热处理名词解释(个人整理)
热处理工艺名词解释
![热处理工艺名词解释](https://img.taocdn.com/s3/m/5e16891acd1755270722192e453610661fd95a59.png)
正火:正火,又称常化,是将工件加热至Ac3或Ac m以上40~60℃,保温一段时刻后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
其目的是在于使晶粒细化和碳化物分布均匀化,往除材料的内应力,落低材料的硬度。
正火,又称常化,是将工件加热至Ac3(Ac₃是指加热时自由铁素体全部转变为奥氏体的终了温度)或Ac m(Ac m是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时刻后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
其目的是在于使晶粒细化和碳化物分布均匀化。
正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。
另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采纳正火来代替退火。
正火的要紧应用范围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。
②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行外表淬火前的预备处理。
③用于工具钢、轴承钢、渗碳钢等,能够消落或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。
④用于铸钢件,能够细化铸态组织,改善切削加工性能。
⑤用于大型锻件,可作为最后热处理,从而防止淬火时较大的开裂倾向。
⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲曲折折曲曲折折折折曲曲折折曲曲折折折折折折轴、连杆等重要零件。
⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。
正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。
正火要紧用于钢铁工件。
一般钢铁正火与退火相似,但冷却速度稍大,组织较细。
有些临界冷却速度〔见淬火〕特殊小的钢,在空气中冷却就能够使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。
与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。
金属学与热处理名词解释汇总
![金属学与热处理名词解释汇总](https://img.taocdn.com/s3/m/b739ec08ec630b1c59eef8c75fbfc77da26997a9.png)
金属学与热处理名词解释汇总热处理:在生产中,通过加热、保温和冷却,使钢发生固态相变,借此改变其内部组织结构,从而达到改善力学性能的目的的操作被称为热处理。
正火:将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
淬火:将钢加热到Ac3或Ac1以上的某一温度,保温一定时间,然后取出进行水冷或油冷获得马氏体的热处理工艺。
等温淬火:将奥氏体化的工件淬入温度稍高于Ms的熔盐中,等温保持足够时间,使过冷奥氏体恒温发生贝氏体转变,待转变结束后取出在空气中冷却的处理方法称为等温淬火。
分级淬火:将奥氏体化的工件淬入温度稍高于或稍低于Ms的熔盐中,待工件内外温度均匀后,从熔盐中取出置于空气中冷却至室温,以获得马氏体组织,这种处理方法称为分级淬火。
单液淬火:将奥氏体化的工件投入一种淬火介质中,直至转变结束。
双液淬火:将奥氏体化的工件先放入一种冷却能力强的冷却介质冷却一定时间,当冷却至稍高于Ms后立即将工件取出并放入另外一种冷却能力缓一些的冷却介质冷却,使之转变为马氏体的热处理工艺。
回火:将淬火钢加热到低于临界点A1某一温度,保温一定时间,然后冷却到室温的一种热处理工艺。
回火索氏体:淬火碳钢500~650℃回火时,得到粗粒状渗碳体和多边形铁素体所构成的复相组织。
回火屈氏体:淬火碳钢350~500℃回火时,得到细粒状渗碳体和针状铁素体所构成的复相组织。
回火马氏体:淬火碳钢在250℃以下回火时,得到的过饱和的α固溶体和弥散分布的碳化物组成的复相组织。
退火:是将钢加热到临界点以上或以下的某一温度,保温一定时间后,随炉冷却的一种热处理工艺。
它是热处理工艺中应用最广、种类最多的一种工艺,不同种类的退火目的也各不相同。
等温退火:将亚共析钢工件加热到A3以上20〜30°C,保温一定时间,然后在Arl以下珠光体转变区间的某一温度进行等温,使之转变为珠光体后出炉空冷的一种热处理工艺。
【金属学与热处理】41个必背名词解释汇总(1)
![【金属学与热处理】41个必背名词解释汇总(1)](https://img.taocdn.com/s3/m/472b3afcd4bbfd0a79563c1ec5da50e2534dd17c.png)
【金属学与热处理】41个必背名词解释汇总[1] 热处理在生产中,通过加热、保温和冷却,使钢发生固态相变,借此改变其内部组织结构,从而达到改善力学性能的目的的操作被称为热处理。
[2] 正火将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
