第10章 回归分析
第10章 线性相关与回归
直线回归方程的用途 1.两变量间存在直线关系时,直 线方程可定量地描述两变量间的线性 依存关系。 2.根据直线回归方程由已知变量 值估计未知变量值:如统计预测。
应用直线回归方程时应注意的问题 1.求出样本资料的直线回归方程 后应进行假设检验。 2.应用直线回归方程时,要注意 方程只适用于自变量X的样本数据波动 范围,不能任意外延其应用范围。
在进行假设检验时,无效假设H0 为:ρ=0,即两变量间无直线相关关系; 备择假设H1为:ρ≠0,两变量间有直 线相关关系。常用的假设检验方法是t 检验,检验统计量t值的计算公式如下:
r0 tr Sr
r 1 r n2
2
,v n2
例9-2 就例9-1资料,问某地4岁 儿童体重与体表面积间是否有直线关系?
反双曲正切变换:
z tanh r
或
1
1 1 r z ln 2 1 r
z u
Z的1-α可信区间计算公式:
2
n 3 , z u 2
n3
缩写
z u
a2
n3
ρ的1-α可信区间计算公式:
tanh z u 2
缩写
n 3 , z u 2
XY (3) 58.113 62.5282 64.296 65.0916 73.3862 82.3918 83.952 90.9198 92.34 102.576 ∑XY=775.5946
X
2
Y
2
(4) 121.00 139.24 144.00 151.29 171.61 187.69 207.36 222.01 231.04 256.00 2 ∑X =1831.24
5.4 5.2
回归分析(5)概要
(1) 新引进的自变量只能依赖于 原始变量,而不能与未知参数有关。 若模型 1 中的 b 未知,则模型 1 不能线 性化。 可线性化的非线性回归模型称为 本质线性回归模型,不可线性化的非 线性回归模型称为本质非线性回归模 型。
2018/10/29 7
(2) 非线性化模型能否线性化不 仅与回归函数的形式有关,而且与误 差项的形式也有关。 例如,模型 3 的误差项为乘性误 差项,可以线性化,而模型 4 的误差 项为加性误差项,不可以线性化。 在对非线性回归模型进行线性化 时,总是假定误差项满足可线性化条
34
具体回归方程为 y 62.349 0.840 x1
5.685 x2 其标准化形式为 0.164 x2
2 0.037 x1
y 62.349 0.164 x1
2 0.785 x1
2018/10/29
35
例10.3 用均匀设计法研究从烤烟 中提取粗蛋白的实验条件。目标变量 y 是提取的蛋白质尝试,三个实验因 子分别为:提取液pH值x1,提取时间 x2的,提取温度x1。 采用U7(73)均匀设计表, 试验安排 与结果如下表:
, xp x
p
原模型化为多元线性回归模型
5
y 0 1 x1
pxp
对模型3,可先两边取对数,得 ln y ln a bx 然后再令
y ln y, 0 ln a, 1 b 原模型化为线性回归模型 y 0 1 x
2018/10/29 44
由于本例中最好的实验条件是 x1 13.1, x2 48.0, x3 60 根据前述分析,影响蛋白提取浓度的 最主要因素是提取时间,提取时间应 在48h以上;提取液pH值是第二重要 因素, pH 值应比 13.10 再低些;提取 温度应该控制在60º C以上。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第二篇(第10~12章)【圣才出品】
第二篇时间序列数据的回归分析第10章时间序列数据的基本回归分析10.1 复习笔记考点一:时间序列数据★★1.时间序列数据与横截面数据的区别(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
2.时间序列模型的主要类型(见表10-1)表10-1 时间序列模型的主要类型考点二:经典假设下OLS的有限样本性质★★★★1.高斯-马尔可夫定理假设(见表10-2)表10-2 高斯-马尔可夫定理假设2.OLS估计量的性质与高斯-马尔可夫定理(见表10-3)表10-3 OLS估计量的性质与高斯-马尔可夫定理3.经典线性模型假定下的推断(1)假定TS.6(正态性)假定误差u t独立于X,且具有独立同分布Normal(0,σ2)。
