医学统计学第八章t检验ppt课件
医学统计学:第八章 t检验
(1)建立检验假设
H0:μ =μ0 ,即该托儿所男婴的体重发育状
况与全国九城市的同期水平相同。
H1: μ≠μ0 ,即该托儿所男婴的体重发育状
况与全国九城市的同期水平不同。
α =0.05(双侧)
(2)计算u值 本例因总体标准差σ已知,故
可用u检验。
本例n=47, 样本均数=11, 总体均数=11.18,总
验)
一、单样本t检验(样本均数与总体均数比较的t检验)
即样本均数代表的未知总体均数与已知的 总体均数(一般为理论值、标准值或经过大量 观察所得的稳定值等)进行比较。
这时检验统计量t值的计算在H0成立的前提
条件下为:
t X 0
Sn
例3.3 根据调查,已知健康成年男子脉搏的 均数为72次/分钟,某医生在一山区随机测量 了25名健康成年男子脉搏数,求得其均数为 74.2次/分钟,标准差为6.5次/分钟,能否认 为该山区成年男子的脉搏数与一般健康成年 男子的脉搏数不同?
二、配对资料的t检验
配对实验设计得到的资料称为配对资料。
医学科研中配对资料的四种主要类型: ➢ 同一批受试对象治疗前后某些生理、生化指标
的比较; ➢ 同一种样品,采用两种不同的方法进行测定,
来比较两种方法有无不同; ➢ 配对动物试验,各对动物试验结果的比较等。 ➢ 同一观察对象的对称部位。
配对资料的 t 检验
之间收缩压均数有无差别?
(1)建立检验假设
H0:μ1 =μ2 ,即该地20~24岁健康女子和
男子之间收缩压均数相同;
H1: μ1≠μ2 ,即该地20~24岁健康女子和男
子之间收缩压均数不同。 α =0.05(双侧)
(2)计算u值
T检验ppt课件
分别接受两种不同的处理; 2. 同一受试对象或同一标本的两个部分, 分别接 受两种不同的处理; 3. 同一受试对象处理前后比较(自身对比);
配对t检验的基本原理: 假设两种处理的效应相同,即µ 1= µ 2,则µ 1µ 2=0 (可视为已知总体均数µ 0=0), 即可看成 是差值的样本均数所代表的未知总体均数 µ d与已知总体均数µ 0=0的比较。对于配对 样本数据,应该首先计算出各对差值的均 数。 应用条件:差值服从正态分布。
0
1.833
X 74.2 72 t 1.833 S/ n 6 25
t0.05,24 1.711,
0.01<p<0.05
t0.01,24 2.492
第二节 配对样本均数的t检验
目的:很几种 情况:
1. 将某些重要特征相似的两个受试对象配成一对,
两者的差异无统计学意义。据此资料还不能
认为山区成年男子的脉搏均数与一般健康成年
男子的脉搏均数不同。
(2) 计算统计量
X 0 74.2 72 X 0 t 1.833 SX S/ n 6.0 / 25
(3) 确定P值,作出统计推断结论
以=n-1=25-1=24,查t界值表, t0.05, 24=1.711, t>t0.05, 24, P<0.05, 按=0.05水准拒绝H0, 接受H1 ,两者的差异有统计学意义。可以 认为山区成年男子的脉搏均数高于一般健
对资料进行分析: 1. 资料提供的信息: 计量资料 已知某一总体均数0=72次/分; 4 .2 次 / 分 样本信息:n=25, x7 , S = 6.0次/分。 2. 目的: 推断样本所代表的未知总体均 数与已知的总体均数有无差别。
(1) 建立检验假设,确定检验水准
t检验ppt课件
t X0
74 .272
1.692
SX
6.5 25
精品课件
3.自由度ν= n-1 = 25-1 = 24,
t=1.692,查t 界值表得:
0.05<P<0.10 不能拒绝H0 ,差异无统计学意义。 尚不能认为该山区健康成年男子脉搏 数高于一般地区。
精品课件
例2 应用克矽平治疗矽肺患者10名, 治疗前后血红蛋白的含量如表1所示,问 该药是否引起血红蛋白含量的变化?