[3] 淬火将钢加热到Ac3或Ac1以上的某一温度,保温一定时间,然后取出进行水冷或油冷获得马氏体的热处理工艺。
[4] 等温淬火将奥氏体化的工件淬入温度稍高于Ms的熔盐中,等温保持足够时间,使过冷奥氏体恒温发生贝氏体转变,待转变结束后取出在空气中冷却的处理方法称为等温淬火。
[5] 分级淬火将奥氏体化的工件淬入温度稍高于或稍低于Ms的熔盐中,待工件内外温度均匀后,从熔盐中取出置于空气中冷却至室温,以获得马氏体组织,这种处理方法称为分级淬火。
[6] 单液淬火将奥氏体化的工件投入一种淬火介质中,直至转变结束。
[7] 双液淬火将奥氏体化的工件先放入一种冷却能力强的冷却介质冷却一定时间,当冷却至稍高于Ms后立即将工件取出并放入另外一种冷却能力缓一些的冷却介质冷却,使之转变为马氏体的热处理工艺。
[8] 回火将淬火钢加热到低于临界点A1某一温度,保温一定时间,然后冷却到室温的一种热处理工艺。
[9] 回火索氏体淬火碳钢500~650℃回火时,得到粗粒状渗碳体和多边形铁素体所构成的复相组织。
[10] 回火屈氏体淬火碳钢350~500℃回火时,得到细粒状渗碳体和针状铁素体所构成的复相组织。
[11] 回火马氏体淬火碳钢在250℃以下回火时,得到的过饱和的α固溶体和弥散分布的碳化物组成的复相组织。
[12] 退火是将钢加热到临界点以上或以下的某一温度,保温一定时间后,随炉冷却的一种热处理工艺。
热处理名词解释
![热处理名词解释](https://img.taocdn.com/s3/m/0b71df292f60ddccda38a02e.png)
第一部分材料结构的基本知识原子结合键:材料在凝聚态(液、固态)下其原子之间形成的相互作用键。
结合键的强弱可用键能的大小表示,一次键的键能较二次键大得多。
一次键:通过原子外层电子的转移或共享而形成。
(离子键,共价键,金属键)离子键:由原子通过相互得失价电子形成正、负离子,正、负离子的相互吸引而形成的键。
一般在金属元素和非金属元素之间形成,如NaCl、MgO等。
(无方向性)共价键:通过相邻原子间形成共用电子的方式使每个原子的最外层电子数都达到稳定的八个,其形成的键为共价键。
一般在非金属元素之间形成,如金刚石、SiC等。
(共价键具有方向性和饱和性。
)金属键:金属很容易失去最外层的价电子而形成正离子和自由电子,当许多金属结合时,失去价电子的金属正离子常在空间整齐排列,而自由电子则在正离子之间自由运动,依靠这种方式结合起来的键称金属键。
二次键:通过原子间的偶极而使分子之间结合在一起的键。
(氢键,范德瓦尔斯键)范德瓦尔斯键:1.分子间的作用2.具有普遍性3.键能非常小。
氢键:1.氢键一般表达式:X--H----Y 2.与氢的特殊作用有关,不具普遍性3. 并非所有含氢的分子都存在氢键4.本质上为范德瓦尔斯键,但键能要大得多。
晶体:其基本粒子(原子、分子、原子团等)在三维空间内周期性地重复排列的材料。
具有各向异性。
可分为金属晶体、离子晶体、共价晶体和分子晶体四种。
非晶体:其基本粒子的排列处于无序状态,实际为一种过冷液体。
(具有各向同性)结晶:由液体转变为晶体的过程。
有体积的突变。
通过形核和长大两个过程实现。
凝固:由液体转变为非晶体的过程。
无体积的突变。
单晶体:由一个晶核生长而形成的晶体称为单晶体。
多晶体:由许多个晶核同时生长而形成的许多个微小单晶体组成的。
单晶体具有各向异性而多晶体具有伪各向同性。
第二部分材料中的晶体结构晶格与晶胞:为表达空间点阵排列的几何规律,人为地将点阵用一系列相互平行的直线连接形成空间格架,称为晶格。
热处理工艺名词解释
![热处理工艺名词解释](https://img.taocdn.com/s3/m/86314736b90d6c85ec3ac622.png)
正火:正火,又称常化,是将工件加热至Ac3或Ac m以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
其目的是在于使晶粒细化和碳化物分布均匀化,去除材料的内应力,降低材料的硬度。
正火,又称常化,是将工件加热至Ac3(Ac₃是指加热时自由铁素体全部转变为奥氏体的终了温度)或Ac m(Ac m是实际加热中过共析钢完全奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
其目的是在于使晶粒细化和碳化物分布均匀化。
正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。
另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。
正火的主要应用范围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。
②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。
③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。
④用于铸钢件,可以细化铸态组织,改善切削加工性能。
⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。
⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。
正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。
正火主要用于钢铁工件。
一般钢铁正火与退火相似,但冷却速度稍大,组织较细。
