第六章 离子聚合 重点、难点指导
(2020年整理)第六章 离子聚合.doc
第六章离子聚合思考题 6.1试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么?答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。
进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。
异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。
进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。
丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。
思考题6.2下列单体选用哪一引发剂才能聚合?指出聚合机理类型。
答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。
偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。
异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。
丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。
CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合。
阴离子聚合,选用Na+萘或n-C4H9Li 引发;自由基聚合选用(C6H5CO)2O2作引发剂。
思考题6.3下列引发剂可以引发哪些单体聚合?选择一种单体作代表,写出引发反应式。
(1)KNH2(2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa答(1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚合。
如引发苯乙烯进行聚合(2) A1C13活性高,用微量水作共引发剂即可。
A1C13+HCl配合时,C1-亲核性过强,易与阳离子共价终止,因此很少采用。
(3) SnCl4+C2H5Cl以引发异丁烯、乙烯基烷基醚及共轭烯烃进行阳离子聚合(4) CH3ONa可以引发高活性和较高活性的单体进行阴离子聚合。
高分子化学:第6章 离子聚合
3
具有腈基、羰基等强吸电子基单体进行阴离子聚合;
含1,1-二烷基、烷氧基等推电子基单体才能进行阳 离子聚合;
羰基化合物、杂环化合物,大多属离子聚合. 聚合机理和动力学研究不够成熟(理由)
1. 聚合条件苛刻,微量杂质影响极大,聚合重现性差; 2. 聚合速率快,需低温聚合,给研究工作造成困难; 3. 反应介质性质对反应也有极大影响,影响因素复杂.
11
萘钠在极性溶剂中是均相体系,碱金属的利用率高
12
(2)有机金属化合物——阴离子引发
碱金属氨基化合物 是研究得最早的一类引发剂 主要有 NaNH2-液氨、KNH2 -液氨 体系
13
金属烷基化合物 引发活性与金属的电负性有关:金属的电负性如下
如丁基锂以离子 对方式引发
制成格氏试剂,引发 活泼单体
第6章 离子聚合
1
问题
1、什么是离子聚合?根据离子电荷性质 的不同,可以分为哪两类?
2、离子聚合的单体有哪几类?
6.1 引言
● 离子聚合是又一类连锁聚合。它的活性中心为
离子。根据活性中心的电荷性质(碳阴离子和碳阳离 子),可分为阴离子聚合和阳离子聚合。
● 离子聚合的理论研究始于50年代:1953年, Ziegler在常温低压下制得PE; 1956年,Szwarc发 现了“活性聚合物”。
35
36
溶剂能导致活性种的形态结构及活性发生变化,
溶剂的性质可用两个物理量表示(见表6-5): 介电常数:表示溶剂极性的大小,溶剂极性越大,
活性链离子与反离子的离解程度越大,自由离子多。