查附表3 (方差分析表,方差齐性检验用)
F0.05(9,49)=2.39 因为F =10.22>F0.05(9,49) 所以 P<0.05,
拒绝H0 。认为因为两总体方差的
差异有统计学意义,
故不能用 t 检验而要用 t 检验。
精品课件
x1 10.00 18.00 25.00 19.00 30.00 19.00
精品课件
方差齐性的检验用F 检验, 统计量F 值的计算公式为:
S
2 1
较
大
F
S
2 2
较
小
精品课件
求得F值后,其自由度分别为: df1 =n1-1; df2 =n2-1
查附表3,作方差齐性检验,
若 P> 0.05 则用 t 检验 P< 0.05 则用t'检验
精品课件
两独立样本均数比较的t’ 检验 (two independent sample t-test)
t 检验计算公式
t
X1 X 2
S
2 1
S
2 2
n1
n2
tα’界限值计算公式
ta
SX21
ta,d1f S2
X1
t检验医学统计学PPT课件
[
sc2
( x12
x1)2 ][ n1
( x22
n1 n2 2
x2)2 ] n2
(n1 1)s12 (n2 1)s22 n1 n2 2
第36页/共78页
例8-7 :
表8-4 男女大学生的血清谷胱甘肽过氧化酶(GSH-PX)
性别 例 数 均 数 标准差 男 48 96.53 7.66 女 46 93.73 8.23
身高与以往男子平均身高相等
H1:µ≠µ0=170cm,即即现在该地20岁男子平均
身高与以往男子平均身高不等
α= 0.05,双侧检验
第9页/共78页
⑵ 选定检验方法,计算检验统计量 根据题目资料类型,可见,该资料是样本与
总体之间的比较,且σ已知可用样本-总体的Z
检验。依公式计算检验统计量:
z x 0 x 0
值样本是否来自零总体(μd=0 ),如来自零总体
,则两方法检测值相同,如不是来自零总体,则 表明两方法检测值的不一致,不是由抽样误差引 起,而是来自不同的总体。
第25页/共78页
⑴ 建立检验假设,确定检验水准
H0:µd=0,即两方法检测结果相同 H1:µd≠0,即两方法检测结果不同 α= 0.05 ,双侧检验
第6页/共78页
在 H0 成立的前提条件下,检验统计量计算公式:
① σ已知或σ未知但n足够大:
z x
x
( )
② σ未知且n较小:
t x μ0 x μ0
sx
s n
第7页/共78页
(n1)
例8-1 根据大量调查得知,某地20岁健康成年男子平 均身高为170cm,标准差为cm。今随机抽查了该地25 名健康成年男子,求得其身高均数为172cm,标准差 为cm,能否据此认为该地现在20岁成年男子平均身高 与以往不同?
医学统计学第八章-t检验
配对设计t检验(例8.2)
• 24名儿童接种卡介苗,按照年龄、性别配成12对,每对中的一 人接种新制品,另外一人接种标准品;经相同部位注射,72小 时后观察结核菌素皮肤反应的直径,请问两种疫苗的反应结果 有无差别?
编号
1 2 3 4 5 6 7 8 9 10 11 12
标准品
12.0 14.5 15.5 12.0 13.0 12.0 10.5 7.5 9.0 15.0 13.0 10.5
• a=0.05;双侧
• t计= 算d =检验d 统计= 量3.2t5 = 4.520; = 11
S d
sd / nd
2.491 / 12
• 查表,t 0.05/2,11 = 2.201,所以 P<0.05(P=8.7×10-4);在a=0.05的水
准上,拒绝H ,两种疫苗的反应结果
3.成组t检验
2
t检验
• 在假设检验中使用了t统计量,所以就称之为 t检验
• t检验的使用是有条件的,什么样的资料可以 计算t值?
