七年级数学期中试题
安徽省合肥市五十中学2023-2024学年七年级上学期期中数学试题(含答案解析)
安徽省合肥市五十中学2023-2024学年七年级上学期期中数
学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
二、填空题
16.甲、乙两地相距200km,汽车从甲地到乙地,速度为每小时
x=时,汽车从甲地到乙地需要小时;
(1)若100
(2)如果汽车每小时多行驶20km,可以提前小时到达乙地?(用含子表示)
(1)计算当正方体个数为4时,拼成长方体的表面积,填入下表;正方体个数1234长方体表面积
2
6a 210a 2
14a —
(2)用代数式表示n (1)求AB .
(2)点M 为数轴上一点,当MA MB =时,求点(3)直接写出点M 对应的数为多少时,MA 23.在合肥市五十中学一年一度艺术节中,的字样.
(1)用含a ,b 的式子表示圆环的周长;
(2)用含a ,b 的式子表示
中阴影部分的面积;
(3)当3a =,5b =时,求50字样的总面积(结果精确到个位)
.
参考答案:
(3)解:由图可得,S S S =+阴影圆环总2334b a b π⎛=+-+- ⎝。
人教版七年级数学上册期中考试卷(附带答案)
人教版七年级数学上册期中考试卷(附带答案)(满分:150分时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(每小题4分,共10题,共40分)1.﹣2023的绝对值是()A.﹣12023B.﹣2023 C.12023D.20232.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。
如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第2题图)(第5题图)(第7题图)3.在数﹣2,﹣3.14156,﹣13,﹣5%,﹣6.3,2023,200%,0,﹣0.01001中,负分数有()A.4个B.5个C.6个D.7个4.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358X105B.35.8X103C.3.58X105D.3.58X1045.如图,小红把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.圆形B.长方形C.三角形D.椭圆6.下面的说法中,正确的是()A.x +3是多项式B.(﹣2)3中底数是2C.3ab35的系数是3 D.单项式﹣ab2的次数是2次7.如图,是一个正方体的表面展开图,则原正方体中与"就"字相对的面上的字是()A.知B.是C.力D.量8.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.a-b>0C.ab>0D.ab<0(第8题图)(第9题图)9.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1-C 2的值( )A.0B.a -bC.2a -2bD.2b -2a10.已知:m=|a+b |c +2|b+c |a +3|c+a |b ,且abc >0,a+b+c=0.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则x+y=( )A.4B.3C.2D.1第II 卷 (非选择题 共110分)二.填空题(共6小题,每小题4分,满分24分)11.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作"+50元",那么亏损30元,记作 元.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇如丝飞.译文:喧哗的雨已经过去、逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为 .13.若(m+1)2+|n -2|=0,则m n = .14.若一个棱柱有12个顶点,且所有侧棱长的和为30cm ,则每条侧棱长为 cm.15."整体思想"是中学数学解题中重要的思想方法,在多项式的求值中应用极为广泛.若3a 2-a -2=0,则﹣6a 2+2a+3值为 ﹣ .16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是 .三.解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.(本小题满分6分)在数轴上表示下列各数:0,﹣4.5,312,﹣2,+7,113.并用"<"号把各数连接起来.19.(本小题满分12分)计算:(1)5+(﹣6)﹣(﹣3) (2)﹣58×(﹣4)÷(﹣52)(3)(﹣16+34-112)×(﹣24) (4)﹣14+(﹣2)3÷4×[5-(-3)3]20.(本小题满分6分)一个几何体的三种视图如图所示.(1)这个几何体的名称是 .(2)求这个几何体的体积.(结果保留π)21.(本小题满分6分)化简:(1)x2+5y-4x2-y-1 (2)7a+3(a-3b)-(b+3a)22.(本小题满分8分)山东是红富士苹果的主要产地,现有30箱红富士苹果,以每箱25kg 为标准,其中重量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30箱红富士苹果中,最重的一箱比最轻的一箱多kg.(2)与标准重量相比,30箱红富士苹果总计超过或不足的重量为多少?(3)若红富士苹果每千克售价6元,则这30箱红富士苹果可卖多少钱?23.(本小题满分8分)如图,某居民小区有一块长为a,宽为2b的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b的扇形花台,其余部分铺设草坪.(1)草坪(阴影部分)的周长为,面积为.(结果用含有a,b,π的式子表示)(2)如果铺设草坪的费用为每平方米50元.当a=6米,b=2米,π取3时,铺设草坪共需多少元?24.(本小题满分10分)学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?25.(本小题满分12分)阅读材料,回答问题.材料一:因为23=2×2×2,22=2×2,所以23×22=(2×2×2)×(2×2)=25.材料二:求31+32+33+34+35+36的值.解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②-①得,3S -S=(32+33+34+35+36+37)-(31+32+33+34+35+36)=37-3所以2S=37-3,即S=37-32 所以31+32+33+34+35+36=37-32这种方法我们称为"错位相减法".(1)填空:5×58=5( ),a 2·a 5=a ( ).(2)"棋盘摆米"是一个著名的数学故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏.阿基米德对国王说:"我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行"国王以为要不了多少粮食,就随口答应了.①国际象棋共有64个格子,则在第64格中应放 粒米.(用幂表示)②设国王输给阿基米德的总米粒数为S ,求S.26.(本小题满分12分)如图,已知数轴点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=22.(1)写出数轴上点B 表示的数.(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.试探究:①若|x -8|=3,则x= .②动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t 为多少秒时,A ,P 两点之间的距离为2?(3)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴向右匀速运动,Q 点以P 点速度的两倍,沿数轴向右匀速运动,设运动时间为t(1>0)秒.求当t 为多少秒时,P ,Q 之间的距离为4?答案解析一.单选题。
山东省济南市历下区2023-2024学年七年级上学期期中数学试题(含答案)
2023~2024学年第一学期七年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的相反数是()A.B.C.5D.2.在中,负数共有()A.2个B.3个C.4个D.5个3.杭州奥体中心体育场又称“大莲花”,为杭州第19届亚运会主会场.座席数为80800个.将数据80800用科学记数法表示为()A.B.C.D.4.下列四个数中,最小的是()A.B.C.D.5.下列图形中,能够折叠成一个正方体的是()A.B.C.D.6.已知有理数在数轴上的位置如图所示,则从大到小的顺序为()第6题图A.B.C.D.7.用一平面去截下列几何体,其截面可能是长方形的有()圆柱圆锥长方体球体第7题图A.1个B.2个C.3个D.4个5-155-15-112, 2.4,,0.72,2,0, 1.834-+---48.0810⨯48.810⨯58.810⨯58.0810⨯3-7-()3--13-,a b,,,a b a b--b a a b>->>-a b b a->->>b a a b->>->b a a b>>->-8.下列运算正确的是()A .B .C .D .9.某商店出售一种商品,有以下几种方案,调价后价格最低的方案是()A .先提价,再降价B .先降价,再提价C .先提价,再降价D .先提价,再降价10.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折次,可以得到折痕的条数是()第一次对折第二次对折 第三次对折第10题图A .B .C .D .第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.朱自清的《春》中有描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种现象可以用数学知识解释为______.12.单项式的次数是______.13.杭州亚运会于2023年10月顺利落幕,中国队获金牌和奖牌榜双第一,如图是一个正方体的表面展开图,与“亚”字相对面上的汉字是______.第13题图14.若,则的值为______.15.若,则代数式的值为______.16.如图,将两张边长分别为5和4的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为______.2222m n mn mn-=-22523y y -=277a a a +=325ab ab ab+=10%10%10%10%15%15%20%20%n n 1n -21n -121n --312ab ()2230a b ++-=ba 2310x y -+=246x y -+AB AD ,m n 1S 2S 4m n -=12S S -5 4 图①图②第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)(1);(2).18.(本小题满分6分)(1);(2).19.(本小题满分6分)先化简,再求值:,其中.20.(本小题满分8分)如图是由一些相同的小正方体组成的几何体. 从正面看 从正面看 从左面看 从上面看(1)请在指定位置画出该几何体从正面、左面和上面看到的形状图;(2)在这个几何体上再添加一些相同的小正方体,如果从左面和从上面看到的形状图不变,那么最多可以再添加______个小正方体.21.(本小题满分8分)气候变暖导致全球大部分地区极端强降水事件增多,由此引发的洪涝等灾害风险已倍受各界广泛关注.为揭示气候变暖背景下极端降水的变化规律,查阅山东省气象信息中心1961——2020年降水量资料发现,夏季出现极端降水次数最多.(1)若设定100次为标准次数,试完成表1:地区济南潍坊青岛日照淄博菏泽次数100961029588()()6109-+---()2118623⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭231134624⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭()2023323137-+⨯---()()22222332x y xyxy x y ---+1,3x y ==-与标准次数的差值0表1 1961——2020年极端降水出现次数(2)极端降水出现次数最多的地区与最少的地区相差______次;(3)以上地区出现极端降水的平均次数是多少?22.(本小题满分8分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为、宽为、厚为,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含的代数式表示)(2)若封面和封底沿虚线各折进去,剪掉阴影部分后,包书纸的面积是多少?第一步 第二步23.(本小题满分10分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在处.规定以向东的方向为正方向,步行记录如下(单位:米):(1)小明离主席台最远是______米;(2)以主席台为原点,用1个单位长度表示,请在数轴上表示点;(3)在主席台东边5米处是仲裁处,小明经过仲裁处______次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(本小题满分10分)随着生活水平的日益提高,人们的健康意识逐渐增强,越来越多的人把健身作为一种时尚的生活方式,某商家2+19+5-12-26cm 18.5cm 1cm cm x x 2cm A 10,8,6,13,7,12,2,2+-+-+-+-1m A抓住机遇推出促销活动,向客户提供了两种优惠方案:方案一:买一件运动外套送一件卫衣;方案二:运动外套和卫衣均在定价的基础上打8折.运动外套每件定价300元,卫衣每件定价100元.在开展促销活动期间,某俱乐部要到该商场购买运动外套100件,卫衣件().(1)方案一需付款:______元,方案二需付款:______元;(2)当时,请计算并比较这两种方案哪种更划算;(3)当时,如果两种方案可以组合使用,你能帮助俱乐部设计一种最省钱的方案吗?请直接写出你的方案.25.(本小题满分12分)【阅读】可理解为数轴上表示所对应的点与所对应的点之间的距离;如可理解为数轴上表示6所对应的点与2所对应的点之间的距离;可以看作,可理解为数轴上表示6所对应的点与所对应的点之间的距离;【探索】回答下列问题:(1)可理解为数轴上表示所对应的点与______所对应的点之间的距离.(2)若,则数______.(3)若,则数______.(4)如图所示,在数轴上,若点表示的数记为两点的距离为8,且点在点的右侧,现有一点以每分钟2个单位长度的速度从点向右出发,点以每分钟1个单位长度的速度从点向右出发,求分钟后点与点的距离.(结果用含的代数式表示,并化到最简)26.(本小题满分12分)【概念学习】定义新运算:求若干个相同的非零有理数的商的运算叫做除方.比如,类比有理数的乘方,我们把写作,读作“2的圈3次方”;写作,读作“的圈4次方”.一般地,把记作;,读作“的圈次方”.特别地,规定:.【初步探究】x 100x ≥150x =300x =a b -a b 62-62+()62--2-1x +x 25x -=x =219x x -++=x =A ,a A B 、B A P A Q B t P Q t 222++2③()()()()3333-+-+-+-()3-④()3-n a a a a a +++⋅⋅⋅+ 个a ⓝa n a a =①(1)直接写出计算结果:______,______;(2)若为任意正整数,下列关于除方的说法中,正确的有______;(填写正确的序号)①任何非零数的圈2次方都等于1;②任何非零数的圈3次方都等于它的倒数;③圈次方等于它本身的数是1或;④负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数的圈次方写成幂的形式:______;(4)计算:.2023~2024学年第一学期七年级期中教学质量检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)题号12345678910答案C C A A B A B D D C二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案点动成线4真416三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤)17.