激光原理及应用_答案

合集下载

激光原理与应用答案(陈家壁主编)

激光原理与应用答案(陈家壁主编)

思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。

(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。

设原子按玻尔兹曼分布,且4g 1=g 2。

求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。

激光原理及应用_陈家璧_第一章

激光原理及应用_陈家璧_第一章
主量子数n,n=1,2,3,…代表电子运动区域的大小和它的总能量的 主要部分 辅量子数 l , l 0,1,2(n 1) 代表轨道的形状和轨道角动量,这也同 电子的能量有关。对l 0,1,2,3 等的电子顺次用s, p, d, f字母表示 磁量子数(即轨道方向量子数)m=0,±1,±2,… ± l 代表轨道在 空间的可能取向,即轨道角动量在某一特殊方向的分量 自旋量子数(即自旋方向量子数)ms= ±1/2,代表电子自旋方向的取 向,也代表电子自旋角动量在某一特殊方向的分量
4
1.1.1 光波
(3)平面波的复数表示法 光强 线偏振的单色平面波的复数表示:
~ :模量U 代表振幅在空间的分布,辐角(-kz)代表位相在空间的分布 复振幅U 0 ~ ~ U U0 exp ikz U U expit
光强:光强与光矢量大小的平方成正比,即 I U T 1 2 U0 1 2 2 1 T 2 2 I T U dt 1 U 0 cos (t kz)dt T 2 T T 2
( Em En ) kT
gi
ni gi eEi
kT
2. 分别处于Em和En能级上的原子数nm和nn必然满足下一关系
nm g m e nn g n
3. 为简单起见,假定 g m g n nm nn 1 E Em En kT , 讨论:1) nm nn 0 E Em En kT , 2) 3)T>0且EmEn ,nm<nn
分析: (a)z一定时,则U代表场矢量在该点作 时间上的周期振动
图(1-1)电磁波的传播
(b)t一定时,则U代表场矢量随位置的不同作空间的周期变化
(c)z、t同时变化时,则U代表一个行波方程,代表两个不同时刻空 间各点的振动状态。从下式可看出,光波具有时间周期性和空间周期性。 时间周期为T,空间周期为;时间频率为1/T,空间频率为1/ z 2 t 2 z U U 0 cos t U 0 cos c T 简谐波是具有单一频率的单色波,但通常原子发光的时间约为10-8 s, 形成的波列长度约等于3m,因此它的波列长度有限即必然有一 定的频率宽度。

