初三数学《相似三角形》知识点归纳
初三数学相似知识点
初三数学相似知识点
1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的对
应边长成比例,对应角度相等。
2. 相似比例:相似三角形的边长比值称为相似比例。
如果两个三角形的对应边长分别
为a:b:c和ka:kb:kc,那么它们的相似比例为a:b:c。
3. 相似三角形定理:包括AAA相似定理、AA相似定理和对应角边比相等定理。
其中,AAA相似定理指出如果两个三角形的对应角度相等,那么它们相似;AA相似定理指出如果两个三角形的两个对应角度相等,那么它们相似;对应角边比相等定理指出如果
两个三角形的两个对应角度相等,并且对应边长之比相等,那么它们相似。
4. 相似三角形的性质:相似三角形的相似比例等于对应边长之比;相似三角形的相似
比例等于对应角度的正弦值、余弦值或正切值;相似三角形的高线、中线等与对应边
长成等比例;相似三角形的面积与边长平方成比例。
5. 相似三角形的应用:相似三角形的定理在解决实际问题中有很多应用,如利用相似
三角形进行测量、解决影子问题、求解高度、求解距离等。
6. 图形的相似:除了三角形,其他图形(如矩形、圆、椭圆等)也有相似的概念和相
似关系,可以利用相似关系解决相关问题。
这些内容是初三数学中关于相似的主要知识点,希望对你有帮助!如有其他问题,请
随时提问。
初中数学相似三角形知识库相似三角形知识点整理
初中数学相似三角形知识库相似三角形知识点整理一、定义
相似三角形是指两个三角形之间的几何关系,它们的边都是可以比拟的,只不过比例不同,这个比例就是相似比例。
二、定理
1、相似三角形定理:同一个平面中的两个三角形如果它们的两个角的对应边比例相等,那么这两个三角形就是相似的。
2、两相似三角形的比例定理:同一个平面上的两个相似三角形,只要知道它们两个角的对应边比例,那么它们其他的边的比例也可以由此求出。
三、性质
1、锐角相似三角形的性质:两个锐角相似的三角形,它们的锐角相同,其余两个角也相同。
2、直角相似三角形的性质:两个直角相似的三角形,它们的直角相同,其余两个角也相同。
3、相似三角形中边及面积之间的关系:两个三角形相似,那么它们的三个边比例也一定是相等的,两个三角形的面积之比等于它们两个侧面的比例之平方。
四、进一步推广
1、直线及平面之间的相似:两条线段之间也有相似性,即它们的比例也可以求出,同样的,两个平面也有相似性,它们的比例也可以求出。
2、圆锥及圆柱之间的相似:圆锥和圆柱是两种各有特点的几何体,它们之间当然也有相似性,它们的比例也可以求出。
3、圆面积的相似:圆的面积之比可以求出。
九年级数学相似三角形知识点
九年级数学相似三角形知识点咱来唠唠九年级数学里的相似三角形知识点哈。
一、相似三角形是啥玩意儿呢?简单来说,相似三角形就像是三角形家族里的“克隆兄弟”,它们形状相同,但大小可能不一样。
就好比你用放大镜看一个小三角形,放大后的三角形和原来的小三角形就是相似的。
二、相似三角形的判定方法1. 两角对应相等- 如果两个三角形有两个角分别相等,那这两个三角形就相似。
这就像是两个人,只要他们在两个关键的地方(角度)长得一样,那他们就有相似之处。
比如说三角形ABC和三角形DEF,要是∠A = ∠D,∠B = ∠E,那这两个三角形就相似啦。
2. 两边对应成比例且夹角相等- 想象一下,两个三角形的两条边的长度比例是一样的,而且这两条边所夹的角也相等。
就像两根一样比例的小棍,它们夹着相同角度的话,那这两个三角形也是相似的。
比如在三角形ABC和三角形DEF中,AB/DE = AC/DF,并且∠A = ∠D,那这两个三角形就相似喽。
3. 三边对应成比例- 这个就更好理解啦,三个边的长度比例都一样的两个三角形肯定相似。
就好比三个小伙伴,他们的身高、臂长、腿长的比例都相同,那他们就是相似的三角形啦。
如果AB/DE = BC/EF = AC/DF,那么三角形ABC和三角形DEF就是相似三角形。
三、相似三角形的性质1. 对应边成比例- 相似三角形的对应边的比例是相等的。
就像前面说的那些判定方法里的边的比例一样。
如果三角形ABC相似于三角形DEF,那么AB/DE = BC/EF = AC/DF,这个比例是固定的哦。
2. 对应角相等- 因为相似三角形形状相同嘛,所以它们的对应角肯定是相等的。
∠A = ∠D,∠B = ∠E,∠C = ∠F。
3. 相似三角形的周长比等于相似比- 相似比就是对应边的比例。
比如说相似三角形ABC和DEF的相似比是k (AB/DE = k),那么它们的周长比也是k。
就好比两个相似的图形,一个大一个小,大的图形的周长是小的图形周长的k倍。
九年级数学相似三角形知识点汇总参考(搜集整理全面细致)
.