(本小题共2道题,每小题3分,满分共6分)解:(1)(2)18.(本小题满分6分)解:(1)(2)2=②()3-=③n n 1-()0a a ≠()3n n ≥a =ⓝ()()12023422⎛⎫-⨯---÷- ⎪⎝⎭④④②8-()()61091697-+-+-=-+=-()()()()31118686321820234⎛⎫⎛⎫-⨯-+÷-=⨯-+⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭()23112312416184234624346⎛⎫⎛⎫⎛⎫-+÷-=-+⨯-=-+-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()2023323137831483415-+⨯---=-+⨯---=---=-19.(本小题满分6分)解:当时,原式20.(本小题8分)解:(1)从正面看 从左面看 从上面看(2)421.(本小题8分)解:(1) 119(2)31(3)(次)100答:以上地区出现极端降水的平均次数是100次.22.(本小题8分)解:(1)小海所用包书纸的周长:答:小海所用包书纸的周长为.(2)当时,包书纸长为:包书纸宽为:所以面积为:答:需要的包书纸的面积为.23.(本小题10分)解:(1)10(2)如图所示,点即为所求.()()22222222223326236x y xy xy x y x y xy xy x y xy ---+=-+-=1,3x y ==-()2139=⨯-=4-()()()()()100604219512600⎡⎤⨯++-+++++-+-=⎣⎦()()218.52122262x x ⨯++++()()23822262x x =+++()8128cmx =+()8128cm x +2cm x =()18.5212242cm ⨯++⨯=()262230cm +⨯=()242302242121240cm⨯-⨯⨯-⨯⨯=21240cm A(3)4(4)(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.24.(本小题10分)解:(1);(2)方案一:方案二:25.(本小题满分12分)解:(1)(2)或7(3)或5(4)因为两点的距离为8,点在点的右侧所以点表示的数为:所以分钟后,点对应的数为:,点对应的数为:所以点与点的距离为:所以当时,当时,当时,26.(本小题满分12分)【解答】解:(1),;(2)①②④;(3)或;(4).()10861370.12204.422++-+++-+++-⨯-=+++10020000x +8024000x +1001502000035000⨯+=801502400036000⨯+=1-3-4-A B 、B A B 8a +t P 2a t +Q 8a t ++P Q ()288a t a t t +-++=-80t ->80t -=80t -<2221=÷=②()()()()133333-=-÷-÷-=-③21n a -⎛⎫ ⎪⎝⎭21n a -()()12023422⎛⎫-⨯---÷- ⎪⎝⎭④④②()()()()()()111120232023422222222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=-÷⨯-÷-÷-÷---÷-÷-÷-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()1144416124=-⨯--÷=-+=。
四川省成都市龙泉驿区2023-2024学年上学期七年级期中数学试卷(含解析)
2023-2024学年四川省成都市龙泉驿区七年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如果某商场盈利5万记作+5万元,那么亏损4万元,应记作( )A.+4万元B.﹣4万元C.+1万元D.﹣1万元2.(4分)﹣2的相反数是( )A.﹣2B.﹣C.2D.3.(4分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据2.32亿用科学记数法表示为( )A.0.232×109B.2.32×108C.2.32×106D.23.2×1084.(4分)多项式3x2﹣2x+5的各项分别是( )A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,55.(4分)若数轴上点A表示的数是﹣1,则与点A相距2个单位长度的点表示的数是( )A.±3B.﹣3 或1C.±1D.1或36.(4分)若﹣2a m+5b2与a4b2n的和仍为单项式,则m﹣n的值为( )A.0B.2C.﹣1D.﹣27.(4分)下列各组数中,相等的一组是( )A.﹣|﹣2|与﹣(﹣2)B.﹣33与(﹣3)3C.与D.﹣54与(﹣5)48.(4分)根据流程图中的程序,若输入x的值为﹣1,则输出y的值为( )A.4B.7C.8D.187二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)比较大小:﹣ ﹣(选填“>”、“=”或“<”).10.(4分)单项式的系数为 ,次数为 .11.(4分)已知a,b互为相反数,且c,d互为倒数,m是最大的负整数,则3a﹣2023cd+3b+m的值为 .12.(4分)下表是国外城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市纽约巴黎东京多伦多时差(时)﹣13﹣7+1﹣12如果现在东京时间是16:00,那么纽约时间是 .(以上均为24小时制)13.(4分)当x=3时,ax3﹣bx+3的值是﹣1,则9a﹣b﹣1的值是 .三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(4分)计算:(1)﹣17+24+(﹣16)﹣(﹣9);(2);(3);(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2.15.(4分)化简:(1)﹣x2+3y+2x2﹣5y+1;(2)3x2﹣xy﹣2(x2﹣xy).16.(6分)先化简,再求值:,其中x=2,y=﹣.17.(6分)如图是2023年八月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的7个数中最中间一个数是x,请用含x的代数式由小到大依次表示出“H”形框中的其余6个数;(2)请问“H”形框能否框到七个数,使这七个数之和等于161?若能,请由小到大依次写出这七个数;若不能,请说明理由.18.(12分)2023年11月中国人民解放军空军八一飞行表演队应邀赴阿联酋参加于11月13日到17日举行的第十八届迪拜航空展,此次迪拜展是空军八一飞行表演队继2017年11月之后第二次亮相阿联酋,是空军八一飞行表演队换装歼﹣10C 后首次飞赴中东国家,针对此次航展空军八一飞行表演队编排了3套表演方案,共20多个表演动作.表演过程中一架歼﹣10C 表演机A 起飞后的高度变化如下表所示:高度变化上升4.2千米下降2.3千米上升1.5千米下降0.9千米上升1.1千米记作+4.2km﹣2.3km+1.5km﹣0.9km+1.1km(1)当表演机A 完成上述五个表演动作后,表演机A 的高度是多少千米;(2)如果表演机A 每上升或下降1千米需消耗1.7升燃油,那么表演机A 在这5个动作表演过程中,一共消耗了多少升燃油;(3)若另一架表演机B 在做花式飞行表演时,起飞后前四次的高度变化为:上升3.8千米,下降2.5千米,上升4.3千米,再下降1.9千米.若要使表演机B 在完成第5个动作后与表演机A 完成5个动作后的高度相同,表演机B 的第5个动作是上升还是下降,上升或下降多少千米?一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)当|2x +y |+5取最小值时,代数式x +y ﹣10的值为 .20.(4分)在数轴上,如果点A 表示的数为﹣3,点B 表示的数为1,一个小球从点A 出发,沿着数轴先向左移动7个单位长度,再向右移动4个单位长度,此时小球到达点C 处,则点A 到点C 的距离与点B 到点C之间的距离之和为 .21.(4分)如图所示,在长方形ABCD 中,AD =3AB ,在它内部有三个小正方形,正方形AEFG 的边长为m ,正方形GBIH 的边长为n ,则阴影部分的周长为 (用含m ,n 的代数式表示).22.(4分)已知有理数a,b,c在数轴上的位置如图所示,满足|a|<|b|<|c|,则|2a+c﹣b|﹣|a﹣c+b|+= .23.(4分)观察下列数表规律,第n列第二排的数为 (用含n的代数式表示).第1列第2列第3列第4列第5列……第n列第一排2﹣46﹣810…………第二排207421…………第三排2481632…………二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)【基本事实】我们知道整数和分数统称为有理数,为什么不是整数和小数统称为有理数呢?所有的分数都可以化成小数的形式,是不是所有的小数都可以化成分数形式呢?我们可以举例说明:有限小数0.2化成分数的形式是 ;无限循环小数又该如何化呢?我们以无限循环小数0.7为例进行说明:设=x,由=0.7777…可知,10x=7.7777…,所以10x=7+x,解方程,得x=,于是得,故化成分数的形式是 ,所有有限小数和无限循环小数 (填“是”或“不是”)有理数;而无限不循环小数是不可以化成分数的,所以π (填“是”或“不是”)有理数,那么无限不循环小数能通过数轴上的一个点来表示吗?我们将以π为例通过下列活动来探索:【数学活动】如图,直径为1的圆从原点出发沿数轴正方向滚动一周,圆上一点由原点O到达点O',则OO′= .【知识推理】判断:(填“正确”或“错误”)(1)任何一个有理数都可以用数轴上唯一的一个点来表示. (2)数轴上的点都表示有理数. (3)整数和小数统称为有理数. 25.(16分)(1)已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,若(x+y﹣2)2+|xy+1|=0,求3A﹣2(A+B)的值.(2)已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|.26.(20分)【问题背景】我们知道|x|的几何意义是:在数轴上数x对应的点到原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在数轴上,点A,B的位置如图1所示,AB=|1﹣(﹣2)|=3.【问题解决】(1)|2﹣(﹣3)|的几何意义是 .(2)如果点C为数轴上一点,它所表示的数为x,点D在数轴上表示的数为﹣2,那么CD = (用含x的代数式表示).【关联运用】(1)运用一:代数式|x+1|+|x+4|的最小值为 .(2)运用二:代数式|x﹣2|﹣|x+14|的最大值为 .(3)运用三:已知|x﹣1|+|x+3|=10,则x的值为 .(4)运用四:如图2所示,点E,F,G是数轴上的三点,E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,点E,F,G开始在数轴上运动,若点E以每秒2个单位长度的速度向左运动,同时,点F和点G分别以每秒3个单位长度和1个单位长度的速度向右运动,假设t秒后,若点E与点F之间的距离表示为EF,点E与点G之间的距离表示为EG,点F与点G之间的距离表示为FG.4秒后,若mFG﹣3EF的值是一个定值,试确定m的值.2023-2024学年四川省成都市龙泉驿区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如果某商场盈利5万记作+5万元,那么亏损4万元,应记作( )A.+4万元B.﹣4万元C.+1万元D.﹣1万元【解答】解:如果某商场盈利5万记作+5万元,那么亏损4万元,应记作﹣4万元.故选:B.2.(4分)﹣2的相反数是( )A.﹣2B.﹣C.2D.【解答】解:﹣2的相反数是2,故选:C.3.(4分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据2.32亿用科学记数法表示为( )A.0.232×109B.2.32×108C.2.32×106D.23.2×108【解答】解:2.32亿=2.32×108.故选:B.4.(4分)多项式3x2﹣2x+5的各项分别是( )A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,5【解答】解:多项式3x2﹣2x+5的各项分别是3x2,﹣2x,5,故选:A.5.(4分)若数轴上点A表示的数是﹣1,则与点A相距2个单位长度的点表示的数是( )A.±3B.﹣3 或1C.±1D.1或3【解答】解:∵数轴上点A表示的数为﹣1,∴与点A相距2个单位长度的点表示的数是:﹣1﹣2=﹣3或﹣1+2=1,综上所述,表示的数是﹣3或1.故选:B.6.(4分)若﹣2a m+5b2与a4b2n的和仍为单项式,则m﹣n的值为( )A.0B.2C.﹣1D.﹣2【解答】解:根据题意可得,m+5=4,2n=2,解得:m=﹣1,n=1,则m﹣n=﹣1﹣1=﹣2.故选:D.7.(4分)下列各组数中,相等的一组是( )A.﹣|﹣2|与﹣(﹣2)B.﹣33与(﹣3)3C.与D.﹣54与(﹣5)4【解答】解:A、∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|≠﹣(﹣2),故此选项不符合题意;B、∵﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C、∵,,∴,故此选项不符合题意;D、∵﹣54=﹣625,(﹣5)4=625,∴﹣54≠(﹣5)4,故此选项不符合题意;故选:B.8.(4分)根据流程图中的程序,若输入x的值为﹣1,则输出y的值为( )A.4B.7C.8D.187【解答】解:根据题意得:y=(﹣1)2×3﹣5=﹣2<0,y=(﹣2)2×3﹣5=7>0,符合题意,故选:B.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)比较大小:﹣ < ﹣(选填“>”、“=”或“<”).【解答】解:∵|﹣|=>|﹣|=.∴﹣<﹣.故答案为:<.10.(4分)单项式的系数为 ﹣ ,次数为 5 .【解答】解:单项式的系数为﹣、次数为5,故答案为:﹣,5.11.(4分)已知a,b互为相反数,且c,d互为倒数,m是最大的负整数,则3a﹣2023cd+3b+m的值为 ﹣2024 .【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1.∵m是最大的负整数,∴m=﹣1.∴3a﹣2023cd+3b+m=3(a+b)﹣2023cd+m=0﹣2023﹣1=﹣2024.故答案为:﹣2024.12.(4分)下表是国外城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市纽约巴黎东京多伦多时差(时)﹣13﹣7+1﹣12如果现在东京时间是16:00,那么纽约时间是 2:00 .(以上均为24小时制)【解答】解:∵由表格可得,东京时间比纽约时间快的时数为:1﹣(﹣13)=14,∴当东京时间是16:00时,纽约时间为:16﹣14=2(时),即如果现在东京时间是16:00,那么纽约时间是2:00,故答案为:2:00.13.(4分)当x=3时,ax3﹣bx+3的值是﹣1,则9a﹣b﹣1的值是 .【解答】解:把x=3代入ax3﹣bx+3=﹣1,得:27a﹣3b+3=﹣1,∴9a﹣b=,∴9a﹣b﹣1=﹣1=.故答案为:.