离散数学左孝陵版第二章答案

合集下载

离散数学课后习题答案(第二章)

离散数学课后习题答案(第二章)
习题 2-1,2-2 (1) 用谓词表达式写出下列命题。 a) 小张不是工人。 解:设 W(x) :x 是工人。c:小张。 则有 ¬W ( c )
b) 他是田径或球类运动员。 解:设 S(x) :x 是田径运动员。B(x) :x 是球类运动员。h:他 则有 S(h)∨B(h) c) 小莉是非常聪明和美丽的。 解:设 C(x) :x 是聪明的。B(x) :x 是美丽的。l:小莉。 则有 C(l)∧ B(l) d)若 m 是奇数,则 2m 不是奇数。 解:设 O(x) :x 是奇数。 则有 O(m)→¬ O(2m) 。 e)每一个有理数是实数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∀x) (Q(x)→R(x) ) f) 某些实数是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∃x) (R(x)∧Q(x) ) g) 并非每个实数都是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 ¬(∀x) (R(x)→Q(x) ) h)直线 A 平行于直线 B,当且仅当直线 A 不相交于直线 B。 解:设 P(x,y) :直线 x 平行于直线 y,G(x,y) :直线 x 相交于直线 y。 则有 P(A,B)�¬G(A,B) (2) 找出以下十二个句子所对应的谓词表达式。 a) 所有的教练员是运动员。 (J(x),L(x)) 解:设 J(x):x 是教练员。L(x):x 是运动员。 则有 (∀x) (J(x)→L(x) ) b) 某些运动员是大学生。 (S(x)) 解:设 S(x):x 是大学生。L(x):x 是运动员。 则有 (∃x) (L(x)∧S(x) ) c) 某些教练是年老的,但是健壮的。 (O(x),V(x) ) 解:设 J(x):x 是教练员。O(x):x 是年老的。V(x) :x 是健壮的。 则有 (∃x) (J(x)∧O(x)∧V(x) ) d) 金教练既不老但也不健壮的。 (j) 解:设 O(x):x 是年老的。V(x) :x 是健壮的。j:金教练 则有 ¬ O(j)∧¬V(j) e) 不是所有的运动员都是教练。 解:设 L(x):x 是运动员。J(x):x 是教练员。 则 ¬(∀x) (L(x)→J(x) ) f) 某些大学生运动员是国家选手。 (C(x) )

离散数学课后习题答案_(左孝凌版)

离散数学课后习题答案_(左孝凌版)

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小看书。

Q:小听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:英上山。

B:进上山。

A∧Be)M:老王是革新者。

N:小是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

离散数学课后习题答案(第二章)

离散数学课后习题答案(第二章)
习题 2-1,2-2 (1) 用谓词表达式写出下列命题。 a) 小张不是工人。 解:设 W(x) :x 是工人。c:小张。 则有 ¬W ( c )
b) 他是田径或球类运动员。 解:设 S(x) :x 是田径运动员。B(x) :x 是球类运动员。h:他 则有 S(h)∨B(h) c) 小莉是非常聪明和美丽的。 解:设 C(x) :x 是聪明的。B(x) :x 是美丽的。l:小莉。 则有 C(l)∧ B(l) d)若 m 是奇数,则 2m 不是奇数。 解:设 O(x) :x 是奇数。 则有 O(m)→¬ O(2m) 。 e)每一个有理数是实数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∀x) (Q(x)→R(x) ) f) 某些实数是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∃x) (R(x)∧Q(x) ) g) 并非每个实数都是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 ¬(∀x) (R(x)→Q(x) ) h)直线 A 平行于直线 B,当且仅当直线 A 不相交于直线 B。 解:设 P(x,y) :直线 x 平行于直线 y,G(x,y) :直线 x 相交于直线 y。 则有 P(A,B)�¬G(A,B) (2) 找出以下十二个句子所对应的谓词表达式。 a) 所有的教练员是运动员。 (J(x),L(x)) 解:设 J(x):x 是教练员。L(x):x 是运动员。 则有 (∀x) (J(x)→L(x) ) b) 某些运动员是大学生。 (S(x)) 解:设 S(x):x 是大学生。L(x):x 是运动员。 则有 (∃x) (L(x)∧S(x) ) c) 某些教练是年老的,但是健壮的。 (O(x),V(x) ) 解:设 J(x):x 是教练员。O(x):x 是年老的。V(x) :x 是健壮的。 则有 (∃x) (J(x)∧O(x)∧V(x) ) d) 金教练既不老但也不健壮的。 (j) 解:设 O(x):x 是年老的。V(x) :x 是健壮的。j:金教练 则有 ¬ O(j)∧¬V(j) e) 不是所有的运动员都是教练。 解:设 L(x):x 是运动员。J(x):x 是教练员。 则 ¬(∀x) (L(x)→J(x) ) f) 某些大学生运动员是国家选手。 (C(x) )

