初中数学基础知识点总结之有理数

合集下载

初中数学基础知识点全总结

初中数学基础知识点全总结

初中数学基础知识点全总结初中数学是整个数学学习体系中的重要基础阶段,掌握好基础知识点对于后续的学习至关重要。

下面将对初中数学的基础知识点进行全面总结。

一、数与代数1、有理数有理数包括整数和分数。

整数又包括正整数、零和负整数;分数包括正分数和负分数。

有理数的运算包括加、减、乘、除和乘方。

加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得零。

减法法则:减去一个数,等于加上这个数的相反数。

乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。

除法法则:除以一个数等于乘以这个数的倒数;零不能作除数。

乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

2、实数实数包括有理数和无理数。

无理数是无限不循环小数,如π、√2 等。

平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作√a。

立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。

正数的立方根是正数,负数的立方根是负数,零的立方根是零。

3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

整式:单项式和多项式统称为整式。

单项式是数或字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。

整式的运算:整式的加减实质是合并同类项;整式的乘法包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式;整式的除法包括单项式除以单项式、多项式除以单项式。

分式:形如 A/B(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。

2022初中数学:有理数知识点总结及相关习题

2022初中数学:有理数知识点总结及相关习题

2022初中数学:有理数知识点总结及相关习题有理数的概念定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

概况:有理数为整数和分数的统称。

正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。

因而有理数集的数可分为正有理数、负有理数和零。

有理数的计算法则1)、有理数加法法则1.同号两数相加,把绝对值相加,所得值符号不变。

如-1+(-1)=-|1+1|=-2 、 1.1+1.1=2.22.异号两数相加,若绝对值不等,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

