2020年中考数学总复习教学质量检测试卷(一)
2020年山东省滨州市中考数学试题及参考答案(word解析版)
滨州市2020年初中学生学业水平考试数学试题(满分150分,考试用时120分钟)第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=52.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.46.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.127.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.49.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.1510.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.612.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.第Ⅱ卷(非选择题共114分)二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.18.若关于x的不等式组无解,则a的取值范围为.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.答案与解析第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5【知识考点】相反数;绝对值.【思路分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.【解题过程】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.【总结归纳】此题主要考查相反数的定义以及绝对值的含义和求法,解答此题的关键是要明确一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【知识考点】平行线的性质.【思路分析】根据平行线和角平分线的定义即可得到结论.【解题过程】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.【总结归纳】本题考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质是解题的关键.3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解题过程】解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【知识考点】点的坐标.【思路分析】直接利用点的坐标特点进而分析得出答案.【解题过程】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.【总结归纳】此题主要考查了点的坐标,正确掌握第四象限点的坐标特点是解题关键.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解题过程】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.【总结归纳】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质.【思路分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解题过程】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.【总结归纳】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形【知识考点】命题与定理.【思路分析】利用正方形的判定依次判断,可求解.【解题过程】解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.【总结归纳】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.4【知识考点】算术平均数;中位数;众数;方差.【思路分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.【解题过程】解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.【总结归纳】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,也考查了平均数,中位数和众数的定义.9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【知识考点】勾股定理;垂径定理.【思路分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.【解题过程】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.【总结归纳】此题主要考查了垂径定理和勾股定理,正确得出CO的长是解题关键.10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定【知识考点】根的判别式.【思路分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.【解题过程】解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.【总结归纳】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2﹣bx+c=0(a、b、c为常数,a≠0),当△=b2﹣4ac>0时,方程有两个不相等的实数根,当△=b2﹣4ac=0时,方程有两个相等的实数根,当△=b2﹣4ac<0时,方程没有实数根.11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.6【知识考点】二次函数图象与系数的关系.【思路分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解题过程】解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.【总结归纳】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.【解题过程】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.【总结归纳】考查了翻折变换(折叠问题),矩形的性质,勾股定理,关键是得到矩形的宽和A′E的长.第Ⅱ卷(非选择题共114分)二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为.【知识考点】二次根式有意义的条件.【思路分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解题过程】解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.【总结归纳】本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.【知识考点】等腰三角形的性质.【思路分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.【解题过程】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.【总结归纳】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.【解题过程】解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.【总结归纳】本题考查的是反比例函数与一次函数的交点问题,解题的关键是通过正比例函数确定交点的坐标,进而求解.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.【知识考点】正方形的性质;圆周角定理;切线长定理;正多边形和圆;解直角三角形.【思路分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.【解题过程】解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.【总结归纳】本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.【知识考点】三角形三边关系;列表法与树状图法.【思路分析】利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.【解题过程】解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了三角形三边的关系.18.若关于x的不等式组无解,则a的取值范围为.【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.【解题过程】解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).【知识考点】列代数式;规律型:数字的变化类.【思路分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2﹣1,即第n项的分子是n2+(﹣1)n+1;依此即可求解.【解题过程】解:由分析可得a n=.故答案为:.【总结归纳】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为.【知识考点】全等三角形的判定与性质;勾股定理的逆定理;正方形的性质;旋转的性质.【思路分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.【解题过程】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH ⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.【总结归纳】本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.【知识考点】实数的运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.【解题过程】解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【知识考点】一次函数的性质;两条直线相交或平行问题.【思路分析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【解题过程】解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.【总结归纳】本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.【知识考点】全等三角形的判定与性质;平行四边形的性质;菱形的判定.【思路分析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论.【解题过程】(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.【总结归纳】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【知识考点】一元二次方程的应用;二次函数的应用.【思路分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,有二次函数的性质可求解.【解题过程】解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【总结归纳】本题主要考查二次函数的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【知识考点】圆周角定理;切线的判定与性质;相似三角形的判定与性质.【思路分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD 是切线;(2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=20A,再证明CF=CE﹣DE,进而根据勾股定理得结论.【解题过程】解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.【总结归纳】本题主要考查了圆的切线的性质与判定,勾股定理,矩形的性质与判定,全等三角形的性质与判定,关键是正确作辅助线构造全等三角形与直角三角形.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.【知识考点】二次函数综合题.【思路分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.【解题过程】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x ﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)【总结归纳】本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型.。
〖汇总3套试卷〗成都市2020年中考数学1月质量监测试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【答案】A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.2.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )A.6个B.7个C.8个D.9个【答案】A【解析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有2个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有4个.故选:C .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.3.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8B .若这5次成绩的众数是8,则x =8C .若这5次成绩的方差为8,则x =8D .若这5次成绩的平均成绩是8,则x =8【答案】D【解析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D .【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D .【点睛】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xS n -+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A.±2 B.C.2 D.4【答案】C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn.∴2=232=4=2m n-⨯-.即2m n-的算术平方根为1.故选C.5.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为UIR=,当电压为定值时,I关于R的函数图象是()A.B. C.D.【答案】C【解析】根据反比例函数的图像性质进行判断.【详解】解:∵UIR=,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键.6.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【答案】A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.7.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等【答案】C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.8.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.【答案】C【解析】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.9.如图,已知O的周长等于6cmπ,则它的内接正六边形ABCDEF的面积是()A 93B273C273D.3【答案】C【解析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=33cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×332=2732(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.10.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是()A.26°.B.44°.C.46°.D.72°【答案】A【解析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.二、填空题(本题包括8个小题)11.64的立方根是_______.【答案】4.【解析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.12.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.【答案】60 17.【解析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论. 【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC =ADAC,∴x5=12-x12,∴x=6017,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.13.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC 的长为半径作CD交OB于点D,若OA=2,则阴影部分的面积为.【答案】312π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 432ππ-+=3 122π+.14.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.【答案】2﹣1【解析】连接DB,若Q点落在BD上,此时和最短,且为2,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=2﹣1,根据三角函数的定义即可得到结论.【详解】如图:连接DB,若Q点落在BD2,设AP=x,则PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD2PQ,即1﹣x=2,∴x2﹣1,∴AP21,∴tan∠ABP=APAB=2﹣1,2﹣1.【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.15.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.【答案】(2,0)【解析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.16.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.【答案】a>1【解析】根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,故答案为a>1.17.若a,b互为相反数,则a2﹣b2=_____.【答案】1【解析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.因式分解:2m2﹣8n2= .【答案】2(m+2n)(m﹣2n).【解析】试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考点:提公因式法与公式法的综合运用.三、解答题(本题包括8个小题)19.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【答案】(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【解析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.20.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.【答案】(1)10;(2)25【解析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ .∵MQ ∥AN ,∴∠QMF=∠BNF ,∴△MFQ ≌△NFB .∴QF=FB ,∴EF=EQ+QF=12(PQ+QB )=12PB , 由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴=∴EF=12 ∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形21.一辆汽车,新车购买价30万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为17.34万元,求这辆车第二、三年的年折旧率.【答案】这辆车第二、三年的年折旧率为15%.【解析】设这辆车第二、三年的年折旧率为x ,则第二年这就后的价格为30(1-20%)(1-x )元,第三年折旧后的而价格为30(1-20%)(1-x )2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可.【详解】设这辆车第二、三年的年折旧率为x ,依题意,得()()230120%117.34x --=整理得()210.7225x -=,解得1 1.85x =,20.15x =.因为折旧率不可能大于1,所以1 1.85x =不合题意,舍去.所以0.1515%x ==答:这辆车第二、三年的年折旧率为15%.【点睛】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.22.班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整; (3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名) 补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P (恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.23.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y 与时间x (0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【答案】(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.详解:(1)设线段AB 解析式为y=k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b ⎧⎨+⎩== 解得1210k b ⎧⎨⎩== ∴AB 解析式为:y=2x+10(0≤x <5)∵B 在线段AB 上当x=5时,y=20∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10)设双曲线CD 解析式为:y=2k x(k 2≠0) ∵C (10,20)∴k 2=200∴双曲线CD 解析式为:y=200x(10≤x≤24) ∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x 中,解得,x=20 ∴20-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.24.一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k ,然后放回搅匀再取一个球,标号记为b ,求直线y=kx+b 经过一、二、三象限的概率.【答案】(1)23;(2)49【解析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数, 所以从中任意取一个球,标号为正数的概率是23. (2)因为直线y=kx+b 经过一、二、三象限,所以k>0,b>0,又因为取情况:共9种情况,符合条件的有4种,所以直线y=kx+b 经过一、二、三象限的概率是49.【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .25.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.【答案】()1见解析;()124. 【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x ,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】()1画树状图得:共有12种等可能的结果()1,2、()1,3、()1,4、()2,1、()2,3、()2,4、()3,1、()3,2、()3,4、()4,1、()4,2、()4,3;()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2、()2,3、()3,4这3种结果, ∴点()M x,y 在函数y x 1=+的图象上的概率为31124=. 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A 类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【答案】(1)13(2)23. 【解析】(1)根据总共三种,A 只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【详解】解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122 183 ==.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )A.72072054848x-=+B.72072054848x+=+C.720720548x-=D.72072054848x-=+【答案】D【解析】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.2.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c【答案】A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.3.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-1【答案】C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.4.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A.6 B.8C.10 D.12【答案】D【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF AB==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.GF GD【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF AB==2,GF GD∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DG==1,GE CG∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.5.第24 届冬奥会将于2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A.15B.25C.12D.35【答案】B【解析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是25.故选B.【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.6.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+5【答案】B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.7.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【答案】D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.2C.2 D2【答案】A【解析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到22,2,再利用AC⊥x轴得到C2,2),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.9.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的()A.平均数B.众数C.中位数D.方差【答案】C【解析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.二、填空题(本题包括8个小题)11.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________. 【答案】2a ≥-【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..12.在实数范围内分解因式:226x - =_________【答案】2()(.【解析】先提取公因式2后,再把剩下的式子写成x 2-2,符合平方差公式的特点,可以继续分解.【详解】2x 2-6=2(x 2-3)=2()(.故答案为2()(.【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.13.如图,已知函数y =3x+b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x+b >ax ﹣3的解集是_____.。
2020中考数学质量检测卷(一)-答案
第3页 共4页
◎
第4页 共4页
高效课堂 源于优教
○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
10. C
11. B
12. B
二、填空题(每小题 3 分,共 12 分) 13. 2a(2a+b)(2a﹣b) . 14. 3×1010 15. 5 .
16.
.
三、解答题(17 题 5 分,18 题 6 分,19 题 7 分,20、21 题 8 分,22、23 题 9 分,共 52 分)
17. (1)原式=﹣4+3 +3﹣1=3 ﹣2. (2) 原式=
3y+2.4×
≤60,解得:y≥10,
则至少应安排甲工厂加工生产 10 天. 答:至少应安排甲工厂加工生产 10 天.
◎
第2页 共4页
22.解:(1)设甲、乙两种报纸的单价分别是 x 元、y 元,根据题意得
,解得
.
答:甲、乙两种报纸的单价分别是 0.6 元、0.8 元; (2)设该销售处每天购进甲种报纸 a 份,根据题意,得 (1﹣0.6)a+(1.5﹣0.8)(600﹣a)≥300, 解得 a≤400. 答:该销售处每天最多购进甲种报纸 400 份.
高效课堂 源于优教
21.解:①设乙工厂每天可加工生产 x 顶帐篷,则甲工厂每天可加工生产 1.5x 顶帐篷,根据题意得:
﹣
=4,解得:x=20,经检验 x=20 是原方程的解,
则甲工厂每天可加工生产 1.5×20=30(顶), 答:甲、乙两个工厂每天分别可加工生产 30 顶和 20 顶帐篷; ②设甲工厂加工生产 y 天,根据题意得:
上海市闵行区2020-2021学年第一学期九年级数学期末质量调研试卷(中考一模)带讲解
∴△FCE∽△BAE
∴ ,即FC=
∵AB//FC
∴ ,即
∴
故答案为: .
【点睛】本题主要考查了平面向量的三角形法则、平行四边形法则等知识,灵活运用向量运算的运算法则成为解答本题的关键.
21.如图, 是 的外接圆,AB长为4, ,连接CO并延长,交边AB于点D,交AB于点E,且E为弧AB的中点,求:
9.抛物线 在对称轴的右侧部分是___________的(填“上升”或“下降”).
【答案】下降
【分析】先将函数解析式化为顶点式,根据函数的性质解答.
【详解】∵ = ,
∴抛物线的开口向下,对称轴为直线x= ,
∴在对称轴右侧部分y随着x的增大而减小,
故答案为:下降.
【点睛】此题考查抛物线的性质:当a>0时,对称轴左减右增;当a<0时,对称轴左增右减,熟记抛物线的性质是解题的关键.
