绝对值的定义及其几何意义是什么

合集下载

绝对值的意义及应用

绝对值的意义及应用

绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。

对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

四. 含绝对值问题的有效处理方法1. 运用绝对值概念。

即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。

解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。

绝对值的几何意义公式(二)

绝对值的几何意义公式(二)

绝对值的几何意义公式(二)绝对值的几何意义公式绝对值在数学中是一个重要的概念,它表示一个数与零之间的距离。

在几何意义上,绝对值可以表示为一条有向线段的长度。

本文将列举一些与绝对值相关的公式,并给出解释和示例。

绝对值的定义绝对值是一个数的非负值,表示该数离零的距离。

绝对值的定义如下:|x| = x,如果x ≥ 0 |x| = -x,如果x < 0绝对值的几何意义公式1. 绝对值的定义表示根据绝对值的定义,可以将绝对值表示为一条线段的长度。

公式: |x| = AB,其中A是原点,B是点x的坐标位置示例:考虑点A(0, 0)和点B(3, 0),则|3| = AB = 3。

2. 绝对值的线段平移绝对值函数|x - a|表示点x距离a的距离。

公式: |x - a| = PA,其中P是点a的坐标位置示例:考虑点P(2, 0),点Q(5, 0),则|Q - 2| = PQ = 3。

3. 绝对值的线段缩放绝对值函数|kx|表示点x与原点的距离缩放到原来的k倍。

公式: |kx| = k * |x|示例:对于点A(2, 0),如果k = 3,则|3x| = 6.4. 绝对值的线段合并绝对值函数|x - a| + |x - b|表示点x到a,b两点的距离之和。

公式: |x - a| + |x - b| = PA + PB示例:对于点A(2, 0)和点B(6, 0),则|5x - 16| + |3x - 8| = PA + PB。

5. 绝对值的线段交换绝对值函数|a - x| = |b - x|表示点x与a,b两点的距离相等。

公式: |a - x| = |b - x|示例:对于点A(2, 0)和点B(6, 0),则|2 - x| = |6 - x|。

总结绝对值的几何意义公式在解决各种几何问题中起到了重要的作用。

通过几何意义公式,我们可以更好地理解绝对值的概念,并将其运用于实际问题中。

这些公式包括绝对值的定义表示、线段平移、线段缩放、线段合并和线段交换。

七年级数学上《绝对值》知识解析

七年级数学上《绝对值》知识解析

《绝对值》知识解析
课标要求
理解绝对值的含义,会求一个数的绝对值,理解绝对值的几何定义和代数定义。

知识结构
1.绝对值的几何意义:数轴上表示数a的点到原点的距离叫做这个数a的绝对值,它是一个数的几何特征,利用一个数的绝对值的几何意义可以直观地将数和点联系起来.更有利于研究它的性质.
2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
3.任给一个有理数,求它的绝对值.
内容解析
教材首先通过实例提出决定一个数不仅是符号,还有它到原点的距离---绝对值,然后利用数轴提出绝对值的几何意义——数轴上表示数a的点到原点的距离叫做这个数a的绝对值,在数轴上研究不同类别的数的绝对值,归纳总结出绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.从而使学生学会求一个数的绝对值,了解有理数的绝对值的特征.
重点难点
本节的重点是正确理解绝对值的定义,能求一个数的绝对值.难点是正确理解一个数的绝对值的几何定义和代数定义.
教法导引
利用数轴引导学生观察绝对值的几何意义,总结绝对值的代数意义,通过数形结合,启发、诱导、讨论的方法学会找一个数的绝对值.
学法建议
联系生活实际,利用类推,归纳,相互讨论的方式来学习绝对值.。

(完整版)绝对值的意义及应用

(完整版)绝对值的意义及应用

绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。

对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

四. 含绝对值问题的有效处理方法1. 运用绝对值概念。

即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。

解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。

绝对值及其几何意义

绝对值及其几何意义

绝对值及其几何意义 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】绝对值及其几何意义绝对值的代数意义:一个正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数。

如:|5|=5;|-5|=5;|0|=0绝对值的几何意义:可以借助数轴来加以认识,一个数的绝对值在数轴上表示这个数的点到___________的距离。

如|a|表示数轴上表示数a的点到________的距离,推而广之:∣x-a∣的几何意义是数轴上表示数x的点到表示数______的点之间的距离,∣x-a∣+∣x-b∣的几何意义是数轴上表示数x的点到表示数_______ 两点的距离之和。