( 5)平行线分线段成比例定理 :两条直线被三条平行的直线所截,截得的对应线段成比例
.
( 6)平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在
另一条直线上截得的线段也相等 .
这几个定理主要提出由平行线可得到比例式;反之
, 有比例可得到平行线 . 首先要弄清三个基本图形:
九年级数学相似三角形知识点汇总参考
一、比例线段及比例的性质
1.比例线段: ( 1)线段的比:如果选用同一长度单位量得两条线段
a, b 的长度分别是 m, n,那么就说这两条线段的比是
a:b=m:n ,或写成
, 其中 a 叫做比的前项 ;b 叫做比的后项 .
( 2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比
( 3)向量平行的 判定定理: a 是一个非零向量,若存在一个实数 m ,使 b ma ,则向量 b 与非零向量 a 平行 .
( 4)向量平行的性质定理:若向量 b与非零向量 a 平行 ,则存在一个实数 m ,使 b ma .
( 5) A、 B、 C 三点的共线
AB// BC 若存在实数 λ ,使 AB λBC .
3
诠释: ( 1)向量数乘结果是一个与已知向量平行(或共线)的向量; ( 2)实数与向量不能进行加减运算;
( 3) ka 表示向量的数乘运算, 书写时应把实数写在向量前面且省略乘号,
面;
( 4)向量的数乘体现几何图形中的位置关系和数量关系
.
3.实数与向量相乘的运算律
设 m 、 n 为实数,则:
注意不要将表示向量的箭头写在数字上
, 所截得的三角形的
三边与原三角形三边的对应成比例 .
九年级相似三角形知识点总结
九年级相似三角形知识点总结本文介绍了图形的相似知识点,包括相似图形、相似多边形的性质和比例线段等内容。
其中,比例线段的基本性质包括内外项积相等、交换内外项等,还介绍了合比性质和等比性质。
另外,文章还介绍了黄金分割和相似三角形的性质,包括相似比、对应角和对应边成比例等。
最后,文章提到了三角形相似的判定定理。
在应用等比性质时,需要注意分母是否为零。
1.如果一条直线平行于三角形的一边并与其它两边相交,那么所构成的三角形与原三角形相似。
2.如果两个三角形的对应角度相等,那么它们相似。
3.如果两个三角形的夹角相等且对应边成比例,那么它们相似。
4.如果两个三角形的三条边成比例,那么它们相似。
5.直角三角形相似判定定理:1.如果两个直角三角形的斜边与一条直角边成比例,那么它们相似。
2.如果直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
3.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA6.中位线:1.三角形的中位线是连结三角形两边中点的线段,共有三条。
2.三角形的中位线平行于第三边且等于第三边的一半。
3.重心是三角形三条中线的交点,到一个顶点的距离等于它到对边中点的距离的两倍。
4.梯形的中位线是连结梯形两腰中点的线段。
5.梯形的中位线平行于两底边,且等于两底和的一半。
6.梯形的面积等于中位线与高的乘积,也等于上底加下底的一半乘以高。
7.位似:1.如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
2.位似图形的对应边平行或共线,任意一对对应点到位似中心的距离之比等于相似比。
8.图形的变换与坐标:1.轴对称:图形关于x轴对称,横坐标不变,纵坐标变为相反数;关于y轴对称,纵坐标不变,横坐标变为相反数。
2.中心对称:图形关于原点对称,横纵坐标均变为相反数。
初三《相似三角形》知识点总结
相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。
如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。
相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。
注意:(1)相似比是有顺序的。
(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。
(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。
(2)两个等边三角形一定相似,两个等腰三角形不一定相似。