离散数学课后习题答案_(左孝凌版)(2)

离散数学课后习题答案_(左孝凌版)(2)
设(P Q) A Q为T,贝U(P Q)为T, Q为T,
故由的定义,必有P为To
所以(P Q) A Q P
解法2:
由体题可知,即证((P Q) A Q)rP是永真式。
((P Q) A Q)t P
习:「睥P
(((PA Q) V (m Q))A Q)f
但我数学不及
(「((P\ Q) V (「PAnQ)) V「Q) VP
(A V B) (A A B)或」(A B)「((A - B)A (Br A))
「((「AV B) A (「BV A))
「((「AA「B) V (「AAA) V (B AnB)
V (B A A))
「((「AN「B) V (B A A))
「(「(A V B)) V (A A B)
(A V B) An(A A B)
(「(A A B) A (「BV D)) V C
(「(A A B) An(「DA B)) V C
「((A A B) V (「DAB)) V C
((A V「D)A B)tC
(B A (Dr A)) tC
(8)解:
a)((A r B) (「Br「A)) A C
((「AV B) (B V「A)) A C
((「AV B) (「AV B)) A C
"C C
b)AV (「AV (BA「B)) (A V「A) V (B An
B)TV F T
c)(A A B/\ C)V (「AAB/\ C)
(A V「A) A (B A C)
TA(B A C)
B/\ C
(9)解:1)设C为T, A为T, B为F,则满足AV C BV C,但A B不成立。
2)设C为F, A为T, B为F,则 满足ANC B/\ C,但A B不成立。

离散数学课后习题答案左孝凌版

离散数学课后习题答案左孝凌版

离散数学课后习题答案(左孝凌版)1-1,1-2解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P:a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。

离散数学课后习题答案(左孝凌版)之欧阳引擎创编

离散数学课后习题答案(左孝凌版)之欧阳引擎创编

离散数学课后习题答案 (左孝凌版)欧阳引擎(2021.01.01)1-1,1-2解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q(R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨Q)→R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

离散数学课后习题答案左孝凌版(20200602075307)

离散数学课后习题答案左孝凌版(20200602075307)