对于一些比较复杂的绝对值问题,如果用常规的方法做会比较繁琐,而运用绝对值的几何意义解题,往往能取得事半功倍的效果。

例1:已知,∣x-4∣=3,求x的值。

解法一(代数法,分类讨论)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,∣x-4∣=3表示数x的点到_________的距离为_____,结合数轴不难发现这样的点共有______个,分别是____和____,故x=_______.例2:求∣x-1∣+∣x+2∣的最小值。

解法一(代数法)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,分析:本题若采用“零点分段法”讨论亦能解决,但若运用绝对值的几何意义解题,会显得更加简洁。

解:根据绝对值的几何意义可知,∣x-1∣表示数轴上点x到_______的距离,∣x+2∣表示数轴上点x到_________的距离。

实际上此题是要在数轴上找一点x,使该点到两点的距离之和最短,由数轴可知,x 应在数轴上__________________________________的点,且最短距离为______________,即∣x-1∣+∣x+2∣的最小值为_______。

推广:①:∣x-a∣+∣x-b∣的最小值为___________。

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义绝对值是数学中一个重要的概念,它具有代数意义和几何意义。

在代数中,绝对值表示一个数与零之间的距离,而在几何中,绝对值表示一个点在数轴上的位置。

代数意义:在代数中,绝对值常用符号“,x,”表示,其中x表示任意实数。

绝对值的定义是:x,=x,当x>=0x,=-x,当x<0绝对值的代数意义是表示一个数与零之间的距离。

无论一个数是正数还是负数,它与零的距离都是一个非负数。

例如,对于数-5来说,它与零的距离为5,即,-5,=5、对于数8来说,它与零的距离也是8,即,8,=8、因此,绝对值可以将负数转化为正数,而保持正数不变。

绝对值在代数中有多种应用。

首先,绝对值可以用来定义两个实数的大小关系。

例如,对于实数a和b来说,如果,a,<,b,则a的绝对值小于b的绝对值,即a的绝对值离零更近。

其次,绝对值还可以用来确定一个数的符号。

如果一个数的绝对值是正数,则该数为正数;如果一个数的绝对值是负数,则该数为负数。

几何意义:在几何中,绝对值被用来表示一个点在数轴上的位置。

数轴是一个直线,可以将实数一一对应地映射到数轴上的点。

绝对值表示一个点到原点的距离,且方向无关。

通过绘制一个数轴,我们可以将绝对值的几何意义更加直观地理解。

假设有一个点A在数轴上,它与原点O之间的距离为,x,点A在数轴上的位置取决于该点到原点的距离。

如果x>=0,则点A在原点的右侧距离为x;如果x<0,则点A在原点的左侧距离为-x。

无论点A在哪一侧,它的距离始终是非负数。

除了数轴,绝对值的几何意义还可以应用到平面几何中。

在平面几何中,绝对值可以表示一个点到原点的距离,在二维坐标系中常用来计算两个点之间的距离。

例如,对于点P(x1,y1)和Q(x2,y2)来说,它们之间的距离可以表示为:d = sqrt((x2 - x1)^2 + (y2 - y1)^2)其中,sqrt表示平方根运算。

由于平方根运算的结果始终是非负数,因此绝对值用于确保距离始终是非负数。

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义
绝对值是数学中使用最广泛的概念之一,在代数中,它被定义为数值或表达式的绝对值,容易被视为一种量度,它可以衡量一个数的大小,而不必考虑它的符号。