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(4分)计算:(1)﹣17+24+(﹣16)﹣(﹣9);(2);(3);(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2.【解答】解:(1)﹣17+24+(﹣16)﹣(﹣9)=﹣17+24+(﹣16)+9=0;(2)=(﹣25)×××=﹣;(3)=(﹣)×(﹣48)+×(﹣48)﹣×(﹣48)=84+(﹣8)+30=106;(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2=(﹣1)+18×﹣4÷4=(﹣1)+10﹣1=8.15.(4分)化简:(1)﹣x2+3y+2x2﹣5y+1;(2)3x2﹣xy﹣2(x2﹣xy).【解答】解:(1)原式=x2﹣2y+1;(2)原式=3x2﹣xy﹣x2+2xy=2x2+xy.16.(6分)先化简,再求值:,其中x=2,y=﹣.【解答】解:原式=xy2﹣(3x2y﹣xy2﹣2xy)+2x2y﹣2xy﹣xy2=xy2﹣3x2y+xy2+2xy+2x2y﹣2xy﹣xy2=xy2﹣xy2+xy2﹣3x2y+2x2y+2xy﹣2xy=xy2﹣x2y,当x=2,y=时,原式=×2×﹣4×(﹣)=+2=.17.(6分)如图是2023年八月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的7个数中最中间一个数是x,请用含x的代数式由小到大依次表示出“H”形框中的其余6个数;(2)请问“H”形框能否框到七个数,使这七个数之和等于161?若能,请由小到大依次写出这七个数;若不能,请说明理由.【解答】解:(1)根据题意可得:“H”形框中的其余6个数分别为:x﹣8、x﹣6、x﹣1,、x+1、x+6、x+8;(2)能;理由:根据(1)中所得的7个数分别为:x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,则x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=161,解得:x=23,7个数分别为:15、17、22、23、24、29、3118.(12分)2023年11月中国人民解放军空军八一飞行表演队应邀赴阿联酋参加于11月13日到17日举行的第十八届迪拜航空展,此次迪拜展是空军八一飞行表演队继2017年11月之后第二次亮相阿联酋,是空军八一飞行表演队换装歼﹣10C后首次飞赴中东国家,针对此次航展空军八一飞行表演队编排了3套表演方案,共20多个表演动作.表演过程中一架歼﹣10C表演机A起飞后的高度变化如下表所示:上升4.2千米下降2.3千米上升1.5千米下降0.9千米上升1.1千米高度变化记作+4.2km﹣2.3km+1.5km﹣0.9km+1.1km (1)当表演机A完成上述五个表演动作后,表演机A的高度是多少千米;(2)如果表演机A每上升或下降1千米需消耗1.7升燃油,那么表演机A在这5个动作表演过程中,一共消耗了多少升燃油;(3)若另一架表演机B在做花式飞行表演时,起飞后前四次的高度变化为:上升3.8千米,下降2.5千米,上升4.3千米,再下降1.9千米.若要使表演机B在完成第5个动作后与表演机A完成5个动作后的高度相同,表演机B的第5个动作是上升还是下降,上升或下降多少千米?【解答】解:(1)4.2﹣2.3+1.5﹣0.9+1.1=3.6(千米),即表演机A的高度是3.6千米;(2)(4.2+2.3+1.5+0.9+1.1)×1.7=10×1.7=17(升),即表演机A在这5个动作表演过程中,一共消耗了17升燃油;(3)3.6﹣(3.8﹣2.5+4.3﹣1.9)=3.6﹣3.7=﹣0.1(千米),即表演机B的第5个动作是下降,下降0.1千米.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)当|2x+y|+5取最小值时,代数式x+y﹣10的值为 ﹣10 .【解答】解:∵|2x+y|+5取最小值,|2x+y|≥0,∴当2x+y=0时,符合题意,∴x+y﹣10=(2x+y)﹣10=0﹣10=﹣10.故答案为:﹣10.20.(4分)在数轴上,如果点A表示的数为﹣3,点B表示的数为1,一个小球从点A出发,沿着数轴先向左移动7个单位长度,再向右移动4个单位长度,此时小球到达点C处,则点A到点C的距离与点B到点C之间的距离之和为 10 .【解答】解:由题意得,点C表示的数是﹣3﹣7+4=﹣6,因为点A表示的数为﹣3,点B表示的数为1,所以点A到点C的距离为﹣3﹣(﹣6)=﹣3+6=3,点B到点C的距离为1﹣(﹣6)=1+6=7,所以点A到点C的距离与点B到点C之间的距离之和为3+7=10,故答案为:10.21.(4分)如图所示,在长方形ABCD中,AD=3AB,在它内部有三个小正方形,正方形AEFG的边长为m,正方形GBIH的边长为n,则阴影部分的周长为 8m+6n (用含m,n的代数式表示).【解答】解:根据观察可知,图中阴影部分的周长与长为CI、宽为AB的矩形周长相同,在长方形ABCD中,AD=BC,AD=3AB,∵正方形AEFG的边长为m,正方形GBIH的边长为n,∴AB=m+n,BC=3(m+n),∵CI=BC﹣BI,∴CI=3(m+n)﹣n=3m+2n,∴阴影部分的周长为:2(AB+CI)=2(m+n+3m+2n)=8m+6n,故答案为:8m+6n.22.(4分)已知有理数a,b,c在数轴上的位置如图所示,满足|a|<|b|<|c|,则|2a+c﹣b|﹣|a﹣c+b|+= 3a﹣2 .【解答】解:由图可知,2a>0,c﹣b>0,a﹣c+b<0,ab<0,ac>0,∴|2a+c﹣b|﹣|a﹣c+b|+﹣=2a+c﹣b+(a﹣c+b)﹣1﹣1=2a+c﹣b+a﹣c+b﹣1﹣1=3a﹣2,故答案为:3a﹣2.23.(4分)观察下列数表规律,第n列第二排的数为 (用含n的代数式表示).第1列第2列第3列第4列第5列……第n列第一排2﹣46﹣810…………第二排207421…………第三排2481632…………【解答】解:∵第一排第n列的数为:(﹣1)n+12n,第三排第n列的数为:2n,∴第n列第二排的数为:,二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)【基本事实】我们知道整数和分数统称为有理数,为什么不是整数和小数统称为有理数呢?所有的分数都可以化成小数的形式,是不是所有的小数都可以化成分数形式呢?我们可以举例说明:有限小数0.2化成分数的形式是 ;无限循环小数又该如何化呢?我们以无限循环小数0.7为例进行说明:设=x,由=0.7777…可知,10x=7.7777…,所以10x =7+x,解方程,得x=,于是得,故化成分数的形式是 ,所有有限小数和无限循环小数 是 (填“是”或“不是”)有理数;而无限不循环小数是不可以化成分数的,所以π 不是 (填“是”或“不是”)有理数,那么无限不循环小数能通过数轴上的一个点来表示吗?我们将以π为例通过下列活动来探索:【数学活动】如图,直径为1的圆从原点出发沿数轴正方向滚动一周,圆上一点由原点O到达点O',则OO′= π .【知识推理】判断:(填“正确”或“错误”)(1)任何一个有理数都可以用数轴上唯一的一个点来表示. 正确 (2)数轴上的点都表示有理数. 错误 (3)整数和小数统称为有理数. 错误 【解答】解:【基本事实】0.2==;设=x,由=0.37373737…可知,100x=37.373737…,所以100x=37+x,解方程,得x=,于是得故=;所有有限小数和无限循环小数是有理数;无限不循环小数是不可以化成分数的,所以π不是有理数;【数学活动】因为圆的周长为π×1=π,所以OO′=π,故答案为:π;【知识推理】(1)任何一个有理数都可以用数轴上唯一的一个点来表示.正确;(2)数轴上的点都表示有理数.错误;(3)整数和小数统称为有理数.错误.故答案为:正确;错误;错误.25.(16分)(1)已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,若(x+y﹣2)2+|xy+1|=0,求3A﹣2(A+B)的值.(2)已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|.【解答】解:(1)∵(x+y﹣2)2+|xy+1|=0,∴x+y﹣2=0,xy+1=0,∴x+y=2,xy=﹣1,∵A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,∴3A﹣2(A+B)=3A﹣2A﹣2B=A﹣2B=2x2﹣x+y﹣4xy﹣2(x2﹣2x﹣y﹣xy+3)=2x2﹣x+y﹣4xy﹣2x2+4x+2y+2xy﹣6=3x+3y﹣2xy﹣6=3(x+y)﹣2xy﹣6=3×2﹣2×(﹣1)﹣6=6+2﹣6=2;(2)∵c<0<a,ab<0,|c|>|a|>|b|,∴b<0,c﹣a<0,a+b>0,b﹣c>0,∴|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|=﹣b﹣2(a﹣c)﹣(a+b)+b﹣c=﹣b﹣2a+2c﹣a﹣b+b﹣c=﹣b﹣3a+c.26.(20分)【问题背景】我们知道|x|的几何意义是:在数轴上数x对应的点到原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在数轴上,点A,B的位置如图1所示,AB=|1﹣(﹣2)|=3.【问题解决】(1)|2﹣(﹣3)|的几何意义是 点2与点﹣3之间的距离 .(2)如果点C为数轴上一点,它所表示的数为x,点D在数轴上表示的数为﹣2,那么CD = (用含x的代数式表示).【关联运用】(1)运用一:代数式|x+1|+|x+4|的最小值为 3 .(2)运用二:代数式|x﹣2|﹣|x+14|的最大值为 16 .(3)运用三:已知|x﹣1|+|x+3|=10,则x的值为 4或﹣6 .(4)运用四:如图2所示,点E,F,G是数轴上的三点,E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,点E,F,G开始在数轴上运动,若点E以每秒2个单位长度的速度向左运动,同时,点F和点G分别以每秒3个单位长度和1个单位长度的速度向右运动,假设t秒后,若点E与点F之间的距离表示为EF,点E与点G之间的距离表示为EG,点F与点G之间的距离表示为FG.4秒后,若mFG﹣3EF的值是一个定值,试确定m的值.【解答】解:【问题解决】(1)|2﹣(﹣3)|的几何意义是点2与点﹣3之间的距离,故答案为:点2与点﹣3之间的距离;(2)C表示的数为x,点D在数轴上表示的数为﹣2,则x与﹣2之间的距离CD=,故答案为:;【关联运用】(1)运用一:代数式|x+1|+|x+4|表示点x与﹣1的距离与点x与点﹣4距离的和,当x<﹣4时,|x+1|+|x+4|=﹣x﹣1﹣x﹣4=﹣2x﹣5>3,当﹣4≤x≤﹣1时,|x+1|+|x+4|=﹣x﹣1+4+x=3,当x>﹣1时,|x+1|+|x+4|=x+1+4+x=5+2x>3,综上所述:当﹣4≤x≤﹣1时,|x+1|+|x+4|取最小值为3,故答案为:3;(2)运用二:|x﹣2|﹣|x+14|表示点x与2的距离与点x与点﹣14距离的差,当x≤﹣14时,|x﹣2|﹣|x+14|=2﹣x+x+14=16;当﹣14<x<2时,|x﹣2|﹣|x+14|=2﹣x﹣(x+14)=﹣12﹣2x此时﹣16<﹣12﹣2x<16;当x≥2时,|x﹣2|﹣|x+14|=x﹣2﹣(x+14)=﹣16;综上所述:当x≤﹣14时,代数式|x﹣2|﹣|x+14|取最大值为16;故答案为:16;(3)运用三:由(1)知当﹣3≤x≤1时|x﹣1|+|x+3|取最小值4,∴|x﹣1|+|x+3|=10时,x<﹣3或x>1,故当x<﹣3时不,则1﹣x﹣x﹣3=10,解得:x=﹣6,当x>1时,x﹣1+x+3=10,解得:x=4,故答案为:4或﹣6;(4)运用四:∵E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,∴根据题意可得:t s时,E点表示数是﹣5﹣2t,F点表示数是﹣2+3t,G点表示数是6+t,由已知可知F点始终在E点右侧,故EF=﹣2+3t﹣(﹣5﹣2t)=3+5t而FG==,当mFG﹣3EF的值是一个定值时则m﹣3(3+5t)为定值,当8﹣2t≥0时,即t≤4时m﹣3(3+5t)=m(8﹣2t)﹣9﹣15t=8m﹣9﹣(2m+15)t,∴2m+15=0,解得m=﹣7.5,此时定值为8m﹣9=﹣69;当8﹣2t<0时,即t>4时m﹣3(3+5t)=﹣8m+2mt﹣9﹣15t=﹣8m﹣9+(2m﹣15)t,∴2m﹣15=0,解得:m=7.5,此时定值为﹣8m﹣9=﹣69;综上所述:mFG﹣3EF的值是一个定值时,m的值为±7.5.。
重庆市江北区第十八中学2023—2024学年七年级上学期期中数学试题(含解析)
2023-2024学年重庆十八中七年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)﹣2023的相反数是( )A.B.﹣2023C.D.20232.(4分)下列各对数中,数值相等的是( )A.﹣23与(﹣2)3B.﹣32与(﹣3)2C.(﹣1)2023与(﹣1)2024D.(﹣2)3与(﹣3)23.(4分)下列说法正确的是( )A.带负号的数一定是负数B.是二次三项式C.单项式﹣2x2y的次数是3D.单项式与单项式的和一定是多项式4.(4分)“中国梦”成为2013年人们津津乐道的话题,小明在“百度”搜索“中国梦”,找到相关结果约为46800000,数据46800000用科学记数法表示为( )A.468×105B.4.68×105C.4.68×107D.0.468×1085.(4分)下列式子:①a2b+ab﹣b2;②0;③;④;⑤;⑥,多项式的个数是( )A.1个B.2个C.3个D.4个6.(4分)已知a、b、c在数轴上位置如图:则代数式|a+b|+|c﹣a|﹣|b﹣c|的值等于( )A.﹣2a B.2c C.2a﹣2b D.07.(4分)如图所示的运算程序中,如果开始输入的x值为﹣48,我们发现第1次输出的结果为﹣24,第2次输出的结果为﹣12,……,第2023次输出的结果为( )A.﹣3B.﹣6C.﹣12D.﹣248.(4分)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2023,则m的值是( )A.46B.45C.44D.439.(4分)如图,矩形ABCD长为a,宽为b,若S1=S2=(S3+S4),则S4等于( )A.ab B.ab C.ab D.ab10.(4分)若有两个整式A=4x3﹣3x2+8=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3;B=x2+bx+c,下列结论中,正确的有( )①当A+B为关于x的三次三项式时,则c=﹣8;②a1+a2+a3=19;③若x=2m或m﹣2时,无论b和c取何值,B值总相等,则m=﹣2.A.0B.1C.2D.3二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)已知:(a+2)2+|b﹣1|=0,则(a+b)2023= .12.(4分)若单项式﹣4x3y3n﹣5与x2m﹣3y是同类项,则m+n= .13.(4分)体育课上全班女生进行百米测验,达标最高成绩为18秒,下面是第一小组8名女生的成绩记录(其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标):﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6.则此小组达标率是 .14.(4分)已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a﹣b)千米/时,则顺流速度为 千米/时.15.(4分)对于有理数a,b,定义一种新运算,规定a☆b=a2﹣|b|,则(﹣4)☆(﹣6)= .16.(4分)如图是一个宫格图,图中实线划分的区域是一个宫,共有4个宫,每一宫又被虚线分为四个小格.根据图中已经给的提示数字,在其他的空格上填入数字﹣1,﹣2,﹣3,﹣4.使﹣1,﹣2,﹣3,﹣4每个数字在每一行、每一列和每一宫中都只出现一次.