(1)填空:向量 __________;
(2)填空:向量 __________,并在图中画出向量 在向量 和 方向上的分向量.
(注:本题结果用含向量 、 的式子表示,画图不要求写作法,但要指出所作图中表示结论的向量)
【答案】(1) ;(2) ;作图见解析
【分析】(1)先求出AE占AC得几分之几,然后再根据向量运算的三角形法则计算即可;
19.计算:
【答案】2
【分析】分别把特殊角的三角函数值代入,再分别计算,结合分母有理化,合并化简即可解题.
【详解】解:原式
.
【点睛】本题考查特殊角 三角函数值,分母有理化等知识,是重要考点,难度较易,掌握相关知识是解题关键.
20.如图,在平行四边形 中,对角线AC、BD相交于点O.E为OC的中点,连接BE并延长,交边CD于点F,设 , .
2020年四川省成都市武侯区中考数学一诊试卷(含解析)
2020年四川省成都市武侯区中考数学一诊试卷一、选择题(本大題共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)在如下放置的立体图形中,其主视图与左视图不相同的是( )A.圆锥B.正方体C.圆柱D.球2.(3分)已知点P(3,2)在反比例函数y=(k≠0)的图象上,则下列各点中在此反比例函数图象上的是( )A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)3.(3分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是( )A.B.C.D.4.(3分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是( )A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣2 5.(3分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE =AD=2,则AB的长是( )A.6B.5C.4D.26.(3分)下列说法正确的是( )A.对角线相等且互相垂直的四边形是正方形B.坡面的水平宽度与铅直高度的比称为坡度C.两个相似图形也是位似图形D.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧7.(3分)如图,⊙O为△ABC的外接圆,∠BAC=55°,则∠OBC的度数为( )A.25°B.35°C.55°D.70°8.(3分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放回袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是( )A.12个B.20个C.30个D.35个9.(3分)在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为( )A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=500010.(3分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是( )A.①②④B.①③④C.①④D.③④二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知=,则的值为 .12.(4分)如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=6,BP=4,则AC的长为 .13.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是 .14.(4分)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是 .三、解答題(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+(π﹣3.14)0﹣|﹣4|﹣4sin60°(2)解方程:4x2+4x﹣3=016.(6分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为 ,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.17.(8分)2019年10月1日,中华人民共和国成立70周年,成都市天府广场举行了盛大的升旗仪式,我市部分学生有幸见证了这一激动人心的时刻,并在现场作了如下测量工作:身高1.8米的某同学(图中AE部分)在护旗手开始走正步的点A处测得旗杆顶部D 的仰角为22°,在护旗手结束走正步的点B处测得旗杆顶部D的仰角为45°,又测量得到A,B两点间的距离是30米,求旗杆DC的高度.(结果精确到0.1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)18.(8分)如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?20.(10分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF=5,求线段PE的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上B卷(共50分)21.(4分)已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为 .22.(4分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD= .23.(4分)我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b=a+b,比如12=1+×2=.若x(24)=5,则x的值为 .24.(4分)如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使PA=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是 .25.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P 不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC的角平分线交边CD于点N.则线段MN的最小值为 .二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟.27.(10分)如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2020年四川省成都市武侯区中考数学一诊试卷参考答案与试题解析一、选择题(本大題共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)在如下放置的立体图形中,其主视图与左视图不相同的是( )A.圆锥B.正方体C.圆柱D.球【解答】解:A、圆锥的主视图和左视图均为全等的等腰三角形,不符合题意;B、正方体的主视图和左视图均为全等的正方形,不符合题意;C、主视图是长方形,左视图是圆,符合题意;D、球的主视图和左视图均为圆,不符合题意;故选:C.2.(3分)已知点P(3,2)在反比例函数y=(k≠0)的图象上,则下列各点中在此反比例函数图象上的是( )A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)【解答】解:∵点P(3,2)在反比例函数y=(k≠0)的图象上,∴k=3×2=6,A、∵﹣3×(﹣2)=6,∴此点在该函数图象上,故本选项正确;B、∵3×(﹣2)=﹣6,∴此点不在该函数图象上,故本选项错误;C、∵﹣2×3=﹣6,∴此点不在该函数图象上,故本选项错误;D、∵2×(﹣3)=﹣6,∴此点不在该函数图象上,故本选项错误.故选:A.3.(3分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是( )A.B.C.D.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,cosα==.故选:C.4.(3分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是( )A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣2【解答】解:由题意可知:△=4+4(k+2)≥0,∴解得:k≥﹣3,∵k+2≠0,∴k≥﹣3且k≠﹣2,故选:D.5.(3分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE =AD=2,则AB的长是( )A.6B.5C.4D.2【解答】解:∵DE∥BC,∴=,∴=,∴AB=6,故选:A.6.(3分)下列说法正确的是( )A.对角线相等且互相垂直的四边形是正方形B.坡面的水平宽度与铅直高度的比称为坡度C.两个相似图形也是位似图形D.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧【解答】解:A、对角线相等且互相垂直的平行四边形是正方形,故此选项错误;B、坡面的铅直高度与水平宽度的比称为坡度,故此选项错误;C、两个相似图形不一定位似图形,故此选项错误;D、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,正确.故选:D.7.(3分)如图,⊙O为△ABC的外接圆,∠BAC=55°,则∠OBC的度数为( )A.25°B.35°C.55°D.70°【解答】解:∵⊙O为△ABC的外接圆,∠BAC=55°,∴∠BOC=2∠BAC=2×55°=110°,∵OB=OC,∴∠OBC===35°.故选:B.8.(3分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放回袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是( )A.12个B.20个C.30个D.35个【解答】解:设袋中蓝球有x个,根据题意得:=0.6,解得:x=30,经检验:x=30是分式方程的解,故袋中蓝球有30个.故选:C.9.(3分)在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为( )A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=5000【解答】解:设每台冰箱定价x元时,种冰箱的销售利润平均每天达到5000元,由题意得:(x﹣2500)(8+4×)=5000,故选:B.10.(3分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是( )A.①②④B.①③④C.①④D.③④【解答】解:抛物线开口向上,a>0,对称轴在y轴的右侧,a、b异号,因此b<0,与y轴的交点在负半轴,因此c<0,所以abc>0,故结论①正确;当x=1时,y=a+b+c<0,因此选项②是不正确的;对称轴为x=1,即﹣=1,也就是2a+b=0,因此选项③不正确;抛物线与x轴有两个不同的交点,因此方程ax2+bx+c=0有两个不相等的实数根.选项④正确;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知=,则的值为 .【解答】解:=,则=,故答案为:.12.(4分)如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=6,BP=4,则AC的长为 2 .【解答】解:∵AP=6,BP=4,∴AB=10,∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴,∴AC2=6×10,∴AC=2,故答案为:2.13.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是 ﹣4 .【解答】解:设该方程的另外一个根为x,由根与系数的关系可知:2x=﹣8,∴x=﹣4,故答案为:﹣414.(4分)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是 2 .【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;故答案为2.三、解答題(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+(π﹣3.14)0﹣|﹣4|﹣4sin60°(2)解方程:4x2+4x﹣3=0【解答】解:(1)原式=﹣4+1﹣(4﹣2)﹣4×=﹣3﹣4+2﹣2=﹣7;(2)∵4x2+4x﹣3=0,∴(2x+3)(2x﹣1)=0,则2x+3=0或2x﹣1=0,解得x=﹣或x=.16.(6分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为 120° ,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.【解答】解:(1)被调查的总人数为15÷25%=60(人),C类的总人数=60﹣25﹣15=20(人)所以扇形统计图中C部分所对应的扇形圆心角的度数为360°×=120°,补全条形统计图如图所示:故答案为:120°;(2)画树状图如下:共有12种可能的结果,恰好选到一男一女的结果有8个,∴P(选到一男一女)==.17.(8分)2019年10月1日,中华人民共和国成立70周年,成都市天府广场举行了盛大的升旗仪式,我市部分学生有幸见证了这一激动人心的时刻,并在现场作了如下测量工作:身高1.8米的某同学(图中AE部分)在护旗手开始走正步的点A处测得旗杆顶部D 的仰角为22°,在护旗手结束走正步的点B处测得旗杆顶部D的仰角为45°,又测量得到A,B两点间的距离是30米,求旗杆DC的高度.(结果精确到0.1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)【解答】解:延长EF交CD于G,∵∠DEF=22°,∠DFG=45°,∴在Rt△DGF中,DG=GF,在Rt△DGE中,tan22°=,即EG=≈2.5DG,∵2.5DG﹣DG=30,解得DG=20,则DC=DG+CG=20+1.8=21.8(米).答:旗杆DC的高度大约是21.8米.18.(8分)如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.【解答】解:(1)证明:∵在正方形ABCD中,AB=CD,∠ABE=∠CDF=45°,又∵AE∥CF,∴∠AEF=∠CFE(两直线平行,内错角相等),∴∠AEB=∠CFD(等角的补角相等),∴△ABE≌△CDF(AAS);(2)四边形AECF是菱形.理由如下:如图,连接AC,与BD交于点O,∵△ABE≌△CDF,∴BE=DF,又∵OB=OD,∴OB﹣BE=OD﹣DF,即OE=OF,又∵AC⊥EF,OA=OC,∴四边形AECF是菱形.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?【解答】解:(1)一次函数y=﹣x+5中,令y=0,解得x=5,∴C(5,0),∴OC=5,作BD⊥OC于D,∵△BOC的面积为,∴OC•BD=,即BD=,∴BD=1,∴点B的纵坐标为1,代入y=﹣x+5中,求得x=4,∴B(4,1),∵反比例函数y=(k>0)的图象经过B点,∴k=4×1=4,∴反比例函数的解析式为y=;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,∵直线AB向下平移m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,∴=﹣x+5﹣m,整理得x2+(m﹣5)x+4=0,△=(m﹣5)2﹣4×1×4=0,解得m=9或m=1,即m的值为1或9.20.(10分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF=5,求线段PE的长.【解答】解:(1)如图1,连接OC,则OA=OC,则∠OAC=∠OCA=α,而∠CAD=∠CAB=α,故∠DAC=∠OCA=α,∴AD∥CO,而CD⊥AD,∴CO⊥PD,故PC是⊙O的切线;(2)PC是⊙O的切线,则∠BCP=∠CAB=α,即tan,则sin,cos,∵∠DAC=∠CAB=α,∴△ADC∽△ABC,设圆的半径为R,则AC=AB cosα=2R×=,CD=AC sinα=,故AD•BC=AC•CD==4m2,故R=m;(3)连接OF、OC,CF平分∠ACB,则FO⊥AB,∵∠ECP=90°﹣∠OCE,∠CEP=90°﹣∠OFC,而∠OCE=∠OFC,∴∠ECP=∠CEP,∴PC=PE,BF=5=R,则R=5,AD=AC cosα=×=8,同理CD=4,∵CO∥AD,∴,即,解得:PC==PE.