..
(6 )解: P:它占据空间。 Q:它有质量。 R:它不断变化。 S:它是物质。 这个人起初主: (P∧ Q∧R) S
a) ((((A → C)→((B∧ C)→A)) →((B∧C)→ A))→ (A→C)) b) ((B→A)∨ (A→B))。 ( 4)解: a) 是由 c) 式进行代换得到,在 c) 中用 Q 代换 P, (P→P)代换 Q. d) 是由 a) 式进行代换得到,在 a) 中用 P→ (Q→ P)代换 Q.
A;(A ∨B); (A→(A∨ B))
h) P:控制台打字机作输入设备。 Q:控制台打字机作输出设备。 P∧Q
同理可记
b ) A; ┓A ;(┓ A∧ B) ;((┓A∧B)∧A)
Word 资料 .
c) A;┓ A ;B;(┓A→B) ; (B→ A) ;((┓ A→ B)→(B→A)) d) A;B;(A → B) ;(B→ A) ;((A → B)∨(B→A)) ( 3)解:
T
T
F
F
T
F
T
F
F
F
T
F
F
F
T
T
FTTTF NhomakorabeaF
F
F
F
T
F
T
T
T
F1:(Q→P)→R
F2:(P∧┓ Q∧┓ R)∨(┓P∧┓ Q∧┓ R)
F3:(P←→ Q)∧ (Q∨ R)
F4:(┓P∨┓ Q∨ R)∧(P∨┓ Q∨R) F5:(┓P∨┓ Q∨ R)∧(┓P∨┓ Q∨┓ R)
F6:┓(P∨ Q∨ R)





PQ R
Q∨R P∧(Q ∨R)P ∧Q P∧ R (P ∧Q) ∨(P ∧R)

离散数学课后习题答案左孝凌版

离散数学课后习题答案左孝凌版

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P?Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

离散数学课后习题答案_(左孝凌版)之欧阳育创编

离散数学课后习题答案_(左孝凌版)之欧阳育创编

1-1,1-2(1)(2)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(3)解:欧阳育创编 2021.02.04 欧阳育创编 2021.02.04原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(4)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(5)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

欧阳育创编 2021.02.04 欧阳育创编 2021.02.04(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓M欧阳育创编 2021.02.04 欧阳育创编 2021.02.04g)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

离散数学课后习题答案(左孝凌版)之欧阳与创编

离散数学课后习题答案(左孝凌版)之欧阳与创编

离散数学课后习题答案 (左孝凌版)1-1,1-2解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q(R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨Q)→R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。

离散数学课后习题答案_(左孝凌版)

离散数学课后习题答案_(左孝凌版)

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

离散数学左孝陵版第二章答案

离散数学左孝陵版第二章答案

§5谓词演算的 等价式与蕴含式
命题逻辑 ¬ ¬ PP P∨PP
. . P→Q ¬ Q→ ¬ P PP∨Q PΛQ P . . .
谓词逻辑 ¬ ¬ P(x)P(x) P(x)∨P(x)P(x)
. . P(x)→Q(x) ¬ Q(x)→ ¬ P(x) P(x)P(x)∨Q(x) P(x)ΛQ(x) P(x) . . .
§4变元的约束
(2)个体域不同,则表示同一命题的值不同。Q(x): x<5
xQ(x)
xQ(x)
{-1,0,3} T T
{-3,6,2} F T
{15,30} F F
(3)对于同一个体域,用不同的量词时,特性谓词 加入的方法不同。 对于全称量词,其特性谓词以前件的方式加入; 对于存在量词,其特性谓词以与的形式加入。
§3谓词公式与翻译
⑸只有按⑴-⑷所求得的那些公式才是谓词公式(谓词公式又 简称“公式”)。
例1:任何整数或是正的,或是负的。 解:设:I(x): x是整数; R1(x):x是正数;R2(x):x是负 数。 此句可写成:x(I(x)(R1(x) R2(x) )。 例2:试将苏格拉底论证符号化:“所有的人总是要死的。 因为苏格拉底是人,所以苏格拉底是要死的。” 解:设M(x):x是人;D(x):x是要死的; M(s):苏格拉底是人;D(s):苏格拉底是要死的。
§4变元的约束
例: xP(x) yR(x,y)可改写成xP(x) zR(x,z) ,但不 能改成xP(x) xR(x,x) , xR(x,x)中前面的x原为自由 变元,现在变为约束变元了。 4.区别是命题还是命题函数的方法 (a)若在谓词公式中出现有自由变元,则该公式为命题 函数; (b)若在谓词公式中的变元均为约束出现,则该公式为 命题。 例: xP(x,y,z)是二元谓词, yxP(x,y,z)是一元谓词, 而谓词公式中如果没有自由变元出现,则该公式是一 个命题。