则图中点A位置所填的数字为 .17.(4分)已知:,且abc>0,a+b+c=0,则m共有x 个不同的值,若在这些不同的m值中,最小的值为y,则x﹣y= .18.(4分)若一个三位正整数m=(各个数位上的数字均不为0),若满足满足a+b+c=9,则称这个三位正整数为“合九数”.对于一个“合九数”m,将它的十位数字和个位数字交换以后得到新数n;记,则F(234)= ,对于一个“合九数”m,若F(m)能被8整除,则满足条件的“合九数”m的最大值是 .三、解答题(本大题共8个小题,19题8分,20-26每小题8分,共78分)19.(8分)计算:(1);(2)﹣12+16÷(﹣2)3×(﹣3﹣1).20.(10分)计算:(1)2x﹣(3x2﹣2)+2(x+2x2)+1;(2)3mn2+m2n﹣2(2n2m﹣nm2).21.(10分)已知:|a|=5,|b|=3,c2=81,且|a+b|=a+b,|a+c|=﹣(a+c),求4a﹣b+2c 的值?22.(10分)如果关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x 所取的值无关,试化简代数式,再求值.23.(10分)某超市在双十一期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元八折优惠500元或超过500元其中500元部分给予八折优惠,超过500元部分给予七折优惠(1)若王老师一次性购物600元,他实际付款 元.若王老师实际付款160元,那么王老师一次性购物可能是 元;(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款 元,当x大于或等于500元时,他实际付款 元(用含x的代数式表示并化简);(3)如果王老师有两天去超市购物原价合计900元,第一天购物的原价为a元(200<a<300),用含a的代数式表示这两天购物王老师实际一共付款多少元?当a=250元时,王老师两天一共节省了多少元?24.(10分)观察下列等式:,,.将以上三个等式两边分别相加得:.(1)猜想并写出:= .(2)直接写出下列各式的计算结果:①= .②= .(3)探究并计算,请写出计算过程:.25.(10分)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,数轴上表示数a的点与表示数b的点距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x= ;若|x﹣2|=|x+1|,则x= ;(2)若|x﹣2|+|x+1|=3,则x能取到的最小值是 ,最大值是 ;(3)当|x﹣2|+|x+1|+|x+3|取最小值时,则x的值为 ;(4)|x﹣2||x+1|的最小值为 ;(5)若|x﹣2|+|x+1|=9,求x的值.26.(10分)如图,已知:数轴上点A表示的为8,B是数轴上一点,点B在点A左边且点A与点B的距离AB=14,动点P、Q分别从点A、B两点同时向左移动,点P的速度为每秒3个单位长度,点Q的速度为每秒1个单位长度.(1)写出数轴上点B表示的数 ;(2)经过多少秒以后,P、Q两点的距离为6个单位长度,并求出此时点P表示的数是多少?(3)若点M为PQ中点,N为QA中点,是否存在常数k使得k⋅BM﹣AN的值为定值,若存在,求出k的值,若不存在,请说明理由.2023-2024学年重庆十八中七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)﹣2023的相反数是( )A.B.﹣2023C.D.2023【解答】解:﹣2023的相反数为2023.故选:D.2.(4分)下列各对数中,数值相等的是( )A.﹣23与(﹣2)3B.﹣32与(﹣3)2C.(﹣1)2023与(﹣1)2024D.(﹣2)3与(﹣3)2【解答】解:∵﹣23=﹣8,(﹣2)3=﹣8,∴﹣23=(﹣2)3,∴A符合题意;∵﹣32=﹣9,(﹣3)2=9,∴﹣32≠(﹣3)2,∴B不符合题意;∵(﹣1)2023=﹣1,(﹣1)2024=1,∴(﹣1)2023≠(﹣1)2024,∴C不符合题意;∵(﹣2)3=﹣8,(﹣3)2=9,∴(﹣2)3≠(﹣3)2,∴D不符合题意.故选:A.3.(4分)下列说法正确的是( )A.带负号的数一定是负数B.是二次三项式C.单项式﹣2x2y的次数是3D.单项式与单项式的和一定是多项式【解答】解:A、﹣(﹣5)=5,是正数,原说法错误,故选项不符合题意;B、x2+2+是分式,不是整式,原说法错误,故选项不符合题意;C、单项式﹣2x2y的次数是3,说法正确,故选项符合题意;D、﹣2x+2x=0是单项式,原说法错误,故选项不符合题意.故选:C.4.(4分)“中国梦”成为2013年人们津津乐道的话题,小明在“百度”搜索“中国梦”,找到相关结果约为46800000,数据46800000用科学记数法表示为( )A.468×105B.4.68×105C.4.68×107D.0.468×108【解答】解:46 800 000=4.68×107.故选:C.5.(4分)下列式子:①a2b+ab﹣b2;②0;③;④;⑤;⑥,多项式的个数是( )A.1个B.2个C.3个D.4个【解答】解:根据多项式的定义可知:①a2b+ab﹣b2是多项式;②0是单项式;③是单项式;④是分式;⑤是多项式;⑥是分式,故多项式的个数是2个.故选:B.6.(4分)已知a、b、c在数轴上位置如图:则代数式|a+b|+|c﹣a|﹣|b﹣c|的值等于( )A.﹣2a B.2c C.2a﹣2b D.0【解答】解:由数轴知:a+b<0,c﹣a>0,b﹣c<0,∴|a+b|+|c﹣a|﹣|b﹣c|=﹣(a+b)+c﹣a+b﹣c=﹣a﹣b﹣a+b=﹣2a.故选:A.7.(4分)如图所示的运算程序中,如果开始输入的x值为﹣48,我们发现第1次输出的结果为﹣24,第2次输出的结果为﹣12,……,第2023次输出的结果为( )A.﹣3B.﹣6C.﹣12D.﹣24【解答】解:由题意可知,第一次输出结果为:,第二次输出结果为:,第三次输出结果为:,第四次输出结果为:,第五次输出结果为:﹣3﹣3=﹣6,第六次输出结果为:,第七次输出结果为:﹣3﹣3=﹣6,……观察可知,从第三次开始,输出结果按﹣6和﹣3依次循环,∵(2023﹣2)÷2=1010……1,∴第2023次输出的结果为﹣6,故选:B.8.(4分)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2023,则m的值是( )A.46B.45C.44D.43【解答】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,从23到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=2023,n=1011,∴奇数2023是从3开始的第1011个奇数,∵=989,=1034,∴第1011个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:B.9.(4分)如图,矩形ABCD长为a,宽为b,若S1=S2=(S3+S4),则S4等于( )A.ab B.ab C.ab D.ab【解答】解:∵S1=S2=(S3+S4),∴2S1=2S2=S3+S4,∵S1+S2+S3+S4=ab,∴S1=S2=ab,S3+S4=ab,连接DB,如图所示,则S△DCB=S△DAB=ab,∴==,∴CF=BC,同理可得,AE=AB,∴BF=b,BE=a,∴S3==ab,∴S4=(S3+S4)﹣S3=ab﹣ab=ab,故选:B.10.(4分)若有两个整式A=4x3﹣3x2+8=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3;B=x2+bx+c,下列结论中,正确的有( )①当A+B为关于x的三次三项式时,则c=﹣8;②a1+a2+a3=19;③若x=2m或m﹣2时,无论b和c取何值,B值总相等,则m=﹣2.A.0B.1C.2D.3【解答】解:A+B=4x3﹣3x2+8+x2+bx+c=4x3﹣2x2+bx+c+8,当A+B为关于x的三次三项式时,b=0,c+8≠0或b≠0,c+8=0,∴b=0,c≠﹣8或b≠0,c=﹣8;故①错误;在4x3﹣3x2+8=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3中,令x=1得:4×13﹣3×12+8=a0,,∴a0=9;在4x3﹣3x2+8=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3中,令x=2得:4×23﹣3×22+8=a0+a1+a2+a3,∴a0+a1+a2+a3=28;∴a1+a2+a3=19;故②正确;∵(2m)2+2mb+c=(m﹣2)2+(m﹣2)b+c,∴3m2+4m+(m+2)b﹣4=0,∵x=2m或m﹣2时,无论b和c取何值,B值总相等,∴m+2=0,∴m=﹣2,故③正确;∴正确的有②③,共2个;故选:C.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)已知:(a+2)2+|b﹣1|=0,则(a+b)2023= ﹣1 .【解答】解:根据题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,所以,(a+b)2023=(﹣2+1)2023=﹣1.故答案为:﹣1.12.(4分)若单项式﹣4x3y3n﹣5与x2m﹣3y是同类项,则m+n= 5 .【解答】解:∵单项式﹣4x3y3n﹣5与x2m﹣3y是同类项,∴2m﹣3=3,3n﹣5=1,∴m=3,n=2,∴m+n=3+2=5.故答案为:5.13.(4分)体育课上全班女生进行百米测验,达标最高成绩为18秒,下面是第一小组8名女生的成绩记录(其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标):﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6.则此小组达标率是 75% .【解答】解:由题意可得达标的为﹣1,0,﹣1.2,﹣0.1,0,﹣0.6共6人,则此小组达标率是×100%=75%,故答案为:75%.14.(4分)已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a﹣b)千米/时,则顺流速度为 3b 千米/时.【解答】解:依题意有(a+b)+[(a+b)﹣(2a﹣b)]=a+b+[a+b﹣2a+b]=a+b+a+b﹣2a+b=3b(千米/时).故顺流速度为3b千米/时.故答案为:3b.15.(4分)对于有理数a,b,定义一种新运算,规定a☆b=a2﹣|b|,则(﹣4)☆(﹣6)= 10 .【解答】解:(﹣4)☆(﹣6)=(﹣4)2﹣|﹣6|=16﹣6=10故答案为:10.16.(4分)如图是一个宫格图,图中实线划分的区域是一个宫,共有4个宫,每一宫又被虚线分为四个小格.根据图中已经给的提示数字,在其他的空格上填入数字﹣1,﹣2,﹣3,﹣4.使﹣1,﹣2,﹣3,﹣4每个数字在每一行、每一列和每一宫中都只出现一次.则图中点A位置所填的数字为 ﹣2 .【解答】解:∵﹣1,﹣2,﹣3,﹣4每个数字在每一行、每一列和每一宫中都只出现一次,∴第一列中间两个只能是﹣1,﹣3,∵在第二行已经出现﹣3,∴第一列第二行只能填﹣1,∴第一列第三行填﹣3.∵第四行中间两个只能填﹣2,﹣3,∵﹣3在第二列已经出现,∴第四行第二列只能填﹣2,∴第四行第三列填﹣3.∵第二列的两个空格只能填﹣1,﹣4,∵﹣4在第三行已经出现,∴第三行第二列只能填﹣1,∴第一行第二列只能填﹣4.∵第三列两个空格只能填﹣2,﹣1,∵﹣2在第一行已经出现,∴第三列第一行只能填﹣1,∴A处填﹣2.故答案为:﹣2.17.(4分)已知:,且abc>0,a+b+c=0,则m共有x个不同的值,若在这些不同的m值中,最小的值为y,则x﹣y= 7 .【解答】解:∵abc>0,a+b+c=0,∴a、b、c中有两个负数,一个正数,因此有三种情况,即①a、b为负,c为正,②a、c为负,b为正,③b、c为负,a为正,∵a+b+c=0,∴a+b=﹣c,a+c=﹣b,b+c=﹣a,∴m=++=++,①当a、b为负,c为正时,m=1﹣2﹣3=﹣4,②当a、c为负,b为正时,m=﹣1﹣2+3=0,③当b、c为负,a为正时,m=﹣1+2﹣3=﹣2,又∵m共有x个不同的值,若在这些不同的m值中,最小的值为y,∴x=3,y=﹣4,∴x+y=3﹣(﹣4)=7,故答案为:7.18.(4分)若一个三位正整数m=(各个数位上的数字均不为0),若满足满足a+b+c=9,则称这个三位正整数为“合九数”.对于一个“合九数”m,将它的十位数字和个位数字交换以后得到新数n;记,则F(234)= 53 ,对于一个“合九数”m,若F(m)能被8整除,则满足条件的“合九数”m的最大值是 32 .【解答】解:由题意得,当m=234时,2+3+4=9,∴m是合九数.∵将它的十位上的数字和个位上的数字交换以后得到新数n,∴n=243.∴m+n=234+243=477.∴F(234)===53.由题意,设任意一个“合九数”m=100a+10b+c,∴n=100a+10c+b.∴m+n=200a+11b+11c.∴F(m)=(200a+11b+11c).又a+b+c=9,∴F(m)=21a+11.又a+b+c=9,∴1≤a≤7.∴a=1,2,3,4,5,6,7.又F(m)能被8整除,∴a=1,此时F(m)=32.∴满足题意的“合九数”m的最大值是171.故答案为:53;171.三、解答题(本大题共8个小题,19题8分,20-26每小题8分,共78分)19.(8分)计算:(1);(2)﹣12+16÷(﹣2)3×(﹣3﹣1).【解答】解:(1)=×(﹣36)﹣×(﹣36)+×(﹣36)﹣×(﹣36)+9=﹣18+20+(﹣30)+21+9=2;(2)﹣12+16÷(﹣2)3×(﹣3﹣1)=﹣1+16÷(﹣8)×(﹣4)=﹣1+(﹣2)×(﹣4)=﹣1+8=7.20.(10分)计算:(1)2x﹣(3x2﹣2)+2(x+2x2)+1;(2)3mn2+m2n﹣2(2n2m﹣nm2).【解答】解:(1)2x﹣(3x2﹣2)+2(x+2x2)+1=2x﹣3x2+2+2x+4x2+1=x2+4x+3;(2)3mn2+m2n﹣2(2n2m﹣nm2)=3mn2+m2n﹣4mn2+2m2n=3m2n﹣mn2.21.(10分)已知:|a|=5,|b|=3,c2=81,且|a+b|=a+b,|a+c|=﹣(a+c),求4a﹣b+2c 的值?【解答】解:∵|a|=5,|b|=3,c2=81,∴a=±5,b=±3,c=±9,又∵|a+b|=a+b,|a+c|=﹣(a+c),∴a+b≥0,a+c≤0,∴a=5,b=±3,c=﹣9,当b=3时,4a﹣b+2c=4×5﹣×3+2×(﹣9)=20﹣1+(﹣18)=1;当b=﹣3时,4a﹣b+2c=4×5﹣×(﹣3)+2×(﹣9)=20+1+(﹣18)=3;由上可得,4a﹣b+2c的值是1或3.22.(10分)如果关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x 所取的值无关,试化简代数式,再求值.【解答】解:(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,∴2﹣2b=0,a+3=0,解得:b=1,a=﹣3,==;当b=1,a=﹣3时,原式=.23.(10分)某超市在双十一期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元八折优惠500元或超过500元其中500元部分给予八折优惠,超过500元部分给予七折优惠(1)若王老师一次性购物600元,他实际付款 470 元.若王老师实际付款160元,那么王老师一次性购物可能是 160或200 元;(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款 0.8x 元,当x大于或等于500元时,他实际付款 (0.7x+50) 元(用含x的代数式表示并化简);(3)如果王老师有两天去超市购物原价合计900元,第一天购物的原价为a元(200<a <300),用含a的代数式表示这两天购物王老师实际一共付款多少元?