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上B卷(共50分)21.(4分)已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为 8 .【解答】解:由题意可知:m2﹣m﹣7=0,∴m2=m+7,∵m+n=1,∴原式=m+7+n=8,故答案为:8.22.(4分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD= 26寸 .【解答】解:连接OA,如图所示,设直径CD的长为2x寸,则半径OC=x寸,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故答案为:26寸.23.(4分)我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b=a+b,比如12=1+×2=.若x(24)=5,则x的值为 .【解答】解:∵24=2+×4=2,∴x2=x+×2=x+5﹣∴x+5﹣=5,∴x=.故答案为.24.(4分)如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使PA=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是 .【解答】解:连接OC,BP,则,∴,∵AP=AC,将△APC沿直线PC进行翻折得△A′PC,∴AP=AC=A'C=A'P,∴四边形ACA'P为菱形,∴PA'∥AB,A'C∥OA,∵AB⊥x轴,∴PA'⊥x轴,∴=4,∴,∴OB•BC=OD•PD,∵AP=OP,PD∥AB,∴OD=BD,∴PD=,OD=OB,∵CE∥OA,∴∠CEB=∠POD,∵∠CBE=∠PDO=90°,∴△BCE∽△DPO,∴,∵OB•BC=OD•PD,OD=OB,∴BC=PD=AB,∴,,∴,∴,∵DP∥AB,∴△OPD∽△OAB,∴,∴,∵OP=AP,∴,∴,∴.25.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P 不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC的角平分线交边CD于点N.则线段MN的最小值为 .【解答】解:连接AM、AN,如图所示:∵点B关于直线AP的对称点M,∴AM=AB=3,∵MN≥AN﹣AM,当A、M、N三点共线时,MN取最小值,此时,MN=AN﹣AM=AN﹣3,∴当AN取最小值时,MN最小,∵AN=,AD=BC=4,是定值,∴当DN最小时,AN最小,∵点B关于直线AP的对称点M,∴∠APB=∠APM,∵PN平分∠MPC,∴∠MPN=∠CPN,∴∠APN=(∠BPM+∠CPM)=×180°=90°,∵∠ABP=∠PCN=90°,∴∠APB+∠NPC=∠APB+∠BAP,∴∠NPC=∠BAP,∴△ABP∽△PCN,∴=,设BP=x,PC=4﹣x,∴=,∴CN=﹣(x2﹣4x)=﹣(x﹣2)2+,∴当x=2时,CN最大为:,∴DN最小值为:CD﹣CN=3﹣=,∴AN最小值===,∴线段MN的最小值为:﹣3=,故答案为:.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟.【解答】解:(1)当0≤x≤10,设y与x之间满足的函数关系式为y=kx,∵过点(10,30),∴30=10k,解得:k=3,∴y=3x(0≤x≤10),x>10时,设y与x之间满足的函数关系式为y=,∵过点(10,30),∴30=,k=300,∴y=(x>10);(2)y=3x(0≤x≤10)中,当y≥6时,x≥2,y=(x>10)中,当y≥6时,x≤50,∴2≤x≤50,∴这次熏药的有效消毒时间是:50﹣2=48(分钟)答:这次熏药的有效消毒时间是48分钟.27.(10分)如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.【解答】解:(1)∵AC是正方形ABCD的对角线,∴∠ABC=90°,∠BAC=∠BCA=45°,由旋转知,PA=PE,∠APE=90°=∠ABC,∴∠PAE=∠PEA=45°=∠BAC,∴△APE∽△ABC;(2)在Rt△ABC中,AB=CB,∴AC=AB,由(1)知,△APE∽△ABC,∴,∵∠BAC=∠PAE=45°,∴∠PAB=∠EAC,∴△PAB∽△EAC,∴==,∵△PAB∽△EAC,∴∠ABP=∠ACE,∴∠BCE+∠CBM=∠BCE+∠ABP+∠ABC=∠BCE+∠ACE+∠ABC=∠ACB+∠ABC=45°+90°=135°,∴∠BMC=180°﹣(∠BCE+∠CBM)=45°;(3)如图,在Rt△ABC中,AB=BC=3,∴AC=3,∵点P,C,E在同一条线上,且∠APE=90°,∴CP==,∴CE=CP﹣PE=﹣1或CE'=CP'+P'E=+1,由(2)知,=,∴BP=CE=(﹣1)=或BP'=CE'=;即:BP的长为或.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【解答】解:(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)①当∠PCM=90°时,由点A、B、C的坐标知,△ABC为直角三角形,故AC⊥BC,当△PCM为直角三角形时,点P与点A重合,∴点P(﹣1,0);②当∠CPM=90°时,则点C、P关于函数对称轴对称,此时点P(2,),故点P的坐标为(﹣1,0)或(2,);(3)存在,理由:点P(2,),设图象沿BC方向向左平移3m个单位,则向上平移m个单位,则平移后点B′、P′的坐标分别为:(3﹣3m,m)、(2﹣3m,m+),点E(1,0),分别过点A、E作直线BC的平行线n、m,过点B′作直线m的对称点B″,则EB′=EB″,当B″、E、P′三点共线时,EB'+EP'=EB″+EP′=B″P′最小;点E是AB的中点,则直线m与直线n、直线m与直线BC等距离,则点B″在直线n上,直线BC的倾斜角为30°,则直线B′B″的倾斜角为60°,则设直线B′B″的表达式为:y=x+b,将点B′的坐标代入上式并解得:直线B′B″表达式为:y=x+(4m﹣3)…①,第31页(共31页)设过点A 的直线n 的表达式为:y =﹣x +b ′,将点A 的坐标代入上式并解得:直线n 的表达式为:y =﹣(x +1)…②,联立①②并解得:x =2﹣3m ,故点B ″(2﹣3m ,m ﹣),而P ′(2﹣3m ,m +),故EB '+EP '的最小值B ″P ′=2.。
2020年浙江省中考数学复习检测试卷附解析
2020年浙江省中考数学复习检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.△ABC 的三边长分别为 6、8、10,并且以A、B、C三点分别为圆心,作两两相切的圆,那么这三个圆的半径分别为()A.3、4、5 B.2、4、6 C.6、8、10 D.4、6、82.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2 C.2.5 D.33.下列问题中两个变量之间的函数关系是反比例函数的是()A.小红 1 min 制作2朵花,x(min)可以制作 y 朵花B.体积为10 cm3的长方体,高为 h(㎝)时,底面积为 S(cm2)C.用一根长为 50 cm 的铁丝弯成一个矩形,一边长为 x(㎝)时,面积为y(㎝2)D.小李接到一次检修管道的任务,已知管道长100 m,设每天能完成 l0rn,x 天后剩下的未检m)4)A..D.5.对称图形又能旋转180°后与原图重合的是()6.下列选项中,正确的是()A. 27的立方根是3±B4±C. 9的算术平方根是3 D.带根号的数都是无理数7.两个不为 0的数相除,如果交换它们的位置,商不变,那么()A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数8.计算 18÷6÷2 时,下列各式中错误的是()A.111862⨯⨯B. 18÷(6÷2)C.18÷(6×2)D.(l8÷6)÷2二、填空题9.若x∶y =1∶2,则x yx y-+=_____________.10.右图是一山谷的横断面示意图,宽AA'为15m,用曲尺(两直尺相交成直角)从山谷两侧测量出1m OA =,3m OB =,0.5m O A ''=,3m O B ''=(点A O O A '',,,在同一条水平线上)则该山谷的深h 为 m . 11.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,•另一条弦长为6厘米,则两弦之间的距离为________厘米.12.已知函数①21y x =-;②22+5y x x =-,函数 (填序号)有最小值,当x= 时,该函数最小值是 .13.如图,矩形 ABCD 的周长为 40,设矩形的一边 AB 长为x ,矩形ABCD 的面积为 y ,试写出 y 关于x 的函数关系式 ,其中自变量 x 的取值范围是 .14.如图,已知AB=AD ,∠ABC=∠ADC ,求证:BC=CD .要证明BC=CD ,若连结BD ,则只要证即可.15.直线2y x b =-+经过点M(3,2),则b 的值是 .16.如果已知甲、乙两种植物株高的方差分别为222.3S =甲cm 2,215.67S =乙cm 2,那么可以估计种植物比 种植物长得整齐.17.小明将一把钥匙放进自己家中的抽屉中,他记不清到底放进三个抽屉中的哪一个了,那么他一次选对抽屉的概率是 .18.在每周一次的县长接待日中,各种问题都有所反映,一个月后对这些问题进行统计,并制成统计图如图. 则在这一个月内接待的300人次中,反映中小学收费问题的有 人次,反映土地审批的有 人次,反映房产质量的比反映停车问题的多 人次.19.计算:(1)(5)(2)-⨯-= ;(2)136()3÷-= . 20.自由下落物体的高度h (米)与下落的时间t (秒)的关系为24.9h t =.现有一铁球从离地面19米高的建筑物的顶部作自由下落,到达地面需要的时间是 秒.(精确到0.1秒)三、解答题21.如图,用连线的方法找出图中每一物体所对应的主视图.22.巳知直线y=kx+b经过点A(3,0),且与抛物线y=ax2相交于B(2,2)和C两点.(1)求直线和抛物线的函数解析式,并确定点C的坐标;(2)在同一直角坐标系内画出直线和抛物线的图象;(3)若抛物线上的点D,满足S△OBD=2S△OAD,求点D的坐标.23.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,BC= ;(2)判断△ABC与△DEF是否相似,并证明你的结论.24.如图,在△ABC 中,AB=4cm,∠B=30°, ∠C=45°,以点A为圆心,AC 长为半径作弧与AB 相交于点 E,与 BC相交于点 F.(1)求CE的长;(2)求 CF 的长.25.如图,已知一抛物线形大门,其地面宽度AB=l8m,一同学站在门内,在离门角 B点 lm 远处垂直地面立起一根长为 1. 7 m木杆,其顶端恰好顶在抛物线形门上C 处,根据这些条件:(1)请你建立合适的直角坐标系,并求出这扇大门的抛物线解析式;(2)求出该大门的高 h.26.如图,已知AC∥DE,AC=DE,AD,CE交于点B,AF,DG分别是△ABC,△BDE的中线,•求证:四边形AGDF是平行四边形.27.如图,在ΔABC中,AB=AC,∠BAC=900,直角∠EPF的顶点P是BC的中点,两边PE、PF 分别交AB、AC于点E、F.⑴求证:AE=CF;⑵是否还有其他结论,不要求证明(至少写出2个).P FEC BA28.某商场计划拨款 9 万元从厂家购进 50 台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台 1500 元,乙种每台 2100 元,丙种每台2500 元.(1)若商场同时购进其中两种不同型号的电视机 50 台,用去9万元,请研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150 元,销售一台乙种电视机可获利200 元,销售一台丙种电视机可获利250 元,在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择(1)中的哪种进货方案?29.已知边长为l cm 的等边三角形ABC ,如图所示.(1)将这个三角形绕它的顶点C 按顺时针方向旋转30°,作出这个图形;(2)再将已知三角形分别按顺时针方向旋转60°,90°,l20°,作出这些图形.(3)继续将三角形向同一方向旋转150°,180°,210°,240°,270°,300°,330°,作出这些图形.你将会得到一个美丽的图案.30.已知:A =x 21,B =231y x -,C =23123y x +,求2A B C -+.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.D5.C6.C7.D8.B二、填空题9.110.33011.7厘米或1厘米12.①,0,一 113.220y x x =-+,0<x<2014.∠CBD=∠CDB15.816.乙,甲17.1318. 30,60,6019.10,-10820.2.0三、解答题21.如图中虚线所示.22.(1) y =-2x +6, y =12x 2,C(-6,18); (2)略;(3)D 1(-1, 12 ),D 2 (12 ,18). 23.(1)∠ABC= 135 °, BC=22 ;(2)能判断△ABC 与△DEF 相似(或△ABC ∽△DEF )这是因为∠ABC =∠DEF = 135 ° ,2==EF BC DE AB ,∴△ABC ∽△DEF. 24.(1)过点A 作AD ⊥CF 于点D.∵∠B=30°, ∠C=45°,∴Rt △ADB 中,114222AD AB ==⨯=,∴Rt △ADC 中,AC=22. ∴⌒CE 的长 10522721806ππ⨯⨯==㎝(2)Rt △ADC 中,∠ACB=45°2∴CD=2,∴CF=4㎝.25.(1)以 A 为坐标原点,AB 为横坐标,建立直角坐标系.A(0,0),B(18,0) ,C(17, 1.7).∴设抛物线的解析式为2y ax bx =+,把B 、C 两点代入得 22181801717 1.7a b a b ⎧+=⎨+=⎩,化简得0.11.8a b =-⎧⎨=⎩,∴20.1 1.8y x x =-+ (2)201 1.8y x x =-⋅+201(9)8.1x =-⋅-+,∴顶点坐标(9,8.1),即该大门的高为 8.1 m . 26.∵AC ∥ED ,∴∠C=∠E ,∠CAB=∠EDB .∵AC=DE ,∴△ABC ≌△DBE ,∴AB=DB ,CB=EB .∵AF ,DG 分别是△ABC ,•△BDE 的中线,∴BG=BF ,∴四边形AGDF 是平行四边形27.(1)连结AP ,证明△APE ≌△CFP ,利用直角∠EPF 和直角∠APC 可证∠APE=∠FPC ,利用AP=PC ,∠EAP=∠C=45°;(2)BE=AF ,EP=PF 等等.28.(1)该商场共有两种进货方案,方案一:购甲种型号电视机 25 台,乙种型号电视机 25 台;方案二:购甲种型号电视机 35 台,丙种型号电视机 15 台;(2)为使销售利润最多,应选择(1)中的方案二进 29.略30.2A B C -+ =x 21-2(231y x -)+(23123y x +) =x 21-2232y x ++23123y x +=2y .。
2020年福建省九年级初中学业质量检查数学试卷
5、阅读使人充实,会谈使人敏捷,写作使人精确。
Tuesday, June 16, 2020June 20Tuesday, June 16,
花一样2020美6/16/2丽020 ,感谢你的阅读。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。
10 时 17 分 10 时 17 分 16-Jun-206.16.2020
7、自知之明是最难得的知识。 20.6.1620.6.1620.6.16 。 2020 年 6 月 16 日星期二二〇二〇年六月十六日
8、勇气通往天堂,怯懦通往地狱。
22:1722:17:186.16.2020Tuesday, June 16, 2020
2020 的 相 反 数 为
()
1
B.
2020
C.
-2020
D.