激光技术原理及应用的答案

激光技术原理及应用的答案

激光技术原理及应用的答案激光技术原理激光(Laser)是指在受激辐射作用下产生的,具有高度一致性、单色性和方向性的光线。

它的原理基于激活物质(如气体、固体或液体)的原子或分子通过受激辐射释放出光子。

具体来说,激光技术原理包括以下几个方面:1.受激辐射:激光的原理是基于受激辐射过程。

当外界光或电子束等能量激发到激光介质中的原子或分子时,它们会处于高能级态,然后通过跃迁回到低能级态,同时发射出与入射能量一致的光子。

2.光放大:在激光器中,激光介质中的光子会与待激发的原子或分子作用,导致原子或分子处于高能级态。

通过引入一个辐射源,其能量很容易被激光介质吸收并转化为更多的光子,从而达到放大激光的效果。

3.光反馈:在激光器中,光放大过程可以被反馈回来,形成一个光学谐振腔。

这个腔体包含一个完全或部分反射镜和一个输出镜。

放大的光通过反射镜反射回来,然后经过多次反射和放大,在腔中形成更多的激光。

4.单色性:激光的光子是高度一致的,它们具有非常狭窄而单一的频率。

这是因为激光器中的光放大过程只允许某个特定的模式在腔中持续放大,其他模式的能量会很快耗散掉。

激光技术应用激光技术由于其独特的特性,在许多领域都有着广泛的应用。

以下是一些常见的激光技术应用:1.激光切割和焊接:激光切割和焊接技术在工业生产中得到了广泛应用。

激光切割可以实现高精度、高速度和无接触的材料切割,适用于金属、塑料和木材等材料。

激光焊接则可以实现高强度的焊接连接,适用于汽车制造和电子设备制造等领域。

2.激光医学:激光在医学领域具有重要应用。

例如,激光手术可以实现无创伤、高精度和快速的手术操作,适用于眼科、皮肤美容和神经外科等领域。

激光也可以用于医学成像,如激光扫描显微镜和激光共聚焦显微镜。

3.激光测距和测量:激光测距和测量技术广泛应用于工程和地理测量领域。

例如,激光测距仪可以测量远距离和高精度的距离,适用于建筑测量和地形测绘。

激光测量仪也可以测量物体的尺寸、形状和表面特征。

简述激光的原理与应用

简述激光的原理与应用

简述激光的原理与应用激光的原理激光(Laser)是一种特殊的光。

与普通光不同,激光具有高度聚焦、单色性强、相干性好等特点。

其原理基于激活介质中的原子或分子,使其转换成受激发射的光子。

激光通过受激辐射产生,具有高度单色性和强度。

主要由三个过程组成:吸收、受激辐射和自发辐射。

1. 吸收激光的工作物质(激活介质)通常是由镜片、气体、晶体等材料构成。

当光线通过激活介质时,部分光会被吸收,而激活介质的原子或分子将吸收光能。

吸收的光能会引起原子或分子的电子跃迁。

2. 受激辐射当原子或分子中的电子跃迁发生时,某些光子具有与吸收的光子相同的能量和频率。

这些光子激发了其他原子或分子内的电子跃迁,产生了一个向前放大的光过程。

这种受激辐射导致所有原子或分子内的光子逐渐增加,并产生相干的光。

3. 自发辐射在激光过程中,激活介质中的原子或分子会发生自发辐射的过程。

自发辐射是无规律的,不具有相干性。

当自发辐射和受激辐射以及吸收进行平衡时,激光达到稳定状态。

激光的应用激光的特性使其应用广泛,下面列举了一些常见的激光应用。

1. 切割与焊接激光切割和焊接是激光在工业领域最常见的应用之一。

激光通过高能浓缩的光束,可以在短时间内将材料加热到高温并融化,实现快速切割或焊接。

这种高度聚焦的能力使激光在金属加工、汽车制造和电子生产等行业得到了广泛应用。

2. 治疗与医学激光在医学领域的应用十分广泛。

激光手术是一种非接触性手术方法,可以用于眼科手术、皮肤治疗、激光刀手术等多个方面。

激光可利用其高度聚焦的特性,精确地切割和修复人体组织,减少术后创伤和恢复时间。

3. 通信与测距激光通信是一种用激光光束进行通信传输的方式。

激光通信具有高速传输、大容量、抗干扰能力强等特点,被广泛用于卫星通信、光纤通信等领域。

此外,激光还可用于测距,例如激光雷达在导航和测绘中的应用。

4. 科研与实验激光在科研与实验中起到了重要作用。

例如,激光光谱学可以用于研究物质的结构和性质。

激光原理及应用实验报告(有详细答案)

激光原理及应用实验报告(有详细答案)

激光原理及应用实验报告(有详细答案)实验一测定空气折射率一、实验目的1、熟练掌握迈克尔逊干涉光路的调节方法;2、学会调出非定域干涉条纹,并测量常温下空气的折射率。

二、实验原理本实验室建立在迈克尔逊干涉光路的基础上来做的。

激光束经短焦距凸透镜会聚后可得到点光源S,它发出球面波照射干涉仪,经G1分束,及M1、M2反射后射向屏H的光可以看成由虚光源S1、S2发出的。

其中S1为点光源S经G1及M1反射后成的像,S2为点光源S 经M2及G1反射后成的像。

这两个虚光源S1、S2发出的球面波,在它们能相遇的空间里处处相干,即各处都能产生干涉条纹。

我们称这种干涉为非定域干涉。

随着S1、S2与屏H的相对位置不同,干涉条纹的形状也不同。

当屏H与S1、S2连线垂直时(此时M1、M2大体平行),得到园条纹,圆心在S1、S2连线与屏H的交点O处。

当屏H与S1、S2连线垂直平分线垂直时(此时M1、M2于H的距离大体相等),将得到直线条纹。

图1 实验装置三、实验方法和步骤1、测空气的折射率调出非定域条纹干涉后,改变气室AR的气压变化错误!未找到引用源。

,从而使气体折射率改变错误!未找到引用源。

,引起干涉条纹“吞”或“吐”N条。

则有错误!未找到引用源。

,于是得错误!未找到引用源。

(1)其中D为气室烦人厚度。

理论上,温度一定,气压不太大时,气体折射率的变化量错误!未找到引用源。

与气压变化量错误!未找到引用源。

成正比:错误!未找到引用源。

(常数)故错误!未找到引用源。

p,将式(1)代入可得错误!未找到引用源。

2、实验步骤1)将各器件夹好,靠拢,调等高。

2)调激光光束平行于台面,按图所示,组成迈克耳孙干涉光路(暂不用扩束器)。

3)调节反射镜M1和M2的倾角,直到屏上两组最强的光点重合。

4)加入扩束器,经过微调,使屏上出现一系列干涉圆环。

5)紧握橡胶球反复向气室充气,至血压表满量程(40kPa)为止,记为△p。

6)缓慢松开气阀放气,同时默数干涉环变化数N,至表针回零。

激光原理与应用课后题答案 陈家壁版

激光原理与应用课后题答案   陈家壁版

思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h qn 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。

(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kT n n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kTh e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。

设原子按玻尔兹曼分布,且4g 1=g 2。

求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。

激光原理及应用陈鹤鸣答案

激光原理及应用陈鹤鸣答案

激光原理及应用陈鹤鸣答案1、4.列车员说火车8点42分到站,8点42分指的是时间间隔.[判断题] *对错(正确答案)2、59.1911年,卢瑟福在α粒子散射实验的基础上,提出了原子核式结构模型。