当a=250元时,王老师两天一共节省了多少元?【解答】解:(1)500×0.8+(600﹣500)×0.7=400+100×0.7=400+70=470(元);实际付款160元,有两种可能:一是一次性购物160元,没有优惠;二是一次性购物x元(x≥200),则有八折优惠,实际付款160元,则建立等式:x×0.8=160,解得:x=200.所以,王老师一次性购物可能是160或200元.故答案为:470;160或200;(2)当x小于500元但不小于200时,实际付款x×0.8=0.8x;当x大于或等于500元时,实际付款:500×0.8+(x﹣500)×0.7=400+(0.7x–350)=400+0.7x﹣350=(0.7x+50)元;故答案为:0.8x;(0.7x+50);(3)因为第一天购物原价为a元(200<a<300),则第二天购物原价为(900﹣a)元,易知:(900﹣a)>500,第一天购物优惠后实际付款a×0.8=0.8a(元),第二天购物优惠后实际付款:500×0.8+[(900﹣a)﹣500]×0.7=400+[900﹣a﹣500]×0.7=400+(400﹣a)×0.7=400+280﹣0.7a=(680﹣0.7a)元,则一共付款0.8a+680﹣0.7a=(0.1a+680)元,当a=250元时,实际一共付款:680+0.1×250=680+25=705(元),一共节省900﹣705=195(元).24.(10分)观察下列等式:,,.将以上三个等式两边分别相加得:.(1)猜想并写出:= .(2)直接写出下列各式的计算结果:①= .②= .(3)探究并计算,请写出计算过程:.【解答】解:(1)=﹣故答案为:﹣;(2)①=1﹣+﹣+﹣+…+﹣=;②=(﹣+﹣+﹣+…+﹣)=(﹣)=.(3)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=×=.25.(10分)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,数轴上表示数a的点与表示数b的点距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x= 0 ;若|x﹣2|=|x+1|,则x= ;(2)若|x﹣2|+|x+1|=3,则x能取到的最小值是 ﹣1 ,最大值是 2 ;(3)当|x﹣2|+|x+1|+|x+3|取最小值时,则x的值为 ﹣1 ;(4)|x﹣2||x+1|的最小值为 1 ;(5)若|x﹣2|+|x+1|=9,求x的值.【解答】解:(1)|x﹣1|=|x+1|表示数轴上表示x的点到表示1和﹣1的距离相等,因此到1和﹣1距离相等的点表示的数为=0,|x﹣2|=|x+1|表示数轴上表示x的点到表示2和﹣1的距离相等,因此到2和﹣1距离相等的点表示的数为=,故答案为:0,;(2)|x﹣2|+|x+1|=3表示的意义是数轴上表示x的点到表示2和﹣1两点的距离之和为3,可得﹣1≤x≤2,因此x的最大值为2,最小值为﹣1;故答案为:﹣1,2;(3))|x﹣2|+|x+1|+|x+3|表示的意义是数轴上表示数x的点与表示数2的点,表示数﹣1的点,表示数﹣3的点距离之和根据数轴直观可得,x=﹣1,|x﹣2|+|x+1|+|x+3|有最小值为5,故答案为:﹣1;(4)|x﹣2||x+1|=(3|x﹣2|+2|x+1|)=(|x﹣2|+|x﹣2|+|x﹣2|+|x+1|+|x+1|),根据绝对值几何意义,当x=2时,有最小值,最小值为=1,故|x﹣2||x+1|的最小值为:1;故答案为:1;(5)当x≤﹣1时,|x﹣2|+|x+1|=9,去绝对值为:2﹣x﹣x﹣1=9,∴x=﹣4;当﹣1<x≤2时,去绝对值为:2﹣x+x+1=9(不成立);当x>2时,去绝对值为:x﹣2+x+1=9,∴x=5,综上,x=﹣4或5.26.(10分)如图,已知:数轴上点A表示的为8,B是数轴上一点,点B在点A左边且点A与点B的距离AB=14,动点P、Q分别从点A、B两点同时向左移动,点P的速度为每秒3个单位长度,点Q的速度为每秒1个单位长度.(1)写出数轴上点B表示的数 ﹣6 ;(2)经过多少秒以后,P、Q两点的距离为6个单位长度,并求出此时点P表示的数是多少?(3)若点M为PQ中点,N为QA中点,是否存在常数k使得k⋅BM﹣AN的值为定值,若存在,求出k的值,若不存在,请说明理由.【解答】解:(1)数轴上点B表示的数是8﹣14=﹣6.故答案为:﹣6;(2)设经过x秒以后,P、Q两点的距离为6个单位长度,依题意有:①相遇前P、Q两点的距离为6个单位长度,(3﹣1)x=14﹣6,解得x=4,则点P表示的数是8﹣3×4=﹣4;②相遇后P、Q两点的距离为6个单位长度,(3﹣1)x=14+6,解得x=10.则点P表示的数是8﹣3×10=﹣22.答:经过4秒以后,P、Q两点的距离为6个单位长度,此时点P表示的数是﹣4;经过10秒以后,P、Q两点的距离为6个单位长度,此时点P表示的数是﹣22;(3)由题意点P时8﹣3t,点Q是﹣6﹣Tt,∵M为PQ中点,N为QA中点,∴点M是1﹣2t.点N是1﹣t,∴k⋅BM﹣AN=k•|﹣6﹣1+2t|﹣(8﹣1+t)=k•|﹣7+2t|﹣7﹣t,∴当K=±时,k⋅BM﹣AN的值为定值.。
初中七年级数学期中考试试题及答案
2020~2021学年度上学期期中阶段质量检测试题七年级数学2020.11注意事项:1.本试卷分第Ⅰ 卷(选择题)和第Ⅱ 卷(非选择题)两部分,共6页,满分100分,考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在答题纸规定的位置.考试结束后,将本试卷和答题纸一并交回.2.答题注意事项见答题纸,答在本试卷上不得分.第Ⅰ 卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡中.1.-12的相反数是A.2B.-2C.-12D.122.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是3.这段时间,一个叫“学习强国”的理论学习平台火了,很多人主动下载,积极打卡,兴起了一股全民学习的热潮.据不完全统计,截止4月2号,华为官方应用市场“ 学习强国APP”下载量已达8830万次,将8830万次用科学记数法表示为A.0.883× 109次B.8.83× 108次C.8.83× 107次D.88.3×106次4.下列说法中,正确的是狓+狔是单项式不是单项式A.2B.-5C.-π 狓2的系数为-1D.-π 狓2的次数为25.下列各式中,不是同类项的是A.-2019和2020B.犪和πC.-4狓3狔2和5狓3狔2D.犪2犫和-3犫犪26.若数轴上点犃表示的数是-3,则与点犃相距4个单位长度的点表示的数是A.±4B.±1C.-7或1D.-1或77.设狓,狔,犮是实数,下列说法正确的是A.若狓=狔,则狓犮=狔犮B.若狓=狔,则狓+犮=狔-犮C.若狓=狔,则狓=狔犮犮D.若狓=狔2犮3犮,则2狓=3狔8.下列去括号正确的是A.犪+(-3犫+2犮-犱)=犪-3犫+2犮-犱B.-(-狓2+狔2)=-狓2-狔2C.犪2-(2犪-犫+犮)=犪2-2犪-犫+犮D.犪-2(犫-犮)=犪+2犫-犮狓20219.若狓,狔满足|狓-3|+(狔+3)2=0则(狔)的值是A.1B.-1C.2019D.-201910.观察图中正方形四个顶点所标的数字规律,可知数2020应标在A.第505个正方形的左下角B.第505个正方形的右下角C.第506个正方形的右下角D.第506个正方形的左下角(第 Ⅱ 卷 ( 非 选 择 题 共 70 分 )注 意 事 项 :1 .第 Ⅱ 卷 分 填 空 题 和 解 答 题 .2 .第 Ⅱ 卷 所 有 题 目 的 答 案 ,考 生 须 用 0 .5 毫 米 黑 色 签 字 笔 答 在 答 题 纸 规 定 的 区 域 内 , 在 试 卷 上 答 题 不 得 分 .二 、填 空 题 (本 题 共 6 小 题 ,每 小 题 3 分 ,共 18 分 )11 . 已 知 多 项 式 - 3 2 犿 3 狀 2 + 2 犿 狀 2 - 12 , 它 是次 三 项 式 , 最 高 次 项 的 系 数 是, 常 数 项 为.12 . 如 果 | 狓 | = | - 5| , 那 么 狓 等 于.13 . 绝 对 值 大 于 4 且 小 于 7 的 所 有 整 数 之 和 是.14 . 已 知 关 于 狓 的 方 程 3 狓 - 2 犽 = 2 的 解 是 狓 = 2 , 则 犽 的 值 是 .15 . 一 个 两 位 数 , 个 位 数 字 为 犪 , 十 位 数 字 为 犫 , 把 这 个 两 位 数 的 个 位 数 字 与 十 位 数 字 交 换 ,得 到 新 的 两 位 数 , 则 新 数 比 原 数 大.16 . 若 犪 + 犫 = 2019 ,犮 + 犱 = 2 , 则 (犪 - 3 犮 )- (3 犱 - 犫 )= .三 、解 答 题 (本 大 题 共 7 小 题 ,共 52 分 )17 .(本 题 满 分 5 分 )在 数 轴 上 表 示 下 列 各 数 ,并 将 它 们 用 “> ”连 接 :(- 2 )2 , - (+ 5 ) , - - 1 12) , 0 ,- | - 3 .5| .18 .(本 题 满 分 10 分 )计 算 : (1 )- 1 2 - (1 - 0 .5 )÷ 1 5× 2 ;(2 )- 11 × - 22 + 19 × - 22+ 6 × -22.( 7 ) ( 7 ) ( 7 )19.(本题满分6分)先化简,再求值:-1(狓狔-狓2)+3狔2-1狓2+21狓狔-1狔2,其中狓=2,狔=1.2(2)(42)220.(本题满分6分)临沂兰山区李官镇的黄桃闻名全国.现有20筐黄桃,以每筐25千克为标准,超过或不足的千克数分别用正数或负数来表示,记录如下:(1)与标准重量比较,20筐黄桃总计超过或不足多少千克?(2)若黄桃每千克售价4元,则这20筐可卖多少元?如图所示,池塘边有块长为20米,宽为10米的长方形土地,现在将其余三面留出宽都是狓米的小路,中间余下的长方形部分做菜地.(1)用含狓的式子表示菜地的周长;(2)求当狓=1米时,菜地的周长.22.(本题满分9分)某工厂第一车间有狓人,第二车间比第一车间人数的2少30人,如果从第二车间调3出10人到第一车间,那么(1)两个车间共有人;(2)调动后,第一车间的人数为人,第二车间的人数为人;(3)求调动后,第一车间的人数比第二车间的人数多几人?(要求:答案用含有狓的代数式表示)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款;现某客户要到该卖场购买微波炉10台,电磁炉狓台(狓>10).(1)若该客户按方案一、方案二购买,分别需付款多少元(用含狓的式子表示)?(2)若狓=30,通过计算说明此时哪种方案购买较为合算?(3)当狓=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?(2020 ~ 2021 学 年 度 上 学 期 期 中 阶 段 质 量 检 测 试 题七年级数学参考答案及评分标准2020. 11一 、选 择 题 (每 小 题 3 分 ,共 30 分 )1 .D 2 .A 3 .C 4 .D 5 .B 6 .C 7 .A 8 .A 9 .B 10 .A 二 、填 空 题 (每 小 题 3 分 ,共 18 分 ) 11 .五- 9 - 1212 .± 5 13 .0 14 .2 15 .9 犪 - 9犫 16 .2013三 、 解 答 题 ( 共 52 分 )17 .………………………… 3 分(- 2 )2 > - - 1 12)> 0 > - | - 3 .5| > - (+ 5 ). …………………………… 5 分 18 .(1 )- 1 2 - (1 - 0 .5 )÷ 1× 25= - 1 - 12 = - 1 - 12× 5 × 2 × 5 × 2 ………………………………………………………………… 2 分………………………………………………………………… 3 分= - 1 - 5 = - 6 ; ………………………………………………………………………… 4 分 …………………………………………………………………………… 5 分 (2 )- 11 × - 22 + 19 × - 22 + 6 × - 22( 7 )( 7 ) ( 7 ) = [(- 11 )+ 19 + 6 ]× - 22 ………………………………………………… 2 分 ( 7 ) = 14 × - 22…………………………………………………………………… 4 分( 7 )= - 44 . …………………………………………………………………………… 5 分19 . 解 : 原 式 = - 1 狓 狔 + 1 狓 2 + 3 狔 2 - 3 狓 2 + 1狓 狔 - 狔 22 2 2 2 = - 狓 2 + 2 狔 2. ……………………………………………………………… 3 分当 狓 = - 2 ,狔 = 1 , 2原 式 = - 4 + 2 × 1 4 = - 4 + 1 2= - 3 .5 . ………………………………………… 6 分20 .解 :(1 )1 × (- 3 )+ 4 × (- 2 )+ 2 × (- 1 .5 )+ 3 × 0 + 2 × 1 + 8 × 2 .5= - 3 - 8 - 3 + 2 + 20 = 8 (千 克 ). …………………………………………… 2 分(答:20筐南果梨总计超过8千克.……………………………………………3分(2)4× (25× 20+8)=2032(元).……………………………………………… 5分答:这20筐南果梨可卖2032元.…………………………………………… 6分21.解:(1)设菜地的长犪m,菜地的宽犫m,菜地的长犪=(20-2狓)m,菜地的宽犫=(10-狓)m,…………………………………………………… 2分所以菜地的周长为2(20-2狓+10-狓)=(60-6狓)m.…………………… 4分(2)当狓=1时,菜地的周长犆=60-6× 1=54(m).………………………… 6分22.(1)5狓狓-30);……………………………………………………………………… 2分(2)(狓+10);2狓-40;…………………………………………………………… 6分(3)(3)根据题意可得:(狓+10)-2狓-40=1狓+50,(3)3则调动后,第一车间的人数比第二车间的人数多1狓+50人.…………… 9分(3)23.(1)方案一:800× 10+200(狓-10)=200狓+6000(元),方案二:(800× 10+200狓)× 90%=180狓+7200(元);………………………… 4分(2)当狓=30时,方案一:200× 30+6000=12000(元),方案二:180× 30+7200=12600(元),………………………………………… 6分所以,按方案一购买较合算.…………………………………………………… 7分(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台微波炉,共10×800+200×20×90%=11600(元).……………………………………10分。
七年级上册数学期中考试试卷含答案
七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。
七年级期中考试数学试卷及答案
ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
七年级数学期中考试试题及答案