(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。
知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
九年级数学相似三角形知识点
九年级数学相似三角形知识点九年级数学:相似三角形知识点1. 相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边成比例的三角形。
也就是说,如果两个三角形的三个角分别相等,且每组对应边的比值都相等,那么这两个三角形就是相似的。
2. 相似三角形的标记在标记相似三角形时,通常使用希腊字母来表示对应的顶点。
例如,如果三角形ABC与三角形DEF相似,我们可以标记为:△ABC ∼△DEF。
3. 相似三角形的性质- 对应角相等:∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
- 对应边成比例:AB/DE = BC/EF = AC/DF。
- 对应高的比值也相等:AH/DH = BH/EH = CH/FH(其中H是三角形的高所在的顶点)。
- 对应中线的比值也相等:AM/DM = BM/EM = CM/FM(其中M是三角形的中线所在的顶点)。
4. 相似三角形的判定- 三角形相似的判定定理一:如果两个三角形的两组对应角分别相等,那么这两个三角形相似。
- 三角形相似的判定定理二:如果两个三角形的三组对应边的比值都相等,那么这两个三角形相似。
- 三角形相似的判定定理三:如果两个三角形的两组对应边的比值相等,且它们之间的夹角也相等,那么这两个三角形相似。
5. 相似三角形的应用- 解决实际问题:在建筑设计、地图制作等领域,相似三角形的概念可以用来解决比例缩放问题。
- 计算面积比:相似三角形的面积比等于对应边长的平方比。
即,如果AB/DE = x,则△ABC的面积与△DEF的面积之比为x²。
- 证明几何定理:在证明某些几何定理时,可以通过证明三角形相似来简化证明过程。
6. 相似三角形的计算- 使用比例关系解决实际问题时,通常需要先确定比例系数,然后利用这个系数来计算其他边长或角度。
- 在计算面积比时,应先计算出三角形的边长比,然后根据边长比计算面积比。
7. 相似三角形的证明- 在证明三角形相似时,需要明确指出所使用的判定定理,并确保所有的条件都满足。
(完整版)相似三角形知识点归纳(全)
知识点 1 有关相似形的概念
(1) 形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形
.
(2) 如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多
边形.相似多边形对应边长度的比叫做相似比 ( 相似系数 ) .
知识点 2 比例线段的相关概念、比例的性质
.相似三角形对应边的比叫做相似比 ( 或相
(2)三角形相似的判定方法
1、平行法: (图上)平行于三角形一边的直线和其它两边
( 或两边的延长线 ) 相交,所构成的三角形与原三角形相似 .
2、判定定理 1:简述为: 两角对应相等,两三角形相似. AA
3、判定定理 2:简述为: 两边对应成比例且夹角相等,两三角形相似
( 1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点
.
( 2) 位似图形一定是相似图形,但相似图形不一定是位似图形
.
( 3) 位似图形的对应边互相平行或共线 .
( 4)位似图形具有相似图形的所有性质 .
位似图形的性质:
Байду номын сангаас
位似图形上任意一对对应点到位似中心的距离之比等于相似比
.SAS
4 、判定定理 3:简述为: 三边对应成比例,两三角形相似 .SSS
5、判定定理 4:直角三角形中, “ HL”
全等与相似的比较:
三角形全等
三角形相似
两角夹一边对应相等 (ASA) 两角一对边对应相等 (AAS) 两边及夹角对应相等 (SAS) 三边对应相等 (SSS) 、 (HL )
两角对应相等 两边对应成比例,且夹角相等
B
C
( 1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” 似系数 ) .相似三角形对应角相等,对应边成比例.
九年级数学相似三角形知识点总结及例题讲解
1. 平行线分线段成比例定理
例.
已知 l 1∥ l 2∥ l 3,
A Dl
B El
: 三条平行线截两条直线
1 2
, 所得的 对应线段成比 .