若绝对值相等即互为相反数的两个数相加得0。

如-1+2=+|2-1|=12+(-3)=-|3-2|=-1-3.2+3.2=03.一个数同0相加,仍得这个数。

3.14+0=3.14注意:一是确定结果的符号;二是求结果的绝对值。

在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0。

从而确定用那一条法则。

在应用过程中,一定要牢记先符号,后绝对值,熟练以后就不会出错了。

多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。

2)、有理数减法法则减去一个数,等于加这个数的相反数。

两变:减法运算变加法运算,减数变成它的相反数做加数。

一不变:被减数不变。

可以表示成: a-b=a+(-b)。

3)、有理数乘法法则1.两数相乘,同号为正,异号为负,并把绝对值相乘。

2.任何数同0相乘,都得0。

3.乘积为1的两个有理数互为倒数。

4.几个不是0的数相乘,负因数得个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

5.几个数相乘,如果其中有因数为0,那么积等于0。

4)、有理数除法则1.除以一个不等于0的数,等于乘这个数的倒数。

2.两数相除,同号得正,异号得负,并把绝对值相除。

3.0除以任何一个不等于0的数,都得0。

注意:0不能做除数。

初中数学有理数知识点总结

初中数学有理数知识点总结

初中数学有理数知识点总结1.有理数的定义有理数是整数和分数的统称。

整数是正整数、负整数和0。

分数是一个整数除以一个非零整数得到的数,可以是正分数和负分数。

理论上,有理数可以表示为分数的形式,也可以表示为小数的形式。

2.有理数的大小比较对于有理数a和b,可以根据它们的大小关系进行比较。

(1)当a和b符号相同,并且a和b的绝对值相等时,a=b。

(2)当a和b符号相同,并且a的绝对值大于b的绝对值时,a>b。

(3)当a和b符号相同,并且a的绝对值小于b的绝对值时,a<b。

(4)当a和b符号相反时,不论它们的绝对值大小,都有a<b。

3.有理数的加法和减法有理数的加法和减法遵循以下原则:(1)符号相同的有理数相加,保留符号,并将绝对值相加。

(2)符号不同的有理数相加,先求绝对值的差,再给结果加上较大的绝对值的符号。

(3)有理数相减可以转化为有理数相加。

4.有理数的乘法和除法有理数的乘法和除法遵循以下原则:(1)符号相同的有理数相乘,结果为正,绝对值为两个有理数绝对值的乘积。

(2)符号不同的有理数相乘,结果为负,绝对值为两个有理数绝对值的乘积。

(3)有理数相除可以转化为有理数相乘。

5.有理数的乘方有理数的乘方是指一个有理数以自己为底数的n次方的运算,其中n是正整数。

(1)正数的幂是一个正数,其底数的绝对值不变,指数是幂的个数。

(2)负数的幂是一个正数,其底数的绝对值不变,指数是幂的个数。

(3)0的正数次幂为0。

(4)0的负数次幂没有定义。

(5)数的0次幂等于16.有理数的约分和化简有理数的约分是指将一个有理数的分子和分母同时除以一个公因数,使分数的分子和分母都没有公约数。

7.有理数的小数表示有理数可以表示为小数的形式。

有理数的小数形式可以是有限的小数、无限循环小数和无限不循环小数。

8.有理数的绝对值有理数的绝对值是指这个数离0的距离。

对于正数,绝对值等于这个数本身;对于负数,绝对值等于这个负数去掉负号。

初中数学知识点整理大全

初中数学知识点整理大全

初中数学知识点整理大全初中数学知识点整理:第一章有理数一、有理数的分类(1)按正负分,分为正有理数、零、负有理数;(2)按整数和分数分,分为整数和分数;二、有关概念(1)相反数:代数意义和几何意义相结合,(2)绝对值:(3)倒数(4)数轴三、有理数大小的比较主要分为利用数轴比较和利用绝对值比较四、有理数的运算(1)运算法则①加法法则②减法法则③乘法法则④除法法则⑤乘方法则(2)运算律① 交换律:a、加法交换律 a+b=b+ab、乘法交换律a×b=b×a②结合律:a、加法结合律 a+b+c=(a+b)+cb、乘法结合律a×c+b×c=(a+b)×c ③分配律:(a+b)×c=a×c+b×c五、科学记数法的概念六、近似数的概念示例:例1 某食品包装袋上标有“净含量386克 4克”,则这包食品的合格净含量范围是( )克——390克。

根据正数、负数的意义可知,这包食品的合格净含量范围是(386-4)克——(386+4)克,即382克——390克。

382例2 (1)如果a与-2互为相反数,那么a等于( )A、-2B、2C、-D、根据相反数的特点,即“绝对值相等,符号相反”,可知-2的相反数为2.故正确答案为B。

(2)-5的绝对值是( )A、5B、-5C、D、-有绝对值的概念可知,表示-5的点到原点的距离为5,故-5的绝对值为5。

(3)- 的倒数是( )A、 B、 C、- D、-根据倒数的定义知- 的倒数为1÷(- )=-例3 比较大小:- 与-这是两个负数比较大小,应先比较它们的绝对值的大小。

= = , = = 。

例4 计算:有理数加减乘除混合运算顺序:先乘除,后加减,有括号应先算括号里的。

例5 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 575 306用科学记数法表示(精确到百万位)约为( )A、66.6×10B、0.666×10C、6.66×10D、6.66×10665 575 306=6.655 753 06×10 ≈6.66×10 故选CC例6用四舍五入法,按括号里的要求对下列各数取近似值。

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

初中数学有理数知识点总结

初中数学有理数知识点总结

0 既不是正数,也不是负数。
最小的正整数是 1,最大的负整数是-1。
(2)正数和负数表示相反意义的量。
5、利用肯定值比较大小
2、有理数的概念及分类
两个正数比较:肯定值大的那个数大;
3、有关数轴
两个负数比较:先算出它们的肯定值,肯定值大的反而小。
(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。
第一步:确定积的符号 第二步:肯定值相乘 10、乘积的符号确实定 几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确 定:当负因数有奇数个时,积为负; 当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零, 积就为零。 11、倒数:乘积为 1 的两个数互为倒数,0 没有倒数。 正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号 肯定相同) 倒数是本身的只有 1 和-1。