七年级数学期中考试试题及答案姓名: 班级:一、 选择题(每小题3分,共30分)1、下列方程中,是一元一次方程的是( )A 、;342=-x x B 、;0=x C 、;12=+y x D 、.11xx =- 2、方程042=-+a x 的解是2-=x ,则a 等于( ) A 、;8- B 、;0 C 、;2 D 、.83、解方程2631x x =+-,去分母,得( ) A 、;331x x =--B 、;336x x =--C 、;336x x =+-D 、.331x x =+- 4、21=x是方程23)2(6+=+m m x 的解,求关于y 的方程)21(2y m my -=+的解为:( ) A 、61=y B 、65=y C 、 65-=y D 、无法确定5、下列方程变形中,正确的是( )A 、方程1223+=-x x ,移项,得;2123+-=-x x B 、方程()1523--=-x x,去括号,得;1523--=-x x C 、方程2332=t ,未知数系数化为1,得;1=x D 、方程15.02.01=--x x 化成.63=x 6、若方程432+=-x ymx 是二元一次方程,则m 满足 ( ) A 、0≠m B 、2-≠m C 、3≠m D 、4≠m7、已知-4x m+n y m-n 与23x 7-m y n+1是同类项,则m ,n 的值为( ). A 、m=-1,n=-7 B 、m=3,n=1 C 、m=2910,n=65 D 、m=54,n=-2 8、力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )A 、;323x x -=B 、();3253x x -=C 、();3235x x -=D 、.326x x -=9、根据“x 的3倍与-5的绝对值的差等于2”的数量关系可得方程( )A 、2)5(3=--xB 、253=--xC 、253=--xD 、253=-x10、在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了%10,乙班比去年多种了%12,结果甲班比乙班还是多种100树棵.设甲班去年植树x 棵,乙去年植树y 棵,则下列方程组中正确的是 ( )A 、 100%12%10100=-=-y x y xB 、 100%10%12100=-=-y x y xC 、 100%110%112100=-=-y x y xD 、 100%112%110100=-=-y x y x 二、填空题(每题3分,共24分)11、1230a a )x -+-=(是一元一次方程,则a=_____________. 12、当=x 时,代数式24+x 与93-x 的值互为相反数.13、的值是的解,那么是方程如果a x x a x 53)2(4-=-= . 14、已知方程0353=-+y x ,用含x 的代数式表示y 的式子是_________________;当35=x 时,._______________=y15、若()02122=-+-+y x y x ,则22y xy x ++的值为_____________________. 16、方程3x+y=8的正整数解是_______.17、若方程组342,312,25210x y ax by x y ax by +=-=⎧⎧⎨⎨-=+=⎩⎩与方程组有相同的解,则a=_____,b=______. 18、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是 元.三、解答题(共66分)19、解方程(4×5分)(1)()()x x2152831--=-- (2)3.04.05233.12.188.1-=---x x x(3) 12131222131=-+-=-++y x y x (4) .0522;54;22=--=+-=++z y x z y x z y x20、(6分)已知21=x 是方程32142m x m x -=--的解,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值.21、(6分)若方程组322,543x y k x y k +=⎧⎨+=+⎩的解之和为x+y=-5,求k 的值,并解此方程组.22、(6分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?23、(8分)某牛奶加工厂现有鲜奶9t ,若在市场上直接销售鲜奶,每吨可获利润500元,制成酸奶销售,每吨可获利润1200元;制成奶片销售每吨可获利润2000元。
人教版七年级上册数学期中考试试卷含答案
人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。
山东省聊城市东昌府区2023-2024学年七年级上学期期中数学试题(含答案)
2023-2024学年度第一学期期中学业水平检测七年级数学试题(时间:120分钟;满分:120分)一、选择题(本题共12个小题,每小题3分,共36分。
在每个小题列出的选项中,选出符合题目要求的一项)1.我国古代数学著作《九章算术》中首次正式引入负数,如果支出200元,记作元,那么收入60元,记作()A .元B .元C .140元D .元2.下列哪一个数是-3的相反数()A .3B .C .D.3.绝对值小于3的整数有()个A .2个B .3个C .4个D .5个4.现有一个如图所示的正方体,它的展开图可能是()第4题图A B CD5.在,1,,0这四个数中,最小的数是()A .1B .C .D .06.下列结论中,正确的有()①符号相反且绝对值相等的两个数是互为相反数;②一个数的绝对值越大,在数轴上表示它的点离原点越远;③两个负数,绝对值大的负数反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。
A .2个B .3个C .4个D .5个7.下列生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有()①用两颗钉子就可以把木条固定在墙上;200-60-60+140-3-13-132- 3.14- 3.14-2-②植树时,只要栽下两棵树,就可以把同一行树栽在同一直线上;③从A 到B 架设电线,总是尽可能沿线段AB 架设;④把弯曲的公路改直,就能缩短路程。
A .①②B .①③C .②④D .③④8.在数学课上,老师让甲、乙,丙、丁四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:乙:丙:丁:A .甲B .乙C .丙D .丁9.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是()A .调查方式是普查B .该校只有360个家长持反对态度C .样本是360个家长D .该校约有90%的家长持反对态度10.如图,线段AB =10cm ,点C 为线段AB 上一点,BC =3cm ,点D ,E 分别为AC 和AB 的中点,则线段DE的长为()A .0.5B .1C .1.5D .211.用“☆”定义一种新运算:对于任意有理数a 和b ,规定.如:。
2023-2024学年度第一学期七年级数学(冀教版)期中试卷附详细答案
2023-2024学年度第一学期期中质量检测七年级数学试卷(冀教版)温馨提示:1.本试题满分120分.考试时间90分钟.2.答卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、细心选一选(在每题所给出的四个选项中,只有一项是符合题意的.每小题3分,共48分)1.( )的相反数是−5A.−5B.5C.15 D.−152.一种食品包装袋上标着:净含量200g(±3g),表示这种食品的标准质量是200g,这种食品净含量最少( )g为合格A.200B.198C.197D.1963.下列各数中,绝对值最小的是( )A.−2B.3C.0D.−34.如图,数轴上的两个点分别表示数a和−2,则a可以是( )A.−3B.−1C.1D.25.计算−3−1的结果是( )A.−4B.−2C.4D.26.若∠α与∠β互余,∠α=72°30´,则∠β的大小是( )A.17°30´B.18°30´C.107°30´D.108°30´7.如图,AB=CD,那么AC与BD的大小关系是( )A.AC=BDB.AC <BDC.AC >BDD.不能确定8.如图,下列几何语句不正确的是( )A.直线AB 与直线BA 是同一条直线B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线D.线段AB 与线段BA 是同一条线段9.若∠1与∠2互补,∠2与∠3互补,则∠1与∠3的关系满足( )A.∠1−∠3=90°B.∠1+∠3=90°C.∠1+∠3=180°D.∠1=∠310.如图,将△AOB 绕着点O 顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=15°,则旋转角度是( )A.15°B.25°C.40°D.55°11.下列各对数中,互为相反数的是( )A.−(−2)和2B.+(−3)和−(+3)C.12和−2D.−(−5)和−|+5| 12.如图,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠COD=25°,则∠AOB 等于( )A.50°B.75°C.100°D.120°A B CD O AD C OBA B O A C B D13.若1÷2×(−6)□9=6,请推算□内的符号应是( )A.+B.−C.×D.÷14.已知a ,b 都是实数,若(a+2)2+|b −1|=0,则(a+b)2023的值是( )A.−2023B.−1C.1D.202315.已知本学期某学校下午上课的时间为14时20分,则此时刻钟表上的时针与分针的夹角为( )度.A.40°B.50°C.60°D.70°16.如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若FH 平分∠BFE,则∠GFH 的度数α是( )A.90°<α<180°B.0°<α<90°C.α=90°D.α随折痕GF 位置的变化而变化二、细心填一填(请把结果直接填在题中的横线上,相信自己一定会填对的!共12分)17. −5的倒数是__________.18.比较大小:−35_______−34(填“<”或“>”). 19.对于有理数a 、b ,定义一种新运算,规定a ☆b=a 2−|b|,则3☆(−2)=________.20.如图,已知∠COD=∠AOB=75°,当∠COD 绕着点O 旋转且OC 在∠AOB 内部时,∠AOD+∠BOC=_________. A B DC F H EG三、耐心解一解21.试试你的基本功(每题7分,共14分)(1)(−16+712−38)×24; (2) −22−[(−3)×(−43) −(−2)3] 四、用心答一答(只要你认真探索,善于思考,一定会获得成功!本题共46分)22.(本题共8分)如图,点B 是线段AC 上一点,且AB=20,BC=8.(1)图中共有_____条线段.(2)试求出线段AC 的长.(3)如果点O 是线段AC 的中点.请求线段OB 的长.23.(本题共8分)质量检测部门从某洗衣粉厂9月份生产的洗衣粉中抽出了8袋进行检测,每袋洗衣粉的标准重量是450克,超过标准重量的部分用“+”记录,不足标准重量的部分用“−”记录,记录如下:−6,−3,−2,0,+1,+4,+5,−1.(1)通过计算,求出8袋洗衣粉总计超过或不足多少克?这8袋洗衣粉的总重量是多少克?(2)厂家规定超过或不足的部分大于4克时,不能出厂销售,若每袋洗衣粉的定价为3元,请计算这8袋洗衣粉中合格品的销售总金额为多少元?24.(本题共8分)C B AO A CBO D如图,已知∠AOB=120°,OC 是∠AOB 内的一条射线,且∠AOC︰∠BOC=1︰2.(1)求∠AOC 的度数.(2)过点0作射线OD ,若∠AOD=12∠A0B ,求∠COD 的度数.(画出草图即可)25.(本题10分)【问题情境】利用旋转开展数学活动,探究体会角在旋转过程中的变化.【操作发现】如图①,∠AOB=∠COD=90°且两个角重合.(1)将∠COD 绕着顶点O 顺时针旋转45°如图②,此时OB 平分∠____;∠BOC 的余角有________个(本身除外),分别是________________.【实践探究】(2)将∠COD 绕着顶点O 顺时针继续旋转如图③位置,若∠BOC=45°,射线OE 在∠BOC 内部,且∠BOC=3∠BOE,请探究.①求∠DOE 的度数.②∠BOC 的补角分别是:____________________.26.(本题共12分)如图,在一条直线上,从左到右依次有点A 、B 、C ,其中AB=4cm ,BC=2cm.以这条直A B (D )O 图① (C ) 图② AC B DO AC BD OE 图③ A CO B线为基础建立数轴,设点A、B、C所表示数的和是p.(1)如果规定向右为正方向,以1cm为单位长度建立数轴.①若以B为原点O,则点C表示的数是_______,点A表示的数为_______;此时p=_______;若以C为原点O,则点B表示的数是_______,点A表示的数为_______;此时p=_______.②若改变原点O的位置,使原点O在点C的右边,且CO=30cm,求p的值.发现观察p值的变化规律发现原点每向右移动1cm,p值______(增大或减小)______cm.(2)若点A表示的数是−1,则点C表示的数是________,若折叠数轴,使点A与点C 重合,则折点表示的数是________.2023-2024学年度第一学期期中质量检测参考答案七年级数学试卷(冀教版)温馨提示:1.本试题满分120分.考试时间90分钟.2.答卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、细心选一选(在每题所给出的四个选项中,只有一项是符合题意的.每小题3分,共48分)1.( )的相反数是−5A.−5B.5C.15 D.−151.解:正数的相反数是负数,绝对值相等,两者之和为0,故选B。
河南省实验中学2023-2024学年下学期七年级期中考试数学试题(含解析)
2023—2024学年下期期中考试七年级数学(时间:100分钟,满分:120分)一.选择题(本大题共10个小题,每小题3分,共30分)1.华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.而麒麟990的晶体管栅极的宽度达到了毫米,将数据用科学记数法表示为( )A .B .C .D .2.下列计算正确的是( )A .B .C .D .3.如图,直线、交于点平分,若,则等于( )A .B .C .D .4.已知一个角的补角是它的余角的4倍,则这个角的度数是( )A .B .C .D .5.下列图形中,由,能得到的是( )A .B .C .D .6.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列四种割拼方法,其中能够验证平方差公式0.0000000070.0000000078710-⨯9710-⨯80.710-⨯90.710-⨯632a a a ÷=23245()ab a b -=325326b b b ⋅=2222a a -=AB CD ,O OE AOD ∠136∠=︒COE ∠72︒95︒100︒108︒30 45 60 67.5 12∠=∠AB CD ∥的有( )A .4个B .3个C .2个D .1个7.下列说法:①两点之间线段最短;②同角的余角相等;③相等的角是对顶角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的有( )A .1个B .2个C .3个D .4个8.一年365天,天安门广场的升旗仪式与太阳的节奏同步,唤醒一座城市的梦,唤醒一个国家的清晨.当升旗手匀速升旗时,旗子的高度(米)与时间(分)这两个变量之间的关系用图象可以表示为( )A .B .C .D .9.如图,将长方形的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形的面积为()h t ABCD ABCDA .4B.C .5D .610.如图1,四边形是长方形,点P 从边上点E 出发,沿直线运动到长方形内部一点处,再从该点沿直线运动到顶点B ,最后沿运动到点C ,设点P 运动的路程为x ,的面积为y ,图2是y 关于x 变化的函数图象.根据图象下列判断不正确的是( )A .B .点E 为的中点C .当时,的面积为6D .当时,长度的最小值为1二.填空题(本大题共5个小题,每小题3分,共15分)11.若式子无意义,则实数x 的值为.12.计算 .13.计算:(-ab 2)3÷(-0.5a 2b) = .14.若中不含的一次项,则的值为15.如图,直角和直角中,,,,点D 在边上,将绕点O 按顺时针方向以每秒的速度旋转一周,在旋转的过程中,在第 秒时,边恰好与边平行.32ABCD AD BC CDP △6AB =AD 3x =APE V 38x ≤≤AP 0(2)x -2202420232025-⨯=142()(8)x x m x -+-x m AOB COD △90AOB COD ∠=∠=︒40B ∠=︒60C ∠=︒OA COD △5︒CD AB三.