一、代数意义
1. 绝对值是数值和表达式的数学量度,衡量数值的大小,不受它的符号(正负)的影响。

即|x| = x,如果x>0;|x| = -x,当x<0时。

2. 绝对值函数y=|x|是一个凸函数,它的图象关于y轴对称,当x变化时,y曲线上各点的变化率一定为正。

3. 两个相等负数的绝对值相等,因此绝对值函数不满足函数的单值定理。

4. 当x ≠ 0时,|x|不能表示为0,因为如果这样的话,将会发生抵消,而它的本来
意义就是衡量数值大小。

二、几何意义
1. 在几何中,它表示一点到原点的距离,也表示函数的最大值或最小值。

2. 对于向量的绝对值,表示的是向量的模长或长度,它是一个实数。

3. 绝对值用来描述点(x,y)到原点(0,0)之间的距离,即|(x,y)|=根号[x2 +y2]。

4. 对于复平面中点(z),其绝对值|z| = 根号[(a+bi)2] = 根号[a2+b2]。

以上可以看出,绝对值在代数和几何中都有着各自独特而重要的意义,它们在理解数学概念中都具有十分重要的作用。

绝对值的意义及应用

绝对值的意义及应用

绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。

对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

四. 含绝对值问题的有效处理方法1. 运用绝对值概念。

即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。

解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。

绝对值表达式的几何意义

绝对值表达式的几何意义

从实际问题入手:
一个生产流水线上依次排着三个工作台A,B,C,三
个工人分别在工作台上工作,问只有一个检修工
具箱放在何处,才能使工作台上操纵机器的三个
工人每人取一次工具所走的路程之和最短?
A
B


C

放在点B的位置上,他们所走的路程之和最短。
如果有五工作台呢? 点c的位置;
A
B


有七个工作台呢?
C
D
E



点D的位置;







A
B
C
D
E
F
G
探究二
当x=
时, ∣x-1∣+ ∣x-2∣有最小值,
最小值是多少?
思维点拨:
1、∣x-1∣表示的意义是什么?
2、∣x-2∣表示的意义是什么?
3、∣x-1∣ + ∣x-2∣表示的意义又是什么?
问题解决
解:设A:1,B:2,M:x
则AM=∣x-1∣,BM= ∣x-2∣
C. a c
D. a c
2.已知 a 在数轴上的位置如下图所示,化简
式子 a 1 的值为 -1 . a 1
a
-1 0
3.已知 a b a b 2b ,在数轴上给出
关于 a、b的四种情况如图所示,则成立的是
①、③ (写出所有正确的序号)
a0 b

b0
a

0a b

0b a

1.数轴上一动点A向左移动两个单位长度到达
-2012∣有最小值,最小值是多少?
当1006≤x≤1007时,原式有最小值. 它的最小值

七年级数学数轴与绝对值

七年级数学数轴与绝对值

数轴与绝对值一、绝对值定义:正数的绝对值是这个正数本身,负数的绝对值是这个负数的相反数,零的绝对值是零。

也就是说:一个数的绝对值是按照这个数的符号情况,来分类决定的。

如果用字母a 表示这个数,那么用式子来表示就是:)0()0(0000a a a a a a a aaa a 它本身,所以,因为零的相反数就是时),(当时),(当时),(当即:零和正数的绝对值是它本身,零和负数的绝对值是它的相反数。

这里,a 表示什么?如果它是2,结果怎样?如果是-3呢?如果是x -2呢?如果没有告诉你x 的取值范围,那么该如何化简2x ?(示例)。

);()解方程:(例x x x x 21212111.1解:(1)略;(2)当x + 1 < 0,即x < - 1 时,原方程为– (x + 1) = 2x ,x =31;当x + 1 ≥0,即x ≥ - 1 时,原方程为x + 1 = 2x ,x = 1,∴原方程的根是x 1 = 31, x 2 = 1 。

指导学生:①分析解题依据及步骤;②检查答案(2)的正确性。

既然已经发现答案是错误的,那么可以肯定解答过程有误,请找出错误。

指导语:在解这类含有绝对值的方程(或不等式)时,应注意:(1)需根据绝对值符号内的整体内容的符号来决定将绝对值符号去掉后的内容,是原来的,还是其相反数。

也就是说,要根据绝对值符号内的整体的“零点”情况来划分自变量的取值范围,对方程(或不等式)进行分类讨论。

(2)要注意检查相应的“解”是否在相应讨论的数的范围之内。

(3)当方程(或不等式)中含有多个绝对值时,应该针对所有的“零点”来划分自变量的取值区间,对方程(或不等式)进行分类讨论。

例2.解方程:|x - 2|+|x + 3| = 6 .二、绝对值与相反数的几何意义1.绝对值:|a| ←→数轴上,和数a对应的点与原点之间的距离。

某数的绝对值越大,则在数轴上,与该数对应的点与原点之间的距离就越大;反之,在数轴上,若某一点距原点越近,那么与之对应的数的绝对值就越小。

绝对值及其几何意义

绝对值及其几何意义

绝对值及其几何意义文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]绝对值及其几何意义绝对值的代数意义:一个正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数。

