减少水的流失量,必须减少水与渠壁的接触面,若水渠横断面的面积设计为定值S,渠深为h,则水渠壁的倾斜角α(0<α<)为多大时,水渠中水的流失量最小?23. (5分) (2016高一下·霍邱期中) 解答(1)已知正数x,y满足x+2y=1,求 1 x + 1 y 的最小值(2)已知x>1,求:y=x+最小值,并求相应的x值.24. (5分)如图,一矩形铁皮的长为8m,宽为3m,在四个角各截去一个大小相同的小正方形,然后折起,可以制成一个无盖的长方体容器,所得容器的容积V(单位:m3)是关于截去的小正方形的边长x(单位:m)的函数.(1)写出关于x(单位:m)的函数解析式;(2)截去的小正方形的边长为多少时,容器的容积最大?最大容积是多少?25. (5分)解关于x的不等式 +1<0(k≥1).参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分) 21-1、22-1、23-1、23-2、24-1、24-2、25-1、第11 页共11 页。
高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题
第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。
最新人教A版高中数学必修五3.4基本不等式同步测试题(含解析)
《基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出地四个选项中,只有一项是符合题目要求地.1. 若a∈R,下列不等式恒成立地是()A.21a a+>B.2111a <+C.296a a+>D.2lg(1)lg|2|a a+>2. 若0a b<<且1a b+=,则下列四个数中最大地是()A.12B.22a b+C.2abD.a3. 设x >0,则133y x x=--地最大值为( )A.3 B.332- C.3-23 D.-14. 设,,5,33xyx y x y ∈+=+R 且则地最小值是( )A. 10B. 63C.46D. 1835. 若x , y 是正数,且141x y+=,则xy 有( )A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立地是 ( )A .2222ab c ++≥ B .2()3a b c ++≥C .11123a b c++≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立地是 ( )A .114x y ≤+B .111x y+≥ C .2xy ≥D .11xy ≥8. a ,b 是正数,则2,,2a b ab ab a b++三个数地大小顺序是( )A.22a bab ab a b+≤≤+ B.22a b abab a b+≤≤+ C.22aba b ab a b+≤≤+ D.22ab a bab a b +≤≤+9. 某产品地产量第一年地增长率为p ,第二年地增长率为q ,设这两年平均增长率为x ,则有( )A.2p q x += B.2p q x +< C.2p qx +≤D.2p q x +≥10. 下列函数中,最小值为4地是( )A.4y x x =+ B.4sin sin y x x=+(0)x π<<C.e 4e x xy -=+D.3log 4log 3x y x =+二、填空题, 本大题共4小题,每小题3分,满分12分,把正确地答案写在题中横线上. 11. 函数21y x =-地最大值为 .12. 建造一个容积为18m 3, 深为2m 地长方形无盖水池,如果池底和池壁每m 2地造价为200元和150元,那么池地最低造价为元.13. 若直角三角形斜边长是1,则其内切圆半径地最大值是 .14. 若x,y为非零实数,代数式22228()15x y x yy x y x+-++地值恒为正,对吗?答 .三、解答题,本大题共4小题,每小题12分,共48分,解答应写出必要地文字说明、证明过程和演算步骤.15. 已知:2222,(,0)x y a m n b a b+=+=>,求mx+ny地最大值.16. 设a,b,c(0,),∈+∞且a+b+c=1,求证:111(1)(1)(1)8.a b c---≥17. 已知正数a,b满足a+b=1(1)求ab地取值范围;(2)求1abab+地最小值.18. 是否存在常数c,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你地结论.专题五《基本不等式》综合检测 一、选择题二.填空题11. 12 14.对三、解答题 15.16. 略 17. (1)10,4⎛⎤⎥⎝⎦ (2)17418.存在,2c3。
石家庄市人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试