该假定蕴涵了假定TS.3、TS.4和TS.5,但它更强,因为它还假定了独立性和正态性。
(2)定理10.5(正态抽样分布)在时间序列的CLM假定TS.1~TS.6下,以X为条件,OLS估计量遵循正态分布。
而且,在虚拟假设下,每个t统计量服从t分布,F统计量服从F分布,通常构造的置信区间也是确当的。
定理10.5意味着,当假定TS.1~TS.6成立时,横截面回归估计与推断的全部结论都可以直接应用到时间序列回归中。
这样t统计量可以用来检验个别解释变量的统计显著性,F统计量可以用来检验联合显著性。
考点三:时间序列的应用★★★★★1.函数形式、虚拟变量除了常见的线性函数形式,其他函数形式也可以应用于时间序列中。
最重要的是自然对数,在应用研究中经常出现具有恒定百分比效应的时间序列回归。
虚拟变量也可以应用在时间序列的回归中,如某一期的数据出现系统差别时,可以采用虚拟变量的形式。
2.趋势和季节性(1)描述有趋势的时间序列的方法(见表10-4)表10-4 描述有趋势的时间序列的方法(2)回归中的趋势变量由于某些无法观测的趋势因素可能同时影响被解释变量与解释变量,被解释变量与解释变量均随时间变化而变化,容易得到被解释变量与解释变量之间趋势变量的关系,而非真正的相关关系,导致了伪回归。
第十章 直线回归与相关分析
115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5
图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)
回归分析方法
回归分析方法
回归分析是统计学中一种重要的数据分析方法,它用于研究自
变量和因变量之间的关系。
回归分析方法可以帮助我们预测和解释
变量之间的关系,从而更好地理解数据的特征和趋势。
在本文中,
我们将介绍回归分析的基本概念、常见的回归模型以及如何进行回
归分析。
首先,回归分析的基本概念包括自变量和因变量。
自变量是研
究者可以控制或观察到的变量,而因变量是研究者希望预测或解释
的变量。
回归分析旨在通过自变量的变化来预测或解释因变量的变化,从而揭示它们之间的关系。
常见的回归模型包括线性回归、多元线性回归、逻辑回归等。
线性回归是最简单的回归模型之一,它假设自变量和因变量之间的
关系是线性的。
多元线性回归则允许多个自变量对因变量产生影响,逻辑回归则用于因变量是二元变量的情况,例如成功与失败、生存
与死亡等。
进行回归分析时,我们需要收集数据、建立模型、进行拟合和
检验模型的拟合优度。
在收集数据时,我们需要确保数据的质量和
完整性,避免因为数据缺失或异常值而影响分析结果。
建立模型时,我们需要选择合适的自变量和因变量,并根据实际情况选择合适的
回归模型。
进行拟合和检验模型的拟合优度时,我们需要根据实际
情况选择合适的统计指标和方法,例如残差分析、R方值等。
总之,回归分析方法是一种重要的数据分析方法,它可以帮助
我们预测和解释变量之间的关系。
通过本文的介绍,相信读者对回
归分析有了更深入的了解,希望能够在实际工作中灵活运用回归分
析方法,为决策提供更可靠的依据。
高考数学一轮复习第10章算法初步与统计第4课时线性回
(4)某同学研究卖出的热饮杯数y与气温 x(℃)之间的关系,得 回归方程 y =-2.352x+147.767,则气温为2 ℃时,一定可卖出 143杯热饮. (5)事件X,Y关系越密切,则由观测数据计算得到的K2的观 测值越大. (6)由独立性检验可知,在犯错误的概率不超过1%的前提下 认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他 有99%的可能物理优秀.
∧
直线方程: y =0.254x+0.321.由回归直线方程可知,家庭年收入 每增加1万元,年饮食支出平均增加________万元.