± 2020
2、地球与月球平均距离约为 384000 千米,将数字 384000 用科学记数法表示为 ( )
A. 3.84 ×106
B. 3.84 ×105
C. 3.84 ×104
D. 3.84 ×105
3、下列运算正确的是 ( )
A. ??+ ??+ ??= ??3
C. 140 °
D. 150 °
10、已知点 A(a-m,y1)、B(a-n,y2)、C(a+b,y3)都在二次函数 ??= ??2 - 2???+? 1的图象上 ,若 0<m<b<n, 则 y1、 y2、y3 的大小关系是 ( )
A. y1<y2<y3
B. y1<y3<y2
二、填空题 (4 ×6=24)
最新
Word
亲爱的用户: 1、只要朝着一个方向奋斗,一切都会变得得心应手。
浙江省衢州市2020年数学中考复习卷(一)
浙江省衢州市2020年数学中考复习卷(一)一、选择题(本题有10小题,每小题3分,共30分)(共10题;共30分)1.在下列四个图案中,不是中心对称图形的是( )A. B. C. D.2.下列运算正确的是( )A. 3x-2x=xB. 3x+2x=5x²C. 3x·2x=6xD. 3x÷2x=3.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的( )A. 左视图会发生改变,其他视图不变B. 俯视图会发生改变,其他视图不变C. 主视图会发生改变,其他视图不变D. 三种视图都会发生改变4.不等式组的解集在数轴上表示为( )A. B.C. D.5.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码的前四位,后三位是由3,6,7三个数字组成的,但具体顺序不能确定,那么小明第一次就拨对的概率是( )A. B. C. D.6.在我国古代数学著作《九章算术》“勾股”章中有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何?”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB的距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为( )A. 103寸B. 102寸C. 101寸D. 100寸7.如图,点A,B,D,C是⊙O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为( )A. 30°B. 35°C. 45°D. 55°8.如图,在平面直角坐标系中,矩形ABCD四个顶点的坐标分别为A(-1,2),B(-1,-1),C(3,-1),D(3,2),当双曲线y= (k>0)与矩形有四个交点时,k的取值范围是( )A. 0<k<2B. 1<k<4C. k>1D. 0<k<19.如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿A-D-C的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿B-C-D-A的路径向点A运动,当点Q到达终点时,点P 停止运动,设△PQC的面积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是( )A. B.C. D.10.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边△ACD和等边△ABE,F为AB的中点,连结DF,EF,∠ACB=90°,∠ABC=30°,则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④ 其中正确的是( )A. ①②B. ①②③C. ③④D. ①②③④二、填空题(本题共有6小题,每小题4分,共24分)(共6题;共24分)11.把多项式a3-4a分解因式的结果是________。
2020年四川省成都市青羊区中考数学一诊试卷(含解析)
2020年四川省成都市青羊区中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(﹣2)×=( )A.﹣2B.1C.﹣1D.2.(3分)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为( )A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19 3.(3分)下列几何体的主视图是三角形的是( )A.B.C.D.4.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A.B.C.D.5.(3分)下列性质中,菱形具有而矩形不一定具有的是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直6.(3分)如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是( )A.B.C.2D.7.(3分)如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为( )A.3B.6C.3.5D.1.58.(3分)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3 9.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=31510.(3分)如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC∽△ADE的是( )A.=B.=C.∠B=∠D D.∠C=∠AED 二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)在△ABC中,若∠C=90°,cos∠A=,则∠A等于 .12.(4分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为 .13.(4分)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为 .14.(4分)二次函数y=ax2+bx+c的图象如图,则点(,)在第 象限.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=2116.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.17.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.18.(8分)如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)19.(10分)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B(﹣1,5),C(,d)两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.20.(10分)如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.一、填空题(本大题5个小题,每小题4分,共20分)B卷(共50分)21.(4分)点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为 .22.(4分)有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程﹣2=有正整数解的概率为 .23.(4分)如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC 的中点,连结OA.若S△OAC=,则k的值为 .24.(4分)在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P 是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为 .25.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB 的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则= .三、解答題(本大題共3个小題,共30分.解答题应写出必要的文字说明,证明过程或演算步骤)26.(8分)某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)253035销售量y(件)504030(1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利润,最大利润是多少?27.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;28.(12分)如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM 与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.2020年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(﹣2)×=( )A.﹣2B.1C.﹣1D.【解答】解:(﹣2)×=﹣1,故选:C.2.(3分)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为( )A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选:B.3.(3分)下列几何体的主视图是三角形的是( )A.B.C.D.【解答】解:A、圆柱的主视图是矩形,故此选项错误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选:B.4.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A.B.C.D.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.5.(3分)下列性质中,菱形具有而矩形不一定具有的是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.6.(3分)如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是( )A.B.C.2D.【解答】解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.7.(3分)如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为( )A.3B.6C.3.5D.1.5【解答】解:∵∠C=30°,∴根据圆周角定理得:∠AOB=2∠C=60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=3,故选:A.8.(3分)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.9.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=315【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.10.(3分)如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC∽△ADE的是( )A.=B.=C.∠B=∠D D.∠C=∠AED 【解答】解:∵∠DAB=∠CAE,∴∠DAE=∠BAC,A、若,且∠DAE=∠BAC,无法判定△ABC∽△ADE,故选项A符合题意;B、若,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项B不符合题意;C、若∠B=∠D,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项C不符合题意;D、若∠C=∠AED,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项D不符合题意;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)在△ABC中,若∠C=90°,cos∠A=,则∠A等于 60° .【解答】解:∵在△ABC中,∠C=90°,cos∠A=,∴∠A=60°,故答案为:60°.12.(4分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为 ﹣3 .【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.13.(4分)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为 2 .【解答】解:如图,作CE⊥AB于E.∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,在Rt△BCE中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=BC=1,BE=CE=,∵CE⊥BD,∴DE=EB,∴BD=2EB=2.故答案为2.14.(4分)二次函数y=ax2+bx+c的图象如图,则点(,)在第 三 象限.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴左边,∴a,b同号,即b>0,∵抛物线与y轴的交点在负半轴,∴c<0,∴<0,<0,∴点(,)在第三象限.故答案是:三.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=21【解答】解:(1)原式=2﹣4×+1﹣9=2﹣2﹣8=﹣8;(2)方程整理,得:x2+6x﹣16=0,∵(x﹣2)(x+8)=0,∴x﹣2=0或x+8=0,解得x=2或x=﹣8.16.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.【解答】证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠ADB=∠CDB,CD∥AB,∵AD=CD,∠ADB=∠CDB,且DP=DP,∴△ADP≌△CDP(SAS)∴AP=PC,∠DCP=∠DAP;(2)∵CD∥AB,∴∠DCP=∠F,且∠DCP=∠DAP,∴∠F=∠DAP,且∠APE=∠APF,∴△APE∽△FPA,∴,∴,∴AP=2,∴PC=2.17.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.18.(8分)如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)【解答】解:作CD⊥AB,垂足为点D.根据题意可得∠BAC=30°,∠ACB=105°,∴∠B=45°,∵AC=20×2=40(海里),∴DC=AC•sin30°=40×=20(海里),∴BC=DC÷sin45°=20÷=20(海里).答:此时航船与灯塔相距20海里.19.(10分)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B(﹣1,5),C(,d)两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.【解答】解:(1)将B(﹣1,5)代入y2=得,=5,解得c=﹣5,所以,反比例函数解析式为y=﹣,将点C(,d)代入y=﹣得d=﹣=﹣2,所以,点C的坐标为(,﹣2),将点B(﹣1,5),C(,﹣2)代入一次函数y1=kx+b得,,解得,所以,一次函数y1=﹣2x+3;(2)令y=0,则﹣2x+3=0,解得x=,所以,点A的坐标为(,0),所以,OA=,S△BOC=S△AOB+S△AOC,=××5+××2,=.20.(10分)如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.【解答】(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.一、填空题(本大题5个小题,每小题4分,共20分)B卷(共50分)21.(4分)点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为 3 .【解答】解:∵点(a,b)在一次函数y=x﹣2上,∴b=a﹣2,即a﹣b=2,∴原式=(a﹣b)2﹣1=22﹣1=4﹣1=3.故答案为:3.22.(4分)有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程﹣2=有正整数解的概率为 .【解答】解:﹣2=,解得:x=,∵分式方程的解为正整数,∴a+1>0,又∵x≠1,∴a≠5,∴a=0或a=1或a=2,∴使关于x的分式方程有正整数解的概率为.故答案为:.23.(4分)如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC的中点,连结OA.若S△OAC=,则k的值为 .【解答】解:设A点坐标为(a,),C点坐标为(b,0),∵B恰为线段AC的中点,∴B点坐标为(,),∵B点在反比例函数图象上,∴•=k,∴b=3a,∵S△OAC=,∴b•=,∴•3a•=,∴k=.故答案为.24.(4分)在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P 是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为 2+2 .【解答】解:设P(m,).作AM⊥BC于M,QN⊥BC于N.∵∠AMP=∠APQ=∠QNP=90°,∴∠APM+∠NPQ=90°,∠NPQ+∠PQN=90°,∴∠APM=∠PQN,∴△AMP∽△PNQ,∴===,∴==,∴PN=3,NQ=(m﹣1),∴Q(m+3,2﹣m),∴点Q的运动轨迹是y=﹣x+5,作点A关于直线y=﹣x+5的对称点A′,连接BA′交直线于Q′,连接AQ′,此时△ABQ′的周长最小.∵A′(7,2),B(0,),A(1,0),∴A′B==2,AB==2,∴△ABQ的周长的最小值=AQ′+BQ′+AB=A′Q′+BQ′+AB=A′B+AB=2+2,故答案为2+2.25.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB 的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF 并延长交DB的延长线于点H,则= .【解答】解:过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,∴四边形ENBM是矩形,∵E是BD的中点,∴EM==2,EN=BM==3,∴MF=BF+BM=1+3=4,∴==2,∵EG⊥EF,∴∠GEF=90°,∴∠EGB=∠BFE,∴tan∠EGB=tan∠BFE,∴,∴GN=6,∴GB=GN+BN=6+2=8∵∠GEF=∠GBF=90°∴G,E,B,F四点共圆,∴∠BGF=∠BEF,∵∠EHF=∠GHB,∴△FEH∽△BGH,∴,∴.故答案为:.三、解答題(本大題共3个小題,共30分.解答题应写出必要的文字说明,证明过程或演算步骤)26.(8分)某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)253035销售量y(件)504030(1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利润,最大利润是多少?【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),,解得,即y与x之间的函数表达式是y=﹣2x+100;(2)由题意可得,W=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000,即W与x之间的函数表达式是W=﹣2x2+140x﹣2000;(3)∵W=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,20≤x≤40,∴当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,当x=35时,W取得最大值,此时W=450,答:当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,售价为35万元时获得最大利润,最大利润是450万元.27.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;【解答】(1)证明:∵△ABC是等边三角形,∠A=∠B=∠C=60°,∴∠BDF+∠BFD=180°﹣∠B=120°,由折叠知,∠DFE=∠A=60°,∴∠CFE+∠BFD=120°,∴∠BDF=∠CFE,∵∠B=∠C=60°,∴△BDF∽△CFE,∴,∴BF•CF=BD•CE;(2)解:如图2,设BD=3x(x>0),则AD=AB﹣BD=4﹣3x,由折叠知,DF=AD=4﹣3x,过点D作DH⊥BC于H,∴∠DHB=∠DHF=90°,∵∠B=60°,∴BH=x,DH=x,由(1)知,△BDF∽△CFE,∴=,∵DF:EF=3:2,∴=,∴CF=2x,∴BF=BC﹣CF=4﹣2x,∴HF=BF﹣BH=4﹣2x﹣x=4﹣x,在Rt△DHF中,DH2+HF2=DF2,∴(x)2+(4﹣x)2=(4﹣3x)2,∴x=0(舍)或x=,∴DH=,DF=4﹣3×=,∴sin∠DFB===;(3)如图3,在Rt△ABC中,AC=2,∠ABC=30°,∴BC=2AC=4,AB=AC=6,∵点D是AB的中点,∴BD=AB=3,过点C作BC的垂线交BP的延长线于Q,∴∠BCQ=90°,在Rt△BCQ中,∠CBE=30°,∴CQ==4,∴BQ=2CQ=8,∴∠BCQ=90°,∵∠CBE=30°,∴∠Q=90°﹣∠CBE=60°,∴∠DBP=∠ABC+∠CBE=60°=∠Q,∴∠CPQ+∠PCQ=120°,∵∠DPC=60°,∴∠BPD+∠CPQ=120°,∴∠BPD=∠PCQ,∴△BDP∽△QPC,∴=,∴,∴BP=2或BP=6.28.(12分)如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM 与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.【解答】解:(1)一次函数y=x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2…①;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),由点H、P的坐标得,直线PH的表达式为:y=x+…②,联立①②并解得:x=2(舍去)或﹣,故点E(﹣,﹣);②当PE在AP上方时,同理可得:点E(1,3);综上,点E的坐标为:(﹣,﹣)或E(1,3).。