C
Fl
可得 AB
DE AB 或
DE 等.
BC EF AC DF
2. 推论 : 平行于三角形一边的直线截其它两边
3
( 或两边的延长线 ) 所得的对应线段成比例 .
注意 :(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法.
(2) 应用等比性质时,要考虑到分母是否为零.
(3)
可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.
知识点三:黄金分割
1) 定义 :在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC(AC>BC ),如果 AC AB
ad bc
(两外项的积等于两内项积)
2. 反比性质:
ac bd
bd a c ( 把比的前项、后项交换 )
3. 更比性质 ( 交换比例的内项或外项 ) :
ac bd
a b ,(交换内项 ) cd d c ,(交换外项 ) ba d b .(同时交换内外项 ) ca
4. 合比性质
a
:
c
bd
ab b
cd (分子加(减)分母 , 分母不变)
例 4、矩形 ABCD 中, BC=3AB , E、F,是 BC 边的三等分点,连结 AE 、 AF 、AC ,问图中是否存在非全 等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式
例 5、△ ABC 中,在 AC 上截取 AD ,在 CB 延长线上截取 BE ,使 AD=BE ,求证: DF AC=BC FE
初中数学相似三角形知识总结
初中数学相似三角形知识总结在初中数学的学习中,相似三角形是一个非常重要的知识点。
它不仅在数学学科中有着广泛的应用,对于我们解决实际问题也具有重要的意义。
接下来,让我们一起深入了解相似三角形的相关知识。
一、相似三角形的定义相似三角形是指对应角相等,对应边成比例的两个三角形。
也就是说,如果两个三角形的对应角相等,对应边的比值都相等,那么这两个三角形就是相似的。
例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',∠C =∠C',且 AB/A'B' = BC/B'C' = AC/A'C',那么三角形ABC 就与三角形 A'B'C'相似,记作:△ABC ∽△A'B'C'。
二、相似三角形的判定1、两角分别相等的两个三角形相似。
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
比如,在三角形 ABC 和三角形 DEF 中,若∠A =∠D,∠B =∠E,那么△ABC ∽△DEF。
2、两边成比例且夹角相等的两个三角形相似。
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
例如,在三角形 ABC 和三角形 A'B'C'中,若AB/A'B' = AC/A'C',且∠A =∠A',则△ABC ∽△A'B'C'。
3、三边成比例的两个三角形相似。
当两个三角形的三条边对应成比例时,这两个三角形相似。
比如三角形 MNP 和三角形 XYZ 中,若 MN/XY = NP/YZ = MP/XZ,那么△MNP ∽△XYZ。
三、相似三角形的性质1、相似三角形的对应角相等。
这是相似三角形的基本性质之一,也是判断两个三角形相似的重要依据。
九年级相似三角形知识点总结
九年级相似三角形知识点总结
相似三角形是指具有完全相同形状但大小不同的三角形。
其主要知识点总结如下:
1. 相似三角形的定义:若两个三角形的对应角相等,则它们是相似的。
2. 相似三角形的判定:若两个三角形的对应边成比例,则它们是相似的。
3. 相似三角形的性质:
- 对应角相等:对应的角度是相等的。
- 对应边成比例:对应边的长度之比是相等的。
- 对应的高线成比例:对应的高线的长度之比是相等的。
- 对应的面积成比例:对应的面积的大小之比是相等的。
4. 相似三角形的性质推理:
- 两个三角形中,如果两边成比例,则其对应的夹角也相等。
- 两个三角形中,如果两角相等,则其对应的边成比例。
- 如果两个三角形中,对应的角度和边成比例,则这两个三
角形是相似的。
5. 相似三角形的应用:
- 利用相似三角形的性质可以求解两个图形的边或角度之比。
- 利用相似三角形的性质可以求解两个图形的面积之比。
- 利用相似三角形的性质可以进行图形的放大或缩小。
这些是九年级相似三角形的主要知识点总结,掌握了这些知识,可以更好地理解和应用相似三角形的相关概念和性质。
初三数学相似三角形知识点
初三数学相似三角形知识点(比例线段)一、 知识点:1、 比例线段的定义: .2、 比例的性质:(1)比例的基本性质:如果d c b a =,那么 ;( ). (2)比例的合比性质:如果d c b a =,那么 ; (3)比例的等比性质:如果d c b a =,那么 ;3、比例线段、平行线分线段的比例定理①_____=_______.(1) DE ∥BC ⇒ ②_____=_______.③_____=________. 定理: 。