2 n ( ad - bc ) 构造一个随机变量 K 2 = , ( a+ b)( c+d )(a + c)( b +d )
其中 n=a+b+ c+d 为样本容量.
(3)独立性检验. 利用随机变量 K2 来确定是否能有一定把握认为“两个分类 变量有关系”的方法称为两个分类变量的独立性检验.
1.判断下面结论是否正确(打“√”或“×”). (1)相关关系与函数关系都是一种确定性的关系,也是一种 因果关系. (2)“名师出高徒”可以解释为教师的教学水平与学生的水 平成正相关关系. (3)只有两个变量有相关关系,所得的回归模型才有预测价 值.
答案
C
解析 由已知,变量 x,y 成负相关,排除 A,B. ∵回归直线 - 必过点(x,y),经验算可知,选项 C 满足.
4.(2018· 河南开封一模)下列说法错误的是(
)
A.自变量取值一定时,因变量的取值带有一定随机性的两 个变量之间的关系叫做相关关系 B.在线性回归分析中,相关系数 r 的值越大,变量间的相 关性越强 C.在残差图中,残差点分布的带状区域的宽度越狭窄,其 模型拟合的精度越高 D.在回归分析中,R2 为 0.98 的模型比 R2 为 0.80 的模型拟 合的效果好
何晓群:《应用回归分析》第四版-第十章 含定性变量的回归模型1
Model 1
AN OVA
Regress ion Residual Total
Sum of Squares 290372875. 924
39856639.705 330229515. 630
df
Mean Square
F
2 145186437. 962 87.425
24
1660693.321
§10.1 自变量中含有定性变量的回归模型
x1是
变量,它对回归的贡献也是
不可缺少的。如果不考虑家庭年收入这个自变量,13户
庭的平均年储蓄增加额为
元,14户
家庭的平均年储蓄增加额为
元,这样会认
为高学历家庭每年的储蓄额比低学历的家庭平均少
5059.36-3009.31=2050.05元,而用回归法算出的数值
储蓄回归模型实际上被拆分为
的回归模型。
当
,认为β3=0,这时高学历与低学历家庭的
储蓄回归模型是如下形式的联合回归模型:
yi=β0+β1xi1+β2xi2+εi
返 回 前一页 后一页
§9.2 自变量定性变量回归模型的应用
Coeffi ci ents
(C ons tant) X1 X2 X3
Unstandardized Coef f icients
§10.2 自变量定性变量回归模型的应用
y((((((
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5 1.0
200
300
400
500
600
700
800
900
x((((
图10.1 单位成本对批量散点图
应用回归分析 第十章
第10章 含定性变量的回归模型10.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。
出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为:其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。
称Tol j =1-2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。
而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。
10.2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例10.1说明。
一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其tt t t kt k t t D D D X X Y μαααβββ++++++=332211110 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第10章 时间序列数据的基本回归分析【圣才出
第10章时间序列数据的基本回归分析10.1复习笔记一、时间序列数据的性质时间序列数据与横截面数据的区别:(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
①横截面数据应该被视为随机结果,因为从总体中抽取不同的样本,通常会得到自变量和因变量的不同取值。