离散数学课后习题答案_(左孝凌版)

离散数学课后习题答案_(左孝凌版)

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q↔ (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P↔Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

《离散数学》(左孝凌李为鉴刘永才编著)课后习题集标准答案上海科学技术文献出版社

《离散数学》(左孝凌李为鉴刘永才编著)课后习题集标准答案上海科学技术文献出版社

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q↔ (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P↔Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

离散数学课后习题答案(左孝凌版)之欧阳道创编

离散数学课后习题答案(左孝凌版)之欧阳道创编

离散数学课后习题答案 (左孝凌版)1-1,1-2解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q(R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。

离散数学课后习题答案左孝凌版

离散数学课后习题答案左孝凌版

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)^j)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:、-a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:&a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)<e)设P:a和b是偶数。

Q:a+b是偶数。

P→Qf)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qg)设P:语法错误。

Q:程序错误。

R:停机。

(P∨Q)→R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)\h)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Ri)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q 1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(d))e)不是合式公式(R和S之间缺少联结词)f)/g)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。

左孝凌离散数学课后题答案

左孝凌离散数学课后题答案

左孝凌离散数学课后题答案1-1,1-2(1)解:a)是命题,真值为t。

b)不是命题。

c)就是命题,真值必须根据具体情况确认。

d)不是命题。

e)是命题,真值为t。

f)是命题,真值为t。

g)是命题,真值为f。

h)不是命题。

i)不是命题。

(2)解:原子命题:我快乐北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓p∧r)→qb)q→rc)┓pd)p→┓q(4)求解:a)设q:我将去参加舞会。

r:我有时间。

p:天下雨。

q?(r∧┓p):我将回去出席舞会当且仅当我存有时间和天不下雨。

b)设r:我在玩游戏。

q:我在吃苹果。

r∧q:我在玩游戏边吃苹果。

c)设q:一个数是奇数。

r:一个数不能被2除。

(q→r)∧(r→q):一个数就是奇数,则它无法被2相乘并且一个数无法被2相乘,则它就是奇数。

(5)求解:a)设p:王强身体很好。

q:王强成绩很好。

p∧qb)设p:小李看书。

q:小李听音乐。

p∧qc)设p:气候很好。

q:气候很热。

p∨qd)设p:a和b就是偶数。

q:a+b就是偶数。

p→qe)设p:四边形abcd是平行四边形。

q:四边形abcd的对边平行。

p?qf)设p:语法错误。

q:程序错误。

r:停机。

(p∨q)→r(6)求解:a)p:天气炎热。

q:正在下雨。

p∧qb)p:天气炎热。

r:湿度较低。

p∧rc)r:天正在下雨。

s:湿度很高。

r∨sd)a:刘英上山。

b:李进上山。

a∧be)m:老王就是革新者。

n:小李就是革新者。

m∨nf)l:你看看电影。

m:我看看电影。

┓l→┓mg)p:我不看电视。

q:我不外出。

r:我在睡觉。

p∧q∧rh)p:控制器打字机并作输出设备。

q:控制器打字机并作输出设备。

p∧q1-3(1)解:a)不是合式公式,没规定运算符次序(若规定运算符次序后一般会作为合式公式)b)是合式公式c)不是合式公式(括弧不接合)d)不是合式公式(r和s之间缺少联结词)e)是合式公式。