如:|5|=5;|-5|=5;|0|=0绝对值的几何意义:可以借助数轴来加以认识,一个数的绝对值在数轴上表示这个数的点到___________的距离。

如|a|表示数轴上表示数a的点到________的距离,推而广之:∣x-a∣的几何意义是数轴上表示数x的点到表示数______的点之间的距离,∣x-a∣+∣x-b∣的几何意义是数轴上表示数x的点到表示数_______ 两点的距离之和。

对于一些比较复杂的绝对值问题,如果用常规的方法做会比较繁琐,而运用绝对值的几何意义解题,往往能取得事半功倍的效果。

例1:已知,∣x-4∣=3,求x的值。

解法一(代数法,分类讨论)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,∣x-4∣=3表示数x的点到_________的距离为_____,结合数轴不难发现这样的点共有______个,分别是____和____,故x=_______.例2:求∣x-1∣+∣x+2∣的最小值。

解法一(代数法)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,分析:本题若采用“零点分段法”讨论亦能解决,但若运用绝对值的几何意义解题,会显得更加简洁。

解:根据绝对值的几何意义可知,∣x-1∣表示数轴上点x到_______的距离,∣x+2∣表示数轴上点x到_________的距离。

实际上此题是要在数轴上找一点x,使该点到两点的距离之和最短,由数轴可知,x应在数轴上__________________________________的点,且最短距离为______________,即∣x-1∣+∣x+2∣的最小值为_______。

推广:①:∣x-a∣+∣x-b∣的最小值为___________。

绝对值的意义 谢

绝对值的意义 谢

一、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。

(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。

也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。

二、 典型例题例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A )A .-3aB . 2c -aC .2a -2bD . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( C )A .是正数B .是负数C .是零D .不能确定符号解:由题意,x 、y 、z 在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。

例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。

那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。

解:设甲数为x ,乙数为y由题意得:y x 3=,0)()(=--+-+=--+++y x z y z x y x z y z x1)1(+=--xx201020081861641421⨯+⋯⋯+⨯+⨯+⨯(1)数轴上表示这两数的点位于原点两侧:若x在原点左侧,y在原点右侧,即x<0,y>0,则4y=8 ,所以y=2 ,x= -6若x在原点右侧,y在原点左侧,即x>0,y<0,则-4y=8 ,所以y=-2,x=6(2)数轴上表示这两数的点位于原点同侧:若x、y在原点左侧,即x<0,y<0,则-2y=8 ,所以y=-4,x=-12若x、y在原点右侧,即x>0,y>0,则2y=8 ,所以y=4,x=12例4.(整体的思想)方程xx-=-20082008的解的个数是( D )A.1个B.2个C.3个D.无穷多个例5.(非负性)已知|a b-2|与|a-1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b++++++++++分析:利用绝对值的非负性,我们可以得到:|a b-2|=|a-1|=0,解得:a=1,b=2在上述分数连加求和的过程中,我们采用了裂项的方法,巧妙得出了最终的结果.同学们可以再深入思考,例6.观察下列每对数在数轴上的对应点间的距离4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___(2)若数轴上的点A表示的数为x,点B表示的数为―1,则A与B两点间的距离可以表示为.分析:点B表示的数为―1,所以我们可以在数轴上找到点B所在的位置。

绝对值的几何意义公式(一)

绝对值的几何意义公式(一)

绝对值的几何意义公式(一)
绝对值的几何意义公式
1. 基本公式
•绝对值的定义:对于任意实数x,其绝对值记作| x | ,表示x 与原点之间的距离。

•绝对值的几何意义:绝对值表示一个数到原点的距离。

2. 几何意义公式
数轴上的绝对值公式
•公式1:对于任意实数x,有| x |=x或者|x |=- x 。

–解释:若x≥0,则x与原点之间的距离为x本身;若x<0,则x与原点之间的距离为-x,即与x绝对值相等。

平面直角坐标系中的绝对值公式
•公式2:对于平面直角坐标系中的两点A(a, b)与B(c, d),有| AB |=√(c-a)^2+ (d-b)^2。

–解释:两点A(a, b)和B(c, d)之间的距离就是线段AB的长度,而绝对值| AB |表示线段AB的长度。

三维空间中的绝对值公式
•公式3:对于三维空间中的两点A(x1, y1, z1)与B(x2, y2, z2),有| AB |=√(x2-x1)^2+ (y2-y1)^2+ (z2-z1)^2。