电子给予指数:是表征溶剂化能力的辅助参数,溶 剂的给电子能力强,对阳离子的溶剂化作用越强,离 子对也越分开。
第六章 离子聚合.pdf
第六章离子聚合思考题 6.1试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么?答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。
进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。
异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。
进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。
丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。
思考题6.2下列单体选用哪一引发剂才能聚合?指出聚合机理类型。
答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。
偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。
异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。
丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。
CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合。
阴离子聚合,选用Na+萘或n-C4H9Li 引发;自由基聚合选用(C6H5CO)2O2作引发剂。
思考题6.3下列引发剂可以引发哪些单体聚合?选择一种单体作代表,写出引发反应式。
(1)KNH2(2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa答(1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚合。
如引发苯乙烯进行聚合(2) A1C13活性高,用微量水作共引发剂即可。
A1C13+HCl配合时,C1-亲核性过强,易与阳离子共价终止,因此很少采用。
(3) SnCl4+C2H5Cl以引发异丁烯、乙烯基烷基醚及共轭烯烃进行阳离子聚合(4) CH3ONa可以引发高活性和较高活性的单体进行阴离子聚合。
六章节离子聚合
第六章 离子聚合
3. 其他引发剂 其它阳离子引发剂有碘、高氯酸盐、六氯化铅盐
等。如碘分子歧化成离子对,再引发聚合:
I2 I2
I+(I3)-
形成的碘阳离子可引发活性较大的单体,如对甲 氧基苯乙烯、烷基乙烯基醚等。
19
第六章 离子聚合
阳离子聚合也能通过高能辐射引发,形成自由
基阳离子,自由基进一步偶合,形成双阳离子活性
但当烷基换成芳基后,由于氧上未共有电子对也 能与芳环形成共轭,分散了双键上的电子云密度, 从而使其进行阳离子聚合的活性大大降低。
8
第六章 离子聚合
(3)共轭单体 苯乙烯,丁二烯等含有共轭体系的单体,由于
其π电子云的流动性强,易诱导极化,因此能进行 阳离子、阴离子或自由基聚合。但聚合活性较低, 远不及异丁烯和烷基乙烯基醚,故往往只作为共聚 单体应用。
6
第六章 离子聚合
更高级的α- 烯烃,由于空间位阻效应较大,一 般不能通过阳离子聚合得到高分子量聚合物。
异丁烯:唯一一个具有实际工业价值的 能进行阳离子聚合的α- 烯烃单体
7
第六章 离子聚合
(2)烷基乙烯基醚 烷氧基的诱导效应使双键电子云密度降低,但
是氧原子上的未共有电子对与双键形成 p -π共轭效 应,双键电子云增加。与诱导效应相比,共轭效应 对电子云偏移的影响程度更大。事实上,烷氧基乙 烯基醚只能进行阳离子聚合。
共引发剂过量可能生成氧鎓离子,其活性低于络 合的质子酸,使聚合速率降低。
BF3 H2O
H+(BF3OH)- H2O (H3O)+(BF3OH)-