第2页共2页
肯定值较大的加数的符号相同,和的肯定值等于加数中较大的肯定值
(2)相反数:符号不同、肯定值相等的两个数互为相反数。

第1页共2页
本文格式为 Word 版,下载可任意编辑
减去较小的肯定值;当两个加数肯定值相等时,两个加数互为相反数, 和为零.
(3)一个数同零相加,仍得这个数. 加法的交换律:a+b=b+a 加法的结合律:(a+b)+c=a+(b+c) 7、有理数减法:减去一个数,等于加上这个数的相反数。 8、在把有理数加减混合运算统一为最简的形式,负数前面的加号 可以省略不写. 例 如 : 14+12+(-25)+(-17) 可 以 写 成 省 略 括 号 的 形 式 : 14+12 -25-17,可以读作“正 14 加 12 减 25 减 17”,也可以读作“正 14、正 12、负 25、负 17 的和.” 9、有理数的乘法 两个数相乘,同号得正,异号得负,再把肯定值相乘;任何数与 0 相乘都得 0。

初中数学知识点复习(有理数和整式的加减)

初中数学知识点复习(有理数和整式的加减)

第一章 有理数1.2有理数1.2.1有理数 1.有理数的两种分类 (1)按数域(或范围)分类:(2)按正负分类:2.非负数及非正数的概念(1)非负数:正数和0(或不是负数的数)叫做非负数. (2)非正数:负数和0(或不是正数的数)叫做非正数. 1.2.2数轴1.数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.2.数轴的三要素: 原点、正方向、单位长度.1.2.3相反数1.相反数的定义(有两种定义方法):(1)只有符号不同的的两个数叫做互为相反数.举例,-2和2 (2)绝对值相等,符号相反的两个数叫做互为相反数. 举例, |3||3|=- 2.相反数的两个特点:(1)互为相反数的两个数的和等于0.如,2+(-2)=0 用公式表示:若a 和b 互为相反数,则a+b=0. (2)互为相反数的两个非零数的商等于-1. 如,313-=- 用公式表示:若非零数a 和b 互为相反数, 1(0,0)aa b b=-≠≠则.典型考点: 若两个非零数a 、b 互为相反数,c 、d 互为倒数。