石家庄市人教新课标A版高中数学必修5 第三章不等式 3.4基本不等式同步测试姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2017高一下·宿州期中) 在下列函数中,最小值为2的是()A . y=2x+2﹣xB . y=sinx+ (0<x<)C . y=x+D . y=log3x+ (1<x<3)2. (2分) (2017高一下·安平期末) 数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为﹣2,公差为4的等差数列.若an=bn ,则n的值为()A . 4B . 5C . 6D . 73. (2分) (2019高三上·瓦房店月考) 已知,,,则的最小值为()A .B .C .D . 44. (2分)已知x>0,y>0,且+=1,若x+2y>m2+2m恒成立,则实数m的取值范围是()A . (0,2]B . (0,2)C . (﹣4,2)D . (﹣2,4)5. (2分) (2017高一下·晋中期末) 下列不等式中,与不等式的解集相同的是()A . (x+4)(x2﹣2x+2)>3B . x+4>3(x2﹣2x+2)C .D .6. (2分) (2018高一下·黄冈期末) 已知x ,y∈(0,+∞),且log2x+log2y=2,则+的最小值是()A . 4B . 3C . 2D . 17. (2分)已知正数满足:三数的倒数成等差数列,则的最小值为()A . 1B . 2C .D . 48. (2分)设成等差数列,成等比数列,则的取值范围为()A .B .C .D .9. (2分) (2017高一下·仙桃期末) 正数a,b满足等式2a+3b=6,则的最小值为()A .B .C .D . 410. (2分) (2019高一下·上海月考) 函数在上恒为正数,则实数的取值范围是()A .B .C .D .11. (2分) (2017高一下·鸡西期末) 在下列函数中,最小值是2的是()B .C .D .12. (2分) (2016高二上·厦门期中) 函数f(x)=ax﹣1+3(a>0,且a≠1)的图象过一个定点P,且点P 在直线mx+ny﹣1=0(m>0,n>0)上,则的最小值是()A . 12B . 13C . 24D . 2513. (2分)已知函数的图像在点处的切线的斜率为2,则的最小值是()A . 10B . 9C . 8D .14. (2分) (2017高二下·高青开学考) 若a>b>0,则下列不等式中恒成立的是()A .B . a+ >b+C . a+ >b+15. (2分)已知直线()经过圆的圆心,则的最小值是()A . 9B . 8C . 4D . 2二、填空题 (共5题;共5分)16. (1分) (2016高二上·翔安期中) 已知正数x,y满足x+8y=xy,则x+2y的最小值为________.17. (1分) (2016高一上·浦东期中) 已知x>﹣1,当x=________时,x+ 的值最小.18. (1分) (2019高二上·沈阳月考) 设等差数列的前项和为,,,则取得最小值的值为________.19. (1分)(2018·德阳模拟) 已知正数、的等差中项为1,则的最小值为________.20. (1分) (2016高二上·上海期中) 设实数a,b满足a+ab+2b=30,且a>0,b>0,那么的最小值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·西安期中) 已知函数.(1)若函数的最小值是,且c=1,,求F(2)+F(-2)的值;(2)若a=1,c=0,且在区间(0,1]上恒成立,试求b的取值范围.22. (5分) (2019·四川模拟) 已知椭圆C:的离心率为,长轴长为4直线与椭圆C交于A、B两点且为直角,O为坐标原点.(1)求椭圆C的方程;(2)求的最大值.23. (5分) (2017高一下·鸡西期末) 已知函数 .(1)若的解集为,求的值;(2)若存在,使得成立,求的取值范围.24. (5分) (2019高三上·牡丹江月考) 已知椭圆:的右焦点为点的坐标为,为坐标原点,是等腰直角三角形.(1)求椭圆的方程;(2)经过点作直线交椭圆于两点,求面积的最大值;(3)是否存在直线交椭圆于两点,使点为的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.25. (5分)(2016·淮南模拟) 设函数f(x)=|x﹣a|+5x.(1)当a=﹣1时,求不等式f(x)≤5x+3的解集;(2)若x≥﹣1时有f(x)≥0,求a的取值范围.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分) 21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教新课标 A 版高中数学必修 5 第三章不等式 3.4 基本不等式 同步测试 B 卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 15 题;共 30 分)
1. (2 分) 在
中,E、F 分别为 AB、AC 中点.P 为 EF 上任一点,实数 x、y 满足
、
的面积分别为 S、S1、S2、S3 , 记
,
,
最大值时,2x+y 的值为( )
A . -1
B.1
.设 , 则当 取
C.
D.
2. (2 分) 已知等差数列 的前项和为 , 且
,则 ( )
A.
B.
C. D.4
3. (2 分) (2015 高二下·和平期中) 在 x∈[ ,2]上,函数 f(x)=x2+px+q 与 g(x)= + 在同 一点取得相同的最小值,那么 f(x)在 x∈[ ,2]上的最大值是( )
A. B.4
第1页共9页
C.8 D. 4. (2 分) 在 R 上定义运算 取值范围是( ) A. B. C. D.
若对任意 , 不等式
都成立,则实数 的
5. (2 分) 已知函数 A.
, 则不等式
的解集为( )
B.
C.