17
第六章 离子聚合
在工业上,一般采用反应速率较为适中的AlCl3 —H2O引发体系。
第六章离子聚合
第六章 离子聚合
6.2.8 丁基锂的缔合和解缔合 丁基锂是目前应用最广阴离子聚合引发剂。实践中发现溶剂 不当,丁基锂引发活性很低,可能由于丁基锂缔合作用。 丁基锂在非极性溶剂如苯、甲苯、己烷中存在缔合现象, 缔合度2~6不等。缔合分子无引发活性。 一般丁基锂浓度低基本不存在缔合现象。在THF等极性溶剂体 系中,缔合也不重要。例,动力学研究,在苯乙烯以丁基锂 为引发剂,以苯为溶剂的阴离子聚合中,引发速率和增长速 率分别为丁基锂的1/6级和活性链浓度的1/2级,表明丁基锂的 缔合度为6,而活性链的缔合度为2 。 丁基锂的缔合现象使聚合速率显著降低。
形成活性聚合物的原因 离子聚合无双基终止 反离子为金属离子,不能加成终止 从活性链上脱除氢负离子H-进行链转移困 难,所需能量较高(主要原因)
因此,阴离子聚合不存在真正的链终止反应。
第六章 离子合
6.2.5 特殊终止和链转移终止
阴离子聚合需在高真空、惰性气氛或完全除水等条件下进行, 试剂和反应器都须洁净。微量杂质,如水、氧气、二氧化碳 都会使阴离子聚合终止。在无终止聚合条件下,常人为加入 水、醇、胺等物质使聚合终止。 由于无终止阴离子聚合的单体能被活性中心全部反应,产 物的聚合度与引发剂浓度、单体浓度有关,可定量计算,因 此也称为“化学计量聚合”。
A
离子聚合
δ
_
CH2=CH Y
ACH2
C Y
第六章 离子聚合
含供电基团的单体能否聚合成高聚物,还要求: 质子(proton)对C=C有较强亲和力;
烯烃双键对质子的亲和力,可以从单体 和质子加成的的热焓判断。
增长反应比其他副反应快,即生成的碳阳离子 有适当的稳定性。
第六章 离子聚合
如:α—烯烃 乙烯(ethylene): 无侧基,C=C电子云密度低,且不易极化,对质 子亲和力小,难以阳离子聚合。 丙烯(propylene)、丁烯(butylene): 烷基供电性弱,生成的二级碳阳离子较活泼,易 发生重排(rearrangement)等副反应,生成更稳定 的三级碳阳离子。 丙烯、丁烯只能得到低分子的油状物。
第6章 离子聚合
H (CR)
ki
H (CR)
+ M
HM (CR)
(3)其它阳离子引发剂的引发反应 ① 用卤素引发
I2 + CH2 CH OR I CH2 CH I I2 I CH2 CHI3 OR OR
②稳定的碳阳离子盐作引发剂的引发反应
(C6H5)3C + CH2 CH OR (C6H5)3C + CH2 CH OR
异丁烯
三级碳阳离子 比二级碳阳离 子稳定,不容 易再发生反应
同一C原子上两烷基供电基,C=C电子 云密度增加很多,易受质子进攻,生成 稳定的三级碳阳离子。
CH3
CH3
异丁烯是唯一能进行阳离子聚合的α-烯
烃,且它只能进行阳离子聚合。常用异丁 烯来判别阳离子聚合机理。
-CH2-C-CH2-CCH3 CH3
CH3 C + BF 3OH CH3 CH 3 C CH 3
n
-
CH3
CH3
* CH2
C + BF 3OH CH3
-
特点: 增长活化能与引发活化能一样低,速率快。 增长活性中心为一离子对,结合的紧密程度对聚合 速率和分子量有一定影响。 单体插入聚合,对链节构型有一定的控制能力。
增长过程可能伴有分子内重排反应。
H [BF3OH]
+ H2C CH X
(ii)能“自离子化”的Lewis酸或不同Lewis酸的复合物, 通过自离子化或不同Lewis酸相互离子化产生阳离子引发 聚合反应。如:
2 TiCl4 [TiCl3] [TiCl5] + H2C CH X Cl H Cl Ti CH2 C [TiCl5] Cl X
例如:3-甲基-1-丁烯聚合,先形成二级碳阳离子,然后转 化为更稳定的三级碳阳离子。因此分子链中可能含有两种 结构单元。 ①
高分子化学第六章_离子聚合介绍
基单体,难阴离子聚合。
由于p-π给电子共轭效应减弱了吸电子诱导效应对双键电 子云密度的降低程度,因而不易受阴离子的进攻,不易 阴离子聚合。如:
H2C CH Cl 氯乙烯 H2C CH O C CH3 O 乙酸乙烯酯
按阴离子聚合活性次序,可将烯类单体分为四组 乙烯基单体,取代基的吸电子能力越强,双键上的电子云密 度越低,越易与阴离子活性中心加成,聚合反应活性越高。 A组(活性较弱):共轭烯
,当转化率达100%后,加入水、醇、胺等链转移剂使聚
合终止。
1956 年对萘钠在 THF 中引发苯乙 烯聚合时首先发现 实验证据 萘钠在THF中引发苯乙烯聚合,碳阴离子增长链为红色,直到单体100%转化, 红色仍不消失
重新加入单体,仍可继续链增长(放热),红色消退非常缓慢,几天~几周
活性聚合和活性聚合物 活性聚合(Living Polymerization): 引发剂在引发前,先100%地迅速转变成阴离子活性 中心,然后以相同速率同时引发单体增长,至单体耗尽仍 保持活性,称作活性聚合。 活性聚合物(Living Polymer): 定义:当单体转化率达到 100%时,聚合仍不终止, 形成具有反应活性聚合物,即活性聚合物。
式中 M0起始单体浓度 [C] 引发剂的浓度
(2) 聚合度(degree of polymerization)
在下列条件下:
引发剂很快全部很快地转变成活性中心
搅拌良好,单体分布均匀,所有链增长同时开始
无链转移和链终止反应
解聚可忽略
34
转化率达100%时,所有单体全部平均分配到每个活性端基上, 活性聚合物的平均聚合度等于单体浓度与大分子活性链数之比:
金属的电负性如下
电负性 金属-碳键 键的极性 引发作用 K 0.8 K -C 有离子性 Na 0.9 Na-C 极性共价键 Li 1.0 Li-C 极性弱 Mg Al 1.2~1.3 1.5 Mg-C Al-C 极性更弱 不能
高分子化学第六章
+
B
H2C
C
CH 3
CH 3
δ
离子对的存在形式多种多样
δ+
离子对的存在形式决定聚合速率和聚合物的立体结构 影响离子对存在形式的因素 (溶剂、反离子、温度)
例如:苯、二氧六环(DOX)、四氢呋喃(THF)、DMF
b. 异构化聚合: 定义:原子或原子团重排的聚合过程,称异构化聚合 反应:
C
+
正常加成
(5)小结--阳离子聚合特征 快引发、快增长、难终止、易转移 活性中心以多种状态共存 低温聚合 (-100°C)
5、典型工业化品种
(1)聚异丁烯 (PIB)
H2C C
C H3
C H3
Al C l 3 H2O
C H3
CH2 C
-100°C
n
C H3
粘合剂 (<5万):半固体,嵌缝材料,密封材料 橡胶 (5-100万):蜡或聚合物的添加剂,但不易硫化 (2)丁基橡胶 (IIR)
Na
+
[
e
]
-.
Na +
complex (greenish blue color)
Alkali metal
Aromatic compound
initiator
Initiation:
[
electron transfer
]
-
.
Na +
+
H2C CH
. CH
2
CH - Na +
+
radical couple dimerize
+ CH3CH2CH2CH2 Li
+
高分子化学第六章_离子聚合
➢有些单体虽然可用不同的聚合方法都能聚合,但产物的 性能差别很大,如聚丁二烯和PS离子聚合产物的性能和自 由基聚合产物性能差别很大。
聚合机理和动力学研究不如自由基聚合成熟
1. 聚合条件苛刻,微量杂质有极大影响,聚合重现性差; 2. 聚合速率快,需低温聚合,给研究工作造成困难; 3. 反应介质的性质对反应也有极大的影响,影响因素复杂。
(红色)(苯乙烯双阴离子)
碱金属一般不溶于单体和溶剂,是非均相聚合体系,聚 合在金属细粒表面进行,效率较低。而萘-钠体系在溶剂 中溶解,是均相体系,碱金属的利用率增加,聚合效率 提高。
(2)有机金属化合物引发 阴离子引发
金属氨基化合物
是研究得最早的一类引发剂,引发剂的活性太大,聚合不易控制,目 前已经不使用。 主要有 NaNH2-液氨、KNH2 -液氨 高活性阴离子引发体系。