① ______=________.(2)AB ∥CD ∥EF ⇒ ②______=_______.③______=_________.平行线分线段成比例定理: 。
(2)若AB ∥CD ∥EF 且AC=CE,则___=____.平行线等分线段定理___________________________________________________。
4、三角形一边平行线的判定:(1) ____=_____ ⇒DE ∥BC. ____=_____ ⇒DE ∥BC.____=_____ ⇒DE ∥BC.三角形一边平行线的判定定理:.(2)由BCDE AB AD =能否得到DE ∥BC ?答:5、比例中项:如果满足 ,那么b 叫做a 和c 的比例中项.6、黄金分割:如果点P 把线段AB 分割成AP 和PB (AP>PB )两段,其中 是 和 的比例中项,那么称这种分割为黄金分割,点 称为线段 的黄金分割点.其中 )()()()(==215-,这个比值称做黄金分割数(简称黄金数).(相似三角形的判定)(1) 预备定理: .(2) 判定定理1: .(3) 判定定理2: .(4) 判定定理3: .(5) 判定定理4: .(相似三角形的性质)(1) 相似三角形的 相等, 对应成比例.(2) 性质定理1: .(3) 性质定理2: .(4) 性质定理3: .。
初中数学相似三角形知识库相似三角形知识点大总结
初中数学相似三角形知识库相似三角形知识点大总结相似三角形是初中数学中一个重要的概念,它是指两个三角形的对应角相等且对应边成比例。
相似三角形具有许多重要的性质和应用,在初中数学中经常会用到。
以下是相似三角形的知识点总结。
一、相似三角形的定义和性质:1.相似三角形的定义:两个三角形的对应角相等且对应边成比例。
2.相似三角形的性质:-两个相似三角形的对应边成比例。
-两个相似三角形的对应角相等。
-相似三角形的形状相似但大小不一定相等。
3.相似三角形的判定:-AAA准则:两个三角形的对应角相等,则它们相似。
-AA准则:两个三角形的两个对应角相等,则它们相似。
4.相似三角形的比例关系:-相似三角形的对应边成比例。
-相似三角形的周长成比例。
-相似三角形的面积成比例。
二、相似三角形的证明方法:1.直接证明法:通过角度和边的对应关系,直接证明两个三角形的对应角相等且对应边成比例。
2.间接证明法:通过反证法,假设两个三角形不相似,通过推理产生矛盾,证明假设错误。
三、相似三角形的应用:1.相似三角形的便利性:在研究形状相似的图形时,可以利用相似三角形的性质,简化问题的解决过程。
2.相似三角形的比例问题:通过相似三角形的比例关系,可以解决线段的比例问题、面积的比例问题等。
3.相似三角形的定理应用:如比例定理、高度定理、角平分线定理等,都是通过相似三角形的性质来证明的。
4.相似三角形的构造问题:如已知一个三角形和一条边的比例,可以利用相似三角形的性质,构造出一个相似的三角形。
四、相似三角形与图形的应用:1.相似三角形与勾股定理的应用:根据勾股定理和角度的对应关系,可以判断两条线段之间的关系,如判断一个三角形是否为直角三角形。
2.相似三角形与平行四边形的应用:通过相似三角形的性质,可以证明平行四边形的对边成比例。
3.相似三角形与平行线的应用:通过相似三角形的性质,可以证明平行线与直线之间的角度关系。
五、相似三角形的注意事项:1.相似三角形的顺序:在比较两个三角形相似性时,对应的角和边的位置要一一对应。
九年级数学相似三角形知识点
九年级数学相似三角形知识点相似三角形是九年级数学中的重要知识点之一,本文将详细介绍相似三角形的概念、判定方法及性质。
一、概念相似三角形是指具有相同形状但大小不同的三角形。
两个三角形相似的条件为对应角相等,并且对应边成比例。
记作△ABC∽△DEF。
二、判定方法1.角-角-角(AA)判定法若两个三角形的三个角分别相等,则它们一定相似。
2.角-边-角(ARJ)判定法若两个三角形的一个角相等,另一个角相等,且夹在已知边之间的两边成比例,则它们一定相似。
3.边-角-边(SAS)判定法若两个三角形的两边分别成比例,夹角相等,则它们一定相似。
注意:边-边-边(SSS)判定法不能判断两个三角形是否相似,因为只有边成比例不能保证角相等。
三、性质1.对应角相等性质相似三角形的对应角相等,即∠A=∠D,∠B=∠E,∠C=∠F。
2.对应边成比例性质相似三角形的对应边成比例,即AB/DE=BC/EF=AC/DF。
其中,k为比例因子,代表两个相似三角形的对应边之比。
3.周长比例性质相似三角形的周长之比等于任意一条对应边之比。
4.面积比例性质相似三角形的面积之比等于任意一条对应边平方的比。
5.高比例性质相似三角形的高之比等于任意一条对应边之比。