因此,通过不同的随机样本计算出来的OLS估计值通常也有所不同,这就是OLS统计量是随机变量的原因。
②经济时间序列满足作为随机变量是因为其结果无法事先预知,因此可以被视为随机变量。
一个标有时间脚标的随机变量序列被称为一个随机过程或时间序列过程。
搜集到一个时间序列数据集时,便得到该随机过程的一个可能结果或实现。
因为不能让时间倒转重新开始这个过程,所以只能看到一个实现。
如果特定历史条件有所不同,通常会得到这个随机过程的另一种不同的实现,这正是时间序列数据被看成随机变量之结果的原因。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
二、时间序列回归模型的例子1.静态模型假使有两个变量的时间序列数据,并对y t和z t标注相同的时期。
把y和z联系起来的一个静态模型(staticmodel)为:10 1 2 t t t y z u t nββ=++=⋯,,,,“静态模型”的名称来源于正在模型化y 和z 同期关系的事实。
若认为z 在时间t 的一个变化对y 有影响,即1t t y z β∆=∆,那么可以将y 和z 设定为一个静态模型。
一个静态模型的例子是静态菲利普斯曲线。
在一个静态回归模型中也可以有几个解释变量。
2.有限分布滞后模型(1)有限分布滞后模型有限分布滞后模型(finitedistributedlagmodel,FDL)是指一个或多个变量对y 的影响有一定时滞的模型。
考察如下模型:001122t t t t ty z z z u αδδδ--=++++它是一个二阶FDL。
第10章:定量预测5-因果关系分析法
ˆ Y t 1
=Yt(1+A%+B%+C%+D%+· · · · · · · · · · · · · · )
• 表示t+1期预测对象的预测值;表示t期预测对象的 实际值;A%表示预测对象受第一个因素影响的程 度;B%表示预测对象受第二个因素影响的程度; 以此类推。例如:见下页
• 例1: 已知某空调制造公司2006年销售中央 空调750套。市场调研人员通过对历史统计 资料的研究估计出,未来各因素影响销售 量的程度为:商品质量的提高和价格的降 低可使销量增加30%;国家经济政策的变 动(如紧缩)可能使销量减少10%;由于 规格不全而失去部分顾客,可能使未来销 量减少5%;居民收入的增加可能使未来销 量增加20%;同类产品的竞争可能使销量 减少8%,预测2007年企业空调的销售量?
• 4 变量遗漏问题 当回归结果与经济理论不一致时,重要变量 的遗漏可能是最主要的原因。 比如:有一个大学生进行需求预测,根据收 集到的历史资料进行回归后得到的预测方程为: Q=7.8+3.42P,价格系数为正值,并在统计上显 著。对这样的一个结果,我们认为不合常理,一 个解释是:价格一直上涨,但收入和人口数也增 加,价格和收入、人口呈现正相关,所以3.42反 映收入和人口增加而导致需求的增加。因此,为 了分别找出这些影响,全面合理的解释因变量的 变化,就需要在回归方程中增加新的变量。
解决方法:对自变量之间是否存在高度相关 进行检验,从方程中取消一个高度相关的 自变量。 多重共线性举例说明: SPSS的多重共线性诊断功能 Collinearty Diagnostics 数据10-2
• 我们曾经收集1985-2005年粮食产量(因变量)、 耕地面积、劳动人口等9个变量的数据,分别进 行一元回归。可决系数R2结果如下表(一般认为 可决系数大于0.7效果较好,否则效果较差。)
《回归分析》课件 刘超——回归分析教学大纲-hep
回归分析教学大纲概述本书主要内容、特点及全书章节主要标题并附教学大纲本书基于归纳演绎的认知规律,把握统计理论的掌握能力和统计理论的应用能力的平衡,依据认知规律安排教材各章节内容。
教材不仅阐述了回归分析的基本理论和具体的应用技术,还按照认知规律适当拓宽学生思维,介绍了伴前沿回归方法。
教材采用了引例、解题思路、解题模型、概念、案例、习题、统计软件七要素合一的教材内容安排模式,有助于培养学生的统计思维与统计能力。
全书共分14章,包括绪论、一元线性回归、多元线性回归、模型诊断、自变量的问题、误差的问题、模型选择、收缩方法、非线性回归、广义线性模型、非参数回归、机器学习的回归模型、人工神经网络以及缺失数据等内容。