(2)解:a)a就是合式公式,(a∨b)就是合式公式,(a→(a∨b))就是合式公式。

左孝凌离散数学课后题答案最新版

左孝凌离散数学课后题答案最新版

1a)设S:他犯了错误。

R:他神色慌张。

前提为:S→R,R因为(S→R)∧R⇔(┐S∨R)∧R⇔R。

故本题没有确定的结论。

实际上,若S →R为真,R为真,则S可为真,S也可为假,故无有效结论。

b)设P:我的程序通过。

Q:我很快乐。

R:阳光很好。

S:天很暖和。

(把晚上十一点理解为阳光不好)前提为:P→Q,Q→R,┐R∧S(1) P→Q P(2) Q→R P(3) P→R (1)(2)T,I(4) ┐R∨S P(5) ┐R (4)T,I(6) ┐P (3)(5)T,I结论为:┐P,我的程序没有通过习题2-1,2-2(1)解:a)设W(x):x是工人。

c:小张。

则有¬W(c)b)设S(x):x是田径运动员。

B(x):x是球类运动员。

h:他则有 S(h)∨B(h)c) 设C(x):x是聪明的。

B(x):x是美丽的。

l:小莉。

则有 C(l)∧ B(l)d)设O(x):x是奇数。

则有 O(m)→¬ O(2m)。

e)设R(x):x是实数。

Q(x):x是有理数。

则有(∀x)(Q(x)→R(x))f) 设R(x):x是实数。

Q(x):x是有理数。

则有(∃x)(R(x)∧Q(x))g) 设R(x):x是实数。

Q(x):x是有理数。

则有¬(∀x)(R(x)→Q(x))h)设P(x,y):直线x平行于直线yG(x,y):直线x相交于直线y。

则有 P(A,B) ¬G(A,B)(2)解:a)设J(x):x是教练员。

L(x):x是运动员。

则有(∀x)(J(x)→L(x))b)设S(x):x是大学生。

L(x):x是运动员。

则有(∃x)(L(x)∧S(x))c)设J(x):x是教练员。

O(x):x是年老的。

V(x):x是健壮的。

则有(∃x)(J(x)∧O(x)∧V(x))d)设O(x):x是年老的。

V(x):x是健壮的。

j:金教练则有¬ O(j)∧¬V(j)e)设L(x):x是运动员。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 谓词的概念与表示法
1.谓词: 《定义》:用以刻划客体的性质或关系的即是谓词。
我们可把陈述句分解为二部分: 主语(名词,代词)和谓语(动词)。
例:张华是学生,李明是学生。则可把它表示成: H:表示“是学生”,j:表示“张华”,m:表示“李明”, 则可用下列符号表示上述二个命题:H(j),H(m)。
下面介绍约束变元的改名规则: (a)在改名中要把公式中所有相同的约束变元全部同时 改掉; (b)改名时所用的变元符号在量词辖域内未出现的。
§4变元的约束
例: xP(x) yR(x,y)可改写成xP(x) zR(x,z) ,但不 能改成xP(x) xR(x,x) , xR(x,x)中前面的x原为自由 变元,现在变为约束变元了。
例:P(x)表示x是质数。这是一个命题函数。 其值取决于个体域。 可以将命题函数命题,有两种方法:
§2 命题函数与量词
a)将x取定一个值。如:P(4),P(5) b)将谓词量化。如:xP(x),xP(x)
个体域的给定形式有二种: ①具体给定。 如:{j, e, t} ②全总个体域任意域:所有的个体从该域中取得。
§4变元的约束
6.个体域(论述域,客体域):用特定的集合表示的被约束变 元的取值范围。
(1)个体域不同,则表示同一命题的谓词公式的形式不同。 例:“所有的人必死。”令D(x),x是要死的。
下面给出不同的个体域来讨论: (ⅰ)个体域为:{人类}, 则可写成xD(x); (ⅱ)个体域为任意域(全总个体域),则人必须首先从任意
域中分离出来, 设M(x),x是人,称M(x)为特性谓词。