3
t检验的使用条件
• 数值(计量资料、定量变量)变量 • 正态分布或近似正态分布 • 总体方差齐性(两样本资料) • 在满足上述条件下,如果总体标准差未知,而
且样本含量较小(n≤100),考虑使用t检验; 而如果已知总体标准差或样本含量较大(n>100 )则可以使用Z检验
• 在a=0.05的水准上,不拒绝H0,尚不认为农 村新生儿的出生体重与该地平均水平不同。
2.配对设计的t检验
• 何为配对设计? • 有时影响试验或研究结果的不仅仅是
我们所观察的因素,例如要比较两种 药物的疗效,如果两组患者在开始时 的病情严重程度相差较大,那么即使 最终两药的治愈情况不同,也不能归 结于药物差别;在这里患者的病情称 之为非处理因素或“混杂”因素 • 配对设计就是研究者为了控制可能存 在的非处理因素对研究结果的影响而 采用的一种“均衡”的设计方法
医学统计学——t检验课件
医学统计学——t检验课件xx年xx月xx日contents •t检验的基本概念•t检验的原理•t检验的步骤•t检验的应用•t检验的注意事项•t检验的实例演示目录01 t检验的基本概念统计假设检验的一种,用于比较两个独立样本的平均数是否有显著差异,或一个样本的平均数与一个已知的参考值之间是否有显著差异。
t检验常用于小样本数据,特别是两个独立样本的比较。
t检验的定义t检验的适用范围适用于小样本数据,特别是两个独立样本的比较;常用于检验一个样本的平均数与一个已知的参考值之间是否有显著差异;可用于二分类变量和等级变量的比较。
两个独立样本来自的总体服从正态分布;两个独立样本来自的总体方差相等;样本数据是随机样本。
t检验的假设条件02 t检验的原理两独立样本t检验适用条件样本应来自正态分布总体,且方差相等。
结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
统计假设比较两组独立样本的均值是否存在显著差异,即H0:μ1=μ2与H1:μ1≠μ2。
两配对样本t检验统计假设比较两组配对样本的差值均值是否显著非零,即H0:μ1-μ2=0与H1:μ1-μ2≠0。
适用条件样本应来自正态分布总体,且方差相等。
结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
单因素方差分析t检验统计假设比较三组或多组独立样本的均值是否存在显著差异,即H0:μ1=μ2=…=μn与H1:μ1≠μ2≠…≠μn。
适用条件样本应来自正态分布总体,且方差相等。
结果解释根据F值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
如果P值小于预设显著性水平α,则认为各组均值存在显著差异;否则,认为无显著差异。
03 t检验的步骤明确研究目的明确研究目的是t检验的首要步骤,决定了数据的类型和数量。
数据筛选对数据进行筛选,去除异常值和缺失值,以确保数据的有效性和可靠性。
数据分组根据研究目的,将数据分成两组或以上,以便进行比较和分析。
医学统计学--t检验和u检验PPT课件
562500
7
3450
8
3050
2500 1750
550
302500
合计
—
—
1050 1102500
1. 建立假设,确定检验水准
H0:d 0 两种饲料喂养的大白鼠肝中维生素含量相等 ;
H1:d 0
两种饲料喂养的大白鼠肝中维生素含量不 等。
0.05
2. 选择检验方法,计算统计量 t d 0 812.5 4.207 sd n 546.25 / 8
代入公式,得:
2953.43 182.52 1743.16 141.02
SC2
12 12 13 2
13 17.03
S X1 X 2
17.03 1 1 1.652 12 13
– 按公式计算,算得:
t 15.2110.85 2.639 1.652
• 确定P值,作出推断结论 两独立样本t检验自由度为 =n1+n2-2 =12+13-2=23; 查t界值表,t0.05(23)=2.069,t0.01(23)=2.807.
四 u 检验
1、样本与总体的u检验
u X 0 0 n
u X 0
Sn
2、两样本的u检验
u
x1 x2
s12
s
2 2
n1 n2
σ0已知 σ0未知
第二节 第一类错误与第二类错误
假设检验是反证法的思想,依据 样本统计量作出的统计推断,其推断 结论并非绝对正确,结论有时也可能 有错误,错误分为两类。
n 1 81 7
3.确定P值,判断结果
查t界值表,P 0.005 ,按 0.05 水准,拒绝H0 ,接受H1,可认为两 组大白鼠肝中维生素A的含量不等,维 生素E缺乏饲料组的大白鼠肝中维生素 A含量低。
医学统计学-t检验
单样本t检验概述
1
定义和用途
单样本t检验是将一个样本的平均值与一个已知的总体平均值进行比较。该方法可用于检测某 一群体的平均数是否与已知平均数有显著差异。
2
计算公式
计算t值的公式为 (样本平均值-总体平均值) / 标准误差。
3
实例分析
例如,医生想检查其患者的平均血压是否与总体平均血压相同。医生可以采取一些患者的随 机抽样,进行平均血压值的估计。利用单样本t检验,医生可以比较患者平均血压和已知的总 体平均数的数量差异。
t检验在药物研发中的应用
1 疗效检验
t检验在药物研发中被广泛用于检验不同药物、不同剂量和不同给药方式的疗效。
2 药物毒性检测
t检验可用于检测药物给药对器官功能和生理指标的影响和损伤。
3 剂量选定
t检验可用于评估药物的安全性和有效性,并确定剂量的选择。
t检验在生物医学研究中的应用
基础研究
t检验在生物医学基础研究中应用 广泛,可用于比较不同基因型、 不同表观遗传信息和不同环境因 素对生物体的影响。
t检验和方差分析
方差分析
方差分析是一种用于比较三个或 更多群体之间差异的方法。它可 以用于比较顺序数据、类别数据 和等间隔数据。
t检验和方差分析的不同
t检验是用于比较两个群体之间差 异的方法,适用于均值分布差异 较小、样本较小的数据。而方差 分析适合适用于比较多个群体之 间差异的情况、以及数据间的交 互作用。
配对t检验概述
1 定义和用途
配对t检验是用于比较同一组受试者在两个不同时间点或两种不同条件下的差异。
2 计算公式
计算配对t值需用到每个块对的平均值和标准差。平均值差值除以标准误差的公式表示 t值。
T检验及应用ppt课件
ppt课件.