电子间接转移引发 碱金属将电子转移给中间体,形成自由基-阴离子,再将
活性转移给单体
如钠-萘在四氢呋喃中引发苯乙烯
Na + Na + CH2 CH
THF
Na
(萘钠自由基-阴离子)
Na CH CH2 +
(绿色)
2 Na CH CH2
(苯乙烯自由基-阴离子)
(红色)
Na CH CH2 CH2 CH Na
H2C CH Cl
氯乙烯
H2C CH
O C CH3 O
乙酸乙烯酯
按阴离子聚合活性次序,可将烯类单体分为四组
乙烯基单体,取代基的吸电子能力越强,双键上的电子云密 度越低,越易与阴离子活性中心加成,聚合反应活性越高。
离子聚合
第六章 离 子 聚 合基本要求:本章以阴离子聚合为重点。
要求学生掌握 离子聚合的单体与引发剂的匹配,活性种的形式,反 应机理及特征,影响离子聚合的影响因素。
掌握活性 聚合,异构聚合,开环聚合等基本概念。
了解离子聚 合的工业应用。
重点:阴离子聚合的单体与引发剂的匹配、活性种的 形式、反应机理及特征、影响离子聚合的影响因素 难点:阴离子聚合6.1 引言 6.2 阴离子聚合 6.3 阳离子聚合 6.4 离子聚合与自由基聚合的比较 6.5 离子共聚6.1 引言离子聚合与自由基聚合一样,同属链式聚合反应,但链增长 反应活性中心是带电荷的离子。
根据活性中心所带电荷的不同, 可分为阳离子和阴离子聚合。
对于烯烃单体而言,活性中心就是 碳阳离子或碳负离子,它们的聚合反应可分别用下式表示:除了活性中心的性质不同之外,离子聚合与自由基聚合明显 不同,主要表现在以下几个方面:(1)单体结构 自由基聚合对单体选择性较低,多数烯烃单体可以进行自由基聚合。
但离子聚合对单体有较高的选择性,只适合于带能稳定 碳阳离子或碳负离子取代基的单体,具有推电子基团的乙烯基单 体,有利于阳离子聚合,具有吸电子基团的乙烯基单体,则容易 进行阴离子聚合。
由于离子聚合单体选择范围窄,导致已工业化 的聚合品种要较自由基聚合少得多。
(2)活性中心的存在形式离子聚合的链增长活性中心带电荷,为了保持电中性,在增 长活性链近旁有一个带相反电荷的离子存在,称之为反离子或抗 衡离子。
这种离子和反离子形成的离子对在反应介质中能以几种 形式存在,可以是共价键、离子对乃至自由离子,以阳离子聚合 为例:ABAB共价键合 紧密离子对AB疏松离子对A +B自由离子(3)聚合温度离子聚合的活化能较自由基聚合低,可以在低温如0℃以下, 甚至-70~-100℃下进行。
若温度过高,聚合速率过快,有可能 产生爆聚。
同时,离子型活性中心具有发生如离子重排、链转移 等副反应的倾向,低的聚合温度可减少这些竞争副反应的发生。
第六章离子聚合
第六章离子聚合、名称解释1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。
2. 活性聚合:当单体转化率达到100% 时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。
3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。
4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。
5. Ziegler-Natta 引发剂:Zigler-Natta 引发剂是一大类引发体系的统称,通常有两个组份构成:主引发剂是W〜忸族过渡金属化合物。
共引发剂是I〜川族的金属有机化合物。
6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。
具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。
配位聚合又有络合引发聚合或插入聚合之称。
7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。
定向聚合等同于立构规整聚合。