有些临界冷却速度(见淬火)很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。
与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。
热处理专有名词解释
![热处理专有名词解释](https://img.taocdn.com/s3/m/d9c7d97d31b765ce050814df.png)
热处理工艺学2.1 钢的热处理原理一.加热时转变(P94-)(一)奥氏体(A)形成的基本过程.奥氏体(austenite)--- 铁中溶入碳和(或)其他元素构成的固溶体。
它是以英国冶金学家R.Austen的名字命名的。
通常呈等轴状多边形晶粒、内有孪晶] 奥氏体形成的四个过程:P.941奥氏体晶核形成2.奥氏体晶核长大(向铁素体和渗碳体两个方向长大)3.未溶(残余)渗碳体的溶解4奥氏体成分的均匀化(相对均匀化)(钢以非平衡组织加热奥氏体化,将发生异常长大和组织遗传现象)(在以非平衡组织作为原始组织加热时,常可在奥氏体形成初期获得*针状和颗粒状奥氏体.见陆兴:热处理工程基础P31或徐光:金属材料CCT曲线测定及绘制P17)。
(二)影响奥氏体等温形成速度的因素:P941.加热温度和保温时间2.碳量3.原始组织4.合金元素(三)奥氏体晶粒大小及其影响因素1. 奥氏体晶粒度晶粒度(grain size)---意指多晶体内晶粒的大小。
可用晶粒号、晶粒平均直径、单位面积或单位体积内的晶粒数目定量表征。
晶粒号(grain size number)---由美国材料试验协会(ASTM)制定,并被世界各国采用的一种表达晶粒大小的编号。
晶粒号(N)与放大100倍的视野上每平方英寸面积内的晶粒数(n)之间的关系为n=2N-1。
实际检验时一般采用放大100倍的组织与标准晶粒号图片对比的方法判定。
起始晶粒度、实际晶粒度、本质晶粒度P952.影响奥氏体晶粒大小的因素:P95加热温度和保温时间、加热速度、钢的成分(碳量、合金元素)、第二相、原始组织(*元素Mn、P加速;元素Ti、Nb、V、Al、W、Mo、Cr、Si、Ni阻止奥氏体晶粒长大)生产中如何控制奥氏体晶粒度的大小?(500问11)二.冷却时转变(P96-)(一)共析钢过冷奥氏体等温转变曲线(isothermal transformation diagram TTT curve)----过冷奥氏体在不同温度等温保持时,温度、时间与转变产物所占百分数(转变开始及转变终止)的关系曲线图。
热处理工艺名词解释
![热处理工艺名词解释](https://img.taocdn.com/s3/m/86314736b90d6c85ec3ac622.png)
正火:正火,又称常化,是将工件加热至Ac3或Ac m以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
其目的是在于使晶粒细化和碳化物分布均匀化,去除材料的内应力,降低材料的硬度。
正火,又称常化,是将工件加热至Ac3(Ac₃是指加热时自由铁素体全部转变为奥氏体的终了温度)或Ac m(Ac m是实际加热中过共析钢完全奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
其目的是在于使晶粒细化和碳化物分布均匀化。
正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。
另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。
正火的主要应用范围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。
②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。
③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。
④用于铸钢件,可以细化铸态组织,改善切削加工性能。
⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。
⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。
正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。
正火主要用于钢铁工件。
一般钢铁正火与退火相似,但冷却速度稍大,组织较细。
有些临界冷却速度(见淬火)很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。
与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。
热处理的名词解释
![热处理的名词解释](https://img.taocdn.com/s3/m/9ecf9f420640be1e650e52ea551810a6f424c85e.png)
热处理的名词解释
热处理是一种通过将金属制品加热到一定温度下进行处理的工艺,目的是改变金属的组织结构和性能,以提高其力学性能、耐磨性、耐腐蚀性等。
热处理主要分为四个步骤:加热、保温、冷却和清洗。
根据处理的目的和金属的特性,可以采用不同的热处理方法,如退火、正火、淬火、调质、沉淀硬化等。
退火是最常见的热处理方法之一,通过加热金属至一个适当的温度,然后缓慢冷却,以减少金属的硬度和提高其塑性。
退火可以改善金属的加工性能,减小内应力,并提高材料的韧性。