第1章对回归分析的研究内容和建模过程给出综述性介绍;第2章和第3章详细介绍了一元和多元线性回归的参数估计、显著性检验及其应用;第4章介绍了回归模型的诊断,对违背回归模型基本假设的误差和观测的各种问题给出了处理方法;第5章介绍了回归建模中自变量可能存在的问题及处理方法,包括自变量的误差、尺度变化以及共线性问题;第6章介绍了回归建模中误差可能存在的问题及处理方法,包括广义最小二乘估计、加权最小二乘估计;第7章介绍了模型选择方法,包括基于检验的方法、基于标准的方法;第8章介绍了模型估计的收缩方法,包括岭回归、lasso、自适应lasso、主成分法、偏最小二乘法;第9章介绍了非线性回归,包括因变量、自变量的变换以及多项式回归、分段回归、内在的非线性回归等方法;第10章介绍了广义线性模型,包括logistic回归、Softmax回归、泊松回归等;第11章介绍了非参数回归的方法,包括核估计、局部回归、样条、小波、非参数多元回归、加法模型等方法;第12章介绍了机器学习中可用于回归问题的方法,包括决策树、随机森林、AdaBoost模型等;第13章介绍了人工神经网络在回归分析中的应用;第14章介绍了常见的数据缺失问题及处理方法,包括删除、单一插补、多重插补等。
第10章时间序列数据的基本回归分析
第10章时间序列数据的基本回归分析时间序列数据是指按时间顺序排列的一系列观测值,具有时间依赖性的特点。
在时间序列数据中,我们通常会面临许多问题,如预测未来的走势、分析变量间的关系等。
回归分析是一种用来建立变量间关系的统计方法,因此在时间序列数据中,同样可以使用回归分析方法来建立变量间的关系模型。
在进行时间序列数据的基本回归分析时,我们首先需要确定一个主要的解释变量(自变量)和一个被解释变量(因变量)。
主要的解释变量用来解释被解释变量的变化,从而确定它们之间的关系。
然后,我们需要对数据进行可视化和统计分析,以了解数据的特征和趋势。
首先,我们可以使用时间序列图来可视化数据的变化趋势。
时间序列图是一种按照时间顺序展示数据的图表,通过观察时间序列图,我们可以判断数据是否存在趋势、季节性或周期性等特征。
如果数据存在明显的趋势,我们可以使用线性回归模型来建立变量间的关系。
如果数据存在明显的季节性或周期性,我们可以使用季节性模型或周期模型来建立变量间的关系。
此外,我们还可以通过自相关函数(ACF)和偏自相关函数(PACF)来判断数据是否存在自相关性。
然后,我们可以使用普通最小二乘法(OLS)来估计回归模型的参数。
OLS是一种通过最小化观测值与模型估计值之间的差异来估计参数的方法。
对于时间序列数据,我们需要进行数据的平稳化处理,以确保模型的有效性。
常见的平稳化方法包括差分法和对数变换法。
通过平稳化处理后,我们可以得到平稳时间序列数据,然后应用OLS方法来估计模型的参数。
最后,我们可以使用统计检验来评估回归模型的拟合程度和显著性。
常见的统计检验包括F检验和t检验。
F检验用来评估模型的整体显著性,而t检验用来评估模型的各个参数的显著性。
如果模型的F检验和t检验显著,则说明回归模型能够很好地解释因变量的变化,并且模型参数是统计显著的。
总结起来,时间序列数据的基本回归分析包括确定主要的解释变量和被解释变量、可视化和统计分析数据、估计回归模型的参数、以及评估模型的拟合程度和显著性。
第10章 回归分析
7
解: 依题意,实验次数n=5,y~x为一元线性关系y=a+bx。根据最小二乘 法原理,有:
i 1 2 3 4 5
xi 2 4 5 8 9 28
yi 2.01 2.98 3.50 5.02 5.07 18.58
x i2 4 16 25 64 81 190
yi2 4.04 8.88 12.25 25.20 25.70 76.07
xiyi 4.02 11.92 17.50 40.16 45.63 119.23
解得a=1.155,b=0.4573。 因此关系式为:y=1.155+0.4573x。
如果用简化算法,则有:
故关系式为:y=1.155+0.4573x,即两种计算方法结果是一致的。 可见,根据实验数据建立回归方程,可采用最小二乘法,基本步骤为: ① 根据实验数据画出散点图; ② 确定经验公式的函数类型; ③ 通过最小二乘法得到正规方程组; ④ 求解正规方程组,得到回归方程的表达式。 其实①②两点正是第9章建立数学模型的过程,所以建立数学模型是回 归分析的前提。
13
[例10-2] 试用相关系数检验法对例10-l中得到的经验公式进行显著性检验 (α=0.05)。 解:
当α=0.05,n=5时,查得相关系数临界值 r0.05,3=0.8783。所以r>r, f, 所得的经验公式有意义。
14
应当指出的是,相关系数r有一个明显的缺点:即它接近于1的程度与实 验数据组数n有关。当n较小时,|r|容易接近于1;当n较大时,|r| 容易偏小。特别是当n=2时,因两点确定一条直线,|r|总等于1。所 以,只有当实验次数n较多时,才能得出真正有实际意义的回归方程。