二、选择题1. 下列单体中哪一种最容易进行阳离子聚合反应-------------------------------------- (B )A .CH 2=CH 2 B.CH2=CHOCH 3 C.CH 2=CHCl D .CH2 =CHNO 22. 下列哪种物质不能作为阳离子聚合的引发剂---------------------------------------- (B )A .正碳离子盐B .有机碱金属C .质子酸D . Lewis酸3. 四氢呋喃可以进行下列哪种聚合-------------------------------------------- (C )A.自由基聚合 B .阴离子聚合C.阳离子聚合 D .配位聚合4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C )A 阴离子本身比较稳定B 阴离子无双基终止而是单基终止C 从活性链上脱出负氢离子困难D 活化能低,在低温下聚合5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A )A阴离子聚合B阳离子聚合C自由基聚合D自由基共聚合6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D)A. BuLiB. AIBNC. AlCl 3+H2OD. 萘+钠7. 制备分子量分别较窄的聚苯乙烯,应该选择(B)A 阳离子聚合B 阴离子聚合反应C 配位聚合反应D 自由基聚合反应8. 按阴离子聚合反应活性最大的单体是(A)A a氰基丙烯酸乙酯B乙烯C甲基丙烯酸甲酯D乙酸乙烯酯9. 高密度聚乙烯与低密度聚乙烯的合成方法不同,若要合成高密度聚乙烯所采用的引发剂是(B )A. BuLiB. TiCl4-AlR3C. BF3+H2OD. BPO10. Ziegler-Natta 引发剂引发丙烯聚合时,为了控制聚丙烯的分子量,最有效的办法是(D)A 增加引发剂的用量B 适当降低反应温度C 适当增加反应压力D 加入适量氢气11. 合成顺丁橡胶所用的引发剂为(D)A BPOB BuLiC Na + 萘D TiI+AlEt 312. 鉴定聚丙烯等规度所用的试剂是(D)A 正庚烷B 正己烷C 正辛烷D 沸腾的正庚烷13. 能采用阳离子、阴离子与自由基聚合的单体是(B)A、MMAB、StC、异丁烯D、丙烯腈14. 在高分子合成中,容易制得有实用价值的嵌段共聚物的是(B)A 配位阴离子聚合;B 阴离子活性聚合;C 自由基共聚合15 阳离子聚合最主要的链终止方式是(B)A 向反离子转移;B 向单体转移;C 自发终止16 能引发丙烯酸负离子聚合的引发剂是(A)A 丁基锂B 三氯化铝C 过氧化氢17 取代苯乙烯进行阳离子聚合反应时,活性最大的单体是(A)A 对甲氧基苯乙烯B 对甲基苯乙烯C 对氯苯乙烯D 间氯苯乙烯18 在具有强溶剂化中进行阴离子聚合反应时,聚合速率随反离子的体积增大而(B)A 增加B 下降C 不变D 无规律变化19 用强碱引发己内酰胺进行阴离子聚合反应时存在诱导期,消除的方法是(C)A 加入过量的引发剂B 适当提高温度C 加入少量乙酸酐D 适当加压20为了得到立构规整的1.4-聚丁二烯,1,3 -丁二烯可采用(D)聚合。
6离子聚合新点
上页 下页
退出
教学重点:离子型聚合的单体与引发剂;离子聚合反 应机理及其特点,活性阴离子聚合的特点及应用。
教学难点:离子型聚合的单体与引发剂的匹配关系
上页 下页
退出
6.1 引 言
6.1.1 离子聚合的分类、特点与发展
一、分类
• 阴离子聚合 • 阳离子聚合 • 配位阴离子聚合
高分子化学
第六章 离子聚合
Ionic Chain Polymerization
上页 下页
退出
本章主要内容
引言 阴离子聚合 阳离子聚合 自由基聚合与离子聚合的比较 离子共聚
上页 下页
退出
教学目的及要求
1. 掌握:离子型聚合的单体与引发剂的匹配关系, 活性聚合及活性聚合物,离子聚合的活性种形 式、反应机理及其特点。
HH CC HX
M+ + CH2=CHX
活化能高
阴离子聚合无终止,难转移
H
H
C C + H3C C