解答题(本大题共8小题,共75分)16.计算:(1);(2).(用乘法公式计算)17.先化简,再求值:,其中,18.已知:如图,点E 在上,,,垂足分别为D 、F ,点M 、G 在上,,.求证:.小勇在做上面这道题时用了以下推理过程.请帮他在横线上填写结论,在括号内填写推理依据.证明:∵,,垂足分别为D 、F (已知).∴,(____________).∴(等量代换).∴____________(同位角相等,两直线平行).∴(________________________).∵(已知).∴(____________).∴____________(________________________).∵(已知).∴(同位角相等,两直线平行).∴(____________).∴(________________________).19.苏老师非常喜欢自驾游,他为了了解新买轿车的耗油情况,将油箱加满后进行了耗油实22023014(1)(π3)3-⎛⎫-+⨯-+- ⎪⎝⎭22851308565-⨯+2[()()2224)]2(x y x y y x xy y ---+-÷1x =2y =BC BD AC ⊥EF AC ⊥AB AMD AGF ∠=∠12∠=∠180DMB ABC ∠+∠=︒BD AC ⊥EF AC ⊥=90BDC ∠︒90EFC ∠=︒BDC EFC ∠=∠2CBD ∠=∠12∠=∠1CBD ∠=∠AMD AGF ∠=∠GF MD ∥BC MD ∥180DMB ABC ∠+∠=︒验,得到了下表中的数据:行驶的路程0100200300400…油箱中的剩余油量5042342618…(1)在这个问题中,自变量是______,因变量是______;(2)该轿车油箱的容量为______L ,行驶时,油箱中的剩余油量为______L ;(3)苏老师将油箱加满后驾驶该轿车从A 地前往B 地,到达B 地时油箱中的剩余油量为,请求出A ,B 两地之间的距离.20.如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为米,宽为米的长方形草坪上修建一横两竖,宽度均为b 米的通道.(1)通道的面积共有多少平方米?(2)若,剩余草坪的面积是216平方米,求出通道的宽度.21.微专题探究学习:《面积与完全平方公式》如图1,阴影部分是一个边长为a 的大正方形剪去一个边长为b 的小正方形和两个宽为b 的长方形之后所剩余的部分.(1)①图1中剪去的长方形的长为________,宽为________.②用两种方式表示阴影部分的面积为________或________.由此可以验证的公式为________________.(2)如图2,分别表示边长为a ,b 的正方形的面积,且A ,B ,C 三点在一条直线上,s km ()Q ()L 150km 22L (43)a b +(23)a b +2a b =12S S ,若,求图中阴影部分的面积.22.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s (km )与甲行驶的时间为t (h )之间的关系如图所示.(1)以下是点M 、点N 、点P 所代表的实际意义,请将M 、N 、P 填入对应的括号里.①甲到达终点 ②甲乙两人相遇 ③乙到达终点(2)AB 两地之间的路程为 千米:(3)求甲、乙各自的速度;(4)甲出发多长时间后,甲、乙两人相距180千米?23.如图1,已知点D 是内部一点,交于点E .(1)尺规作图;作出射线,使得,交直线于点F ;(保留作图痕迹,不写作法)(2)请你直接写出与的数量关系:____________.(3)如图2,定理:在直角三角形中,,如果,那么它所对的边等于的一半.请同学们借助上述定理内容完成下面的任务:如图1,若,,,点P 从点F 出发,沿的路线运动,到点D 停止,点P 的速度为,运动时间为t 秒,当的面积为时,请求出t的值.12408S S AB +==,ABC ∠DE AB ∥BC DF DF BC ∥AB B ∠EDF ∠MNQ 90N ∠=︒30M ∠=︒NQ MQ 30B ∠=︒4cm FB =3cm BE =F B E D →→→2cm/s BEP △22cm参考答案与解析1.B 【分析】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.故选:B2.C【分析】本题主要考查了积的乘方和幂的乘方,单项式乘以单项式,同底数幂除法和合并同类项等计算,熟知相关计算法则是解题的关键.【详解】解:A .,原式计算错误,不符合题意;B .,原式计算错误,不符合题意;C .,原式计算正确,符合题意;D .,原式计算错误,不符合题意.故选:C .3.D【分析】本题考查的是邻补角的概念、角平分线的定义.根据邻补角的概念求出,根据角平分线的定义求出,再根据邻补角的概念计算,得到答案.【详解】解:∵,∴,∵平分,∴,∴,故选:D .4.C【分析】本题考查补角、余角的概念,运用补角、余角概念列方程是解决问题的关键.设这个角为,依据题意列方程求解.【详解】解:设这个角为,则它的余角为,补角为据题意得方程:10n a -⨯1||10a ≤<n 90.000000007710-=⨯633a a a ÷=()22346a b a b -=325326b b b ⋅=2222a a a -=AOD ∠DOE ∠136∠=︒1801144AOD ∠=︒-∠=︒OE AOD ∠1722DOE AOD ∠=∠=︒180108COE DOE ∠=︒-∠=︒x ︒x ︒()90x -︒()180x -︒;解得;故选:C .5.D【分析】根据平行线的判定定理逐一判断即可得出答案.【详解】解:A. 由,不能得到,此选项不符合题意;B. 由,得到,不能得出,此选项不符合题意;C. 由,不能得到,此选项不符合题意;D. 由,能得到,此选项符合题意;故选D .【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键.6.A【分析】图①:根据阴影部分的面积等于1个长方形(长为、宽为)的面积即可得;图②:根据阴影部分的面积等于1个平行四边形的面积之和即可得;图③:根据阴影部分的面积等于1个长方形(长为、宽为)的面积即可得;图④:根据阴影部分的面积等于1个平行四边形的面积之和即可得.【详解】解:图①:左边图中阴影部分面积为,右边图中阴影部分面积为,则有;图②:左边图中阴影部分面积为,右边图中阴影部分是一边长为,这条边上的高为的平行四边形,其面积为,则有;图③:左边图中阴影部分面积为,右边图中阴影部分面积为,则有;图④:左边图中阴影部分面积为,右边图中阴影部分是一边长为,这条边上的高为的平行四边形,其面积为,则有;综上,能够验证平方差公式的有4个,()180490x x -=-60x =︒12∠=∠AB CD ∥12∠=∠AC BD ∥AB CD ∥12∠=∠AB CD ∥12∠=∠AB CD ∥a b +a b -a b +a b -22a b -()()a b a b +-22()()a b a b a b -=+-22a b -a b +a b -()()a b a b +-22()()a b a b a b -=+-22a b -()()a b a b +-22()()a b a b a b -=+-22a b -a b +a b -()()a b a b +-22()()a b a b a b -=+-故选:A .【点睛】本题考查了平方差公式与图形面积,熟练掌握各图形的面积之间的联系是解题关键.7.C【分析】本题考查了两点之间线段最短,同角的余角相等,对顶角,垂线段最短,是基础概念题.熟练掌握以上知识点是解题的关键.【详解】解:①两点之间线段最短,正确,②同角的余角相等,正确,③相等的角是对顶角,错误,④直线外一点与直线上各点连接的所有线段中,垂线段最短,正确,故选:C8.B【分析】利用用图像表示变量间关系的方法解答即可.【详解】解∶∵升旗手匀速升旗,∴高度h 将随时间t 的增大而变增大,且变化快慢相同,∴应当用上升趋势的直线型表示,∴只有B 符合题意,故选∶B .【点睛】本题考查了用图象表示的变量间关系,根据题意明确因变量随自变量变化的趋势是解题的关键.9.B【分析】本题考查了完全平方公式的意义和应用,将完全平方公式变形得,即可求出答案.【详解】设长方形ABCD 的边,,根据题意可知,,即,,,()2222a b a ab b +=++()()2222a b a b ab +-+=AB a =AD b =8824a b +=222212a b +=3a b +=226a b +=()()2222363222a b a b ab +-+-∴===即长方形ABCD的面积为,故选:B .10.D 【分析】本题主要考查了动点问题的函数图象,三角形面积的相关计算,垂线段最短,在解题时根据函数的图象求出有关的线段的长度,分析各个选项即可得到答案.【详解】解:由题意知,当P 与B 重合时,,最大,当点P 在上运动,逐渐减小,直至P 与C 重合时,则,,的最大值,,A 正确;由函数图象可知,当时,的面积始终为12,设边的高为h ,此时,如图,点P 在上,,,,点E 是的中点,B 正确;点E 是的中点,,,当时,,C 正确;点P 从的中点出发,作,,连接,328x =CDP S △BC CDP S △16x =1688BC ∴=-=CDP S △1242BC CD =⋅=6CD AB ∴==03x ≤≤CDP △CDP △CD 12CDP S CD h =⋅ EF EF AD ⊥1122CDP S CD DE =⋅=△4DE ∴=∴AD AD 3EF =∴4AE =∴3x =162AEP S AE EF =⋅= AD AH BF ⊥GF AB ⊥AF则,,,,当时,长度的最小值为,D 错误.故选:D .11.2【分析】本题考查了零指数幂,掌握中是解题关键.根据零指数幂的意义可得时,无意义,即可求解.【详解】解:式子无意义,,,故答案为:2.12.1【分析】把原式变形为,再利用平方差公式计算即可得到答案,熟练掌握平方差公式是解题的关键.【详解】解:故答案为:113.【分析】先计算积的乘方,再计算单项式除单项式即可.【详解】(-ab 2)3÷(-0.5a 2b) 85BF EF =-=4GF AE ==1122ABF S AB GF BF AH =⋅=⋅ 245AH ∴=∴38x ≤≤AP 245∴01a =0a ≠20x -= 0(2)x -20x ∴-=2x ∴=()()220242024120241--+()()22a b a b a b +-=-2202420232025-⨯()()220242024120241=--+()22202420241=--22202420241=-+1=51ab 321436211642a b a b ⎛⎫=-÷- ⎪⎝⎭故答案为:【点睛】本题考查了幂的运算,熟练掌握积的乘方、同底数幂的除法的运算法则是解题的关键.14.-8【分析】首先利用多项式乘法法则计算出(x 2﹣x +m )(x ﹣8),再根据积不含x 的一次项,可得含x 的一次项的系数等于零,即可求出m 的值.【详解】解:(x 2﹣x +m )(x ﹣8)=x 3﹣8x 2﹣x 2+8x +mx ﹣8m=x 3﹣9x 2+(8+m )x ﹣8m ,∵不含x 的一次项,∴8+m =0,解得:m =﹣8.故答案为﹣8.【点睛】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.15.20或56【分析】本题考查了平行线的判定,平行线的性质,难点在于分情况讨论,作出图形更形象直观.作出图形,分①两三角形在点O 的同侧时,设与相交于点E ,根据两直线平行,同位角相等可得,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出,然后求出旋转角,再根据每秒旋转列式计算即可得解;②两三角形在点O 的异侧时,延长与相交于点E ,根据两直线平行,内错角相等可得,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出,然后求出旋转角度数,再根据每秒旋转列式计算即可得解.【详解】解:①两三角形在点O 的同侧时,如图1,设与相交于点E ,3261132a b --=5132ab =5132ab CD OB 40CEO B ∠=∠=︒DOE ∠AOD ∠5︒BO CD 40CEO B ∠=∠=︒DOE ∠5︒CD OB∵,∴,∵,,∴,∴,∴旋转角,∵每秒旋转,∴时间为秒;②两三角形在点O 的异侧时,如图2,延长与相交于点E ,∵,∴,∵,,∴,∴,∴旋转角为,∵每秒旋转,∴时间为秒;综上所述,在第20或56秒时,边恰好与边平行.故答案为:20或56.16.(1)6AB CD 40CEO B ∠=∠=︒60C ∠=︒90COD ∠=︒906030D ︒︒∠=-=︒403010DOE CEO D ∠=∠-∠=︒-︒=︒9010100AOD AOB DOE ∠=∠+∠=︒+︒=︒5︒100520︒÷︒=BO CD AB CD 40CEO B ∠=∠=︒60C ∠=︒90COD ∠=︒906030D ︒︒∠=-=︒403010DOE CEO D ∠=∠-∠=︒-︒=︒27010280︒+︒=︒5︒280556︒÷︒=CD AB(2)400【分析】本题考查了负整数指数幂,零指数幂,有理数的乘方,完全平方公式,熟练掌握以上知识是解题的关键.(1)根据负整数指数幂,零指数幂,有理数的乘方进行计算即可求解;(2)根据完全平方公式进行计算即可求解;【详解】(1);(2).17.;【分析】此题考查了整式的混合运算−化简求值,原式括号中利用完全平方公式,平方差公式计算,合并后利用多项式除以单项式法则计算得到最简结果,把与的值代入计算即可求出值.【详解】解:;当,时,原式18.见解析【分析】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.根据平行线的判定得到,等量代换得到,根据平行线的判定定理得到,证得,根据平行线的性质即可得到结论.22023014(1)(π3)3-⎛⎫-+⨯-+- ⎪⎝⎭()9411=+⨯-+941=-+6=22851308565-⨯+()28565=-220=400=4-y x 2-x y 2[()()2224)]2(x y x y y x xy y---+-÷()22224424242x y xy xy x y xy xy y=+---++-÷()2282y xy y=-÷4y x =-1x =2y =242=-=-BD EF ∥1CBD ∠=∠GF BC ∥GF MD ∥【详解】证明:∵,,垂足分别为D 、F (已知).∴,(垂直的定义).∴(等量代换).∴(同位角相等,两直线平行).∴(两直线平行,同位角相等).∵(已知).∴(等量代换).∴(内错角相等,两直线平行).∵(已知).∴(同位角相等,两直线平行).∴(平行于同一条直线的两条直线平行).∴(两直线平行,同旁内角互补).19.(1);(2)50,38(3)A 、B 两地之间的距离为【分析】(1)通过观察统计表可知:轿车行驶的路程是自变量,油箱剩余油量是因变量;(2)由表格可知,开始油箱中的油为,每行驶,油量减少,据此可得答案;(3)由表格可知,开始油箱中的油为,每行驶,油量减少,据此可得Q 与s 的关系式,把代入函数关系式求得相应的s 值即可.【详解】(1)解:上表反映了轿车行驶的路程和油箱剩余油量之间的关系,其中轿车行驶的路程是自变量,油箱剩余油量是因变量;答:A ,B 两地之间的距离为.(2)解:由表格可知,开始油箱中的油为,每行驶,油量减少,据此可得Q 与s 的关系式为,当时,,故答案是:50,38;(3)解:(3)由(2)得,BD AC ⊥EF AC ⊥=90BDC ∠︒90EFC ∠=︒BDC EFC ∠=∠BD EF ∥2CBD ∠=∠12∠=∠1CBD ∠=∠GF BC ∥AMD AGF ∠=∠GF MD ∥BC MD ∥180DMB ABC ∠+∠=︒(km)s (L)Q 350km(km)s (L)Q 50L 100km 8L 50L 100km 8L 22Q =(km)s (L)Q (km)s (L)Q 350km 50L 100km 8L 500.08Q s =-150s =500.0815038Q =-⨯=L ()500.08Q s =-当时,得,解得.