下列关于这个模型的说法中正确的是()[单选题] *A.原子核位于原子的中心(正确答案)B.电子静止在原子核周围C.原子核带负电D.原子核占据了原子内大部分空3、2.运动员将足球踢出,球在空中飞行是因为球受到一个向前的推力.[判断题] *对错(正确答案)4、53.下列实例中不能用光的直线传播解释的是()[单选题] *A.水中倒影(正确答案)B.手影的形成C.日食和月食D.小孔成像5、其原因错误的是()*A.使用的用电器总功率过大B.电路中有断路(正确答案)C.开关接触不良(正确答案)D.电路的总电阻过大(正确答案)6、关于家庭电路和安全用电,下列说法正确的是()[单选题]A.我国家庭电路电压为380VB.发生短路会导致家庭电路中总电流过大(正确答案)C.用湿布擦正在发光的台灯D.在未断开电源开关的情况下更换灯泡7、验电器是实验室里常常用验电器来检验物体是否带电。

用带正电的玻璃棒接触验电器的金属球,可以发现验电器原来闭合的两片金属箔张开一定的角度,如图61所示。

以下判断中正确的是()[单选题]A.金属球带正电,金箔片都带负电,它们因排斥而张开B.金属球带正电,金箔片都带正电,它们因排斥而张开(正确答案)C.金属球带负电,金箔片都带正电,它们因吸引而张开D.金属球带负电,金箔片都带负电,它们因吸引而张开8、54.如图所示,2019年4月10日人类首张黑洞照片的问世,除了帮助我们直接确认了黑洞的存在外,还证实了爱因斯坦广义相对论的正确性。

下列关于宇宙的描述中,不正确的是()[单选题] *A.地球是太阳系内的一颗行星B.太阳和太阳系最终会走向“死亡”C.宇宙处于普遍的膨胀之中D.太阳是宇宙的中心(正确答案)9、考虑空气阻力,在空气中竖直向上抛出的小球,上升时受到的合力大于下降时受到的合力[判断题] *对(正确答案)错答案解析:上升时合力等于重力加上空气阻力,下降时合力等于重力减去空气阻力10、在图65的四种情境中,人对物体做功的是()[单选题]A.提着桶在水平地面上匀速前进B.举着杠铃保持杠铃静止C.用力搬石头但没有搬动D.推着小车前进(正确答案)11、23.三个质量相等的实心球,分别由铝、铁、铜制成,分别放在三个大小相同的空水杯中,再向三个空水杯中倒满水(物体都能浸没,水没有溢出,ρ铝<ρ铁<ρ铜),则倒入水的质量最多的是()[单选题] *A.铝球B.铁球C.铜球(正确答案)D.无法判断12、司机驾车时必须系安全带,这是为了防止向前加速时惯性带来的危害[判断题] *对错(正确答案)答案解析:防止刹车时惯性带来的危害13、关于物质的密度,下列说法正确的是()[单选题] *A. 一罐氧气用掉部分后,罐内氧气的质量变小,密度不变B. 一只气球受热膨胀后,球内气体的质量不变,密度变大C. 一支粉笔用掉部分后,它的体积变小,密度变小D. 一块冰熔化成水后,它的体积变小,密度变大(正确答案)14、能量在转化过程中是守恒的,所以能源是“取之不尽,用之不竭”的[判断题] *对错(正确答案)答案解析:能量在转化和转移的过程中是有方向的,所以需要节能15、如图59所示,“蛟龙号”载人深潜器是我国首台自主设计、研制的作业型深海载人潜水器,设计最大下潜深度为级,是目前世界上下潜最深的作业型载人潜水器。

2023大学_激光原理及应用(陈家璧著)课后习题答案下载

2023大学_激光原理及应用(陈家璧著)课后习题答案下载

2023激光原理及应用(陈家璧著)课后习题答案下载激光原理及应用(陈家璧著)课后答案下载绪论一、激光的发展简史二、激光的特点三、本课程的学习方法第1章光和物质的近共振相互作用1.1 电磁波的吸收和发射1.2 电磁场吸收和发射的唯象理论1.3 光谱线加宽1.4 激光器中常见的谱线加宽1.5 光和物质相互作用的近代理论简介思考和练习题第2章速率方程理论2.1 典型激光器的工作能级2.2 三能级系统单模速率方程组2.3 四能级系统单模速率方程组2.4 小信号光的介质增益2.5 均匀加宽介质的增益饱和2.6 非均匀加宽介质的增益饱和2.7 超辐射激光器思考和练习题第3章连续激光器的工作特性3.1 均匀加宽介质激光器速率方程3.2 激光振荡阈值3.3 均匀加宽介质激光器中的'模竞争3.4 非均匀加宽介质激光器的多纵模振荡 3.5 激光器输出特性思考和练习题第4章光学谐振腔理论4.1 光学谐振腔的研究方法4.2 光学谐振腔的基本知识4.3 光学谐振腔的矩阵光学理论4.4 光学谐振腔的衍射积分理论4.5 平行平面腔的自再现模4.6 对称共焦腔的自再现模思考和练习题第5章高斯光束5.1 高斯光束的基本特点5.2 高斯光束的传输5.3 高斯光束的特性改善思考和练习题第6章典型激光器6.1 概述6.2 气体激光器6.3 固体激光器6.4 染料激光器6.5 半导体激光器6.6 其他激光器思考和练习题第7章激光的应用7.1 激光在基础科学研究中的应用 7.2 激光在通信及信息处理中的应用 7.3 激光在军事技术中的应用7.4 激光在生物及医学中的应用7.5 激光在材料加工中的应用7.6 激光在测量技术(计量学)中的应用7.7 激光在能源、环境中的应用7.8 激光在土木、建筑中的应用思考和练习题附录A.常用物理常数表B.常见激光器的典型技术参数C.常用电光晶体的典型技术参数D.常用光学非线性晶体的典型技术参数E.常用激光晶体的典型技术参数F.常见光功率计型号和厂家G.典型激光波长使用的光学零件及其材料性能参数H.常见光路和光学元件的传播矩阵参考文献激光原理及应用(陈家璧著):内容简介点击此处下载激光原理及应用(陈家璧著)课后答案激光原理及应用(陈家璧著):目录主要介绍了激光发展简史及激光的特性,激光产生的基本原理,光学谐振腔与激光模式,高斯光束,激光工作物质的增益特性,激光器的工作特性,激光特性的控制与改善,典型激光器,半导体激光器,光通信系统中的激光器和放大器,激光全息技术,激光与物质的相互作用,以及激光在其他领域的应用等内容。