2
回归分析的主要内容: 确定回归方程,检验回归方程的可信性 10.2 一元线性回归分析 10.2.1 一元线性回归方程的建立 一元线性回归分析又称直线拟合,是处理两个变量x和y之间关系的方法。 所谓一元是指只有一个自变量x,因变量y在某种程度上是随x变化的。 设有一组实验数据,实验值为 (xi, yi) (i=1,2,…,n)。若x,y符合线性关 系,或已知经验公式为直线形式,就可拟合为直线方程,即:
线性回归分析
注意: 逐步添加法或逐步剔除法, 都应当强调“逐步” . 不 能一次按照各个变量的统计量的值 fj 的显著性概率 p 是否 小于等于选定的显著性水平 , 来决定是否作为 Y 的自变 量. 因为每添加或剔除一个变量, 都会引起所有回归系数的 变化和统计量的值 fj 的变化. 一次处理会造成误判, 只有逐 步处理, 才是恰当的.
= ( 1, 2, …, k)T
若估计出, ˆ (ˆ1, ˆ2 ,, ˆk )T 则有 Yˆ Xˆ
所以
Y Yˆ e
于是有 Y Yˆ e Xˆ e
两边左乘XT, 得 X T Y X T Xˆ X T e
由几何解释XT e , 故有XTe = 0, 所以可以求出:
Y 1 2X u
其中 ˆ1, ˆ2 为1, 2 的估计值, 则 Y 的计算值Ŷ, 可以
用下式表达:
Yˆ ˆ1 ˆ2 X
所要求出待估参数 ˆ1, ˆ2, 要使 Y 与其计算值Ŷ之间 的“误差平方和”最小. 即: 使得
Q
(Y
Yˆ
2
)
ei2
(4) u ~ N(0, 2u In )
(5) E(XTu) =0 , 或者, X 为确定矩阵
1 X12 X1k
X
1 1
X 22
X n2
X2k
X nk
(6) 秩 ( X ) = k, ( k<n)
2. 普通最小二乘法估计式
在模型中, 代入样本观测值之后, 可得
人均收入X
这两个变量之间的不确定关系,大致可以用下式表示:
Y 1 2 LnX u
第10章相关分析及回归分析
第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。
事物之间的依存关系,能够分为函数关系和相关关系。
相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。
2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。
相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。
3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。
用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。
4.应用相关与回归分析应注意的问题。
相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。
相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。
二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。
为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。
初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。
若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。
三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。
2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。
第10章 直线回归与相关分析
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
介绍: 1、回归分析的概念和模型 2、回归分析的过程
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:
从一组样本数据出发,确定这些变量间的定 量关系式 对这些关系式的可信度进行各种统计检验 从影响某一变量的诸多变量中,判断哪些变 量的影响显著,哪些不显著 利用求得的关系式进行预测和控制