四、相似三角形的应用1.测量难以直接获取的长度利用相似三角形的边比例性质,可以通过测量一些直接长度,求解难以直接获取的长度,如高度、距离等。
2.解决图像与实物的相似问题在制图中,根据相似三角形的比例性质,可以将实物缩小或放大绘制,保持图像与实物相似,从而达到简化和便于研究的目的。
3.解决间接测量问题利用相似三角形的性质,可以通过测量一些已知长度和角度,间接计算出难以直接测量的距离或高度。
4.解决图形的包含和相似问题通过相似三角形的判定方法,可以判断一个三角形是否包含在另外一个三角形中,以及两个图形是否相似。
总结:相似三角形是九年级数学中的重要知识点,通过角-角-角、角-边-角和边-角-边三种判定方法,我们可以判断两个三角形是否相似。
初中数学相似三角形知识点
初中数学相似三角形知识点
性质定理
1.相似三角形的对应角相等。
2.相似三角形的对应边成比例。
3.相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
4.相似三角形的周长比等于相似比。
5.相似三角形的面积比等于相似比的平方。
判定定理
1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
2.如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(简述为两边对应成比例且夹角相等,两个三角形相似。
)
3.如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(简述为三边对应成比例,两个三角形相似。
)
4.如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似。
(简述为两角对应相等,两个三角形相似。
)
特殊情况
1.凡是全等的三角形都相似全等三角形是特殊的相似三角形,相似比为1。
反之,当相似比为1时,相似三角形为全等三角形。
2.有一个顶角或底角相等的两个等腰三角形都相似,由此,所有的等边三角形都相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学《相似三角形》知识提纲
(何老师归纳)
一:比例的性质及平行线分线段成比例定理
(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离
3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:c
d
a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。
③ 比例中项:若
c a b c a b c
b
b a ,,2是则即⋅==的比例中项. (二)比例式的性质 1.比例的基本性质:b
c a
d d
c
b a =⇔= 2. 合比:若
,则或a b c d a b b c d d a b a c d c =±=±±=±
3.
等比:若……(若……)a b c d e f m
n k b d f n =====++++≠0
则
…………a c e m b d f n a b m
n k
++++++++===
4、黄金分割:
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,
叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=2
1
5-AB ≈0.618AB , (三)平行线分线段成比例定理
1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.
如图:当AD∥BE∥CF 时,都可得到
=
.
=
,
= ,
语言描述如下:
=
, =
,
=
.
(4)上述结论也适合下列情况的图形:
n
m b a =
图(2) 图(3) 图(4) 图(5)
2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.
l 3
l 2l 1A
B
C
D E E D C
B
A D E
B
C
A l 1l 2l 3
A
B C
D E
A 型 X 型
由DE ∥BC 可得:
AC
AE
AB AD EA EC AD BD EC AE DB AD =
==或或. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.
那么这条直线平行于三角形的第三边.
如上图:若 = . = ,=
,则AD ∥BE ∥CF
此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.
4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形....三边..