激光原理及应用_陈家璧_第一章

激光原理及应用_陈家璧_第一章

➢只有 h E2 E1当时,才能发生受激辐射
➢受激辐射的光子与外来光子的特性一样, 如频率、位相、偏振和传播方向
(场3)单同色理能从量E密2经度受为激辐,射则跃有迁:到E1具有一定的跃迁速率,在此假设外来光的光 dn2 B21n2 dt
式中的参数意义同自发辐射。B21称为爱因斯坦受激辐射系数,简称受激辐射系数。
16
1.3.2 光和物质的作用
(4) 令 W21 B21
,则有:W21
B21
dn2 n2dt
则W21(即受激辐射的跃迁几率)的物理意义为:单位时间内,在外来单
色能量密度为 的光照下,E2能级上发生受激辐射的粒子数密度占处
于E2能级总粒子数密度的百分比。
(5) 注意:自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃迁几率 决定于受激辐射系数与外来光单色能量密度的乘积。
1. 辐射跃迁:发射或吸收光子从而使原子造成能级间跃迁的现象 2. 非辐射跃迁:原子在不同能级跃迁时并不伴随光子的发射和吸收, 而是把多余的能量传给了别的原子或吸收别的原子传给它的能量
11
1.3.1 黑体热辐射
1. 绝对黑体又称黑体:某一物体能够完全吸收任何波长的电磁辐射。自 然界中绝对黑体是不存在的 2. 空腔辐射体是一个比较理想的绝对黑体 3. 平衡的黑体热辐射:辐射过程中始终保持温度T不变
(a)z一定时,则U代表场矢量在该点作 时间上的周期振动
图(1-1)电磁波的传播
(b)t一定时,则U代表场矢量随位置的不同作空间的周期变化
(c)z、t同时变化时,则U代表一个行波方程,代表两个不同时刻空 间各点的振动状态。从下式可看出,光波具有时间周期性和空间周期性。 时间周期为T,空间周期为;时间频率为1/T,空间频率为1/

激光原理(含答案)

激光原理(含答案)

1、试证明:由于自发辐射,原子在E2能级的平均寿命211/s A τ=。

(20分)证明:根据自发辐射的性质,可以把由高能级E2的一个原子自发地跃迁到E1的自发跃迁几率21A 表示为212121()spdn A dt n = (1)式中21()spdn 表示由于自发跃迁引起的由E2向E1跃迁的原子数因在单位时间内能级E2所减少的粒子数为221()sp dn dn dt dt =- (2)把(1)代入则有2212dn A n dt =- (3)故有22021()exp()n t n A t =- (4)自发辐射的平均寿命可定义为22001()s n t dt n τ∞=⎰ (5)式中2()n t dt为t 时刻跃迁的原子已在上能级上停留时间间隔dt 产生的总时间,因此上述广义积分为所有原子在激发态能级停留总时间,再按照激发态能级上原子总数平均,就得到自发辐射的平均寿命。

将(4)式代入积分(5)即可得出210211exp()s A t dt A τ∞=-=⎰2、一光束通过长度为1m 的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。