命题可写成 x(M(x) D(x))
§4变元的约束
ห้องสมุดไป่ตู้
(2)个体域不同,则表示同一命题的值不同。Q(x): x<5
xQ(x) xQ(x)
{-1,0,3} T T
{-3,6,2} F T
{15,30} F F
(3)对于同一个体域,用不同的量词时,特性谓词 加入的方法不同。
解:设F(x)为“x犯错误”,M(x)为“x是人”(特性谓 词)。 可把此命题写成: ¬(x(M(x) F(x)))
x(M(x)F(x)) 例2:“x是y的外祖父” “x是z的父亲且z是y的母亲”
设P(z):z是人;F(x,z):x是z的父亲;M(z,y):z是y的母 亲。 则谓词公式可写成:z(P(z) F(x,z) M(z,y)) 。 5.代入规则:对公式中的自由变元的更改叫做代入。 (a)对公式中出现该自由变元的每一处进行代入, (b)用以代入的变元与原公式中所有变元的名称不能相同。
§3谓词公式与翻译
写成符号形式: x(M(x) D(x)), M(s) D(s)
2.由于对个体描述性质的刻划深度不同,可翻译成不同 形式的谓词公式。
§4变元的约束
1.辖域:紧接在量词后面括号内的谓词公式。 例: xP(x) , x(P(x) Q(x)) 。 若量词后括号内为原子谓词公式,则括号可以省去。
§2 命题函数与量词
例:将“对于所有的x和任何的y,如果x高于y,那么y不高 于x”写成命题表达形式。 解: x y(G(x,y) ¬ G(y,x)) G(x,y):x高于y
(2)存在量词 “”为存在量词符号,读作“存在一个”,“对于一 些”,“对于某些”,“至少存在一个”,“这里存在着 这样的”等等。
下面证明:设个体域为: S={a1,a2,…an}
§5谓词演算的 等价式与蕴含式
¬xP(x) ¬(P(a1) P(a2) … P(an)) ¬P(a1) ¬P(a2) … ¬P(an)x¬P(x)
下面举例说明量化命题和非量化命题的差别:否定形式不同 例: 否定下列命题: (a)上海是一个小城镇 A(s) (b)每一个自然数都是偶数 x(N(x)E(x))
x(C(x) A(x)) TT F FF
(ⅱ)描述命题:“一些猫是黑色的” 。 x(C(x) B(x)) FF F F F 而 x(C(x) B(x))F F T TT
§4变元的约束
7.量词对变元的约束,往往与量词的次序有关。 例:
yx(x<y-2))表示任何y均有x,使得x<y-2。
过要注意这是由无限项组成的命题。
§5谓词演算的 等价式与蕴含式
例:设个体域为:N={0,1,2…}, P(x)表示:x>3 ,则可写出:
xP(x)P(0) P(1) … P(i) … xP(x) P(0)P(1) … P(i) …
下面分类介绍在谓词公式中含有量词的等价式和永真蕴含式。 (1)量词转换律: E25(Q3) ¬xP(x) x¬P(x) E26(Q4) ¬xP(x) x¬P(x)
对于全称量词,其特性谓词以前件的方式加入; 对于存在量词,其特性谓词以与的形式加入。
§4变元的约束
例:设个体域为: {白虎(白猫),黄咪(黄猫),,},
同时令C(x):x是猫(特性谓词);B(x):x是黑色的;A(x):x是动物。 (ⅰ)描述命题:“所有的猫都是动物”。
即: x(C(x) A(x))(T)(真命题) 写成x(C(x) A(x)) (F)则为假命题了。 ∵ x(C(x) A(x))TT T TT
“”表达式的读法: · x A(x) :存在一个x,使x是…; · x¬A(x) :存在一个x, 使x不是…; ·¬ x A(x) :不存在一个x, 使x是…; ·¬ x¬A(x) :不存在一个x, 使x不是…。
§2 命题函数与量词
例:(a)存在一个人; (b)某个人很聪明; (c)某些实数是有理数 将(a),(b),(c)写成命题。