求aa b cd b+++的值。

1.2.4绝对值1.绝对值的定义(有两种定义方法):(1)几何定义:数轴上表示数a 的点到原点的距离叫做数a 的绝对值.记作|a|.在几何定义.....里., “绝对值”即“|a|”应理解为“距离” 或“长度”.如, “|10|”的意义是在数轴上表示10的点到原点的距离;又如“|-7|”的意义是在数轴上表示-7的点到原点的距离. (2)代数定义:① 一个正数的绝对值等于它本身.如, |10|=10 公式: 如果a >0,那么|a|=a.② 0的绝对值等于0(或它本身). 如, |0|=0 公式: 如果a=0,那么|a|=0.③一个负数的绝对值等于它的相反数.如, |-7|=7 公式: 如果a <0,那么|a|=-a.通过绝对值的代数定义,可归纳出下面的结论:|a|=-a.|a|=a.⑤由a≤0④由a≥0|a|=-a.③由a <0|a|=0.②由a=0|a|=a.①由a >0典型考点:⑴当a 时, a =a;⑵当a 时, a =-a;⑶已知|x-5| = x-5,则x的取值范围是;⑷已知|a-3| = 3- a ,则a的取值范围是.2.绝对值的非负性在代数定义里......,“绝对值”即“|a|”应理解为“一个数”,并且这个“数”不可能是负数. 或说这个“数”是非负数,即|a|≥0.重要结论:若多个非负数的和为0,则每个非负数均为0.典型考点:⑴若|x+2|+|y-3|=0,则2x2-y+1= .⑵已知2-a与2+b互为相反数.则a+b= .3.有理数的大小比较(1)正数大于负数,0大于负数.自己举例说明:(2)两个负数,绝对值大的反而小. 自己举例说明:(3)在数轴上,右边的数总是大于左边的数.1.3有理数的加减法1.3.1有理数的加法1.有理数的加法法则:(1)同号的两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)互为相反数的两个数相加得零.2.(1)加法交换律:两个数相加,交换加数的位置,和不变.公式:a+b=b+a.(2)加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,公式:(a+b)+c=a+(b+c)注:要恰当地运用结合律,否则就越用越繁.1.3.2有理数的减法有理数的减法的法则:减去一个数,等于加上这个数的相反数.公式:()a b a b-=+-注:减去一个负数时一定要转化为加法后再进行计算.如, 4-(-6)=4+6=111.4有理数的乘除法1.4.1有理数的乘法1.有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数与0相乘,都得0.运用法则填表2.(1)定义:乘积为1的两个数叫做互为倒数.如,3×13=1,就说3和13互为倒数.又如,因为(12-)×(2-)=1, 所以12-和2-互为倒数.显然: 0没有倒数.填表:(2)①互为倒数的两个数的积为1.②1和-1的倒数等于它本身.③0没有倒数.④互为倒数的两个数的符号相同.(3)乘法的三个运算律:①乘法交换律:②乘法结合律:③分配律:1.4.2有理数的除法1. 有理数除法的运算法则:除以一个不等于0的数,等于乘以这个数的倒数.公式:1(0)a b a bb÷=⨯≠2. 有理数除法的符号法则:(1)两个数相除,同号得正,异号得负,并把绝对值相除.(1)0除以一个不等于0的数,都得0.运用法则填表练习:用“>”或“<”或“=”填空:(1)如果a <0,b >0,则a ⋅b 0, ab 0.(2) 如果a >0,b <0,则a ⋅b 0, ab 0.(3) 如果a <0,b <0,则a ⋅b 0, ab 0.(4) 如果a=0,b ≠0,则a ⋅b 0, ab0.1.5有理数的乘方1.5.1乘方 1.乘方的定义:一般地,n 个相同的因数a 相乘,即a ·a ·…·a ,记作a n ,读作a 的n 次方.求n 个相同因数的积......的运算,叫做乘方,乘方的结果叫做幂.在a n中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可读作a 的n 次幂.说明:(1)一个数可以看作是这个数本身的一次方,通常省略指数1不写;如, 188= (2)因为a n 就是n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;如, 322228=⨯⨯=(3)乘方是一种运算,幂是乘方运算的结果. 2. 根据有理数的乘法法则得出有理数乘方的符号规律:(1)负数的奇次幂是负数,负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 和(a-b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 和(a-b)n =(b-a)n . (2)正数的任何次幂都是正数; (3)0的任何次幂都是0. 填表由填表发现:(1)0的任何次方都都等于0.即00(n n =为任何数) (2)①1-的偶次方等于1, 即2(1)1(n n -=为正整数);②1-的奇次方等于1-, 即21(1)1(n n +-=-为正整数).(3) ①2(3)-和23-的读法不同,结果也不同.②22()3-、22()3-和223-的读法不同,结果也不同.3.偶次方的非负性:任何数的偶次方都是非负数.即 20()n a n ≥为正整数典型考点: (重要结论:若多个非负数的和为0,则每个非负数均为0.)1. 已知22(3)(2)0a b -++=,则b a += .2. 已知2|2|(3)0a b -++=,则ab b -= .4.有理数混合运算顺序(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.1.5.2科学计数法 1.5.3近似数1.科学计数法的定义:一般地,10的n 次幂,在1的后面有n 个0,这样就可用10的幂表示一些大数,如, 6 100 000 000=6.1×1 000 000 000=6.1×910.象上面这样把一个大于10的数记成a ×n 10的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法.其中1≤a <10的数,n 的值等于整数部分的位数减1. 2.用科学记数法表示一个数时应注意:(1)首先要确定这个数的整数部分的位数.或说先找到这个数的小数点位置; (2)将这个数的小数点移到第一个不为0的数字后面;(3)在科学记数法中,10的指数比原数的整数位数少1。