(20分)解: 若介质无损耗,设在光的传播方向上z 处的光强为I(z),则增益系数可表示为()1()dI z g dz I z =故()(0)exp()I z I gz =根据题意有(1)2(0)(0)exp(1)I I I g ==⨯解得1ln(2)0.693g cm -==3、某高斯光束0 1.2,10.6.mm um ωλ==今用F=2cm 的锗透镜来聚焦,当束腰与透镜的距离为10m,1m,0时,求焦斑大小和位置,并分析结果 (30分)解:由高斯光束q 参数的变化规律有(参书P77: 图2.10.3) 在z=0 处200(0)/q q i πωλ== (1)在A 处(紧挨透镜L 的“左方”)(0)A q q l=+ (2)在B 处(紧挨透镜L 的“右方”)111B A q q F =-(3)在C 处C B Cq q l =+ (4)又高斯光束经任何光学系统变换时服从所谓ABCD 公式,由此得00C Aq Bq Cq D +=+ (5)其中1101011/101C A B l l C D F ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦ (6)则222220022222200()()()()()()()C C l F l F q l F i F l F l πωπωλλπωπωλλ--=++-+-+ (7)在像方高斯光束的腰斑处有{}Re 1/0C q =,得2202220()()0()()C l F l l F F l πωλπωλ--+=-+ (8)解得像方束腰到透镜的距离2'2220()()()C F l F l l F F l πωλ-==+-+ (9)将(9)代入(8)得出22220()()()C F l F q iF l πωλ-=-+ (10)由此求得220'222001111Im (1)()C l q F F πωπωλωλ⎧⎫=-=-+⎨⎬⎩⎭ (11。

激光原理及应用章部分课后答案

激光原理及应用章部分课后答案

激光原理及应⽤章部分课后答案激光原理及应⽤部分课后答案1-4为使He-Ne 激光器的相⼲长度达到1KM ,它的单⾊性0λλ?应是多少?2-2当每个模式内的平均光⼦数(光⼦简并数)⼤于1时,以受激辐射为主。

2-3如果激光器和微波激射器分别在um 10=λm 500n =λ和z 3000MH =ν输出1W 连续功率,问美秒从激光上能级向下能级跃迁的粒⼦数是多少?2-4当⼀对激光能级为E2和E1(f1=f2),相应的频率为v (波长为λ),能级上的粒⼦数密度分别为n2和n1,q 求:(1)当v=3000MHZ ,T=3000K 时,n2/n1=?(2)当λ=1um ,T=3000K 时,n2/n1=?(3)当λ=1um ,n2/n1=0时,温度T=?解:2-5激发态的原⼦从能级E2跃迁到E1时,释放出λ=5um的光⼦,求这个两个能级的能量差。

若能级E1和E2上的原⼦数分别为N1和N2,试计算室温T=300K的N2/N值。

2-7如果⼯作物质的某⼀跃迁是波长为100nm的远紫外光,⾃发辐射跃迁概率1621s10-=A,试问:(1)改跃迁的受激辐射爱因斯坦系数B21是多少?(2)为使受激辐射跃迁概率⽐⾃发辐射跃迁概率⼤三倍,腔内的单⾊能量密度νρ应为多少?2-9某⼀物质受光照射,沿物质传播1mm的距离时被吸收了1%,如果该物质的厚度是0.1m,那么⼊射光中有百分之⼏能通过该物质?并计算该物质的吸收系数α。

2-10激光在0.2m 长的增益介质中往复运动过程中,其增强了30%。

求该介质的⼩信号增益系数0G 。

假设激光在往复运动中没有损耗。

3-2CO2激光器的腔长L=100cm,反射镜直径D=1.5cm,两镜的光强反射系数分别为r1=0.985,r2=0.8.求由衍射损耗及输出损耗所分别引起的δ,τ。

3-4,分别按下图中的往返顺序,推导近轴光线往返⼀周的光学变换矩阵???? ?D C B A ,并证明这两种情况下的)(D A +21相等。

(完整版)激光原理第一章答案

(完整版)激光原理第一章答案

第一章 激光的基本原理1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλ∆应是多少? 提示: He-Ne 激光器输出中心波长632.8o nm λ= 解: 根据c λν=得 2cd d d d ννλνλλλ=-⇒=-则 ooνλνλ∆∆=再有 c c cL c τν==∆得106.32810o o o c o c c L L λλνλνν-∆∆====⨯ 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则:由此可得:其中346.62610J s h -=⨯⋅为普朗克常数,8310m/s c =⨯为真空中光速。

所以,将已知数据代入可得:=10μm λ时: 19-1=510s n ⨯=500nm λ时:18-1=2.510s n ⨯ =3000MHz ν时:23-1=510s n ⨯3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为λ),能级上的粒子数密度分别为2n 和1n ,求(a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=?解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则(a) 当ν=3000MHz ,T=300K 时:(b) 当λ=1μm ,T=300K 时:cP nh nh νλ==PP n h hcλν==2211()exp exp exp b b b n E E h hc n k T k T k T νλ⎡⎤⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭3492231 6.62610310exp 11.3810300n n --⎛⎫⨯⨯⨯=-≈ ⎪⨯⨯⎝⎭34822361 6.62610310exp 01.381010300n n ---⎛⎫⨯⨯⨯=-≈ ⎪⨯⨯⨯⎝⎭(c) 当λ=1μm ,21/0.1n n =时:4. 在红宝石调Q 激光器中,有可能将几乎全部3+r C 离子激发到激光上能级并产生激光巨脉冲。