–举例:设点A(1, 2, 3)和点B(4, 5, 6),计算| AB |的值。

–解答:根据公式3,计算得到| AB |=√(4-1)^2+ (5-
2)^2+ (6-3)^2=√27≈。

3. 结论
•绝对值的几何意义公式包括数轴上的绝对值公式、平面直角坐标系中的绝对值公式和三维空间中的绝对值公式。

这些公式用于计
算点之间的距离,并在几何学中具有重要的应用价值。

(完整版)绝对值知识点

(完整版)绝对值知识点

绝对值(一)【预习引领】两辆汽车从同一处O 出发 ,分别向东、西方行驶10km,抵达 A 、B 两处.( 1)它们的行驶路线同样吗?( 2)它们行驶行程的远近同样吗?答 : ( 1)不同样; (2) 同样 .【重点梳理】知识点一 :绝对值的意义1. 绝对值的几何意义:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作 a ,读作: a 的绝对值 .例 1利用数轴求以下各数的绝对值.( 1) 2, 1, 3.5;5( 2)0; (3)5 , 3.2, 21.3答:(1)2 =2; 1 = 1; 3.5 =3.5;5 5(2)0 =0;(3)5 =5;3.2 =3.2;21 =21. 3 32. 绝对值的代数意义:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0.例 2直接写出以下各数的绝对值 .6, 8, 3.9, 5,10,0,26 , 8, 3.9, 5 10,2答 :6 =6,8 =8,3.9 =3.9,5 =5; 10 =10; 0 =0;226 =6, 8 =8, 3.9 =3.9,5 = 5 ; 10 =10; 0 =0;2 2小结: ( 1)对任一个有理数,绝对值只好为正数或 0,不行能为负数,即a0 .( 2)两个互为相反数的绝对值,绝对值相等的两个数.( 3)绝对值为正数的有理数有类,它们 ;绝对值为 0 的有理数是.答 :(2) 相等 , 相等或互为相反数 .(3) 两,正数与负数; 0;例 3判断以下说法哪些是正确的:( 1)符号相反的数互为相反数;( 2)符号相反且绝对值相等的两个数互为相反数; ( 3)一个数的绝对值越大,表示它的点在数轴上越靠右; ( 4)不相等的两个数,其绝对值也不相等;( 5)绝对值最小的有理数是 0. 答案:( 2)( 5)知识点二:绝对值的求法a,a 0a0, a 0 a,a 0例 4 求以下各数的绝对值:6 1, 1 3 ,3,2.2 2 5答案: 611; 13 3 1 ;3 3; 2 =2;= 6 2 2 25 52例5 填空:( 1)绝对值小于 4 的正整数有 .( 2)绝对值大于 2 而小于 5 的全部整数是( 3)假如一个数的绝对值是13,那么这个数是..( 4)若xx ,则x 为数 .答案:( 1) 3,2, 1;( 2)± 3,± 4;( 3)± 13;( 4)负数与 0; 例 6 计算以下各式:⑴ 52⑵ 0.77 234答:( 1)原式 =5- 2=3;( 2)原式 =0.77 ÷ 2 3=0.28 ;4☆例 8 ⑴若 a b 0 ,则 a,b .⑵若 x 73 y 12 0,则 x, y.答案:( 1) 0,0;( 2) 7,4;【讲堂演练】1.5 1的绝对值是 , 0 的绝对值是,绝对值为 2 的数是.2 1.5 1, 0,± 2;2.2, 10 = ,1.5 =2 =,2.5=., 10, 2,- 2.5;3. ⑴一个数的绝对值和相反数都是它自己,这个数是;⑵绝对值小于 3.2 的整数有;⑶ 21的相反数是,绝对值是;3⑷ 使 x 5 建立的 x 的值是. 3.( 1) 0;( 2) 3, 2, 1, 0,- 1,- 2,- 3;( 3) 4. 在数轴上到数 3 所表示的点距离为 5 的点所表示的数是. 4.8 或- 2;5. 绝对值相等的两个数在数轴上对应的两点之间的距离为 6,则这两个数为.5.3 与- 3;6. 若 m0 ,则 m m = ; 若 m 0 ,则 m m =;若 m0 ,则 m m =.6. 