HX
X
上页 下页
退出
在聚合末期,加入水、醇、酸(RCOOH)、胺(RNH2)等 物质可使活性聚合物终止。有目的的加入CO2、环氧乙烷、 二异氰酸酯可获得指定端基聚合物。
e.g:
H
H
CH2 C Me + H2O X H
上页 下页
退出
说 明:
但有些单体(极性单体)聚合时存在链转移与链终止反 应。如:丙烯腈的阴离子聚合
CH2 CH CN
链转移 + H2C CH
CN
CH2 CH2 + H2C C
CN
第6章离子聚合重点讲义资料
5离子聚合 思考题1. (略)单体 H 2C 二CHC 6H 5H 2C 二C(CN) 2H 2C=C(CH 3)2 HH 2C 二 C - O n-C 4H 9H 2C 二 C(CH 3)COOCH 3引发体系(C 6H S CO)2O 2Na+萘BF 3+H 2On-C 4H 9Li Sn CI 4+H 2O答:⑴ H 2C=CHC 6H 5 可被引发剂(C 6H 5CO )2O 2、Na+萘、BF 3+H 2O 和 n-C 4H 9Li 引发聚合。
① H 2C^CHC 6H 5 + (C 6H 5CO )2O 2;属于自由基聚合。
(C 6H 5CO )2O 2 ------------------2C 6H 5COO •C 6H 5CO0• + H 2^ = CHC 6H 5 --------------------- C 6H 5COOCH 2CH2C 6H 5H 2C 二CHC 6H 5 + Na-萘;属于阴离子聚合© ©* Na HC-CH 2 +。
6血H 2 H 2 一 Na HC —C —C — CH Na丨 | C 6H 5 C 6H 5(BF 3+H 2O );属于阳离子聚合。
BF 3 + H 2O --------H (BF 3OH)® e ®©H 2CPHC 6H 5 + H (BF 3OH) ——► CH 2C H (BF 3OH)C 6H 5④H 2C 二CHC 6H 5 + n-C q H g Li ;属于阴离子聚合。
① H 2C 二C (CN )2 + (Na+萘);属于阴离子聚合@ G - 2Na HC ——CH 2 C 6H 5H 2CPHC 6H 5 +H 2C 二 CHC 6H 5 + nGH g Li⑵ H 2C 二C(CN )2可被引发剂 ----- a nGH g CH z CHLi+C 6H 5Na+萘 和n-C 4H g Li 引发聚合Na + H 2C CHC 6H 5++ Na C(CN) 2CH 2.CHH 2 H 2H 3¥Na C-C —CC Na H B COOC C OOCH 3+n-C q H g Li ;属于阴离子聚合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 离子聚合
重点、难点指导
一、重要术语和概念
离子聚合单体、离子聚合的引发剂和共引发剂、离子聚合中活性中心形态与溶剂、离子聚合的机理特征、活性阴离子聚合、嵌段共聚物制备
二、重要公式
活性阴离子聚合速率:
]][[][M B k dt
M d R p p −=−= 活性阴离子聚合物的聚合度:][])[]([0C M M n Xn −=
三、难点
阴离子聚合反应的影响因素、活性阴离子聚合
1、阴离子聚合
(1) 阴离子聚合单体
能进行阴离子聚合的单体包括三种类型,即:(1)带吸电子取代基的。
α-烯烃;(2)带共轭取代基的α-烯烃;(3)某些含杂原子的化合物(如O 、N 杂环)。
(2) 阴离子聚合的引发剂
阴离子聚合的引发剂主要有三类:即:(1)碱金属烷基化合物如正丁基锂( LiBu)等;(2)碱金属如Li 、Na 、K 等;(3)碱金属络合物如萘钠、苯基锂等。
(3) 阴离子聚合反应机理
阴离子聚合届连锁聚合反应的一种类型、其反应也包括链引发、链增长和链终止三个基元反应。
机理特征是慢引发、快增长、无终止、无转移、成为典型的活性聚合,可用来合成分子量窄分布的聚合物和嵌段共聚物。
合成嵌段共聚物时,应使pKa 值较大的单体先聚合,再加pKa 值较小的单体后继聚合。