正火是一种使金属充分加热到适当温度后迅速冷却的热处理方法。
正火可以提高金属的硬度和强度,但会降低其塑性。
正火常用于钢材的热处理,例如生产弹簧、刀具等。
淬火是一种迅速冷却金属的方法,使其快速形成马氏体组织。
通过淬火,金属可以获得高硬度和高强度,但会导致金属变脆。
油淬、水淬和盐淬等是常用的淬火方法,不同淬火介质的选择会对金属的性能产生影响。
调质是一种在淬火后加热金属至适当温度后冷却的热处理方法。
调质可以提高金属的韧性和耐磨性,同时保持相对较高的硬度和强度。
调质常用于制造机械零件、汽车零件等。
沉淀硬化是一种通过加热金属至适当温度后冷却,使其产生弥
散分布的沉淀物,从而提高金属的硬度和强度的热处理方法。
沉淀硬化常用于合金材料的处理,例如高强度铝合金。
热处理工艺对于提高金属材料的性能至关重要。
通过热处理,可以改变金属的晶粒结构、调整相的比例和分布、消除内应力、提高金属的机械性能和抗腐蚀能力。
热处理广泛应用于航空航天、汽车、机械制造、电子等行业,对于改善产品的质量和性能具有重要意义。
热处理名词解释
![热处理名词解释](https://img.taocdn.com/s3/m/62cf320279563c1ec5da7178.png)
金属热处理:所谓金属热处理,是借助于一定的热作用(有时兼之以机械作用、化学作用或其他作用)来人为地改变金属合金内部的组织和结构,从而获得所需要的性能的工艺操作。
均匀化退火:扩散退火,是用于消除或减少铸态合金非平衡状态的热处理。
基于回复、再结晶的退火:将冷变形后的金属加热到一定的温度,会发生回复、再结晶,变形织构也会发生变化,从而在一定程度上消除了由冷变形造成的亚稳定状态,使金属材料获得所需组织、结构和性能。
基于固态相变的退火:这是一种以固态金属合金经高温保温和冷却所发生的扩散型相变为基础的热处理。
淬火:将金属合金从固态下的高温状态以过冷或过饱和形式固定到室温,或使高温相在冷却时转变成另一种晶体结构的亚稳状态,称为淬火。
淬火过程中晶体结构不发生变化叫无多型性转变的淬火,若淬火时金属合金的晶体结构类型发生改变,则称为有多型性转变的淬火。
时效或回火:室温保持或加热使过饱和固溶体分解的热处理。
化学热处理:将热作用和化学作用有机地结合起来的一种热处理。
形变热处理:是一种将塑性变形的形变强化和热处理时的相变强化结合,使成型工艺与获得最终性能统一起来的一种综合工艺。
临界浓度:凡组元浓度大于k的合金,在该种铸造的冷却条件下均会出现非平衡过剩相。
k浓度称为临界浓度。
聚集与球化:所谓聚集就是过剩相质点粗化过程,其特征是小尺寸质点溶解而大尺寸质点长大。
球化是聚集的一种特殊形式,即非等轴的过剩相质点转变为接近于等轴的形状。
淬火效应:金属工件加热到一定温度后,浸入冷却剂(油、水等)中,经过冷却处理,工件的性能更好,更稳定。
冷变形储能:冷变形后金属的自由能增量,它是冷变形金属发生组织变化的驱动力。
回复:回复过程的本质是点缺陷运动和位错运动与重新组合。
原位再结晶:随着退火温度升高或退火时间延长,多边化和胞状亚组织形成的亚晶会通过亚晶界迁移和亚晶粒合并的方式逐渐粗化。
在一定条件下,亚晶可长到很大尺寸,这种情况称为原位再结晶。
低温退火的硬化效应:某些金属及合金在回复退火温度下,硬度、强度特别是屈服极限和弹性极限不仅不降低,反而升高,这种现象称为低温退火的硬化效应。
热处理名词解释
![热处理名词解释](https://img.taocdn.com/s3/m/948e7501ba1aa8114431d96c.png)
平衡转变;固体材料在缓慢加热或冷却时得到平衡组织的相变称为平衡转变。
非平衡转变;固体材料在快速加热或冷却时,由于平衡转变得到抑制,可能得到某些在相图上不能反映的非平衡(或亚稳)组织的转变称为非平衡转变。
同素异构转变;纯金属在温度和压力变化时,由一种晶体结构转变为另一种晶体结构的过程称为同素异构转变。
多形性转变;在固溶体在温度和压力变化时,由一种晶体结构转变成另一种晶体结构的过程称为多形性转变。
钢在加热或冷却时发生的铁素体向奥氏体或奥氏体向铁素体的转变即为多形性转变。
平衡脱溶沉淀;在缓慢冷却条件下,由过饱和固溶体中析出过剩相的过程称为平衡脱溶沉淀。
共析转变;合金在冷却时由一个固相分解为两个不同的固相的转变称为共析转变。
调幅分解;某些材料在高温为均匀的单一固溶体,当冷却至某温度时,分解为两个与原固溶体结构相同、成分不同的微区的转变为调幅分解。
即α→α1+α2有序化转变;固溶体(包括以中间相为基的固溶体)中,各组元原子在晶体点阵中的相对位置从无序变为有序的转变称为有序化转变。
伪共析转变;以较快速度冷却时,非共析成分的奥氏体将同时析出铁素体和渗碳体。
这种转变过程和转变产物类似于共析转变,但转变产物中铁素体和渗碳体的比值不是定值,而是随着奥氏体碳含量的变化而变化,所以称为伪共析转变。
马氏体转变;若进一步提高冷速,使奥氏体来不及进行伪共析转变而被过冷到更低温度,则由于在低温下铁和碳原子都难于扩散,奥氏体只能以不发生原子扩散、不引起成分改变的方式,通过切变由γ点阵改组为α点阵,这种转变称为马氏体相变,转变产物为马氏体(为区别平衡相变形成的α相,称其为α′),成分与母相奥氏体的相同。
共格界面;界面上的原子所占位置恰好是两相点阵的共有位置时,两相在界面上的原子可以一对一的互相匹配,这种界面为共格界面。
非共格界面;当两相界面处的原子排列差别很大,即错配度很大时,原子的匹配关系不能维持,这种界面为非共格界面。
半共格界面;两相界面上原子间距的相对差值,即错配度δ越大,弹性应变能越大。
热处理 名词解释