2m , 0, 0;37. ( 2011 北京市, 1, 4 的绝对值是 ( )分)4A .4 B .4C .3 D .333 447.D8.( 2011 浙江丽水, 4,3 分)有四包真空小包装火腿,每包以标准克数(450 克 )为基数,超出的克数记作正数,不足的克数记作负数,以下数据是记录结果,此中表示实质克数 最靠近标准克数的是()A .+ 2B .- 3C .+ 3D .+48.Aa 1 ,则 a ()9. 若aA .是正数或负数;B .是正数;C .是有理数;D .是正整数 .9. B10. 计算以下各题 :⑴21 6;⑵2008 2008 .10.( 1)原式 =21+6=27;( 2)原式 =2008-2008=0;☆11.若x7 3 y 120 ,求x、 y 的值.11.由题意可知, x- 7=0,3y- 12=0,解得: x=7; y=4;12. 某摩托车配件厂生产一批圆形的橡胶垫,从中抽取 6 件进行比较,比标准直径长的毫米记作正数,比标准直径短的毫米记作负数,检查记录以下表:123456+0.4-+0.10--0.20.20.3(1)找出哪个些部件的质量相对好一些,用绝对值的知识加以解说.(2)若规定与标准直径相差不超出0.2mm 为合格品,则 6 件产品中有几件是不合格品?12.( 1)第 4 个;绝对值越小,说明此配件与标准配件越靠近;(2)第 1 个与第 5 个不合格,所以共有 2 件是不合格的产品;1.(2011浙江省舟山,1,3分)-【课后清点】6 的绝对值是()A .- 6B . 6 C.1D.-1 661. B2.一个有理数的相反数与自己的绝对值的和()A .可能是负数;C.必为非负数;B.必是正数;D.必为 0.2. C3.式子 3 等于()A .3B. 3 C.3 D .33. C4. 某运动员在东西走向的公路上练习跑步,跑步状况记录以下:(向东为正,单位:米)1000,- 1200, 1100,- 800, 1400,则该运动员跑步的总行程为()A .1500 米B. 5500 米C . 4500 米D . 3700 米4. B5.绝对值等于自己的数是()A .正数B .负数C .非负数D .非正数5. C6.以下结论中,正确的选项是 ()A . a 必定是正数B .a 和 a 必定不相等 C . a 和 a 互为相反数D .a 和 a 必定相等 6. C7.代数式 x3 3的最小值是()A . 0B . 2C.3D . 57. C8.以下结论中,正确的选项是()A . a 0B .若 ab ,则 a bC. aa D .若 a 、b 互为相反数,则1b8. B9. 若 a a ,则 a 为 数; 若 a a ,则 a 为 数 .9.非负数;非正数;10. 当 a4 时, a4 =.10. 4- a ;11. ( 2011 湖南常德, 1, 3 分) 2 ______. 11. 212. 若 x5 3 ,则 x = ; 若m4 ,则 m =;12. 8 或 2;4 或- 4;13.若 a 1 ,则 a 1 =, 2a 1 = ;若 a1 ,则 a 1 = ,a 1 = .13. a - 1, 2a - 1; 1- a , a - 1; 14. 若 a1b 10 ,则 a b = .14. 0; 15. 计算:⑴2293⑵3 174815.( 1)原式 = 229=24;( 2)原式 =3 17= 2 ;34 8 516. 已知 x 30 , y4 ,求 x 3 y .16. x 3 y =30- 3× 4=18;17. 已知 a2 b3 c4 0 ,求 a2b 3c 的值 .17.由题意可得, a=2, b=3, c=4,则 a 2b 3c =2+2× 3+3× 4=20;18. 正式的足球竞赛, 对所用足球的质量有严格规定,下边是 6 个足球的检测结果 . (用正数 记超出规定质量的克数,用负数记不足规定质量的克数)-25, +10,- 20, +30, +15,- 40请指出哪个足球的质量好一些,并用绝对值的知识说明原由 .18.第二个。