初中数学必备基本知识点大全

初中数学必备基本知识点大全

初中数学必备基本知识点大全对绝大多数人来说,数学是一生中学得最多的一门课程:从小学到中学,从中学到大学,包括到了研究生的学习阶段,都在学习数学。

下面是作者为大家整理的关于初中数学必备基本知识点大全,期望对您有所帮助!初中数学有理数知识点1、有理数(1)凡能写成(a、b都是整数且a≠0)情势的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

(注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数)(2)有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

(3)自然数是指0和正整数;a 0,则a是正数;a 0,则a是负数;a≥0,则a是正数或0(即a是非负数);a≤0,则a是负数或0(即a是非正数)。

2、数轴数轴是规定了原点、正方向、单位长度的一条直线.3、相反数(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的`和为0时,则a+b=0;即a、b互为相反数。

4、绝对值(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。

(注意:绝对值的意义是数轴上表示某数的点离开原点的距离)。

(2)绝对值可表示为|a|。

(3)|a|是重要的非负数,即|a|≥0。

(注意:|a|·|b|=|a·b|)。

5、有理数比大小(1)正数的绝对值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0。

6、互为倒数乘积为1的两个数互为倒数。

(注意:0没有倒数;若a、b≠0,那么的倒数是;倒数是本身的数是±1;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。

新最中考初中数学有理数与整式必考点难点总结

新最中考初中数学有理数与整式必考点难点总结

新最中考初中数学有理数与整式必考点难点总结一、有理数的概念与性质1.有理数的定义:有理数是整数和分数的统称,可表示为a/b的形式,其中a为整数,b为非零整数。

2.有理数的分类:正数、负数、零。

3.有理数的比较:可使用大小比较法则、绝对值法则等进行比较。

4.有理数的运算:加法、减法、乘法、除法。

5.有理数的四则运算性质:封闭性、可逆性、交换律、结合律、分配律等。

6.有理数的乘方:有理数的乘方等于将该有理数连乘若干次。

二、整式的概念与性质1.整式的定义:由常数、变量及其乘积、乘方及其和、差组成的代数式。

2.整式的运算:加法、减法、乘法法则。

3.整式的乘方:整式的乘方等于将该整式连乘若干次。

4.整式的因式分解:将整式表示为若干个因式的乘积。

5. 二次整式的因式分解:将形如ax^2+bx+c的二次整式表示为两个一次整式的乘积。

三、有理数的运算1.四则运算:加法、减法、乘法、除法。

时需注意:有理数相加减时,同号为正,异号为负;有理数相乘除时,同号为正,异号为负。

分数相加减乘除时,需找到最小公倍数进行计算。

2.有理数的乘方运算。

四、整式的运算1.四则运算:加法、减法、乘法、除法。

时需注意:变量的指数相加减时,同底数的幂要进行分配率;2.整式的因式分解。

五、较难的考点1.有理数的分数形式与小数形式的转化。

2.有理数的比较。

3.有理数的四则运算法则的应用。

4.小数的除法运算。

5.整式的乘法运算。

6.有理数及整式的因式分解。

7.分数的计算。

六、解题思路与方法1.深刻理解有理数与整式的概念与性质,掌握其应用方法。

2.通过各种练习题,对有理数与整式的运算法则有充分的掌握。

3.理解思想方法,能灵活应用,举一反三4.注意计算方法与步骤的正确性,同时注重换位思考,寻找不同的解决途径。

5.善于总结归纳,将知识点进行梳理、分类,形成完整的知识体系。

七、题目解析与例题1.题目解析(1)明确题目要求与考点。

(2)理解题目的意思与背景,分析解题需要运用的知识与方法。

初一数学有理数知识点总结

初一数学有理数知识点总结

初一数学有理数知识点总结有理数是初中数学学习的重要基础,它包括整数和分数。

掌握有理数的基本概念、性质、运算法则对于后续数学学习至关重要。

以下是初一数学有理数的知识点总结:1. 有理数的定义:有理数是可以表示为两个整数的比的数,即形式为\( \frac{p}{q} \)的数,其中p和q都是整数,且q不等于0。