19.55prevexp+154.698jobtime+539.64edcu
10.2 曲线估计(Curve Estimation)
对于一元回归, 若散点图的趋 势不呈线性分 布,可以利用 曲线估计方便 地进行线性拟 合(liner)、二 次拟合 (Quadratic)、 三次拟合 (Cubic)等。 采用哪种拟合 方式主要取决 于各种拟合模 型对数据的充 分描述(看修 正Adjusted R2 -->1)
我们只讲前面3个简单的(一般教科书的讲法)
10.1 线性回归(Liner)
一元线性回归方程: y=a+bx
a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合程度:用来说明用自变 量解释因变量变异的程度(所占比例)
b0为常数项 b1、b2、…、bn称为y对应于x1、x2、…、xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度: 用来说明用自变量解释因变量变异的程度(所占比例)
例 1(highschoo.sav) 的数据中 , 还有一个自变 量是定性变量“收入” , 以虚拟变量或哑元 (dummy variable) 的方式出现 ; 这里收入的 “低”,“中”,“高”,用1,2,3来代表 .所以, 如果要用这种哑元进行前面回归就没有道 理了. 以例 1 数据为例 , 可以用下面的模型来描述 : y x , 代表家庭收入的哑元=1 时,
多元线性回归方程: y=b0+b1x1+b2x2+…+bnxn
一元线性回归模型的确定:一般先做散点图(Graphs ->Scatter>Simple),以便进行简单地观测(如:Salary与Salbegin的关系) 若散点图的趋势大概呈线性关系,可以建立线性方程,若不呈线 性分布,可建立其它方程模型,并比较R2 (-->1)来确定一种最佳 方程式(曲线估计) 多元线性回归一般采用逐步回归方法-Stepwise
回归分析的模型
按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归,多元回归 基本的步骤:利用SPSS得到模型关系式,是否 是我们所要的,要看回归方程的显著性检验(F 检验)和回归系数b的显著性检验(T检验),还要 看拟合程度R2 (相关系数的平方,一元回归用R Square,多元回归用Adjusted R Square)
40 50 60 70 J3 80 90 100
40
50
检验问题等
对于系数1=0的检验 对于拟合的F检验 2 R (决定系数)及修正 2 的R .
多个自变量的回归
y 0 1 x1 2 x2 k xk
如何解释拟合直线?
什么是逐步回归方法?
自变量中有定性变量的回归
10.2.3 曲线估计(Curve Estimation)分析实例
实例P247 Data11-01 :有关汽车数据,看mpg(每加 仑汽油行驶里程)与weight(车重)的关系
先做散点图(Graphs ->Scatter->Simple):weight(X)、 mpg(Y),看每加仑汽油行驶里程数mpg(Y)随着汽车自重 weight(X)的增加而减少的关系,也发现是曲线关系 建立若干曲线模型(可试着选用所有模型Models)
若散点图的趋势大概呈线性关系,可以建立线性回归模型
比较有用的结果:
拟合程度Adjusted R2: 越接近1拟合程度越好 回归方程的显著性检验Sig 回归系数表Coefficients的Model最后一个中的回归系数B和显著性检验Sig 得模型: Salary=-15038.6+1.37Salbegin+5859.59jobcat-
10.3.3二项逻辑回归(Binary Logistic)实例
实例P255 Data11-02 :乳腺癌患者的数据进行分析, 变量为:年龄age,患病时间time,肿瘤扩散等级 pathscat(3种), 肿瘤大小pathsize, 肿瘤史histgrad (3种)和癌变部位的淋巴结是否含有癌细胞ln_yesno, 建立一个模型,对癌变部位的淋巴结是否含有癌细胞 ln_yesno的情况进行预测。
Analyze->Regression-> Binary Logistic Dependent: ln_yesno Covariates: age, time,pathscat,pathsize, histgrad