激光原理技术与应用习题解答

激光原理技术与应用习题解答

习题I1、He-Ne激光器,其谱线半宽度,问为多少?要使其相干长度达到1000m,它的单色性应是多少?解:2、He-Ne激光器腔长L=250mm,两个反射镜的反射率约为98%,其折射率=1,已知Ne原子处谱线的,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽约为多少?解:3、设平行平面腔的长度L=1m,一端为全反镜,另一端反射镜的反射率,求在1500MHz频率范围内所包含的纵模数目和每个纵模的频带宽度?解:4、已知CO2激光器的波长处光谱线宽度,问腔长L为多少时,腔内为单纵模振荡(其中折射率=1)。

解:,5、Nd3—YAG激光器的波长处光谱线宽度,当腔长为10cm时,腔中有多少个纵模?每个纵模的频带宽度为多少?解:6、某激光器波长,其高斯光束束腰光斑半径。

①求距束腰10cm、20cm、100cm时,光斑半径和波阵面曲率半径各为多少?②根据题意,画出高斯光束参数分布图。

解:对共焦腔有:7、He-Ne激光器波长,采用平凹腔,其中凹面反射镜R=100m 时:①分别计算当腔长为10cm、30cm、50cm、70cm、100cm时两个反射镜上光斑尺寸W平和W凹。

②根据题意,画出光斑尺寸W平和W凹随腔长L变化曲线。

解:8、比较激光振荡器和放大器的异同点。

解:不同:前者有谐振腔,有选模作用后者无谐振腔;相同:粒子数反转;9、试说明红宝石激光器的谱线竞争。

解:10、说明选单模(横、纵)的意义和方法。

解:选单横模的意义:提高光束质量,包括单色性、方向性、相干性、亮度等,重要的是获得稳定的锁模激光和好的激光聚焦光束,进行时间空间分辨应用。

精细激光加工:光斑直径=透镜焦距*发散角。

超强超快激光应用; 激光通信、雷达、测距等,希望作用距离大,发散角小。

选单横模的方法:加小孔光栏;谐振腔结构。

选单纵模意义:单频激光应用,稳频应用,高相干性和单色性,时间(时钟)标准等。

精密干涉测量,全息照相,高分辨光谱等要求单色性、相干性高的单频光源。

激光原理——课后习题解答

激光原理——课后习题解答
其中(II)式可以改写为
因为 与 相比很大,这表示粒子在 能级上停留的时间很短,因此可以认为 能级上的粒子数 ,因此有 。这样做实际上是将三能级问题简化为二能级问题来求解。
由(I)式可得:
代入式(V)得:
由于
所以
红宝石对波长为694.3nm的光透明,意思是在能量密度为 的入射光的作用下,红宝石介质内虽然有受激吸收和受激辐射,但是出射光的能量密度仍然是 。而要使入射光的能量密度等于出射光的能量密度,必须有 为常数,即 ,这样式(VI)变为:
第四章电磁场和物质的共振相互作用
习题
2.设有一台迈克尔逊干涉仪,其光源波长为 。试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期地变化 次。
证明:如右图所示,光源S发出频率为 的光,从M上反射的光为 ,它被 反射并且透过M,由图中的I所标记;透过M的光记为 ,它被 反射后又被M反射,此光记为II。由于M和 均为固定镜,所以I光的频率不变,仍为 。将 看作光接收器,由于它以速度v运动,故它感受到的光的频率为:
解:入射高斯光束的共焦参数
根据 ,可得
束腰处的q参数为:
与束腰相距30cm处的q参数为:
与束腰相距无穷远处的q参数为:
16.某高斯光束 =1.2mm, 。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。
解:入射高斯光束的共焦参数
又已知 ,根据
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 为实验测得,其值为
气体的碰撞线宽与气压p的关系近似为
当 时,其气压为
所以,当气压小于 的时候以多普勒加宽为主,当气压高于 的时候,变为以均匀加宽为主。

《激光原理及应用》习题参考答案仅供大家学习参考用

《激光原理及应用》习题参考答案仅供大家学习参考用

《激光原理及应用》习题参考答案思考练习题11•解答:设每秒从上能级跃迁到下能级的粒子数为n 。

单个光子的能量:g = h v = he / Z 连续功率:p 二n ; 则,n = p/ ;a.对发射■ = 0.5000的光:p 1 0.5000 10-6 n — —he 6.63 10 ⑶ 3.0 108-2.514 1018(个)b.对发射、• = 3000 MHz 的光_________ 16.63 10 "4 3000 106= 5.028 1023(个)E 2 a 匹Tn 1hv些=小-1n 1hc 3T6.26 103(K)'■ ln 匹3.解答:(1) 由玻耳兹曼定律可得_E 2 -E 1e '丁 , m/g20且4g 1 =g 2, m • n 2 =10代入上式可得: n 2 :30 (个)(2 )由 (a ), (b ) ,(c)式可得:2.解答:E 2 - E<| = h..(a).(b) (1 )由 ■■■. = c/ ■ .......(a ), (b )式可得:.(c)n 2 /g 2(2) p =108 n 2(E 2 -EJ =5.028 10-(W) 4•解答:(1)由教材(1-43)式可得e kT —1因此:fT ' =2.82kh ,hc同样可求得: 一丄 =4.96九m kT故' m - m = 0.568c8h1 3 A-2000J s/m 3 -3.860 10, J s/m 3 (0.6328 10冷3 5.0 10*8- 6.63 10 ^4= 7.592 10 5•解答:(1)红宝石半径 r = 0.4cm ,长L -8cm ,铬离子浓度匸=2 1018cm‘,发射波长• =0.6943 10 “m ,巨脉冲宽度 -T = 10 ns 则输出最大能量2 ,、he18E - (:r L) 2 1034826.63 1030 108二 0.42 86(J)二 2.304(J)0.6943 10」脉冲的平均功率:P =E /.「23041010"2.304 叫) (2)自发辐射功率 _ hcN 2heP (兀r 2L)Q 自皿z-X663计 3° IO 8 *1。