2. 有理数的分类:有理数可以分为正有理数、负有理数和零。

正有理数是分子和分母同号的分数,负有理数是分子和分母异号的分数,零可以看作是分子为0的分数。

3. 有理数的性质:- 封闭性:有理数的加、减、乘、除(除数不为零)运算结果仍然是有理数。

- 有序性:有理数可以比较大小,正有理数大于零,零大于负有理数,正有理数大于负有理数。

- 可加性:任意两个有理数相加仍然是有理数。

- 可乘性:任意两个有理数相乘仍然是有理数。

4. 有理数的运算法则:- 加法:同号有理数相加,取相同符号,绝对值相加;异号有理数相加,取绝对值较大的数的符号,绝对值相减。

- 减法:减去一个数等于加上这个数的相反数。

- 乘法:同号得正,异号得负,绝对值相乘。

- 除法:除以一个数等于乘以这个数的倒数。

5. 有理数的运算律:- 交换律:加法和乘法都满足交换律,即a+b=b+a和ab=ba。

- 结合律:加法和乘法都满足结合律,即(a+b)+c=a+(b+c)和(ab)c=a(bc)。

- 分配律:乘法对于加法满足分配律,即a(b+c)=ab+ac。

6. 有理数的比较大小:- 正数大于零,零大于负数。

- 两个负数比较大小,绝对值大的反而小。

7. 有理数的四则运算:- 先算乘除,后算加减。

- 同级运算,从左到右进行。

- 有括号的先算括号里面的。

8. 有理数的化简:- 化简分数,使分子和分母没有公因数。

- 化简带分数,将带分数转换为假分数。

9. 有理数的近似计算:- 四舍五入法:根据需要保留的小数位数,从该位数的下一位开始,四舍五入得到近似值。

通过以上知识点的学习和掌握,可以为进一步的数学学习打下坚实的基础。

初中数学知识点大全(完整版)

初中数学知识点大全(完整版)
第二章 一元一次方程 2.1 从算式到方程 2.1.1 一元一次方程
含有未知数的等式叫做方程。 只含有一个未知数(元),未知数的指数都是 1(次),这样的方程叫做一元一 次方程。 分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实 际问题的一种方法。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是ห้องสมุดไป่ตู้ 程的解。 2.1.2 等式的性质 等式的性质 1 等式两边加(或减)同一个数(或式子),结果仍相等。 等式的性质 2 等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等。
a(b+c)=ab+ac 数字与字母相乘的书写规范: ⑴数字与字母相乘,乘号要省略,或用“” ⑵数字与字母相乘,当系数是 1 或-1 时,1 要省略不写。 ⑶带分数与字母相乘,带分数应当化成假分数。 用字母 x 表示任意一个有理数,2 与 x 的乘积记为 2x,3 与 x 的乘积记为 3x,则式子 2x+3x 是 2x 与 3x 的和,2x 与 3x 叫做这个式子的项,2 和 3 分别是 着两项的系数。 一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结 果作为系数,再乘字母因数,即 ax+bx=(a+b)x 上式中 x 是字母因数,a 与 b 分别是 ax 与 bx 这两项的系数。 去括号法则: 括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。 括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。 括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项
1.5.3 近似数和有效数字 接近实际数目,但与实际数目还有差别的数叫做近似数。 精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。 从一个数的左边第一个非 0 数字起,到末位数字止,所有数字都是这个数的