比较有用的结果:在Variables in Equation表中的各变量的系数(B),可以写 出z=-0.86-0.331pathscat+0.415pathsize –0.023age+0.311histgrad。 根据回归模型公式Prob(event)=1/(1+e-z),就可以计算一名年龄为60岁、 pathsize为1、histgrad为1、pathscat为1的患者,其淋巴结中发现癌细胞的 概率为1/(1+e-(-1.845))=0.136 (Prob(event) <0.5 预测事件将不会发生, > 0.5 预测事件将会发生)
0 1 1
= 0 1 x 2 , 代表家庭收入的哑元=2 时,
= 0 1 x 3 , 代表家庭收入的哑元=3 时。
自变量中有定性变量的回归
现在只要估计0, 1,和1, 2, 3即可。 哑元的各个参数1, 2, 3本身只有相对意义,无法三个 都估计,只能够在有约束条件下才能够得到估计。 约束条件可以有很多选择,一种默认的条件是把一个参 数设为0,比如3=0,这样和它有相对意义的 1和2就 可以估计出来了。 对于例 1 ,对 0, 1, 1, 2, 3 的估计分别为 28.708, 0.688, -11.066, -4.679, 0。这时的拟合直线有三条,对 三种家庭收入各有一条:
Logistic模型:在逻辑回归中,可以直接预测观测量相对于某一事件的发生概率。 包含一个自变量的回归模型和多个自变量的回归模型公式:
prob (event )
1 1 ez
其中: z=B0+B1X1+…BpXp(P为自变量个数)。某一事件不发生的概率为 Prob(no event)=1-Prob(event) 。因此最主要的是求B0,B1,…Bp(常数和系数) 数据要求:因变量应具有二分特点。自变量可以是分类变量和定距变量。如果自变 量是分类变量应为二分变量或被重新编码为指示变量。指示变量有两种编码方式。 回归系数:几率和概率的区别。几率=发生的概率/不发生的概率。如从52张桥牌 中抽出一张A的几率为(4/52)/(48/52)=1/12,而其概率值为4/52=1/13 根据回归系数表,可以写出回归模型公式中的z。然后根据回归模型公式 Prob(event) 进行预测。
2.
Graphs ->Scatter->Simple X Axis: Salbegin Y Axis: Salary Analyze->Regression->Linear Dependent: Salary Independents: Salbegin,prevexp,jobtime,jobcat,edcu等变量 Method: Stepwise
y 28.708 0.688 x 11.066, (低收入家庭), y 28.708 0.688 x 4. 679, (中等收入家庭), y 28.708 0.688 x, (高收入家庭)。
10.1.6 线性回归分析实例p240
实例:P240Data07-03 建立一个以初始工资Salbegin 、工作 经验prevexp 、工作时间jobtime 、工作种类jobcat 、受教育 年限edcu等为自变量,当前工资Salary为因变量的回归模型。 1. 先做数据散点图,观测因变量Salary与自变量Salbegin之间 关系是否有线性特点
回归分析的过程
在回归过程中包括:
Liner:线性回归 Curve Estimation:曲线估计 Binary Logistic: 二分变量逻辑回归 Multinomial Logistic:多分变量逻辑回归 Ordinal 序回归 Probit:概率单位回归 Nonlinear:非线性回归 Weight Estimation:加权估计 2-Stage Least squares:二段最小平方法 Optimal Scaling 最优编码回归
逐步回归方法的基本思想
对全部的自变量x1,x2,...,xp,按它们对Y贡献的大小进 行比较,并通过F检验法,选择偏回归平方和显著的变 量进入回归方程,每一步只引入一个变量,同时建立 一个偏回归方程。当一个变量被引入后,对原已引入 回归方程的变量,逐个检验他们的偏回归平方和。如 果由于引入新的变量而使得已进入方程的变量变为不 显著时,则及时从偏回归方程中剔除。在引入了两个 自变量以后,便开始考虑是否有需要剔除的变量。只 有当回归方程中的所有自变量对Y都有显著影响而不需 要剔除时,在考虑从未选入方程的自变量中,挑选对Y 有显著影响的新的变量进入方程。不论引入还是剔除 一个变量都称为一步。不断重复这一过程,直至无法 剔除已引入的变量,也无法再引入新的自变量时,逐 步回归过程结束。