4.区别是命题还是命题函数的方法 (a)若在谓词公式中出现有自由变元,则该公式为命题 函数; (b)若在谓词公式中的变元均为约束出现,则该公式为 命题。
例: xP(x,y,z)是二元谓词, yxP(x,y,z)是一元谓词, 而谓词公式中如果没有自由变元出现,则该公式是一
个命题。
§4变元的约束
举例: 例1:“没有不犯错的人。”
§5谓词演算的 等价式与蕴含式
《定义》给定谓词公式A,E是A的个体域。若给A中客体变 元指派E中每一个客体名称,在E中存在一些客体名称, 使得指派后的真值为“T”,则A称是可满足的。
《定义》若给A中客体变元指派个体域中任一客体名称,使 命题的值均为“F”,则称A是永假的。
1.不含量词的谓词公式的永真式 : 只要用原子谓词公式去代命题公式的永真式中的原子命题变
. .
.
§5谓词演算的 等价式与蕴含式
2.含有量词的等价式和永真蕴含式
设个体域为:S={a1,a2,…an},我们有: xA(x)A(a1) A(a2) … A(an) xA(x) A(a1)A(a2) … A(an)
上例说明: 若个体域是有限的,则可省掉量词。 若个体域是无限的,则可将上述概念推广从而省去量词,不
Charter two
welcome
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
§1 谓词的概念与表示法
在研究命题逻辑中,
原子命题是命题演算中最基本的单位,不再对原子命题进行 分解,
§2 命题函数与量词
2.量词
(1)全称量词 “”为全称量词符号,读作“对于所有的”,“对任一 个”,“对一切”。 例:“这里所有的都是苹果”
可写成: xA(x)或(x)A(x) 几种形式的读法:
·xP(x): “对所有的x,x是…”; ·x¬P(x) : “对所有x,x不是…”; ·¬xP(x) : “并不是对所有的x,x是…”; ·¬x¬P(x) : “并不是所有的x,x不是…”。
H作为“谓词”(或者谓词字母)用大写英文字母表示, j,m为主语,称为“客体”或称“个体”。
§1 谓词的概念与表示法
(1)谓词填式:谓词字母后填以客体所得的式子。
例:H(a, b)
(2)若谓词字母联系着一个客体,则称作一元谓词;若谓 词字母联系着二个客体,则称作二元谓词;若谓词字母联 系着n个客体,则称作n元谓词。
2.自由变元与约束变元 约束变元:在量词的辖域内,且与量词下标相同的变元。 自由变元:当且仅当不受量词的约束。 例: xP(x,y) , x(P(x) y(P(x,y)) 。
§4变元的约束
3.约束变元的改名规则 任何谓词公式对约束变元可以改名。
我们认为xP(x,y)和zP(z,y)是一等价的谓词公式,但是需 注意,不能用同一变元去表示同一谓词公式中的二个变元。 例如: yP(y,y)是不正确的。
(3)客体的次序必须是有规定的。 例:河南省北接河北省。
nL
b
写成二元谓词为:L(n,b),但不能写成L(b,n) 。
§2 命题函数与量词
1. 命题函数
客体在谓词表达式中可以是任意的名词。 例:C—“总是要死的。” j:张三;t:老虎;e:桌子。 则C(j), C(t), C(e)均表达了命题。
在上面的例子中,C:表示“总是要死的”;x:表示变元 (客体变元),则C(x)表示“x总是要死的”,则称C(x) 为命题函数。
§3谓词公式与翻译
⑸只有按⑴-⑷所求得的那些公式才是谓词公式(谓词公式又 简称“公式”)。
例1:任何整数或是正的,或是负的。 解:设:I(x): x是整数; R1(x):x是正数;R2(x):x是负 数。
此句可写成:x(I(x)(R1(x) R2(x) )。
例2:试将苏格拉底论证符号化:“所有的人总是要死的。 因为苏格拉底是人,所以苏格拉底是要死的。” 解:设M(x):x是人;D(x):x是要死的; M(s):苏格拉底是人;D(s):苏格拉底是要死的。
元,则在第一章中永真蕴含式和等价公式均可变成谓词演 算中的永真式:
相关文档
最新文档