![热处理 名词解释](https://img.taocdn.com/s3/m/b8cc6e6058fafab069dc02e5.png)
一名词解释1、完全退火将刚材或钢件加热到AC3点以上,使之完全奥氏体化,然后缓慢冷却,然后缓慢冷却获得接近于平衡组织的热处理工艺成为完全退火2、淬透性钢的淬透性使之钢材被淬透的能力,或者说钢的淬透性是表征钢材淬火时获得马氏体能力的特性3、淬硬性指在理想的淬火条件下,以超过临界冷却素的形成的马氏体组织能够达到的最高硬度4、等温淬火工件淬火加热后,若长时间保持在下贝氏体转变区的温度,使之完成奥氏体的等温转变,获得下贝氏体组织,这种淬火称等温淬火5、回火脆性随回火温度升高冲击韧性反而下降的现象6、回火稳定性淬火钢在回火时,抵抗强度、硬度下降的能力。
7、水韧处理将铸态下的铸件依据某一温度加热到1050℃~1100℃范围内保温一定时间然后进行水淬的一种处理方法8、季裂经过冷变形的黄铜制品在潮湿的大气中,特别是在还有氨气的大气或海水中,会发生自动破裂二、牌号1、GCr15 滚动轴承钢C%=1.0% Cr%=12% Cr作用:提高淬透性、耐腐蚀性、耐磨性热处理方法及作用:球化退火+淬火+低温回火球化淬火可以降低硬度,便于切削加工,为最终淬火处理做组织准备。
淬火:可以获得较高的硬度和强度回火:提高零件的组织及尺寸的稳定性,提高力学性能。
最终组织:M回+A”+Fe3C 应用:滚动轴承,量具2、Cr12MoV 冷冲磨具钢C%≥1 Cr=12%Mo=0.4%~0.6% V%=0.15~0.3% Cr作用:提高淬透性Mo、V提高耐磨性、细化晶粒热处理方法及作用:有一次硬化法和二次硬化法,其中一次硬化法采用低温回火+低温淬火。
淬火温度低,晶粒细小,强韧性好,残留奥氏体少最终组织:M回+A”+Fe3C晶粒应用:挤压模,冷冲压模3、60Si2Mn 弹簧钢C%=0.6% Si%=2% Mn%≤1.5% Si、Mo:能显著强化基体Si大为提高钢的弹性限度Mn提高钢的淬透性热处理及应用:淬火+中温回火中温回火可以使弹簧具有一定冲击韧性,弹性极限,金属比等最终组织:T回应用:螺旋弹簧,板簧4、40Cr/40CrNiMo C%=0.4% Ni、Mo≤1.5% Cr提高钢的淬透性,回火稳定性Ni提高干的基本韧性Mo进一步提高淬透性、回火稳定性,细化晶粒降低回火脆性热处理及作用:调质获得S回最终组织:S回应用:连杆螺栓,轴,齿轮5、W18Cr4V W%=18% Cr%=4% V%≤1.5%三、选材汽车变速箱齿轮选用渗碳钢20CrMnTi制造汽车变速箱齿轮工作条件:在滑动、滚动相对运动的情况下工件之间有摩擦,同时还承受一定的形变弯曲应力和接触疲劳应力,有时会有一定的冲击力。
热处理名词解释
![热处理名词解释](https://img.taocdn.com/s3/m/4ce105f3a48da0116c175f0e7cd184254b351ba6.png)
热处理名词解释第一章金属的加热1、对流传热:热量的传递依靠发热体与工件之间流体的流动进行。
2、辐射传热:温度大于绝对零度的物体从表面放出波长为(0.4~40)×10-6m范围内的辐射能被另一物体吸收后变为热能。
3、传导传热:热量的传递仅靠传热物质质点间的相互碰撞。
4、强迫流动:用外加动力强制流体运动。
5、层流:强迫流动时流体沿着工件表面一层层有规则的流动。
6、紊流:流体的不规则运动。
7、随炉加热:即工件装入炉中后,随着炉子升温而加热,直至所需加热温度。
8、预热加热:即工件现在已升温至较低温度的炉子中加热,到温后再转移至预定工件加热温度的炉中加热至工件达到所要求的温度。
9、到温入炉加热:又称热炉装料加热,即先把炉子升到工件要求的加热温度,然后再把工件装入炉中进行加热。
10、高温入炉加热:即工件装入较工件要求加热温度高的炉内进行加热,直至工件达到要求温度。
11、内氧化:氧沿晶界或其他通道向内扩散,与晶界附近的Si、Mn等元素结合成氧化物的现象。
12、碳势:纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量。
13、露点:气氛中水蒸气开始凝结成雾的温度,即在一个大气压力下,气氛中水蒸气达到饱和状态时的温度。
14、半脱碳层:碳钢脱碳层组织自表面至中心,由铁素体加珠光体组织逐渐过渡到珠光体,再至相当于钢原始含碳量的退火组织。
15、全脱碳层:碳钢脱碳层区碳浓度分布曲线有突变,碳层组织表面为单一的铁素体区,向里为铁素体加珠光体逐渐过渡到相当于钢原始含碳量缓冷组织。
16、光亮热处理:工件热处理后,不因氧化等原因使工件表面颜色变暗,光洁度降低,而仍保持热处理前原来工件表面光亮状态。
17、保护气氛:在工件加热时保持其表面不氧化、脱碳的气氛。
18、吸热式气氛:用天然气、丙烷气、城市煤气及其他有机物质为原料,以一定的比例与空气混合,在装有镍触媒的高温(930~1050℃)炉内进行不完全燃烧而得的一种混合气体。
热处理 名词解释
![热处理 名词解释](https://img.taocdn.com/s3/m/e3723d1b59eef8c75fbfb31d.png)
2.退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。
6.时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度。
7.淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。
8.回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工ቤተ መጻሕፍቲ ባይዱ。