2020届初中毕业班教学质量监测数学试题(含解析)
2020届初中毕业班教学质量监测数 学第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的.1.下列各数中,属于无理数的是(.下列各数中,属于无理数的是( ) A .-1B .17C .0.303003D .52.如图,,AB CD EF P 分别交,AB CD 于点,E F ,且MN ME =,若80FMN ∠=︒,则1∠的度数为( )A .40︒B .50︒C .60︒D .80︒3.在平面直角坐标系中,若一个正比例函数的图象经过()(),34,A a b 两点,则,a b 一定满足的关系式为( ) A .1a b -=B .7a b +=C .12ab =D .34a b=4.下列计算正确的是(.下列计算正确的是( ) A .358a a +=B .222222422a a a ÷=C .()()222a a a --=⋅ D .()()2222a b a b a b ---=-5.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是( )A .主视图.主视图B .左视图.左视图C .俯视图.俯视图D .主视图和俯视图.主视图和俯视图6.据统计,据统计,某住宅楼某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是(,那么这组数据的中位数和众数分别是( ) A .25和30 B .25和29 C .28和30 D .28和29 7.下列命题中是真命题的是(.下列命题中是真命题的是( ) A .9的算术平方根是3B .点()1,5-与点()1,5--关于x 轴对称轴对称C .正八边形的每个内角的度数为135︒D .当1x =时,分式11x -的值为08.如图所示的是两个三角形是位似图形,它们的位似中心是(.如图所示的是两个三角形是位似图形,它们的位似中心是()A .点AB .点BC .点CD .点D9.如图,在O e 中,弦,AB CD 相交于点P ,若30,70A APD ∠=︒∠=︒,则B ∠的度数为(的度数为( ) A .30︒ B .35︒ C .40︒ D .50︒10.若一元二次方程2310x x -+=的两个根分别为,a b ,则232a a ab -+-的值为(的值为( ) A .-4B .-2C .0D .111.如图,点D 是ABC △的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD △的面积为15,那么ABC △的面积为(的面积为()A .20B .22.5C .25D .3012.如图,在矩形ABCD 中,M 是AD 边的中点,BM 与AC 垂直,交AC 于点N ,连接DN ,则下列结论错误的是(结论错误的是( )A .2CN AN =B .DN DC =C .3tan 3CAD ∠=D .AMN CAB △∽△第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分) 13.有理数-7的绝对值是__________.14.一个整数966…0用科学记数法表示为779.66610⨯,则原数中“,则原数中“00”的个数为__________.15.不等式组2(35)642x x x x ->⎧⎪⎨--⎪⎩…的解集是___________. 16.甲,乙两地共有,,,A B C D 四路公交车往返,现在小明和小伟先后从甲地前往乙地四路公交车往返,现在小明和小伟先后从甲地前往乙地(假设他们两人坐上(假设他们两人坐上,,,A B C D 四路公交车的可能性是相同的),则他们乘坐同一路公交车的概率是__________.17.如图,在ABC △中90C ∠=︒,2AC BC == ,将ABC △以点A 为旋转中心,顺时针旋转30︒,得到ADE △,点B 经过的路径为»BD 点C 经过的路径为»CE,则图中阴影部分的面积为__________.18.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于,A B 两点,与y 轴交于点C ,且OA OC =,对称轴为直线1x =,则下列结论:①2404b ac a ->②11024a b c ++=③关于x 的方程220ax bx c +++=无实根;④10ac b -=+;⑤cOA OB a⋅=-.其中正确结论有__________个.个.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤) 19.(1)计算:()10151|32|2tan 604x -︒︒⎛⎫-+-+-+⎪⎝⎭(2)先化简,再求值:22311x x x ++--其中2x =-.20.如图,在ABC △中,D 是AB 边上的一点.请用尺规作图法,在ABC △内,作出ADE △,使ADE ABC △∽△,点D 与点B 对应,DE 交AC 于点E .(保留作图痕迹,不写作法)(保留作图痕迹,不写作法)21.双曲线ky x =(k 为常数,且0k ≠)与直线2y x b =-+交于()1,2,1,2A m m B n ⎛⎫-- ⎪⎝⎭两点.两点. (1)求k 与n 的值.的值. (2)如图,直线AB 交x 轴于点C ,交y 轴于点D ,若E 为CD 的中点,求BOE △的面积.的面积. 22.某校在以“放飞青春梦想,展示你我风采”为主题的校园文化艺术节期间,举办了A .歌唱,B .舞蹈,C .绘画,D .演讲共四个类别的比赛,要求每位学生必须参加且仅能参加一个类别.小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次调查的学生总人数是多少?扇形统计图中“D ”部分的圆心角度数是多少? (2)请将条形统计图补充完整.)请将条形统计图补充完整.(3)若全校共有1500名学生,请估计该校报名参加绘画和演讲两个类别的比赛的学生共有多少人.名学生,请估计该校报名参加绘画和演讲两个类别的比赛的学生共有多少人.23.某酒店计划购买一批换气扇,某酒店计划购买一批换气扇,已知购买已知购买2台A 型换气扇和2台B 型换气扇共需220元;购买3台A 型换气扇和1台B 型换气扇共需200元.元. (1)求,A B 两种型号的换气扇的单价.两种型号的换气扇的单价.(2)若该酒店准备同时购进这两种型号的换气扇共60台,并且A 型换气扇的数量不多于B 型换气扇数量的2倍,请设计出最省钱的购买方案,并说明理由.倍,请设计出最省钱的购买方案,并说明理由.24.如图,AB 是O e 的直径,点E 在AB 的延长线上,点D 为O e 上一点,且EDB EAD ∠=∠.(1)求证:ED 是O e 的切线、的切线、(2)过点A 作O e 的切线AC ,交ED 的延长线于点C ,若15,5AE BE ==,求EC 的长.的长.25.如图,抛物线()220y ax ax c a =++≠交x 轴于点,,A B 交y 轴于点C ,直线334y x =--经过点,A C .(1)求抛物线的解析式.)求抛物线的解析式.(2)点P 是抛物线上一动点,设点P 的横坐标为m .①若点P 在直线AC 的下方,当APC △的面积最大时,求m 的值; ②若APC △是以AC 为底的等腰三角形,请直接写出m 的值.的值.26.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒是射线AD 上一点,连接PB ,沿PB 将APB △折叠,得A PB '△.(1)如图,当10DPA '∠=︒时,A PB '∠ =__________︒.(2)如图,当PA BC '⊥时,求线段PA 的长度.的长度.(3)当点P 为AD 中点时,点F 是边AB 上不与点,A B 重合的一个动点,将APF △沿PF 折叠.得到A PF '△,连接BA ',求BA F '△周长的最小值.周长的最小值.2020届初中毕业班教学质量监测数学参考答案1.D2.A3.C4.C5.B6.D7.C8.D9.C10.B11.A12.C 提示:∵AD BC P , ∴AMN CBN △∽△, ∴AM ANBC CN=. ∵M 是AD 边的中点,边的中点, ∴11,22AM MD AD BC === ∴12AN NC =∴2CN AN =,故A 正确;如图,过点D 作DH BM P 交AC 于点G ,连接NH . ∵,DH BM BM AC ⊥P , ∴DH AC ⊥.∵,DH BM AD BC P P , ∴四边形BMDH 是平行四边形,是平行四边形, ∴12BH MD BC ==, ∴BH CH =. ∵90BNC ∠=︒,∴NH HC =,且DH AC ⊥,∴DH 是NC 的垂直平分线,的垂直平分线, ∴DN CD =,故B 正确; ∵四边形ABCD 是矩形,是矩形,∴,90,AD BC ABC AD BC ∠=︒=P , ∴,90DAC ACB ABC ANM ∠=∠∠=∠=︒, ∴AMN CAB△∽△,故D 正确;∵AD BC P ,∴DAC BCA ∠=∠,且90,90BAC ACB DAC AMB ∠+∠=︒∠+∠=︒, ∴BAC AMB ∠=∠,且BAM ABC ∠=∠, ∴ABM BCA △∽△, ∴AM ABAB BC=∴2212AB BC =,∴22AB BC =∵tan tan ,AB DAC ACB BC∠=∠=∴2tan 2DAC ∠=故C 错误.错误. 故选C . 13.714.415.143x …16.1417.π3 提示:由题意可得2222AB AD AC BC ==+=.则阴影部分的面积为222230π(22)30π222π236036023ABCADEABDACESSS S∆∆⨯⨯⨯⨯+--=+--=扇形扇形18.2提示:抛物线与x 轴有两个不同交点,因此240b ac ->.开口向下0a <.因此240,4b ac aa-<故①不正确;抛物线与y 轴交于正半轴.因此0c >.对称轴为直线1x =.所以12b a-=,也就是12a b =-∴1111110,242244a b c b b c c ++=-++=>②不正确;当2y =-时,根据图象可得22ax bx c +=-+有两个不同实数根,即220ax bx c ++=+有两个不等实根,因此③不正确;∵(),,0OA OC A c =∴-,代人得20ac bc c -+=,即10ac b -+=,因此④正确; 设()()12,0,,0A x B x ,则12,x x 是方程20ax bx c ++=的两个根,12cx x a=,又∵12,OA x OB x =-= ,所以c OA OB a⋅=-,故⑤正确.,故⑤正确.综上所述,正确的有④⑤,故答案为2.19.(1)解:原式1(4)2323=+-+-+﹒3 1.=-(2)解:原式222(1)3223(1)(1)11x x x x x x x x +++--=-=-+--11(1)(1)1x x x x -==-++ 当2x =-时,原式1121==--+20.解:如图所示.ADE ABC △∽△.21.解:(1)∵1(,2)2A m m --()1,B n 在直线2y x b =-+上,上,∴2,2,m b m b n +=-⎧⎨-+=⎩得2,|4,b n =-⎧⎨=-⎩∴()1,4B -,代人反比例函数解析式k y x =中,得41k-=,∴4k =-. (2)由(1)知2b =-,∴直线AB 的解析式为22y x =--. 令0x =,解得2y =-;令0y =,解得1x =-. ∴()()1,0,0,2C D --. ∵E 为CD 的中点,∴1(,1)2E --∴1113.()212222BOEODEODBB ES SSOD x x ∆∆∆⎛⎫=+=⋅-=⨯⨯+=⎪⎝⎭22.解:(1)本次调查的学生总人数是12060%200÷= (人), 扇形统计图中"D"部分的圆心角度数是836014.4200︒⨯=︒(2)补全条形统计图如下:)补全条形统计图如下:(3)估计该校报名参加绘画和演讲比赛的学生共有2081500210200+⨯=(人)(人)23.解:(1)设A 型换气扇的单价为x 元,B 型换气扇的单价为y 元.元.根据题意,得22220,3200,xy x y +=⎧⎨+=⎩4565.x y =⎧⎨=⎩ ∴A 型换气扇的单价为45元.B 型换气扇的单价为65元.元.(2)设购买B 型换气扇a 台,则购买A 型换气扇()60a -台,共需w 元,元, 根据题意,得()654560202700w a a a =+-=+∵200>,∴当a 取最小值时,w 有最小值.有最小值. ∵260a a ≥-,解得20a ≥,∴当20a =时,w 取得最小值,此时A 型换气扇的数量为602040-=,即当购买A 型换气扇40台,台, B 型换气扇20台时最省钱.台时最省钱.24.(1)证明:如图,连接OD . ∵AB 是O e 的直径,的直径, ∴90ADB ∠=︒,∴90EAD DBA ∠+∠=︒. ∵OB OD =,∴ODB DBA ∠=∠. ∵EDB EAD ∠=∠,∴90ODE ODB EDB DBA EAD ∠=∠+∠=∠+∠=︒,∴ED OD⊥, ∴ED 是O e 的切线.的切线. (2)解:∵15,5AE BE ==, ∴15510AB AE BE =-=-=, ∴15,2OD OB AB === ∴5510OE OB EB =+=+=. ∵ED 是O e 的切线,的切线, ∴90ODE ∠=︒. ∵5,10OD OE ==, ∴5 3.DE = ∵CA 是O e 的切线,的切线, ∴90CAE ∠=︒, ∴ODE CAE ∠=∠. ∵E E ∠=∠,∴ODE CAE △∽△,∴OD DE CA AE =∵55315AC =. ∴53AC =,∴22(53)15103CE =+=. 25.解:(1)∵直线334y x =--交x 轴于点A ,交y 轴于点C .∴()()4,00,3A --. ∵抛物线22y ax ax c =++经过点,A C ,∴01683,a a c c =-+⎧⎨-=⎩∴3,83a c ⎧=⎪⎨⎪=-⎩∴抛物线的解析式为233384y x x =+- (2)①∵点P 的横坐标为m ,∴点P 的坐标为233(,3)84m m m +-. 如图,过点P 作x 轴的垂线交直线AC 于点Q ,则点Q 的坐标为3,34m m ⎛⎫-- ⎪⎝⎭∴2233333(3)(3),48482PQ m m m m m =---+-=-- ∴APC △的面积是2211333()43,22824PQ AO m m m m ⨯⨯=⨯--⨯=-- ∴当APC △的面积最大时,m 的值是-2.②m 的值为79499+或79499-.提示:由题可知,22,PA PC PA PC =∴= ,∴()22222233334333,8484m m m m m m ⎛⎫⎛⎫+++-=++-+ ⎪ ⎪⎝⎭⎝⎭ 解得79499m ±=. 26.解:(1)85.(2)如图,作BH AD ⊥于点H .在Rt ABH △中,∵90,10,60AHB AB A ∠=︒=∠=︒,∴605AH AB cos =⋅︒=,sin 6053BH AB ︒=⋅=∵四边形ABCD 是平行四边形,是平行四边形,∴AD BC P .∵PA BC '⊥,∴PA AD '⊥,∴90APA '∠=︒,∴45HPB BPA '∠=∠=︒, 53,PH BH ∴==∴55 3.PA AH PH =+=+(3)如图,作BH AD ⊥于点H ,连接BP .∵8,5PA AH ==,∴853PH =-=.∵53BH =,22223(53)221PB PH BH ∴=+=+=由翻折可知8,PA PA FA FA ''===,∴BFA '△的周长10FA BF BA AF BF BA AB BA BA '''''==++=+=+++, ∴当BA '的长最小时,BFA '△的周长最小.∵BA PB PA ''≥-,∴2218BA '≥-,∴BA '的最小值为2218-,∴BFA '△的周长的最小值为102218221 2.+-=+。
2020年数学中考一模试卷附答案
2020年数学中考一模试卷附答案一、选择题1.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米2.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是23.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒4.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定5.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)6.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.53B.255C.52D.238.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5B.3C.4D.4.59.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.810.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .11.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(3+5 )米12.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)14.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.17.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.18.当m=____________时,解分式方程533x mx x-=--会出现增根.19.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?25.已知抛物线y=ax2﹣13x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)当BQ=13AP时,求t的值;(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD=22=1003米,200100∴AB=AD+BD=100+1003=100(1+3)米,故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.2.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.3.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.4.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
2020中考数学质量检测卷(一)
.