14
喝茶前后体重平均值有较大差异, 说明喝茶后的平均体重低于喝茶 前的平均体重。
它表明在显著性水平为0.05 时,肥胖志愿者服用减肥茶 前后的体重有明显的线性变 化,喝茶前和喝茶后体重的 线性相关程度较强.
⑵选择统计量。两配对样本T检验采用T统计量。首先,对两组样本分别计算 出每对观测值的差值得到差值样本;然后,体用差值样本,通过对其均值是 否显著为0的检验来推断两总体均值的差是否显著为0.
⑶计算检验统计量观测值和概率P-值
SPSS将计算两组样本的差值,并将
相应数据代入式①,计算出T统计量的观测值和对应的概率P-值。
至此,SPSS将自动计算平均值和对应的概率P-值。分析结果如表3和表4所示。 表3.人均住房面积的基本描述统计结果
ppt课件.
100个家庭的人均住房面积 的平均值为21.2平方米, 标准差为1.7平方米
5
表4人均住房面积单样本T检验结果
总体均值的95%的置信区间 为(20.8,21.5)平方米。即: 我们有95%的把握认为家庭 人均住房面积均值在 20.8~21.5平方米之间。
⑴选择菜单【分析】 → 【比较均值】 → 【独立样本T检验】
⑵将数学成绩到【检验变量(T)】 框中。于是出现如图所示的窗口。
ppt课件.
10
⑶选择总体标识变量到【分组变 量】框中。
样本均值有一定的差异
ppt课件.
11
p>0.05,认为二者方差 无显著差异
P>0.05,因此认为两 总体的均值无显著差异。
得到的检验统计量为 t 统计量,数学定义为:
t
医学统计学——t检验课件
•t检验概述•t检验的前提条件•单一样本t检验•独立样本t检验•配对样本t检验•t检验的扩展•t检验在医学中的应用•t检验的常见错误及注意事项目录t检验的定义0102031t检验的适用范围23t检验主要用于比较两组数据的均值是否存在显著差异,例如比较两组病人的平均血压、平均血糖等指标是否存在显著差异。
t检验还可用于检测单个样本的均值与已知的某个值是否存在显著差异,例如检测某种新药的有效性。
在医学研究中,t检验常用于临床试验、流行病学调查等数据统计分析中。
t检验的历史与发展t检验起源于英国统计学家G.E.皮尔逊,最初用于解决科学实验中的数据分析问题。
随着科学技术的不断发展,t检验逐渐成为医学统计学中最常用的统计分析方法之一。
目前,t检验已经广泛应用于医学、生物、社会科学等领域的数据统计分析中,成为研究者和学者们必备的统计工具之一。
样本正态分布样本独立性独立性是指样本数据来自不同的总体,且各总体之间相互独立。
在进行t检验时,要求样本数据是来自两个或多个相互独立的总体。
如果样本数据不是来自相互独立的总体,那么t检验的结果可能会受到影响。
在实际应用中,如果样本数据不满足独立性要求,可以通过将数据分为不同的组(如按时间、按个体等)来满足独立性要求。
如果数据无法分组满足独立性要求,则可以考虑使用其他统计方法。
方差齐性单一样本t检验是用来检验一个样本均值是否显著地不同于已知的参考值或“零”(即检验假设H<sub>0</sub>:μ=μ<sub>0</sub>)。
这种检验通常用于检验单个观察值是否与已知的参考值有显著差异。
公式t=(X-μ<sub>0</sub>)/S<sub>X</sub>/√n,其中X是样本均值,μ<sub>0</sub>是已知的参考值或“零”,S<sub>X</sub>是样本标准差,n是样本大小。
医学统计学——t检验课件
样本量大小的问题
足够的样本量是t检验准确性的重要保障
如果样本量过小,t检验的结果可能不准确。
确定合适的样本量