对应成比例. 二:相似三角形: (一):定义:
1:对应角相等,对应边成比例的三角形,叫做相似三角形。
用符号“∽”表示, 2:相似比:相似三角形的对应边的比叫做相似比。
(二):.相似三角形的判定定理:
1:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
用数学语言表述如下:
∵DE ∥BC ,∴△ADE ∽△ABC
三角形相似的判定方法与全等的判定方法的联系列表如下:
类型 斜三角形 直角三角形
全等三角形的判定 SAS
SSS
AAS (ASA ) HL 相似三角形 的判定
两边对应成
比例且夹角
相等
三边对应成
比例
两角对应相等
一条直角边与斜边对应成比例
2:两角对应相等的两个三角形相似(此定理用的最多); 用数学语言表述如下:
∵∠A =∠D ,∠B =∠E ∴△ABD ∽△DEF
3:两边对应成比例且夹角相等的两个三角形相似; 用数学语言表述如下:
∵
AB DE =
AC
DF
∴△ABD ∽△DEF 4:三边对应成比例的两个三角形相似; 用数学语言表述如下:
∵
AB DE =
AC DF =BC
EF
∴△ABD ∽△DEF 5:直角边和斜边对应成比例的两个直角三角形相似. 用数学语言表述如下:
∵∠C =∠F =90°
AB DE =
AC
DF
∴△ABD ∽△DEF 6:直角三角形斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似
(即:射影定理). 2、 相似三角形的基本图形
Ⅰ.平行线型:即A 型和X 型。
Ⅰ.相交线型
下图1:若△ABC ∽△DCB, 则2
AB =AD.AC (此类型比例式最常用)
C E D
B A
C A
D B. C
B
D
E A
(三):相似三角形的性质
1: 相似三角形的对应角相等,对应边成比例
2: 相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比 3: 相似三角形周长的比等于相似比
4: 相似三角形面积的比等于相似比的平方。
5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比(或相似系数) (2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比 ④相似多边形面积的比等于相似比的平方 四、位似图形
1:定义1:如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那
么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。
定义2:由一个图形得到它的位似图形的变换叫做位似变换。
利用位似变换可以把一个
图形放大或缩小
2:性质:每一组对应点和位似中心在同一直线上,到位似中心的距离之比都等于位似比。
初三数学《解直角三角形》知识提纲
(何老师归纳)
一:锐角三角函数的概念
1:在△ABC 中,∠C=90°锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数
c a sin =∠=
斜边的对边A A c b
cos =∠=斜边的邻边A A
b
a tan =∠∠=
的邻边的对边A A A a b
cot =∠∠=
的对边的邻边A A A
2:锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0. 二:锐角三角函数之间的关系
1:平方关系1cos sin 2
2=+A A
2:倒数关系 tanA •cotA=1 3:商关系: tanA=
A A cos sin cotA=A
A
sin cos 4:互余关系 sinA=cos(90°—A) =cosB , cosA=sin(90°—A) =sinB
tanA=cot(90°—A) =cotB , cotA=tan(90°—A) =tanB
三:特殊角的三角函数值
三角函数 0° 30°
45°
60°
90° sinα
2
1 22
23 1
cos α 1
23
2
2
21 0
tan α 0
3
3
1
3
不存在
cot α 不存在
3
1
3
3
说明:锐角三角函数的增减性,当角度在0°~90°之间变化时. (1)正弦值正切值,随着角度的增大(或减小)而增大(或减小) (2)余弦值余切值,随着角度的增大(或减小)而减小(或增大)
四:解直角三角形的概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
实际问题三概念: (1)俯、仰角. (2)方位角、象限角. (3)坡角、坡度.
五:补充有关公式
(1)1sin 2S ab C ∆=
=1sin 2bc A =1
sin 2
ac B (2)Rt △面积公式:11
22
S ab ch ==
(3)结论:直角三角形斜边上的高ab
h c
=
(4)测底部不可到达物体的高度.常见解答方程式:如右图,
∵ 在Rt △ABP 中,BP=xcot α,在Rt △AQB 中,BQ=xcot β,且BQ —BP=a , ∴ xcot β-xcot α=a .
六:解直角三角形的知识的应用,可以解决: (1)测量物体高度.(2)有关航行问题.
(3)计算坝体或边路的坡度等问题
西α h
l
i
i=h/l=tg α
B
x。