激光原理及应用课后答案

激光原理及应用课后答案

11.试计算连续功率均为1W 的两光源,分别发射λ=0.5000m,ν3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?q 1 0.5 ×10 6答:粒子数分别为:n1 34 8 2.5138 ×1018 hν c 6.63 ×10 ×3 ×10 6.63 ×10 34 ×λq 1 n2 34 9 5.0277 ×10 23 hν 6.63 ×10 ×3 ×10 m co2.热平衡时,原子能级E 2 的数密度为n2,下能级E1 的数密度为n1 ,设g 1 g 2 ,求:1当原子跃迁时相应频率为ν=3000MHz,T=300K 时n2/n1 为若干。

2若原子跃迁时发光波长λ=1,n2/n1 =0.1 时,则温度T 为多高?网E E )hν答:(1)nm / gm e m n kT 则有:n2 e kT exp w. 6.63 ×10 34 × 3 ×10 9 1.38 ×10 23 ×300 ≈1 案nn / gn n1 答hνn2 6.63 ×10 34 ×3 ×108 (2)e kT exp 23 6 0.1 T 6.26 ×10 3 K da n1 1.38 ×10 ×1 ×10 ×T 后课3.已知氢原子第一激发态E2 与基态E 1之间能量差为1.64×l0 -18J,设火焰T=2700K中含有1020 个氢原子。

设原子按玻尔兹曼分布,且4g1 =g2 。

求:1能级E 2 上的原子数n2 为kh多少?2设火焰中每秒发射的光子数为l0 8 n2,求光的功率为多少瓦?hνn2 g1 n 1.64 ×10 18答:(1)e kT 2 4 ×exp 23 3.11 ×10 19 n1 g 2 n1 1.38 ×10 ×2700 w. 且n1 n 2 10 20 可求出n 2 ≈31ww (2)功率=108 ×31 × 1.64 ×10 18 5.084 ×10 9 W4.1普通光源发射λ=0.6000m 波长时,如受激辐射与自发辐射光功率体密度之比q激 1 ,求此时单色能量密度ρν为若干? 2 在He —Ne 激光器中若q自2000 q激ρν 5.0 ×10 4 J s / m3 ,λ为0.6328m,设=1,求为若干?q自答:(1)1q激c3 λ3 1 0.6 ×10 6 3 =ρνρνρρν 3.857 ×10 17 J s / m3q自8πhν 3 8πh 2000 8π×6.63 ×10 34 νq激c3 λ3 0.6328 ×10 6 3 (2)=3 ρνρν34 ×5 ×10 4 7.6 ×10 9 q自8πhν8πh 8π×6.63 ×105.在红宝石Q 调制激光器中,有可能将全部Cr3+铬离子激发到激光上能级并产生巨脉冲。

激光原理及应用期末试题及答案

激光原理及应用期末试题及答案

物理专业2006级本科《激光原理及应用》期末试题(A卷答案)一、简答题1.激光器的基本结构包括三个部分,简述这三个部分答:激光工作物质、激励能源(泵浦)和光学谐振腔;2.物质的粒子跃迁分辐射跃迁和非辐射跃迁,简述这两种跃迁的区别。

答:粒子能级之间的跃迁为辐射跃迁,辐射跃迁必须满足跃迁定则;非辐射跃迁表示在不同的能级之间跃迁时并不伴随光子的发射或吸收,而是把多余的能量传给了别的原子或吸收别的原子传给他的能量。

3.激光谱线加宽分为均匀加宽和非均匀加宽,简述这两种加宽的产生机理、谱线的基本线型。

答:如果引起加宽的物理因数对每一个原子都是等同的,则这种加宽称为均匀加宽。

自然加宽、碰撞加宽及晶格振动加宽均属均匀加宽类型。

非均匀加宽是原子体系中每一个原子只对谱线内与它的表观中心频率相应的部分有贡献。

多普勒加宽和固体晶格缺陷属于非均匀加宽。

4.简述均匀加宽的模式竞争答:在均匀加宽的激光器中,开始时几个满足阈值条件的纵模在振荡过程中相互竞争,结果总是靠近中心频率的一个纵模获胜,形成稳定的振荡,其他的纵模都被抑制而熄灭。