初中数学有理数常考必考知识点总结

初中数学有理数常考必考知识点总结

初中数学有理数常考必考知识点总结一、有理数的概念和性质有理数是整数和分数的统称,包括正数、负数和零。

有理数具有以下性质:1.有理数可以通过有限次四则运算(加、减、乘、除)得到。

2.有理数可以表示为分数形式,其中分子和分母都是整数。

3.有理数可以进行大小比较,即两个有理数可以比较大小,可以用“<”、“>”或“=”来表示大小关系。

二、有理数的加法和减法1.有理数的加法:同号相加,异号相减。

2.有理数的减法:减去一个有理数等于加上它的相反数。

三、有理数的乘法和除法1.有理数的乘法:同号得正,异号得负。

2.有理数的除法:除以一个非零有理数等于乘以它的倒数。

四、有理数的大小比较1.两个正数比较大小时,数值大的数较大。

2.两个负数比较大小时,数值小的数较大。

3.一个正数和一个负数比较大小时,数值大的正数较大。

4.两个正数或两个负数的绝对值相等时,数值大的数较大。

五、有理数的绝对值1.正数的绝对值等于它本身。

2.负数的绝对值等于它的相反数。

3.零的绝对值等于零。

六、有理数的数轴表示和相反数1.数轴可以用来表示有理数,数轴上每个点都对应一个唯一的有理数。

2.数轴上的零点是原点,正数在原点右侧,负数在原点左侧。

3.有理数的相反数表示为在数轴上关于原点对称的点。

七、有理数的四舍五入1.对于正数,四舍五入分两种情况:如果小数部分大于等于5,则整数部分加1;如果小数部分小于5,则保留整数部分。

2.对于负数,四舍五入的规则与正数相同,但是整数部分需要减去1八、有理数的分数表示1.有限小数可以表示为分数形式,将小数部分的每位数作为分子,分母为10的幂次(1、10、100等),最后将分子和分母化简。

2.循环小数也可以表示为分数形式,将循环部分的每位数作为分子,分子为循环节的位数,分母为9的幂次减1的值,最后将分子和分母化简。

九、有理数的实际应用1.温度计上的温度可以是正数、负数和零。

2.银行账户的余额可以是正数、负数和零。

初中一年级数学知识点总结第二章 有理数及其运算

初中一年级数学知识点总结第二章 有理数及其运算

初中一年级数学知识点总结第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

解题时要真正掌握数形结合的思想,并能灵活运用。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:(1)五种运算:加、减、乘、除、乘方(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律第三章字母表示数1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

4、去括号法则(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。

(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。

5、整式的运算:整式的加减法:(1)去括号;(2)合并同类项。

第四章平面图形及其位置关系1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。

线段有两个端点。

2、射线:将线段向一个方向无限延长就形成了射线。

射线有一个端点。

初中数学基础知识讲义—有理数1

初中数学基础知识讲义—有理数1

一.正数和负数具有相反意义的量,一个规定为____数,另一个就是_____数。

在一个数前加一个_____(也可以不加),这个数叫_______;在一个数前加一个______,这个数叫________。

★0既不是_______,也不是________写出一些正负数:正数__________________________负数______________________二、有理数的概念(一)有理数的定义与分类(1)整数和分数统称为有理数。

目前学过的数,除了______________________________外,都是有理数。

①无限不循环小数的类型1::π和包含π的算式,例如:3π,π+2②无限不循环小数的类型2:2.010010001……,0.415115111511115……1.有理数的分类:第一种分法:先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”的属性分,第二种分法:先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”的属性分,想一想:①“0”是整数吗?是正数吗?是有理数吗?②“―2”是整数吗?是正数吗?是有理数吗?③自然数就是整数吗?是正数吗?是有理数吗?2.把一些数放在一起,就组成一个数的集合,简称数集。