9.钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。习惯上碳氮共渗又称为氰化,目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。
10.调质处理quenchingandtempering:一般习惯将淬火加高温回火相结合的热处理称为调质处理。调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织为优。它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。
11.钎焊:用钎料将两种工件粘合在一起的热处理工艺。
3.固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。
4.时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。
工程材料热处理名词解释
![工程材料热处理名词解释](https://img.taocdn.com/s3/m/ed4b7248852458fb770b56a3.png)
强度:材料在外力作用下抵抗变形和断裂的能力。
硬度:反映材料软硬程度的一种性能指标,它表示材料表面局部内抵抗变形或破裂的能力。
塑性:材料在外力作用下产生塑性变形而不断裂的能力。
冲击韧性:在一定温度下,材料在冲击载荷作用下抵抗破坏的能力。
断裂韧性:材料抵抗裂纹失稳扩展断裂的能力。
腐蚀作用:金属材料的化学性质相对活泼,容易受到环境介质的腐蚀作用。
分为化学腐蚀(直接发生化学反应,不产生电流)�电化腐蚀(金属与电解质接触发生电化学反应)�物理腐蚀(由于单纯的物理溶解而产生的腐蚀)。
磨损:零件在摩擦过程中其表面发生尺寸变化和物质损耗的现象。
老化:高分子材料在加工�储存和使用过程中,由于受各种坏境因素的作用导致性能逐渐变坏,以致丧失使用价值的现象。
比刚度:材料的弹性模量E与其密度ρ的比值(E�ρ)称为比刚度。
比强度:材料的强度指标与其密度的比值称为比强度。
晶体:内部的原子在三维空间呈周期性规则排列的物质称为晶体。
晶体结构,晶体中原子规则排列的具体方式称为晶体结构。
金属晶体包括三种晶格:体心立方�面心立方�密排六方。
组元:组成合金的独立的�最基本的单元。
相:在合金中具有一定化学成分且晶体结构相同,具有相同的物理和化学性能,与其他部分有明显分界的均匀的组成部分。
相图:相图即是状态图或平衡图。
是用图解的方法表示不同温度�压力及成分下合金系中各相的平衡关系。
显微组织:是指用金相显微镜�电子显微镜所观察到得金属�合金及陶瓷内部有关晶体�晶粒或组元相的集合状态。
晶胞:组成晶格的、能反映晶格特征的最基本的几何单元称为晶胞。
晶格:描述原子在晶格中排列形成的空间格子,通常称为晶格。
共析反应:在一定温度下由一种固相转变成完全不同的两种固相的反应称为共析反应,生成的产物为共析组织。
共晶反应:匀晶反应:粉末冶金:是指有几种金属粉末或金属与非金属粉末经混合(并常加一定成形剂等添加剂),在钢模内压制成形,并经烧结而获得的材料。
塑性变形:金属在外力作用下产生了变形,当外力除去后不能恢复的变形。
热处理名词解释
![热处理名词解释](https://img.taocdn.com/s3/m/07b2f625915f804d2b16c17b.png)
热处理名词解释1.退火操作方法:将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料;2.一般在毛坯状态进行退火。
2.正火操作方法:将钢件加热到Ac3或Accm 以上30~50度,保温后以稍大于退火的冷却速度冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。
对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。
对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。
3.淬火操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。
目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。
应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。
4.回火操作方法:将淬火后的钢件重新加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。
目的:1.降低或消除淬火后的内应力,减少工件的变形和开裂;2.调整硬度,提高塑性和韧性,获得工作所要求的力学性能;3.稳定工件尺寸。
应用要点:1.保持钢在淬火后的高硬度和耐磨性时用低温回火;在保持一定韧度的条件下提高钢的弹性和屈服强度时用中温回火;以保持高的冲击韧度和塑性为主,又有足够的强度时用高温回火;2.一般钢尽量避免在230~280度、不锈钢在400~450度之间回火,因为这时会产生一次回火脆性。
热处理名词解释(个人整理)
![热处理名词解释(个人整理)](https://img.taocdn.com/s3/m/d6ba5a16168884868662d616.png)