﹣22+ +|﹣3|﹣(3.14﹣π)0.
◎
第2页 共4页
○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
18.(1)解方程组: 19.请你先化简分式
23.某地的特色农产品在市场上颇具竞争力,其中香菇远销全国各地,上市时,外商王经理按市场价格 10 元/千克在该市收购了 1800 千克香菇存放入冷库中,据预测,香菇的市场价格每天每千克将上涨 0.5 元,但 冷库存放这批香菇时每天需要支出各种费用合计 240 元,而且香菇在冷库中最多保存 90 天,同时,平均每 天有 6 千克的香菇损耗不能出售. (1)若存放 x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为 y 元,试写出 y 与 x 之间的函数 关系式. (2)王经理想获得利润 22500 元,需将这批香菇存放多少天后出售? (3)王经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
21.2013 年 4 月 20 日,雅安发生 7.0 级地震,某地需 550 顶帐篷解决受灾群众临时住宿问题,现由甲、乙 两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的 1.5 倍,并且加工生产 240 顶帐篷甲工厂比乙工厂少用 4 天. ①求甲、乙两个工厂每天分别可加工生产多少顶帐篷? ②若甲工厂每天的加工生产成本为 3 万元,乙工厂每天的加工生产成本为 2.4 万元,要使这批救灾帐篷的 加工生产总成本不高于 60 万元,至少应安排甲工厂加工生产多少天?
A.65 元
B.80 元
C.100 元
2020年中考总复习阶段性复习效果质量检测数学试题及答案(苏科版使用地区专用)
苏科版使用地区中考复习使用2020年中考总复习阶段性复习效果质量检测数学试题时间120分钟满分130分一、选择题(每小题3分,共30分)1.一元二次方程x2+px﹣2=0的一个根为2,则p的值为( )A.1 B.2 C.﹣1 D.﹣22.已知=,则的值为( )A.B.C.D.3.等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为( )A.8 B.10 C.8或10 D.不能确定4.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF的面积为2,则四边形EBCF的面积为( )A.4B.6 C.16 D.184题图 5题图 6题图5.如图,添加下列一个条件,不能使△ADE∽△ACB的是( )A.DE∥BC B.∠AED=∠B C.=D.∠ADE=∠C6.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( )A.60°B.50°C.40°D.30°7.如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,且∠BAC=50°,给出下列四个结论:①BD=CD,②AE=CE,③∠ABE=40°,④劣弧DE的度数为25°.其中正确结论的序号是( )A.①②④B.①③C.①④D.①③④7题图 8题图 9题图 10题图8.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,点P是AB上一动点.若△PAD与△PBC是相似三角形,则满足条件的点P的个数有( )A.1个B.2个C.3个D.4个9.如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是( )A.πcm2B.2πcm2C.4πcm2D.8πcm210.如图,△ABC是等腰直角三角形,∠ACB=90°,点E、F分别是边BC、AC的中点,P是AB 上一点,以PF为一直角边作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,则QE的值为( )A.3 B.3C.4 D.4二、填空题(每空2分,共16分)11.方程x2﹣x=0的解是__________.12.在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,则A、B两地的实际距离为__________km.13.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于__________厘米.14.在Rt△ABC中,∠C=90°,AC=2,BC=4,若以点C为圆心,AC为半径作圆,则AB边的中点E与⊙C的位置关系为__________.15.如图,⊙C过原点并与坐标轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则点C的坐标为(__________,__________).15题图 16题图 17题图 18题图16.如图,大圆的半径等于小圆的直径,且大圆的半径为4,则图中阴影部分的面积是__________.17.如图,在平面直角坐标系中,⊙P的半径为5,圆心P坐标是(5,a)(a>5),函数y=x 的图象被⊙P截得的弦AB的长为4,则a的值是__________.18.如图,在Rt△ABC中,AC=4,BC=3,若点M、N分别是线段AB、AC上的两个动点,则CM+MN 的最小值为__________.三、解答题(共84分,写出必要的解题步骤和过程)19.(16分)解方程(1)(x﹣2)2=9;(2)3x2﹣1=2x(配方法);(3)x2+3x+1=0;(4)(x+1)2﹣6(x+1)+5=0.20.如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.(1)求证:△ABD∽△ACB;(2)求线段CD的长.21.已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣2,2)、B(﹣1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC关于y轴的轴对称图形△A1B1C1;(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;(3)求△A1B1C1与△A2B2C2的面积比.22.如图,一条公路的转弯处是一段圆弧AB.(1)作出AB所在圆的圆心O;(用直尺和圆规作图,保留作图痕迹,不写作法)(2)若弧AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆径.23.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.24.2013年,无锡市蠡湖新城某楼盘以每平方米12000元的均价对外销售.由于楼盘滞销,房地产商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年该楼盘的均价为每平方米9720元.(1)求平均每年下调的百分率;(2)假设2016年该楼盘的均价仍然下调相同的百分率,李强准备购买一套100平方米的住房,他持有现金30万元,可在银行贷款50万元,李强的愿望能否实现?(房价按照均价计算,不考虑其它因素.)25.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点.(1)求证:AC2=AB•AD;(2)若AD=4,AB=6,求的值.26.如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.27.将一块含有45°的三角板ABC的顶点A放在⊙O上,且AC与⊙O相切于点A(如图1),将△ABC从点A开始,绕着点A顺时针旋转,设旋转角为α(0°<α<135°),旋转后,AC、AB分别与⊙O交于点E,F,连接EF(如图2).已知AC=8,⊙O的半径为4.(1)在旋转过程中,有以下几个量:①弦EF的长;②EF的长;③∠AFE的度数;④点O到EF的距离.其中不变的量是__________(填序号);(2)当α=__________°时,BC与⊙O相切(直接写出答案);(3)当BC与⊙O相切时,求△AEF的面积.28.如图,在Rt△ABC 中,AC=4cm,BC=3cm,点P由B出发沿BA的方向向点A匀速运动,速度为1cm/s,同时点Q由 A出发沿AC的方向向点C匀速运动,速度为2cm/s,连接PQ,设运动的时间为t(s),其中0<t<2,解答下列问题:(1)当t为何值时,以P、Q、A为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,线段PQ将△ABC的面积分成1:2两部分?若存在,求出此时的t;若不存在,请说明理由;(3)点P、Q在运动的过程中,△CPQ能否成为等腰三角形?若能,请求出此时t的值;若不存在,请说明理由.参考答案一、选择题二、1.故选:C.2.故选A.3.故选:B.4.故选C.5.故选:A.6.故选B.7.故选B.8.故选:B.9.故选C.10.故选D.二、填空题11.0或1.12.1.5km.13.(10﹣10)厘米.14点E在⊙C外.15.(﹣1,).16.4π.17.5+.18..三、解答题19.解:(1)开方得:x﹣2=3或x﹣2=﹣3,解得:x1=5,x2=﹣1;(2)移项得:3x2﹣2x=1,x2﹣x=,配方得:x2﹣x+=+,(x﹣)2=,x﹣=,x﹣=﹣,解得:x1=1,x2=﹣;(3)∵a=1,b=3,c=1,∴△=32﹣4×1×1=5>0,∴x=,∴x1=,x2=;(4)分解因式得:(x+1﹣1)(x+1﹣5)=0,x+1﹣1=0,x+1﹣5=0,解得:x1=0,x2=4;20.解:(1)∵∠ABD=∠C,∠A=∠A(公共角),∴△ABD∽△ACB;(2)由(1)知:△ABD∽△ACB,∴=,即=,∴CD=5.21.解(1)如图:A1(2,2),B1(1,0),C1(0,1);(2)如图:A1(4,4),B1(2,0),C1(0,2)或A1(﹣4,﹣4),B1(﹣2,0),C1(0,﹣2);(3)∵△A2B2C2与△A1B1C1位似,且位似比为2:1,∴△A1B1C1与△A2B2C2的面积比=()2=.22.解(1)如图1,在圆弧AB上任取一点D,分别作AB、AD的中垂线于交O,则点O即为所求.(2)如图2,设圆弧AB所在圆的半径为r,则AO=r,OH=r﹣20,∵OC⊥AB,∴AH=AB=40,∴在Rt△AHO中,由勾股定理得:402+(r﹣20)2=r2,∴r=50m.23.解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.24.解(1)设平均每年下调的百分率x,由题意得:12000(1﹣x)2=9720,(1﹣x)2=0.81.∴1﹣x=0.9或1﹣x=﹣0.9,∴x1=0.1,x2=1.9(舍去),答:平均每年下调的百分率10%.(2)由(1)得:9720×(1﹣10%)=8748(元),8748×100=874800(元),500000+300000=800000(元),∵874800>800000,∴李强的愿望不能实现.25.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)解:∵∠ACB=90°,E为AB中点,∴AE=CE,∴∠CAE=∠ECA,∵AC平分∠DAB,∴∠DAC=∠EAC,∴∠DAC=∠ACE,∴CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴=.26.解:(1)∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,又∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵弧BD=弧AD,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE.(2)直线ED与⊙O相切.连接OD.∵OC=OD,∴∠ODC=∠OCD,又∵∠DCE=∠ACD,∴∠DCE=∠ODC,∵OD∥BE,∴∠ODE=∠DEC,又∵DE⊥BC,∴∠DEC=90°,∴∠ODE=90°∴OD⊥DE,∴ED与⊙O相切.(3)延长DO交AB于点H.∵OD∥BE,O是AC的中点,∴H是AB的中点,∴HO是△ABC的中位线,∴HO=BC=3,又∵AC为直径,∴∠ADC=90°,又∵O是AC的中点∴OD=AC=×=5,∴HD=3+5=8,∵∠ABC=∠DEC=∠ODE=90°,∴四边形BEDH是矩形,∴BE=HD=8,∴CE=8﹣6=2.27.解:(1)①②④,理由是:如图1,连接OE、OF、过O作OD⊥EF于D,∵∠A=45°,∴∠EOF=2∠A=90°,∵OE=OF=4,∴由勾股定理得:EF==4,∵OD⊥EF,OE=OF,∴ED=DE=EF,∵∠EOF=90°,∴OD=EF=2,所以①②④是不不变量,∠AFE的值随着运动而不断变化的,不能确定,故答案为:①②④;(2)当α=90°时,BC与⊙O相切,理由是:连接OA,∵已知AC和⊙O相切,如图2,∴∠OAC=90°,△ACB绕A点运动到BC和⊙O相切时,如图3,∠ACB=90°,即图2中的AC和图3中的BC互相平行,所以α=∠ACB=90°,故答案为:90;(3)如图3,当BC与⊙O相切时,依题意可知,△ACB旋转90°后AC为⊙O直径,且点C与点E 重合,∵AC为⊙O直径,∴∠AFE=90°,又∵∠BAC=45°,∴∠FCA=45°.∴∠BAC=∠FCA,∴AF=EF,∵AC=8,∴AF=EF=4,∴S △AEF=×(4)2=16.28.解:(1)①如图1,△PQA∽△BCA时,=,解得t=,②如图2,△PQA∽△CBA时,=,解得t=,又∵0<t<2,∴t=或;(2)如图3,过点P作PH⊥CA,垂足为点H,则△PHA∽△BCA,∴=,∴PH=(5﹣t),∴S△APQ=×2t×(5﹣t)=﹣t2+3t,线段PQ将△ABC的面积分成1:2两部分,∴S△APQ= S△ABC=×6=2或S△APQ= S△ABC=×6=4,即:﹣t2+3t=2或﹣t2+3t=4,﹣t2+3t=2时,整理得:3t2﹣15t+10=0,t1=(舍去)(t1=>2),t2=,∴t=,﹣t2+3t=4时,整理得:3t2﹣15t+20=0,∵△<0,∴t无解.∴t=;(3)①如图4,当PC=PQ时,过点P作PH⊥CA,垂足为点H,由三线合一可知:HQ=2﹣t,又∵△PHA∽△BCA时,=,∴t=;②如图5,当CP=CQ时,过点P作PM⊥CB,垂足为点M,由△BMP∽△BCA可知:BM=t,MP=t,∴CM=3﹣t,在Rt△PMC 中,由勾股定理得:(t)2+(3﹣t)2=(4﹣2t)2,整理得:15t2﹣62t+35=0,解得t=,即t1=,t2=,∵△<0,∴t1=>2.∴t1=(舍去),∴t=,③如图6,当QP=QC时,过点Q作PN⊥AB,垂足为点N,由△AQN∽△ABC可知:NQ=t,NA=t,∴PN=5﹣t﹣t=5﹣t,在Rt△QNP 中,由勾股定理得:(t)2+(5﹣t)2=(4﹣2t)2,整理得:21t2﹣50t+45=0,∵△=﹣1280<0,∴方程无解,∴当t=或t=时,△CPQ是等腰三角形.。
〖汇总3套试卷〗重庆市2020年中考质量监控数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2【答案】A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45︒B.50︒C.60︒D.75︒【答案】C【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.3.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.【答案】D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D.点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.4.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【答案】B【解析】由已知可证△ABO∽CDO,故CD OCAB OA=,即1.813AB=.【详解】由已知可得,△ABO∽CDO,所以,CD OC AB OA=,所以,1.813 AB=,所以,AB=5.4 故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.5.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,3【答案】A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥【答案】A 【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.7.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