在医学研究中,一般认为样本量至少需要达到30才能进行t检验。同时,可以使用如Bootstrap、jackknife等 重采样方法来评估t检验的稳定性。
06
t检验的复习与巩固
概念辨析
t检验
医学统计学——t检验课件
xx年xx月xx日Βιβλιοθήκη contents目录
• t检验的基本概念 • t检验的原理 • t检验的步骤 • t检验的应用 • t检验的局限性 • t检验的复习与巩固
01
t检验的基本概念
t检验的定义
总结词
t检验是一种常用的参数检验方法,用于比较两组数据的均值 是否存在显著差异。
详细描述
计算t值
正态性检验
对数据进行正态性检验,以确定数据是否符合正态分布。
t值计算
根据样本数据计算t值,并确定自由度。
查表得出p值
p值定义
p值是统计学中表示样本数据是 否显著的重要指标。
p值计算
使用t值和自由度查表得出p值 。
解读p值
根据p值大小,判断样本数据的 显著性,从而得出结论。
04
t检验的应用
t检验是通过计算t值来评价两组数据之间的差异程度,以确定 这种差异是随机误差引起还是处理效应引起。
t检验的适用范围
总结词
t检验适用于小样本数据,特别是样本数据呈正态分布或近似正态分布的情况 。
详细描述
在医学研究中,t检验常用于比较两组病例的疗效、安全性等指标的差异,也 可以用于评价不同剂量、不同处理方式之间的差异。
实例
例如在肺癌患者的预后评估中,根据患者年龄、性别、病理 类型、肿瘤大小、淋巴结转移情况等数据,使用t检验进行统 计分析,可以得出患者的生存期是否存在显著差异,从而为 临床医生提供参考依据。
医学统计学第八章-t检验
随机数:494
试验
567
对照
门诊号3 vs. 门诊号5
随机数:206 126
…………
……
……
第十二页,共43页。
对子号 1 2 3
……
试验组
对照组
门诊6
门诊1
女性、55~、重度
门诊4
门诊2
男性、40~、轻度
门诊3
门诊5
女性、45~、中度
……
试验组与对照组的两个观察对象均按照一定的条件配成对子,
同一对子中的“混杂”因素在二者间几乎相同;而在不同对子 间这些“混杂”因素则有可能差别很大
男性 40 轻度
女性 45 中度 男性 42 轻度 女性 43 中度 女性 57 重度
门诊号1
门诊号2 门诊号3
门诊号4
门诊号5 门诊号6
性别、年龄、 高血压的程度 将影响到药物 的疗效,决定 将以上三个“ 混杂”因素作 为匹配变量
对照
试验
门诊号1 vs. 门诊号6 随对机照数:99 34试3验
门诊号2 vs. 门诊号4
但是,在实际应用中,由于作用于受试对象的非处理 因素如气候、饮食、心理状态等无法在长时间内保持 稳定,此时结果就不完全是处理因素的效应,同时还 夹杂非处理因素改变对结果的影响;故这种配对设计 的方式主要用于急性、短期试验。
第十五页,共43页。
配对设计的t检验的数据形式
观察序号 1 2
…… i
…… n
单样本资料的t检验
根据H0,新生儿体重服从正态分布:x~N(3.36,σ2 ); 从该总体中随机抽样,在n = 40的情况下样本均数也将 服从正态分布x~N(3.36, σ 2 )
40 既然满足正态分布就可以作z转换,但是总体标准差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
1.单样本t检验(例8.1)
? 某医生测量了农村 40名新生儿,测得平均 体重为 3.27kg ,标准差 0.44kg ;从该地的 既往记录求得新生儿的总体均数为 3.36kg
? 问该地农村新生儿的出生体重是否与该地 新生儿的平均出生体重不同 ?