答:A 、B 两地之间的距离为.【点睛】此题考查了函数的有关概念,解决问题的关键是能够根据统计表提供的信息,解决有关的实际问题.20.(1)(2)2米【分析】本题主要考查了整式乘法的应用,平移的性质,把通道都平移到一个顶点附近,使剩余的面积为一个长方形是解题的关键.(1)先把通道都平移到一个顶点附近,使剩余的面积为一个长方形,再根据长方形的面积公式求得剩余草坪的面积,(2)根据,剩余草坪的面积是216平方米,列出方程求解即可.【详解】(1);(2)∵,剩余草坪的面积是216平方米,∴,即,解得:(负值舍去),即通道的宽度是2米.21.(1)①,b ;②;;(2)12【分析】(1)①根据题意结合图形即可得到答案;②根据阴影部分面积是一个边长为的正方形面积,阴影部分面积等于大正方形面积减去两个长方形面积再减去一个小正方形面积,据此表示出阴影部分面积即可得到答案;(2)根据题意可得,进而根据完全平方公式的变形求出,进22Q =22500.08s =-350s =350km 228102a ab b ++2a b =()()42332a b b a b b -++-()()242a b a b +=+228102a ab b =++2a b =()22682110222b b b b ⨯⨯=++254216b =2b =a b -()2a b -222a ab b -+()2222a b a ab b -=-+a b -22408a b a b +=+=,12ab =而求出阴影部分面积即可.【详解】(1)解:①由题意得,图1中剪去的长方形的长为,宽为b ,故答案为:,b ;②阴影部分面积是一个边长为的正方形面积,即,阴影部分面积等于大正方形面积减去两个长方形面积再减去一个小正方形面积,即,∵两种表示方法的面积相等,∴,故答案为:;;(2)解:∵,∴,∴,∴,∴.【点睛】本题主要考查了完全平方公式在几何图形中的应用,正确理解题意并熟知完全平方公式是解题的关键.22.(1)P ;②M ;③N .(2)240.(3)甲的速度是40千米/时,乙的速度是80千米/时.(4)h 或【分析】(1)甲到达终点时S 应该最大,因为甲的速度小;甲乙两人相遇时S 为0;乙到达终点时S 不算最大,因为此时甲还没有到达终点.据此三点可得答案.(2)(1)中S 的最大值即为AB 两地之间的路程.(3)由(1)可得甲、乙的行驶时间,再根据速度=路程÷时间可以得到求解.(4)根据路程差÷速度=时间差可以得解.【详解】(1)由分析可知P 为甲到达终点时,M 为甲乙两人相遇时,N 为乙到达终点时.a b -a b -a b -()2a b -()22222222222a b a b b a ab b b a ab b ---=-+-=-+()2222a b a ab b -=-+()2a b -222a ab b -+()2222a b a ab b -=-+12408S S AB +==,22408a b a b +=+=,()()2222644024ab a b a b =+-+=-=12ab =12122ab a S b =⨯==阴影129h.2故答案为:①P ;②M ;③N ;(2)根据函数图象和图象中的数据可知甲、乙两人间的最大距离为240千米,所以AB 两地之间路程为240千米.故答案为:240;(3)由(1)可得甲、乙的行驶时间分别为6h 和3h ,所以甲的速度是:240÷6=40 km/h ,乙的速度是:240÷3=80km/h ;(4)①相遇之前:(240﹣180)÷(40+80)=(小时)②相遇之后:3+(180-120)÷40=(小时).故答案为: h 或【点睛】本题考查函数图象在实际问题中的应用,正确理解图象各点意义、熟练把握行程问题各量的等量关系是解题关键.23.(1)见解析(2)(3)或【分析】(1)尺规作即可;(2)由可得,再结合(1)即可推得结论;(3)根据题意分两种情况讨论:当点P 在线段上时和点P 在线段上,过点P 作于点Q ,根据题意求出,然后利用勾股定理和含角直角三角形的性质求解即可.【详解】(1)如图,作,射线即为所求;(2)∵,∴,∵,∴;1.29.2129h.2B EDF∠=∠23t =296E EDF D C ∠=∠DE AB ∥B DEC ∠=∠BF ED PQ BE ⊥43PQ =30︒E EDF D C ∠=∠DF DE AB ∥B DEC ∠=∠E EDF D C ∠=∠B EDF ∠=∠(3)如图所示,当点P 在线段上时,过点P 作于点Q∵的面积为∴,即解得∵∴∴∴;当点P 在线段上时,同理可得,∴点P 运动的路程为∴.综上所述,或.【点睛】本题考查了基本的尺规作图以及平行线的判定和性质,勾股定理,含角直角三角形的性质,属于基本题型,熟练掌握平行线的判定和性质是解题关键.BF PQ BE ⊥BEP △22cm 122BE PQ ⋅=1322PQ ⨯=43PQ =30B ∠=︒823PB PQ ==43FP FB PB =-=42233t =÷=ED 83PE =8294333++=2929236t =÷=23t =29630︒。
七年级期中数学试卷及答案
七年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列哪个数是质数?A.21B.37C.39D.49答案:B2.一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是多少?A.32cmB.36cmC.46cmD.52cm答案:B3.下列哪个数是偶数?A.101B.102C.103D.104答案:D4.一个长方形的长是8cm,宽是4cm,那么这个长方形的面积是多少?A.12cm²B.24cm²C.32cm²D.48cm²答案:D5.下列哪个数是奇数?A.111B.112C.113D.114答案:C二、判断题(每题1分,共20分)1.2是质数。
()答案:对2.一个等边三角形的三个角都是60度。
()答案:对3.15是偶数。
()答案:错4.一个正方形的四条边都相等。
()答案:对5.0是奇数。
()答案:错三、填空题(每空1分,共10分)1.1+2+3++100的和是______。
答案:50502.一个正方形的边长是6cm,那么它的面积是______cm²。
答案:363.两个质数相乘,它们的积是______。
答案:合数4.一个长方形的长是10cm,宽是5cm,那么它的周长是______cm。
答案:305.下列哪个数既是偶数又是质数?______。
答案:2四、简答题(每题10分,共10分)1.请问什么是质数?答案:一个大于1的自然数,除了1和它本身外,不能被其他自然数整除的数。
2.请问什么是等腰三角形?答案:有两条边相等的三角形。
五、综合题(1和2两题7分,3和4两题8分,共30分)1.有一个长方形的长是10cm,宽是5cm,求这个长方形的面积和周长。
答案:面积是50cm²,周长是30cm。
2.有一个等腰三角形,底边长是12cm,腰长是13cm,求这个三角形的周长。
答案:周长是38cm。
七年级数学必考题试卷期中
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3B. 0C. 1.5D. -2.52. 下列代数式中,表示2的平方根的是()A. √2B. √4C. √-2D. √163. 已知方程2x - 5 = 3,则x的值是()A. 2B. 3C. 4D. 54. 下列分数中,分子和分母都是奇数的是()A. 1/3B. 2/5C. 3/7D. 4/95. 一个长方形的长是10厘米,宽是6厘米,那么它的面积是()A. 60平方厘米B. 100平方厘米C. 120平方厘米D. 180平方厘米6. 如果一个数是偶数,那么它的平方一定是()A. 奇数B. 偶数C. 无法确定D. 都可能7. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 圆8. 已知直角三角形的两条直角边长分别是3厘米和4厘米,那么斜边长是()A. 5厘米B. 6厘米C. 7厘米D. 8厘米9. 下列函数中,y随x的增大而减小的是()A. y = 2x + 1B. y = -3x - 2C. y = 4x - 3D. y = 5x + 410. 下列各数中,最接近0的是()A. -1.2B. 0.9C. -0.8D. 1.1二、填空题(每题5分,共25分)11. 如果一个数是正数,那么它的相反数是________。
12. 2的平方根是________。
13. 已知方程5x - 2 = 15,则x的值是________。
14. 下列分数中,分子和分母都是质数的是________。
15. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,那么它的体积是________立方厘米。
三、解答题(每题10分,共30分)16. 解下列方程:(1)3x + 7 = 25(2)2(x - 4) = 5x - 617. 一个梯形的上底是4厘米,下底是8厘米,高是6厘米,求这个梯形的面积。
18. 已知一个正方形的边长是5厘米,求这个正方形的周长和面积。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
初一上册数学期中试题及答案【四篇】
【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。
【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。
数学七年级期中试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 23. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -34. 下列代数式中,同类项是()A. 2x^2 + 3xB. 4x^2 - 5xC. 3x^3 + 2x^2D. 5x^2 - 4x^35. 若a, b是方程x^2 - 5x + 6 = 0的两个根,则a + b的值为()A. 5B. 6C. 2D. -56. 在平面直角坐标系中,点P的坐标为(2,-3),则点P关于y轴的对称点的坐标是()A. (-2, 3)B. (2, 3)C. (-2, -3)D. (2, -3)7. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2x^2C. y = 3/xD. y = 4x - 58. 在△ABC中,∠A = 90°,∠B = 45°,则∠C的度数是()A. 45°B. 90°C. 135°D. 180°9. 若x^2 - 4x + 3 = 0,则x的值为()A. 1B. 3C. 1或3D. -1或-310. 下列各数中,无理数是()A. √4B. √9C. √16D. √25二、填空题(每题5分,共25分)11. 若a = -3,b = 2,则a - b的值为______。
12. 若x^2 = 25,则x的值为______。
13. 若m + n = 10,m - n = 2,则m的值为______。
14. 在平面直角坐标系中,点A的坐标为(-2,3),则点A关于原点的对称点的坐标是______。
七年级数学期中测试题
七年级数学期中测试题一、选择题(每小题 3 分,共 30 分)1、下列各数中,是负数的是()A (-3)B |-3|C |-3|D (-3)²2、下列计算正确的是()A 3a + 2b = 5abB 5y² 3y²= 2C 7a + a = 7a²D 3x²y 2yx²= x²y3、有理数a,b 在数轴上的位置如图所示,下列各式成立的是()A a + b > 0B a b > 0C ab < 0D b / a > 0(数轴略)4、下列去括号正确的是()A a +(b c) = a + b + cB a (b c) = a b cC a (b + c) = a + b cD a +(b c) = a b + c5、若代数式 2x²+ 3x + 7 的值是 8,则代数式 4x²+ 6x 9 的值是()A -7B -5C -4D -36、一个多项式与 x² 2x + 1 的和是 3x 2,则这个多项式为()A x² 5x + 3B x²+ 5x 3C x²+ x 1D x² 5x 137、已知 a,b 互为相反数,c,d 互为倒数,m 的绝对值是 2,则式子 m² cd +(a + b) / m 的值为()A -3B 3C -5D 3 或-58、下列方程中,是一元一次方程的是()A x² 4x = 3B 3x 1 = 2 / xC x + 2y = 1D xy 3 = 59、把方程 2x 1 / 3 = 1 x + 2 / 4 去分母,正确的是()A 24x 4 = 12 3(x + 2)B 24x 1 = 12 3(x + 2)C 8x 1 = 12 3(x + 2)D 8x 4 = 12 3(x + 2)10、某商店有两个进价不同的计算器都卖了 80 元,其中一个盈利60%,另一个亏本 20%,在这次买卖中,这家商店()A 不赔不赚B 赚了 10 元C 赔了 10 元D 赚了 50 元二、填空题(每小题 3 分,共 24 分)11、比较大小:-3 / 4 ____ 4 / 5 (填“>”“<”或“=”)12、单项式2πxy² / 5 的系数是____,次数是____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学期中试题
一填空
1..水的质量0.000204kg,用科学记数法表示为__________.
2..若有意义,则x_________.
3. (x+6)(6-x)=________
4.(x+3y)2=______
5. 已知∠A= 30°,则∠A的补角是________度.
6. 如图,直线AB与CD相交于点O,OB平分∠DOE.若∠DOE=60度。
∠AOC的度数是 .
7. 如图,两条直线a、b被第三条直线c所截,如果a∥b,∠1=70°,
那么∠2=________.
8. 如图,AF=CD,AB=ED,EF=BC,那么△ABC≌△CEF的理由是________.
8题图
9. 如图所示,在△AOB和△COD中,AC与BD交于点O,AB∥CD,补
充一个条件________,得出△AOB≌△COD.
9图
10. 如图,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______.
二.选择题
1..如图,∠1和∠2是对顶角的图形为()
A B C D
2如果两个角互补,那么这两个角()
①均为钝角②一个为锐角,一个为钝角③均为直角④以上都有可能
A.①②③④B.①②C.②③D.④3.下面各组线段中,能组成三角形的是()
A.5,6,11 B.8,8,16 C.4,5,10 D.6,
9,14
4.在建筑工地我们经常看见如图所示用木条EF固定矩形门框ABCD的情形,这种做法根据()
A.两点之间线段最短 B.两点确定一条直线C.三角形的稳定性 D.矩形的四个角都是直角
5. 如图所示,∠1+∠2+∠3+∠4+∠5的度数为()
A.180°B.360°C.220°D.300°
6. 三角形的高线是()
A.直线
B.垂线
C.射线
D.线段
7下面计算正确的是( )
A. B. C. D.
8.下列式中能用平方差公式计算的有( )
①(x-y)(x+y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y),
④(100+1)(100-1)
A.1个
B.2个
C.3个
D.4个
9.下列各式中,计算结果是2mn-m2-n2的是( )
A.(m-n)2
B.-(m-n)2
C.-(m+n)2
D.(m+n)2
10.下列多项式不是完全平方式的是( )
A. B. C.
D.
三.解答题
1.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角
的,求∠A+∠B+∠C的度数.
2.如图,若∠1=∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?
3.如图所示AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,•请说明BE⊥AC.
5计算。
(7x3-6x2+3x)÷3x ;
.。