湖北省襄樊市2020中考数学教学质量检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a 一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-83.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C∆相似的是()A.B.C.D.4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.185C.165D.1255.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是()A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=6.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠17.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%8.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则BC的长是( )A.πB.13πC.12πD.16π9.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.10.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°二、填空题(本题包括8个小题)11.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.12.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.13.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.14.如图,在平行四边形ABCD 中,AB <AD ,∠D=30°,CD=4,以AB 为直径的⊙O 交BC 于点E ,则阴影部分的面积为_____.15.分解因式:x 2-9=_ ▲ .16.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .17.如图,用10 m 长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m 1.18.若2a ﹣b=5,a ﹣2b=4,则a ﹣b 的值为________. 三、解答题(本题包括8个小题)19.(6分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.20.(6分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B .求证:△AED ≌△EBC ;当AB=6时,求CD 的长.21.(6分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1.22.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)23.(8分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)24.(10分)如图,已知AB 是O 的直径,点C 、D 在O 上,60D ∠=且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长; ()2若OE 的延长线交O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .25.(10分)发现如图1,在有一个“凹角∠A 1A 2A 3”n 边形A 1A 2A 3A 4……A n 中(n 为大于3的整数),∠A 1A 2A 3=∠A 1+∠A 3+∠A 4+∠A 5+∠A 6+……+∠A n ﹣(n ﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD 中,证明:∠ABC =∠A+∠C+∠D .证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……A n中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠A n﹣(n﹣)×180°.26.(12分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.2.D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣1.故选D .点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 3.B 【解析】 【分析】根据相似三角形的判定方法一一判断即可. 【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 4.B 【解析】 【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点, ∴BE=3, 又∵AB=4, ∴222243AB BE +=+=5,∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245,∵FE=BE=EC ,∴∠BFC=90°,∴==185 .故选B . 【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 5.B 【解析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:10010060x x -=.故选B . 点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键. 6.C 【解析】 【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k >12且k≠1. 故选C 【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac ,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 7.D 【解析】设第一季度的原产值为a ,则第二季度的产值为(1%)a x + ,第三季度的产值为2(1%)a x + ,则则第三季度的产值比第一季度的产值增长了2(1%)(2%)%a x ax x a+-=+故选D. 8.B 【解析】 【分析】连接OB ,OC .首先证明△OBC 是等边三角形,再利用弧长公式计算即可. 【详解】解:连接OB ,OC .∵∠BOC =2∠BAC =60°, ∵OB =OC ,∴△OBC 是等边三角形, ∴OB =OC =BC =1, ∴BC 的长=6011803ππ⋅⋅=, 故选B . 【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型. 9.B 【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小. 考点:三视图. 10.B 【解析】试题分析:如图,翻折△ACD ,点A 落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°. 故选:B二、填空题(本题包括8个小题) 11.23【解析】试题解析:∵共6个数,小于5的有4个,∴P (小于5)=46=23.故答案为23.12.512【解析】 【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可. 【详解】抬头看信号灯时,是绿灯的概率为2553025512=++.故答案为:512. 【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.(2)P (必然事件)=1.(3)P (不可能事件)=2. 13.5000x =8000600+x 【解析】 【分析】设甲每小时搬运x 千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程求出其解就可以得出结论. 【详解】解:设甲每小时搬运x 千克,则乙每小时搬运(x+600)千克,由题意得:5000x =8000600+x . 故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.14.43π- 【解析】【分析】连接半径和弦AE ,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE 和BE 的长,所以图中弓形的面积为扇形OBE 的面积与△OBE 面积的差,因为OA=OB ,所以△OBE 的面积是△ABE 面积的一半,可得结论.【详解】如图,连接OE 、AE ,∵AB 是⊙O 的直径, ∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°, ∴AE=12AB=2,BE=2242-=23, ∵OA=OB=OE , ∴∠B=∠OEB=30°, ∴∠BOE=120°, ∴S 阴影=S 扇形OBE ﹣S △BOE=2120211·36022AE BE π⨯-⨯=4142233343ππ-⨯⨯=-, 故答案为433π-.【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE 的面积和△ABE 的面积是解本题的关键.15. (x +3)(x -3) 【解析】 【详解】x 2-9=(x+3)(x-3), 故答案为(x+3)(x-3). 16.-2<k <12。
2020年福建省福州市中考数学一检试卷(解析卷)
2020年福建省福州市中考数学一检试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共分)1.下列图形是中心对称图形而不是轴对称图形的是A. B. C. D.【答案】A【解析】解:A、是中心对称图形,不是轴对称图形;故A正确;B、是中心对称图形,也是轴对称图形;故B错误;C、是中心对称图形,也是轴对称图形;故C错误;D、不是中心对称图形,是轴对称图形;故D错误;故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列事件中是必然事件的是A. 从一个装有黄、白两色球的缸里摸出一个球,摸出的球是白球B. 小丹的自行车轮胎被钉子扎坏C. 小红期末考试数学成绩一定得满分D. 将豆油滴入水中,豆油会浮在水面上【答案】D【解析】解:A、是随机事件,选项错误;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是必然事件,选项正确.故选:D.必然事件就是一定发生的事件,依据定义即可判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.如图,AB是的弦,,交于点C,连接OA,OB,BC,若,则的度数是A.B.C.D.【答案】D【解析】解:,,是的弦,,,,故选:D.根据圆周角定理得出,进而利用垂径定理得出即可.此题考查圆周角定理,关键是根据圆周角定理得出.4.已知点在第二象限,则点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:点在第二象限,,,则可得,,点B的坐标为,点B在第四象限.故选:D.点在第二象限的条件是:横坐标是负数,纵坐标是正数,即可确定出m、n的正负,从而确定,的正负,即可得解.本题考查了各象限内点的坐标的符号特征以及解不等式,熟记各象限内点的坐标的符号是解题的关键.5.如图,过上一点C作的切线,交直径AB的延长线于点若,则的度数为A.B.C.D.【答案】B【解析】解:连接OC,切于C,,,,,,,,.故选:B.连接OC,根据切线的性质求出,求出,求出,根据三角形的外角性质求出即可.本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.6.如图,在中,D、E分别为AB、AC边上的点,且,,,,则AE的长度为A.B.C.D. 4【答案】D【解析】解:,,∽,,,,故选:D.通过证明∽,可得,即可求解.本题考查了相似三角形的判定和性质,证明∽是本题的关键.7.抛物线与x轴交于A,B两点,与y轴交于点C,且,求抛物线的解析式A.B.C.D.【答案】A【解析】解:在抛物线中,当时,,点,,,,,把,代入抛物线得:,,解得:,,抛物线的解析式为,故选:A.由抛物线与y轴的交点坐标可求OC得长,根据,进而求出OB、OA,得出点A、B坐标,再用待定系数法求出函数的关系式,本题考查了二次函数的图象和性质,待定系数法求二次函数的关系式,求得A、B的坐标是解题的关键,8.如图,在平面直角坐标系中,与x轴相切于点,与y轴分别交于点和点,则圆心M到坐标原点O的距离是A. 10B.C.D.【答案】D【解析】【分析】本题考查切线的性质、坐标与图形的性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.如图连接BM、OM,AM,作于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在中求出OM即可.【解答】解:如图连接BM、OM,AM,作于H.与x轴相切于点,,,,四边形OAMH是矩形,,,,,在中,.故选D.9.函数与的图象如图所示,有以下结论:10.;11.;12.;13.当时,.14.其中正确的个数为A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:函数与x轴无交点,;故错误;当时,,故错误;当时,,;正确;当时,二次函数值小于一次函数值,,.故正确.故选:B.由函数与x轴无交点,可得;当时,;当时,;当时,二次函数值小于一次函数值,可得,继而可求得答案.主要考查图象与二次函数系数之间的关系.关键是注意掌握数形结合思想的应用.15.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若的面积为10,则k的值是A. 10B. 5C.D.【答案】D【解析】【分析】设双曲线的解析式为:,E点的坐标是,根据E是OB的中点,得到B点的坐标,求出点E的坐标,根据三角形的面积公式求出k.本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于.【解答】解:设双曲线的解析式为:,E点的坐标是,是OB的中点,点的坐标是,则D点的坐标是,的面积为10,,解得,,故选:D.二、填空题(本大题共6小题,共分)16.若点和点关于点对称,那么点A在第______象限.【答案】二【解析】解:点和点关于点对称,,解得:,点,点A在第二象限,故答案为:二.根据点和点关于点对称,列方程求得x,y的值,结果可得.本题考查了坐标与图形变化旋转,正确掌握中心对称的性质是解题的关键.17.在的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是______ .【答案】【解析】解:如图,第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,故以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是:.故答案为:.首先根据题意可得第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,然后利用概率公式求解即可求得答案.此题考查了概率公式与直角三角形的定义.此题难度不大,注意概率所求情况数与总情况数之比.18.若抛物线的顶点坐标为,且它在x轴截得的线段长为6,则该抛物线的表达式为______.【答案】【解析】解:抛物线的顶点坐标为,抛物线的对称轴为直线,抛物线在x轴截得的线段长为6,抛物线与x轴的交点为,,设此抛物线的解析式为:,代入得,,解得,抛物线的表达式为,故答案为.根据题意求得抛物线与x轴的交点为,,设此抛物线的解析式为:,代入根据待定系数法求出a的值即可.此题主要考查了用顶点式求二次函数的解析式,求得抛物线与x轴的交点坐标是解题的关键.19.如图,在扇形AOB中,AC为弦,,,,则的长为______.20.21.22.23.【答案】【解析】解:连接OC,如图,,,,,的长故答案为连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出,则,然后根据弧长公式计算的长.本题考查了弧长的计算:圆周长公式:;弧长公式:弧长为l,圆心角度数为n,圆的半径为,在弧长的计算公式中,n是表示的圆心角的倍数,n和180都不要带单位.24.已知,则的值为______.【答案】10【解析】解:,,,.故答案为10.已知,得出,,然后代入代数式求得即可.本题考查了因式分解的应用,根据已知条件得出,是解题的关键.25.某农场拟建两间矩形饲养室,一面靠现有墙墙足够长,中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体不包括门总长为27m,则能建成的饲养室面积最大为______.【答案】75【解析】【分析】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型,难度不大.设垂直于墙的材料长为x米,则平行于墙的材料长为,表示出总面积即可求得面积的最值.【解答】解:设垂直于墙的材料长为x米,则平行于墙的材料长为,则总面积,故饲养室的最大面积为75平方米,故答案为75.三、计算题(本大题共1小题,共分)26.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果的周长为2,求的度数.27.28.29.30.【答案】解:如图所示,的周长为2,即,正方形ABCD的边长是1,即,,,得,,.延长AB至M,使连接CM,≌,,,,,即,.在与中,,,,≌,.【解析】简单的求正方形内一个角的大小,首先从的周长入手求出,然后将逆时针旋转,使得CD、CB重合,然后利用全等来解.熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.四、解答题(本大题共8小题,共分)31.解方程:.【答案】解:原方程化为:,,,.【解析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.32.关于x的一元二次方程有两个实数根,若方程的两个实数根都是正整数,求整数m的值.【答案】解:,,,,此方程的两个实数根都是正整数,由解得或,或.【解析】先求出方程的解,根据此方程的两个根都是正整数列出关于m的不等式,解不等式即可求解.本题考查的是一元二次方程根的判别式,一元二次方程的解法,掌握一元二次方程根的判别式的应用是解题的关键.33.如图,的三个顶点都在上,直径,,求AC的长.34.35.36.37.【答案】解:如图,连接OC,,,,,又,是等边三角形,.【解析】先连接OC,根据,判定是等边三角形,进而得到.本题主要考查了圆周角定理以及等边三角形的判定与性质的综合应用,解决问题的关键是作辅助线构造等边三角形.38.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”如13,35,56等在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.写出所有个位数字是5的“两位递增数”;请用列表或树状图法,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】解:根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率.【解析】根据“两位递增数”定义可得;画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.39.如图,在平面直角坐标系xOy中,直线与双曲线的一个交点为.40.求k的值;41.,是双曲线上的两点,直接写出当时,n的取值范围.【答案】解:直线与双曲线的一个交点为.,;,双曲线每个分支上y随x的增大而减小,当N在第一象限时,,当N在第三象限时,综上所述:或.