例如:①所有正数组成的集合,叫做正数集合; ②所有负数组成的集合叫做负数集合;还记得吗?完成下面知识点的问题:初中数学基础知识讲义—有理数③所有整数组成的集合叫整数集合; ④所有分数组成的集合叫分数集合;⑤所有有理数组成的集合叫有理数集合; ⑥所有正整数和零组成的集合叫做自然数集。

⑦非正数, ⑧非负数, ⑨非正整数, ⑩非负整数(2)数轴1.____________________________________________叫数轴。

★数轴的方向通常习惯指向_________方或上方。

2.整数与数轴(1)任何一个整数都可以用________表示。

① 0用_______表示。

初中需要掌握的数学知识点

初中需要掌握的数学知识点

初中需要掌握的数学知识点一、知识概述《有理数》①基本定义:有理数就是整数(像-3、-2、-1、0、1、2、3这样的数)和分数(比如1/2、3/4这样的数)的统称。

简单说,能写成两个整数之比的数就是有理数。

②重要程度:有理数在初中数学里是特别基础的概念,基本上后面好多知识都会用到,像解方程、算函数之类的。

③前置知识:要先知道整数的概念,然后对简单的分数运算有点了解。

④应用价值:在生活里,比如算账,商品打个八折,就是按原价的4/5算,这里的4/5就是有理数。

《一元一次方程》①基本定义:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫一元一次方程,像3x+5 = 14这样的。

②重要程度:这是初中代数里相当重要的一块,是解更复杂方程的基础。

③前置知识:知道有理数的运算,还有基本的等式性质。

④应用价值:比如说去买东西,知道单价和总价,求买的数量,就可能用到一元一次方程。

《三角形的内角和》①基本定义:三角形的内角和就是三角形三个内角的度数加起来的和,是180度。

②重要程度:三角形相关知识的基石,在几何证明和计算里到处都用。

③前置知识:知道角的概念,度数的概念。

④应用价值:生活里做个三角形状的架子,就用到这个原理来保证结构稳定。

二、知识体系①知识图谱:有理数属于数与代数领域的基础部分,一元一次方程也在代数体系里,三角形的内角和在几何部分的三角形知识板块里。

②关联知识:有理数和一元一次方程有关系,方程里的系数很多都是有理数。

三角形内角和跟三角形的边、角的其他性质相互关联。

③重难点分析:- 对于有理数,难点在于有理数运算中符号的处理。

说实话我以前经常搞混正数和负数乘除时的符号。

- 一元一次方程的重点就是理解怎么去求解,移项变号这地方挺容易错的。

- 三角形内角和简单概念好懂,难的是在复杂的几何图形里找出包含内角和的三角形去证明或者计算。

④考点分析:- 有理数在考试里可能就单独出些运算的题,或者是作为综合题里数值的一部分。

初中数学知识点总结之有理数

初中数学知识点总结之有理数

本文格式为Word 版,下载可任意编辑
第 1 页
初中数学知识点总结之有理数
初中数学学问点总结之有理数
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的'应用,
是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以
及相关学科学问的基础。

下面是我为大家带来的关于有理数的学问,欢迎阅读。

有理数
1.有理数:
(1)凡能写成q/p(q,p 为整数且p 不等于0〕
形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分
数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a 不肯定是负数,
+a 也不肯定是正数;p 不是有理数;
(2)有理数的分类:
有理数:
正有理数
零 负有理数
正有理数:正整数和负整数
负有理数:负整数和负分数
有理数:整数和分数
整数:正整数和负整数
分数:正分数和负分数
(3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个
数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数;a >0 a 是正数;a <0 a 是负数;
a ≥0 a 是正数或0 a 是非负数;a ≤ 0 a 是负数或0 a 是非正数
以上对数学有理数学问点的总结内容学习,信任同学们已经很好的把握了吧,
盼望同学们在考试中取得优异成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学基础知识点总结之有理数
1、数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

2、绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

3、有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的
结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X 就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A 叫做被开方数。

4、实数:
①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

相关文档
最新文档