D. 6. (2 分) (2018 高二上·大港期中) 已知 A . 100 B . 10 C.1
,且
,则 的最小值为 ( )
D.
7. (2 分) (2019 高二上·兰州期中) 设
且
第2页共9页
恒成立,则 的最大值是( )
A. B.2
C. D.4
8. (2 分) 已知 x,y 都是正数,若 A . 最小值 16 B . 最大值 16
, 则 xy 有( )
C . 最小值
D . 最大值 9. (2 分) 在下列函数中,当 x 取正数时,最小值为 2 的是( )
A.
B.
C. D. 10. ( 2 分 ) (2019 高 三 上 · 中 山 月 考 ) 已 知 函 数
,则实数 的取值范围为( ) A. B.
第3页共9页
,若存在实数 ,满足
C. D.
11. (2 分) (2018 高二上·宁德期中) 已知 A.6 B.5 C.4 D.3
,函数
的最小值是
12. (2 分) (2016 高一下·海南期中) 已知 x>y>0,则 x+ A.2 B.3 C.4 D.9
的最小值是( )
13. (2 分) (2018·东北三省模拟) 已知首项与公比相等的等比数列
),则
的最小值为( )
中,满足
A.
B. C.
D.
(,
14. (2 分) 已知双曲线 大值为( )
与 轴交于
两点,点
第4页共9页
,则△
面积的最
A. B. C. D.
15. (2 分) (2016 高一下·重庆期中) 设 a>b>c>0,则 3a2+ A.2 B.4 C.2
+ ﹣6ac+9c2 的最小值为( )
D.4
二、 填空题 (共 5 题;共 5 分)
16. (1 分) (2016 高二上·湖州期末) 已知 x,y 为正实数,且 x+2y=1,则 的最小值是________.
的最大值是________,
17. (1 分) (2018 高二上·牡丹江期中) 已知抛物线
,作直线
,与抛物线
交于
两点, 为坐标原点且
,并且已知动圆 的圆心在抛物线 上,且过定点
,
若动圆 与 轴交于
两点,且
,则
的最小值为________
18. (1 分) (2016 高二上·阜宁期中) 现要挖一个面积为 432m2 的矩形鱼池,鱼池周围两侧留出宽分别为 3m, 4m 的路,如图所示,则总占地面积最小值为________ m2 .
19. (1 分) (2019 高二上·六安月考) 近来猪肉价格起伏较大,假设第一周、第二周猪肉价格分别为 元/
第5页共9页
斤、 元/斤,家庭主妇甲和乙买猪肉的方式不同:家庭主妇甲每周买 3 斤猪肉,家庭主妇乙每周买 50 元钱的猪 肉,试比较谁购买方式更实惠(两次平均价格低视为实惠)________(在横线上填甲或乙即可).
20. (1 分) (2016 高三上·嘉兴期末) 函数 小值是________.
三、 解答题 (共 5 题;共 25 分)
21. (5 分) (2018 高二上·宁德期中) 已知关于 x 的不等式 Ⅰ 求 a , b 的值;
在 ________处取到最小值,且最
的解集为
或
.
Ⅱ当
,
且满足
时,有
恒成立,求 k 的取值范围.
22. (5 分) (2017 高一下·双流期中) 经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量 y(千
辆/h)与汽车的平均速度 v(km/h)之间的函数关系式为
.
(I)若要求在该段时间内车流量超过 2 千辆/h,则汽车在平均速度应在什么范围内?
(II)在该时段内,当汽车的平均速度 v 为多少时,车流量最大?最大车流量为多少?
23. (5 分) (2018·重庆模拟) 不等式选讲,已知函数
.
(1) 若关于 的不等式
有解,求实数 的取值范围;
(2) 若正实数 , 满足
,当 取(1)中最大值时,求
的最小值.
24. (5 分) (2020·甘肃模拟) 在
中,角 , , 所对的边分别为 , , ,且
的面积为
.
(1) 求 的值;
(2) 若
,求
周长的最大值.
25. (5 分) 解关于 x 的不等式:
.
第6页共9页
一、 单选题 (共 15 题;共 30 分)
1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、 13-1、 14-1、 15-1、
参考答案
第7页共9页
二、 填空题 (共 5 题;共 5 分)
16-1、 17-1、 18-1、 19-1、
20-1、
三、 解答题 (共 5 题;共 25 分)
21-1、
22-1、 23-1、答案:略 23-2、
第8页共9页
24-1、 24-2、
25-1、
第9页共9页
。