起始晶粒度:钢在临界温度以上,奥氏体形成刚结束,其晶粒边界刚刚接触时的晶粒大小称为奥氏体的起始晶粒度实际晶粒度:钢在某一具体的加热条件下实际获得的奥氏体晶粒的大小本质晶粒度:标准实验的方法,即将钢加热到(930+-10)℃,保温3-8小时,冷却后测得的晶粒度固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种相状态向另一种相状态的转变,这种转变称为固态相变。
伪共析转变:过冷奥氏体将全部转变为珠光体型组织,但合金的成分并非公析成分,并且其中铁素体和渗碳体的相对含量也与共析成分珠光体不同,随奥氏体的碳含量变化而变化。
这种转变称为“伪共析转变”魏氏组织:在奥氏体晶粒较粗大,冷却速度适宜时,钢中的先共析相以针片状形态与片状珠光体混合存在的复相组织。
热稳定化:淬火时因缓慢冷却或在冷却过程中因停留而引起奥氏体稳定性提高,使马氏体转变迟滞的现象。
形变诱发马氏体:在Ms点以上,一定温度范围内因塑性变形而发生的马氏体二次淬火:在冷却回火时残余奥氏体转变为马氏体的现象叫二次淬火二次硬化:当钢中含有较多的碳化物形成元素时,在回火第四阶段温度区形成合金渗碳体或者特殊碳化物。
这种碳化物的析出,将使硬度再次提高,称为二次硬化现象脱溶沉淀:从饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀淬火时效:含有Mo,W,V,Cu,Be等元素的铁基合金淬火后进行时效时产生时效硬化现象应变时效:纯铁或低碳钢经形变后时效时产生的硬化现象碳势:纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量淬透性:钢材被淬透的能力或者说是钢材淬火时获得马氏体能力的特性淬硬性:淬硬性是指在理想的淬火条件下,以超过临界冷却速度所形成的马氏体组织能够达到的最高硬度,也称可硬性热应力:工件在加热(或冷却)时,由于不同部位的温度差异,导致热胀(或者冷缩)的不一致所引起的的应力组织应力:工件不同部位组织转变不同时而引起的内应力纯扩散:渗入元素原子在母相中形成固溶体,在扩散过程中不发生相变或者化合物形成与分解的扩散称为纯扩散反应扩散:由浓度较低的固溶体转变为浓度更高的化合物的扩散行为奥氏体:碳在γ-Fe中形成的固溶体马氏体:碳在α-Fe中的固溶体珠光体:F和Fe3C的机械混合物贝氏体:α相和碳化物的混合物淬火:把钢加热到临界点Ac1或者Ac3以上,保温并随之以大于临界冷却速度(Vc)冷却,以得到介稳状态的马氏体或者下贝氏体组织的热处理工艺正火:把钢材加热到Acm以上温度保温适当时间后在空气中冷却得到珠光体的热处理工艺退火:将组织偏离平衡状态的金属或合金加热到适当温度,保温一段时间后缓慢冷却以得到接近平衡状态组织的热处理工艺调质:淬火和高温回火的综合热处理工艺。
热处理名词解释概论
![热处理名词解释概论](https://img.taocdn.com/s3/m/1e15dbac55270722192ef7c9.png)
目录绪论 (6)1、材料 (6)2、工程材料 (6)3、金属材料 (6)4金属 (6)5、合金 (6)6、无机非金属材料 (6)7、高分子材料 (6)8、复合材料 (6)9、结构材料 (6)10、功能材料 (6)第一章金属的性能 (6)1、金属的使用性能 (6)2、金属的工艺性能 (6)3、金属的力学性能 (6)4、弹性变形 (6)5、塑性变形 (7)6、弹性极限 (7)7、弹性模量与刚度 (7)8、强度 (7)9、塑性 (7)10、屈服极限 (7)11、抗拉强度 (7)13、冲击韧性 (7)14、断裂韧性 (7)第七章金属与合金的塑性变形与断裂 (7)1、塑性变形 (7)2、滑移 (7)3、滑移系 (7)4、单滑移系 (7)5、多滑移系 (7)6、交滑移 (7)7、孪生: (7)8、位错塞积 (7)9、吕德斯带 (7)10、柯氏气团 (8)11、加工硬化 (8)12、纤维组织 (8)13、胞状结构 (8)14、择优取向 (8)15、断裂 (8)16、解理断裂 (8)17、韧窝断口 (8)18、晶界断口 (8)19、脆性转变温度 (8)第八章金属与合金的回复再结晶 (9)1、回复: (9)3、再结晶 (9)4、再结晶温度 (9)5、晶粒长大 (9)6、晶粒异常长大 (9)7、再结晶织构 (9)8、退火孪晶 (9)9、热加工 (9)10、动态回复与动态再结晶 (9)11、带状组织 (9)12、超塑性与超塑性合金 (10)13、组织超塑性(微晶超塑性) (10)14、相变超塑性 (10)第九章扩散 (10)1、扩散 (10)2、间隙扩散 (10)4、自扩散: (10)5、异扩散 (10)6、上坡扩散 (10)7、下坡扩散 (10)8、原子扩散 (10)9、反应扩散 (10)第十章钢的热处理原理与工艺 (10)1、错配度 (10)2、惯习现象 (10)4、非扩散型相变 (11)5、热处理 (11)6、实际晶粒度 (11)7、连续冷却转变 (11)8、等温转变 (11)9、过冷奥氏体 (11)10、马氏体 (11)11、板条马氏体 (11)12、片状马氏体 (11)13、奥氏体的稳定化 (11)14、钢的淬透性 (11)15、临界淬火直径 (11)16、钢的淬硬性 (11)17、贝氏体 (11)18、回火脆性 (11)19、低温回火脆性 (12)20、高温回火脆性 (12)21、退火 (12)22、完全退火 (12)23、等温退火 (12)24、球化退火 (12)25、扩散退火 (12)26、去应力退火 (12)28、正火 (12)29、淬火 (13)30、单液淬火 (13)31、双液淬火 (13)32、分级淬火 (13)33、等温淬火 (13)34、回火 (13)35、回火马氏体 (13)36、回火屈氏体 (13)37、回火索氏体 (13)38、钢的表面热处理 (13)39、火焰加热表面淬火 (13)40、电子束淬火 (13)41、钢的化学热处理 (13)42、渗碳 (13)43、氮化 (14)44、热喷涂 (14)45、化学气相沉积(CVD法) (14)46、物理气相沉积(PVD法) (14)47、金属离子注入 (14)48、化学镀 (14)绪论1、材料:是人类用来制造各种有用物件的物质。