【解析】将点P坐标代入两个解析式可求m,k的值;根据反比例函数图象性质可求解.本题考查了一次函数和反比例函数交点问题,函数图象的性质,熟练掌握函数图象上点的坐标满足函数解析式.42.在锐角中,边BC长为18,高AD长为1243.如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;44.设,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.【答案】解:四边形EFCH为矩形,,∽,,边BC长为18,高AD长为12,;,,,,当时,S有最大值为54.【解析】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.根据相似三角形的对应线段对应中线、对应角平分线、对应边上的高的比也等于相似比进行计算即可;根据,得出,,再根据,可得当时,S有最大值为54.45.如图1,AB为的直径,C为上一点,连接CB,过C作于点D,过点C作,使,其中CE交AB的延长线于点E.46.求证:CE是的切线.47.如图2,点F在上,且满足,连接AF井延长交EC的延长线于点G.48.试探究线段CF与CD之间满足的数量关系;49.若,,求线段FG的长.50.【答案】证明:如图1,连接OC,,,,,,,即,是的切线;解:线段CF与CD之间满足的数量关系是:,理由如下:如图2,过O作于点H,,,且,,为公共边,≌,,;,,,由得:,设,则,在中,,,解得:,即,,,,,,四边形ABCF为的内接四边形,,∽,,,.【解析】如图1,连接OC,根据等边对等角得:,由垂直定义得:,根据等量代换可得:,即,可得结论;如图2,过O作于点H,证明≌,则,得;先根据勾股定理求,则,设,则,根据勾股定理列方程得:,可得x的值,证明∽,列比例式可得FG的长.此题是圆的综合题,主要考查了勾股定理,全等和相似三角形的判定和性质,锐角三角函数,圆的切线的判定,第2问的最后一问有难度,证明∽是关键.51.综合与探究52.如图1,抛物线与x轴交于,两点,与y轴交于点C.53.求抛物线的表达式;54.点N是抛物线上异于点C的动点,若的面积与的面积相等,求出点N的坐标;55.如图2,当P为OB的中点时,过点P作轴,交抛物线于点连接BD,将沿x轴向左平移m个单位长度,将平移过程中与重叠部分的面积记为S,求S与m的函数关系式.56.【答案】解:如图1,把点、分别代入,得,解得,所以该抛物线的解析式为:;将代入,得,点C的坐标为,.设,,,.当时,,解得.当时,,解得,舍去.综上所述,点N的坐标是或或;如图2,由已知得,,,设直线BC的表达式为.直线经过点,,,解得,直线BC的表达式为.当时,由已知得.,由得,把代入中,得,,直线轴.,,.过点F作于点M,则.,∽,.,,∽,.,,.设,,,..,..,.【解析】把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;由抛物线解析式求得点C的坐标,即,所以由三角形的面积公式得到点N到x轴的距离为3,据此列出方程并解答;如图2,由已知得,,,利用待定系数法确定直线BC的表达式为根据二次函数图象上点的坐标特征和坐标与图形的性质求得,所以直线轴.由此求得EM的长度;过点F作于点M,构造相似三角形:∽和∽,根据相似三角形的对应边成比例推知设,,由三角形的面积公式和图形得到:.本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.。
2020年福州市九年级质量检测数学试题
(在此卷上答题无效)数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,完卷时间120分钟,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227 ,2.02002 A .π4B .227C .2.02002D 2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图 笛卡尔心形线科克曲线斐波那契螺旋线A BCD3.下列运算中,结果可以为3-4的是 A .32÷36 B .36÷32C .32×36D .(3 )×(3 )×(3 )×(3 )4.若一个多边形的内角和是540°,则这个多边形是 A .四边形 B .五边形 C .六边形 D .七边形 5.若a<a 1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为 A .911616x y x yB .911616x yx yC .911616x yx yD .911616x y x y7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是 A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大 C .b 一定不变,c 一定增大 D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥 13S 底h ,V 圆柱 S 底h )是A .21π m 3B .36π m 3C .45π m 3D .63π m 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作 EF ,交CD 于点F ,连接AE ,AF .若AB 6,∠B 60°,则阴影部分的面积是 A.2π B.3π C.3πD.2π10.小明在研究抛物线2()1y x h h (h 为常数)时,得到如下结论,其中正确的是 A .无论x 取何实数,y 的值都小于0 B .该抛物线的顶点始终在直线y x 1 上 C .当1 <x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1 x 2>2h ,则y 1>y 246 主视图76 左视图俯视图第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos60.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是 .13.一副三角尺如图摆放,D是BC延长线上一点,E是AC上一点,∠B ∠EDF 90°,∠A 30°,∠F 45°,若EF∥BC,则∠CED等于 度.14.若m(m 2) 3,则(m 1)2的值是 .15.如图,在⊙O中,C是 AB的中点,作点C关于弦AB的对称点D,连接AD并延长交⊙O于点E,过点B作BF⊥AE于点F,若∠BAE 2∠EBF,则∠EBF等于 度.16.如图,在平面直角坐标系xOy中,□ABCD的顶点A,B分别在x,y轴的负半轴上,C,D在反比例函数kyx(x>0)的图象上,AD与y轴交于点E,且AE 23AD,若△ABE的面积是3,则k的值是 .三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312xx x,①②.并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E,F在BC上,BE CF,AB DC,∠B ∠C,求证:∠A ∠D. 19.(本小题满分8分)先化简,再求值:22111121x xxx x,其中1x .12345-1-2-3-4-50AFDEB CACFEDBCDBAEFOxyBCDEA O如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点. (1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC 12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD 2CD ,并证明OD 2CD .21.(本小题满分8分)甲,乙两人从一条长为200 m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.y x1202O xsb aO43404812162024 28 32280220180a 6020月均用水量 (单位:t )频数(户数)如图,在Rt △ABC 中,AC <AB ,∠BAC 90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在 BD上,连接BF 并延长交AC 的延长线于点G . (1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB AC ,∠BAC 90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED 45°.(1)如图1,若AE DE ,①求证:CD 平分∠ACB ; ②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图225.(本小题满分14分)在平面直角坐标系xOy 中,抛物线C :22(4)y kx k k x 的对称轴是y 轴,过点F (0,2)作一直线与抛物线C 相交于P ,Q 两点,过点Q 作x 轴的垂线与直线OP 相交于点A . (1)求抛物线C 的解析式;(2)判断点A 是否在直线y 2 上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C 上的任意一点(除顶点外)作该抛物线的切线l ,分别交直线y 2和直线y 2 于点M ,N ,求22MF NF 的值.BADEB ACDE。
安徽省2020年中考复习质量检测卷数学答案
1""#$ /]^/"#0"$0#$/)槡*0)槡*0+槡*/!+槡*!
/#%*)!*)
!#!"!3_567)/,**0&*03/(`a@",*,!#"6
1 ,#,*&03/,!". &/*
3/6!
3/6!
1bcde/89$f)/,**0**06!
3)/,**0**06/,*,!*0+
+0&/.". +/,*
-+0&/*! &/+! 14567/89$3)/,**0+! &&&&&&&&&&&&&&&&&&&& -% *"#*#!!*$-!&&&&&&&&&&&&&&&&&&&&&&&&&&& )% -:*/";4567)/,**0+/,*2"0+/+! 1,""-# /!*2+2-,!*2+2!/+!&&&&&&&&&&&&&&&&&&&&& +% #)!!<=3".%#$"/%01 1&"/1/&".$/4"5! 3&1"//&."$ 1&"10/&"$#! 3&1"0/&#"$ 1""01'""#$!&&&&&&&&&&&&&&&&&&&&&&&&&&&&& #%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020初中总复习教学质量检测(一)
数 学
(试卷满分:150分 考试时间:120分钟)
准考证号 姓名 座位号
注意事项:
1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.
一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有
一个选项正确)
1.计算-1+2,结果正确的是
A . 1
B . -1
C . -2
D . -3 2.抛物线y =ax 2+2x +c 的对称轴是
A . x =-1a
B . x =-2a
C . x =1a
D . x =2
a
3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是
A . ∠A
B . ∠B
C . ∠DCB
D .∠D
4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是
A .到学校图书馆调查学生借阅量
B .对全校学生暑假课外阅读量进行调查
C .对初三年学生的课外阅读量进行调查
D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为
A . p -1
B . p -85
C . p -967
D .
8584
p 6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,
则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4 B . 3.0 C . 3.2 D . 5.0
7. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A . B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点
8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本
图1
E D
C B A
图2 A
B
C
C .每人分9本,则剩余7本
D. 其中一个人分7本,则其他同学每人可分9本
9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是
A . 因为a >b +c ,所以a >b ,c <0
B . 因为a >b +c ,c <0,所以a >b
C . 因为a >b ,a >b +c ,所以c <0
D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过
下列步骤可测量山的高度PQ (如图3):
(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、
竹竿顶点B 及M 在一条直线上;
(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续
走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;
(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =
d ·l
a 2-a 1
+l . 则上述公式中,d 表示的是
A .QA 的长
B . A
C 的长 C .MN 的长
D .QC 的长 二、填空题(本大题有6小题,每小题4分,共24分)
11.分解因式: m 2-2m = .
12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .
13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,
AC =1,则AB 的长为 .
14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时 搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .
16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处, 设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不 与点C 重合,则∠BAC 的度数应满足的条件是 .
三、解答题(本大题有9小题,共86分)
17.(本题满分8分)
解方程:2(x -1)+1=x .
18.(本题满分8分)
如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,
CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.
F
E A
B
C D
图4
B
图3
如图6,平面直角坐标系中,直线l经过第一、二、四象限,
点A(0,m)在l上.
(1)在图中标出点A;
(2)若m=2,且l过点(-3,4),求直线l的表达式.
20.(本题满分8分)
如图7,在□ABCD中,E是BC延长线上的一点,
且DE=AB,连接AE,BD,证明AE=BD.
21.(本题满分8分)
某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.
项目交通工具交通工具
使用燃料
交通工具
维修
市内公共
交通
城市间
交通
占交通消费的
比例
22% 13% 5% p26% 相对上一年的价
格的涨幅
1.5% m% 2% 0.5% 1%
(1)求p的值;
(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.
22.(本题满分10分)
如图8,在矩形ABCD中,对角线AC,BD交于点O,
(1)AB=2,AO=5,求BC的长;
(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=
2
2BD,
求∠DCE的度数.
l
图6
图7
E A
B C
D
图8
O
A
B C
D
E
已知点A ,B 在反比例函数y =6
x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分
别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.
(1)若m =6,n =1,求点C 的坐标;
(2)若m (n -2)=3,当点C 在直线DE 上时,求n 的值.
24.(本题满分11分)
已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段
AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;
(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,
判断直线PB 是否与该圆相切?并说明理由.
25.(本题满分14分)
已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,
① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值;
② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终
与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.
(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且
S △AOB =1
2
n -2 t ,当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.
图9 A l C B D
P 图10 l A M E C B D P。