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义所谓“绝对值”是指一个代数式,在该式中,绝对值最大的因式称为该式的绝对值。

由于在整个数学领域中,绝对值就是被分析、研究最多的一种代数式,人们总是想方设法寻求绝对值的各种运算规律,有些结果当然不一定都能成立,但是大多数结果却是实实在在地存在的。

《几何》课上我们学习了“绝对值的概念”、“绝对值的几何意义”和“绝对值的计算公式”等内容。

其中“绝对值的代数意义”是讲函数的绝对值,而“绝对值的几何意义”则是讲两个函数绝对值的关系:当其中一个增大时,另一个也必定随之增大;当其中一个减小时,另一个也必定随之减小。

我认为这两者是密不可分的,你说呢?“绝对值的代数意义”,可以帮助我们理解那些比较复杂的数学问题,把握事物发展的变化过程及变化的性质,从而促使人们更好地掌握知识。

例如,“当x=1/2时, y=-5/6”中的“ 5/6”就表示这样一种含义,即当x越来越大时, y的绝对值越来越小,当x=1时, y=0;当x=1/2时, y=-5/6。

“绝对值的几何意义”又告诉我们,当一个数增大时,它与相邻的两个数的绝对值的差值总是越来越大;当一个数减少时,它与相邻的两个数的绝对值的差值总是越来越小。

从而使我们掌握住一个原理,进而举一反三,更加灵活地去解决更多的问题。

绝对值的几何意义则是“相反数”和“真数”。

正负数的绝对值是两个数的和,如果我们定义“ b+a=b+2a+a”(b+a表示符号),那么, b+2a-b=0。

此时,“ b+a”就是b和a的绝对值。

《几何》课中,老师提到一道题目:一张纸条长是36厘米,宽是14厘米,将它的右边折起1厘米,左边折起3厘米,这时这张纸条的长和宽是多少?以前同学们认为,“用卷尺量一下,就可以得出答案了。

”这道题告诉我们:一张纸条的右边和左边合起来,等于这张纸条的全长。

在课堂上我提出了这样一个问题:假如“这张纸条”为36厘米,那么“宽是”“高是”多少厘米?班里响起一片回答声,有的回答:“宽应该是15厘米,高应该是20厘米。

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义以“绝对值的代数意义和几何意义”为标题,写一篇3000字的中文文章绝对值是数学中比较常见而又重要的概念,在代数和几何中都有其重要的应用。

绝对值的代数意义和几何意义是本文的主要讨论,本文首先介绍两者的基本定义以及它们之间的关系,然后介绍绝对值的代数意义,以及它在几何学中的应用。

首先,说明绝对值的基本定义。

绝对值定义为实数的绝对大小,又称绝对量或绝对数。

绝对值通常表示为符号|x|,其中x是实数。

绝对值表达式可以理解为“实数x的绝对值”,也可以理解为“绝对值x”。

例如:|-5| = 5, |7| = 7。

不同于绝对值,绝对值的表达式可以使用复数的形式,例如:|2+3i|=√13。

它是组合形式的复数的模,表示为|z|=√a2+b2,其中z=a+bi,其中a,b均为实数。

绝对值的代数意义可以用来衡量一个数的大小,也可以用来判断它是否为零。

当一个数字的绝对值大于等于零时,该数字不是负数;反之,如果一个数字的绝对值小于零,则该数字是负数。

绝对值可以用来计算一个数字的绝对值差,它表明两个数字的大小之间的距离。

例如:|4-2|= |4|-|2|= 2,表示4和2之间的绝对值差是2。

绝对值在几何学中也有着重要的应用。

在几何中,绝对值可以用来衡量一个点到直线的距离,也可以用来衡量一个点到坐标原点的距离。

绝对值也可以用来求解一元一次方程,它表示从两边相减后的绝对值,即|a-b|= |a|-|b|。

此外,绝对值也可以用来计算多边形内角和外角之差,表示为|θ1-θ2|= |θ1|-|θ2|。

总之,绝对值在代数和几何中都具有重要的应用。

它可以在代数中用来衡量一个数字的大小或求解绝对值差,在几何中可以用来衡量一个点到直线或者坐标原点的距离,也可以用来求解一元一次方程或计算多边形内角和外角之差。

绝对值的理解和使用对数学中的许多问题都有着重要的意义。

绝对值

绝对值

绝对值一、绝对值的定义:数轴上一个数所对应的点与原点的距离叫做该数的绝对值。

二、绝对值的几何意义:在数轴上,表示数a的点与原点的距离叫做数a的绝对值,记作|a|①、绝对值表示距离,由于距离不可能是负数,所以任何数的绝对值总是正数或0,即|a|≥0②、在数轴上,互为相反数的两个数分别位于原点的两侧,且到原点的距离相等,所以互为相反数的两个数的绝对值相等,即|-a |=|a| ③、在数轴上表示互为相反数的两个数的点关于原点对称。