热处理名词解释
![热处理名词解释](https://img.taocdn.com/s3/m/fc8298fcf705cc1755270953.png)
1:铸造性(可铸性):指金属材料能用铸造的方法获得合格铸件的性能。
铸造性主要包括流动性,收缩性和偏析。
流动性是指液态金属充满铸模的能力,收缩性是指铸件凝固时,体积收缩的程度,偏析是指金属在冷却凝固过程中,因结晶先后差异而造成金属内部化学成分和组织的不均匀性。
2:可锻性:指金属材料在压力加工时,能改变形状而不产生裂纹的性能。
它包括在热态或冷态下能够进行锤锻,轧制,拉伸,挤压等加工。
可锻性的好坏主要与金属材料的化学成分有关。
3:切削加工性(可切削性,机械加工性):指金属材料被刀具切削加工后而成为合格工件的难易程度。
切削加工性好坏常用加工后工件的表面粗糙度,允许的切削速度以及刀具的磨损程度来衡量。
它与金属材料的化学成分,力学性能,导热性及加工硬化程度等诸多因素有关。
通常是用硬度和韧性作切削加工性好坏的大致判断。
一般讲,金属材料的硬度愈高愈难切削,硬度虽不高,但韧性大,切削也较困难。
4:焊接性(可焊性):指金属材料对焊接加工的适应性能。
主要是指在一定的焊接工艺条件下,获得优质焊接接头的难易程度。
它包括两个方面的内容:一是结合性能,即在一定的焊接工艺条件下,一定的金属形成焊接缺陷的敏感性,二是使用性能,即在一定的焊接工艺条件下,一定的金属焊接接头对使用要求的适用性。
5:热处理(1):退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。
常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。
退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。
(2):正火:指将钢材或钢件加热到Ac3或Acm(钢的上临界点温度)以上30~50℃,保持适当时间后,在静止的空气中冷却的热处理的工艺。
正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。
(3):淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
起始晶粒度:钢在临界温度以上,奥氏体形成刚结束,其晶粒边界刚刚接触时的晶粒大
小称为奥氏体的起始晶粒度
实际晶粒度:钢在某一具体的加热条件下实际获得的奥氏体晶粒的大小
本质晶粒度:标准实验的方法,即将钢加热到(930+-10)℃,保温3-8小时,冷却后测得的晶粒度
固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种相状态向另一种相状态的转变,这种转变称为固态相变。
伪共析转变:过冷奥氏体将全部转变为珠光体型组织,但合金的成分并非公析成分,并
且其中铁素体和渗碳体的相对含量也与共析成分珠光体不同,随奥氏体的碳含量变化而变化。
这种转变称为“伪共析转变”
魏氏组织:在奥氏体晶粒较粗大,冷却速度适宜时,钢中的先共析相以针片状形态与片状珠光体混合存在的复相组织。
热稳定化:淬火时因缓慢冷却或在冷却过程中因停留而引起奥氏体稳定性提高,使马氏体转变迟滞的现象。
形变诱发马氏体:在Ms点以上,一定温度范围内因塑性变形而发生的马氏体
二次淬火:在冷却回火时残余奥氏体转变为马氏体的现象叫二次淬火
二次硬化:当钢中含有较多的碳化物形成元素时,在回火第四阶段温度区形成合金渗碳体或者特殊碳化物。
这种碳化物的析出,将使硬度再次提高,称为二次硬化现象
脱溶沉淀:从饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀
淬火时效:含有Mo,W,V,Cu,Be等元素的铁基合金淬火后进行时效时产生时效硬化现象应变时效:纯铁或低碳钢经形变后时效时产生的硬化现象
碳势:纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量
淬透性:钢材被淬透的能力或者说是钢材淬火时获得马氏体能力的特性
淬硬性:淬硬性是指在理想的淬火条件下,以超过临界冷却速度所形成的马氏体组织能够达到的最高硬度,也称可硬性
热应力:工件在加热(或冷却)时,由于不同部位的温度差异,导致热胀(或者冷缩)的不一致所引起的的应力
组织应力:工件不同部位组织转变不同时而引起的内应力
纯扩散:渗入元素原子在母相中形成固溶体,在扩散过程中不发生相变或者化合物形成与分解的扩散称为纯扩散
反应扩散:由浓度较低的固溶体转变为浓度更高的化合物的扩散行为
奥氏体:碳在γ-Fe中形成的固溶体
马氏体:碳在α-Fe中的固溶体
珠光体:F和Fe3C的机械混合物
贝氏体:α相和碳化物的混合物
淬火:把钢加热到临界点Ac1或者Ac3以上,保温并随之以大于临界冷却速度(Vc)冷却,以得到介稳状态的马氏体或者下贝氏体组织的热处理工艺
正火:把钢材加热到Acm以上温度保温适当时间后在空气中冷却得到珠光体的热处理工艺
退火:将组织偏离平衡状态的金属或合金加热到适当温度,保温一段时间后缓慢冷却以得到接近平衡状态组织的热处理工艺
调质:淬火和高温回火的综合热处理工艺。