6
单样本资料的t检验
? 从资料提供的信息来看,样本均数3.27与总体均数 3.36不相等,其原因可有以下两个方面: ? 样本对应的总体均数等于3.36,仅仅是由于抽样 误差所致这种差别;
? 在a=0.05的水准上,不拒绝 H0,尚不认为农 村新生儿的出生体重与该地平均水平不同。
11
2.配对设计的t检验
? 何为配对设计? ? 有时影响试验或研究结果的不仅仅是我们所观察
的因素,例如要比较两种药物的疗效,如果两组 患者在开始时的病情严重程度相差较大,那么即 使最终两药的治愈情况不同,也不能归结于药物 差别;在这里患者的病情称之为非处理因素或“ 混杂”因素 ? 配对设计就是研究者为了控制可能存在的非处理 因素对研究结果的影响而采用的一种“均衡”的 设计方法
? 非抽样误差,二者的确有别?
? 两种情况只有一个是正确的,且二者必居其一,需 要我们作出推断。
7
单样本资料的t检验
? H0:? =3.36,农村新儿体重与该地平均水平相同 ? H1:? ≠3.36,二者不同 (有可能高也有可能低,总
之不相等即可) ? 检验水准a=0.05(双侧)
8
单样本资料的t检验
常见的配对方法之二: ?将同一份样品分成两份(或同一机体不同部 位),同时、随机接受两种不同的处理方案 ,例如:牙医分别用两种方法对相同患者的 牙龈取模,比较两种方法的精确度
16
一种“特殊”的配对形式
? 有种“治疗前后的自身配对”,它是以受试对象接 受处理前的变量值作为对照值(相当于空白情况) ,接受处理后的变量值作为实验值。
根据H0,新生儿体重服从正态分布: x~N(3.36,σ2 ); 从该总体中随机抽样,在 n = 40的情况下样本均数也将 服从正态分布 x~N(3.36, σ 2 )
40 既然满足正态分布就可以作 z转换,但是总体标准差
? 未知,而且样本例数较少,所以只能作 t转换: t= x ? ? = 3.27 ? 3.36 = ? 1.294 ? = 40 ? 1 = 39
门诊号2 门诊号3 门诊号4 门诊号5 门诊号6
性别、年龄、 高血压的程 度将影响到 药物的疗效, 决定将以上 三个“混杂” 因素作为匹 配变量
…………
对照
试验
门诊号1 vs. 门诊号6 随对机照数:99 3试43验
门诊号2 vs. 门诊号4
随机数:494 567
试验
对照
门诊号3 vs. 门诊号5 随机数:206 126
…………
14
对子号 1 2 3
……
试验组 对照组
门诊6
门诊1
女性、55~、重度
门诊4
门诊2
男性、40~、轻度
门诊3
门诊5
女性、45~、中度
……
试验组与对照组的两个观察对象均按照一定的条件配成对子, 同一对子中的“混杂”因素在二者间几乎相同;而在不同对子 间这些“混杂”因素则有可能差别很大
15
配对设计的t检验
医学统计学
Medical Statistics
第八章. t检验
流行病学与卫生统计学系 2016.2
1
2
t检验
? 假设检验中如果无效假设针对总体均数(此处 指的是算术均数),通常的方法有 t检验(专 门用于不超过 2组的资料)与方差分析(用于 三组及以上)
? 如果针对的总体参数是中位数,可以考虑采用 秩和检验
3
t检验
? 在假设检验中使用了 t统计量,所以就称之为 t检验
? t检验的使用是有条件的,什么样的资料可以 计算t值?
4
t检验的使用条件
? 数值(计量资料、定量变量 )变量 ? 正态分布或近似正态分布 ? 总体方差齐性 (两样本资料 ) ? 在满足上述条件下,如果总体标准差未知,而
且样本含量较小( n≤100),考虑使用 t检验; 而如果已知总体标准差或样本含量较大( n>100 )则可以使用 Z检验
12
配对设计的t检验
常见的配对方法之一: ?将受试对象配成特征相近的对子,而后让每 个对子中的两个对象随机接受不同的处理方 案,例如:比较两种疗法的患者生化指标, 医生将年龄接近、性别一致、病情相同的患 者配成对子,而后让一位患者接受甲处理另 外一位患者接受乙处理
13
女性 55 重度 门诊号1
男性 40 轻度 女性 45 中度 男性 42 轻度 女性 43 中度 女性 57 重度
s / n 0.44 / 40
9
P /2
P/ 2ห้องสมุดไป่ตู้
1/2α
0 -1.294 -2.023
1/2 α
t39
1.294 2.023
10
单样本资料的t检验
? 由于t=-1.294>t 0.05/2,35=-2.023,因此虽然无法 准确得出P值,但仍然可以推断 P>0.05(经 过计算机软件得出结果 P=0.203 )