(4) 阴离子聚合反应的影响因素
在阴离子聚合反应中.活性中心离子的存在形态是影响聚合反应速率和聚合物结构的最重要因素.分析如下:
①溶剂的影响
溶剂对明离子聚合引发剂、单体及活性离子对具有“溶剂化作用”。
极性溶剂的溶剂化作用使阴离子聚合的活性中心成为松离子对甚至自由离子,因此在极性溶剂中进行的阴离子聚合反应速率快.但聚合物的结构规整性差;非极性溶剂的溶剂化作用较弱,活性中心多为紧离对、聚合反应速率较馒而聚合物的结构规整性较好。
②反离子的影响 ‘
在非极性溶剂中.阴离子聚合链增长速率常数随反离子半径增加而增加.聚合产物的规整性下降;在极性溶剂中。
链增长速率常数随反离子半径增加而降低,聚合物的规整性提高。
③温度的影响
温度对阴离子聚合反应的影响包括对聚合反应本身的影响和对镕转移副反应的影响。
首先温度升高使聚合反应速率升高,同时使聚合物结构规整性降低;其次活性明离子容易与质子性物质发生链转移反应而终止,且链转移反应的话化能又高于链增长活化能,所以升高温度往往使链转移反应加剧。
另外,除活性中心为紧离子对外,阴离子聚合的活化能稍低于自
由基聚合的活化能,因此一般阴离子聚合反应湿度选择低于自由基聚合反应温度。
④烷基铿的缔合作用
研究发现,烷基锂在非极性溶剂(如苯、甲苯等)中存在不同程度缔合作用,缔合态烷基锂不具有引发活性,只有处于单分子状态的烷基锂才具有引发作用。
2、阳离子聚合
到目前为止,阳离子聚合反应研究远没荷阴离子聚合反应深入,实际应用也没有阴离子聚合广泛,唯一实现大规模工业生产的阳离子聚合只有聚异丁烯和丁基橡胶两例。
(1)阳离子聚合的单体:(1)带推(供)电子取代基的。
一烯烃;(2)带共轭取代基的。
α-烯烃和共轭二烯烃;(3)某些含杂原子的化合物。
其中异丁烯和烷基乙烯基醚最容易进行阳离子聚合。
(2)阳离子聚合引发剂:属亲电试剂,常见的有质子酸、Lewis的破和高能辐射引发等三
类。
(3)阳离子聚合反应机理
阳离子聚合反应也属于连锁聚合的范畴,聚合反应过程可分为链引发、链增长和链终止个基元反应。
(4)阳离子聚合动力学
阳离子聚合反应的特点是快引发、快增长、易重排、易转移、难终止。
阳离子聚合反应动力学研究比自由基聚合和阴离子聚合困难得多.因为阳离子聚合体系多为非均相体系;链引发增长速率快;微量杂质的存在对聚合反应速率影响都很大;稳态假定在阳离子聚合反应中难于建立。
因此,阳离子聚合反应理论研究并不十分成熟。
(5)阳离子聚合的影响因素
阳离子聚合的主要影响因素有溶剂的极性和反离子的种类,是通过影响活性中心离子对 的存在形态而对聚合反应速率以及聚合物立体规整性产生影响。
①溶剂极性的影响
与阴离子聚合相似,阳离子聚合反应活性中心也可能存在共阶键、紧离子对、松离子对和自由离子等四种形态,且在大多数阳离子聚合体系中活性中心都以一种以上的离子对形态同时存在。
介电常数(溶剂的极性指标)大的溶剂能使阳离子聚合活性中心离子对变得更松甚至交成自由离子,聚合速率将增加,聚合物的立体结构格变差。
而介电常数较小的溶剂中阳离子活性中心离子对将以紧离子对的形式与单体进行链增长反应,聚合反应速率较侵而聚合物的立体结构规整性较好。
②反离子的影响
在阳离子聚合中反离子的亲核性大小对聚合反应能否进行具有很大影响。
若反离子的亲核性太强则链增长反应无法进行。
反离子的体积大小对聚合反应速率的影响表现为体积大的反离子与正碳离子之间的库仑力较弱,反离子的亲核性较差,离子对变松,聚合速率较快。
③温度的影响
根据ΔG=ΔHf—TΔS,因烯类单体在多种连锁聚合反应中都是π键转变成σ键的过程。
所以无论自由基聚合还是离子型聚合其聚合焓ΔH和聚合熵ΔS大体都相等。
但各种不同机理连锁聚合反应的活化能却有差别。
阳离子聚合链引发反应活化能很小.且多数情况下链引发话化能、链终止活化能和链转移活化能都大于铭增长活化能.所以大多数阳离子聚合综合活化能量均为负值,即温度降低聚合反应速率加快,聚合度增加。
所以具有负温效应是阳离子聚合反应的重要特点,阳离子聚合反应往往在很低的温度下进行。