三、绝对值的代数意义正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;即:①、任何数的绝对值总是非负数,如果几个数的绝对值的和为0,那么这几个数都为0;②、0的绝对值既是它本身又是它的相反数,因此,若|a|=a ,则a≥0;若|a|=-a ,则a≤0;四、在数轴上两点之间的距离的几何定义:1、一般地,如果 a(x1),b(x2) ,则这两点的距离公式为:d(a,b)=|x2-x1|即数轴上两点之间的距离等于对应两数之差的绝对值;“数轴”是数型结合的重要工具(通过两点之间的距离公式可以理解) 加深理解,如:① 、|3+1|表示数轴上数3到数-1的距离(等于对应两数之差的绝对值),即:|3-(-1)|=4② 、|x |表示数轴上某一个点到原点的距离;即:|x -0|=|x |当数x 在数轴上原点的左边时(x <0),|x|=-x(诠注:根据绝对值的代数意义:负数的绝对值是它的相反数)当数x 在数轴上原点的右边时(x >0),|x |=|x -0|=x(诠注:根据绝对值的代数意义:正数的绝对值是它本身)③ 、|-5|=|-5-0|表示数轴上-5到原点的距离;④ 、|x -a |表示数轴上某一个点到a 的距离;⑤ 、|x +a |=|x -(-a)|表示数轴上某一个点到-a 的距离;⑥ 、|2x +3|=2|x -(-23)|表示数轴上某一个点到-23的距离的2倍;2、真正理解绝对值的几何意义?(1)、|1-x |=1+|x |分析:由该式的已知条件应立即可知:x ≤0由|1-x |=1+|x | 可化为:|1-x |=|1-0|+| x -0|即:线段a 与b 的距离之和为:a +b =c ,即1至0的距离(等于a )与0至x的距离(等于b)之和;。

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义

绝对值的代数意义和几何意义
绝对值几何意义:在数轴上,一个数到原点的距离叫做该数的绝对值。

表示数轴上表
示a的点和表示b的点的距离。

绝对值代数意义:非负数(正数和0)的绝对值是它本身,非正数(负数)的绝对值是它的相反数。

绝对值是指一个数在数轴上所对应点到原点的距离,用“||”来表示。

|b-a|或|a-b|
表示数轴上表示a的点和表示b的点的距离。

在数学中,绝对值或模数|x|的非负值,而不考虑其符号,即|x|=x表示正x,|x|=-x
表示负x(在这种情况下-x为正),|0|=0。

例如,3的绝对值为3,-3的绝对值也为3。

数字的绝对值可以被认为是与零的距离。

实数的绝对值的泛化发生在各种各样的数学设置中,例如复数、四元数、有序环、字
段和向量空间定义绝对值。

绝对值与各种数学和物理环境中的大小,距离和范数的概念密
切相关。

(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。

(2)绝对值等于0的数只有一个,就是0。

(3)绝对值等于同一个正数的数有两种,这两个数互为相反数或相等。

(4)互为相反数的两个数的绝对值相等。

(5)正数的绝对值是它本身。

(6)负数的绝对值是它的相反数。

(7)0的绝对值是0。

感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. ax b c ax b c或ax b c ax b cc 0 c ax b c
f x g x g x f x g x
x a a x aa 0
f x g x f x g x 或f x g x
2.设A x x 1 3 , B x x a 3a 1 , 若A B , 求a的范围。

Hale Waihona Puke

3.设A x 2 x 1 1 x , B x 4 x 5 2 x 3




求A B, A B.
解下列不等式:
x 2 x 1 7
3.请归纳出 x a, x a a 0 的 几何意义及解集?
练习:P16
1
第三组问题:
1.解不等式 x 500 5
2.归纳一般形式不等式 ax b c, ax b cc 0的解法?
P16 练习 2
例1.设A x x 1 8 , B x x 2 3 , 求C A B.
第一组问题:
1.绝对值的定义及其几何 意义是什么?
2.按商品质量规定,商店出 售的标明500g的袋装食盐, 其实际数与所标数相差不能 超过5g,如何表达实际数与 所标数的关系呢?
第二组问题: 1.如何求解方程 x 2?
x 2的几何意义是什么?
2. x 2, x 2的几何意义是什么? 解集是什么?
x 1 x 1 1
x 3 x 4 a恒成立,求a。
x 3 x 4 a的解集为,求a。
x 3 x 4 a的解集不为,求a。
x 3 x 4 a对x R成立,求a。
x 3 x 4 a若x为,求a。
小结: 1. x a x a或x a
相关文档
最新文档