这种情况叫模式竞争。

5.工业上的激光器主要有哪些应用?为什么要用激光器?答:焊接、切割、打孔、表面处理等等。

工业上应用激光器主要将激光做热源,利用激光的方向性好,能量集中的特点。

6.说出三种气体激光器的名称,并指出每一种激光器发出典型光的波长和颜色。

答:He-Ne激光器,632.8nm(红光),Ar+激光器,514.5nm(绿光),CO2激光器,10.6μm (红外)7.全息照相是利用激光的什么特性的照相方法?全息照相与普通照相相比有什么特点?答:全息照相是利用激光的相干特性的。

全息照片是三维成像,记录的是物体的相位。

二、证明题:(每题6分,共18分)1.证明:由黑体辐射普朗克公式33811hKThceννπνρ=-导出爱因斯坦基本关系式:3213218A hn h B cνπνν==三、计算题1.由两个凹面镜组成的球面腔,如图。

激光原理及应用的答案

激光原理及应用的答案

激光原理及应用的答案1. 激光原理激光是指通过激活原子、分子或离子的能级从而形成一种具有高强度、高单色性和高相干性的电磁辐射的过程。

激光的产生基于以下几个原理:•受激辐射:当一个物质中某个能级的粒子被外界的激发所占据时,如果有一个辐射场作用于这些粒子,它们就可能跳到较低能级,从而向辐射场辐射出一个与外界辐射场的频率和相位相同的光子,这就是受激辐射。

•斯托克斯辐射:当一个粒子从一个高能级跃迁到一个低能级,同时放出一个光子,这个过程称为斯托克斯辐射。

斯托克斯辐射是激光产生过程中的重要原理之一。

•光增强:通过将一系列粒子激发到一个高能级,然后通过受激辐射放出一束光,然后再将该光束通过增强反射和光放大等技术放大,从而形成一束高强度的激光。

2. 激光的应用激光作为一种特殊的光源,具有许多重要的应用。

下面列举了一些主要的激光应用:•激光切割和焊接:激光切割和焊接技术广泛应用于金属加工、电子制造和汽车制造等领域。

激光切割和焊接具有高精度、高效率和无污染等优点,在工业生产中发挥着重要作用。

•激光医学:激光在医学领域有广泛的应用,如激光手术、激光治疗、激光诊断等。

激光手术使用高能激光在手术过程中进行切割、蒸发、烧灼等操作,具有创伤小、恢复快的优点。

激光治疗可以用于肿瘤治疗、皮肤美容等方面。

激光诊断可以用于眼科、皮肤病等疾病的检测和治疗。

•激光测距和测速:激光测距和测速技术被广泛应用于工程建设、地质勘探、安防监控等领域。

利用激光的高单色性和高相干性,可以实现精准的距离和速度测量。

•激光通信:激光通信技术是一种高速、大容量的无线通信技术。

激光通信利用激光器将信息通过光波传输,具有传输速度快、抗干扰能力强的优点,可以用于远距离的通信。

•激光显示:激光显示技术是一种新型的显示技术,具有高亮度、高对比度和高颜色纯度等特点。

激光显示可以用于电视、电影院、虚拟现实等领域,提供更好的显示效果和观看体验。

3. 激光的发展和前景激光技术的发展正在不断推动人类科技的进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考练习题11.答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n 2. 答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T T e n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3. 答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯ 4.答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5. 答:(1)最大能量J ch d r h N W 3.2106943.01031063.61010208.0004.0683461822=⨯⨯⋅⨯⋅⨯⨯⋅⋅⨯=⋅⋅⋅⋅=⋅=--πλρπν脉冲平均功率=瓦8961030.21010103.2⨯=⨯⨯=--t W (2)瓦自自自145113.2112002021=⎪⎭⎫⎝⎛-⨯==⎪⎭⎫⎝⎛-==⎰-e h N P e n dt e n N t A τνττ11811852322-⨯=⋅-⨯=⋅=⋅==kTh kT h e hc c e h c c dVd dw dVd dw νννλλπλλπλρλνλρ 7.答:(1)由 33811hvkTh c eνπνρ=-可得:0))1(113(82323=⋅⋅--⋅+-=∂∂kT he e e ch kT h kT h kT h ννννννπνρ 令kT h x ν=,则上式可简化为:x x xe e =-)1(3解上面的方程可得:82.2≈x 即:1182.282.2--=⇒≈kh T kTh m mνν (2)辐射能量密度为极大值的波长m λ与m ν的关系仍为m m cλν=8.证明: 2202)2/1()(4)(τννπν+-=Af N ,由归一化条件且0ν是极大的正数得: ⇒=+-⎰∞1)2/1()(402202ντννπd A ⇒=+-⎰∞1)2/1()(4202202ντννπνd A⇒='+'⎰∞1)41(120222νπτνπd A τπτνπτπ11]'4[4202=⇒=⋅⋅∞A arctg A9. 证明:自发辐射时在上能级上的粒子数按(1-26)式变化:t A e n t n 21202)(-= 自发辐射的平均寿命可定义为:()dt t n n ⎰∞=2201τ式中()dt t n 2为t 时刻跃迁的原子已在上能级上停留时间间隔dt 产生的总时间,因此上述广义积分为所有原子在激发态能级停留总时间,再按照激发态能级上原子总数平均,就得到自发辐射的平均寿命。

将(1-26)式代入积分即可得出 210121A dt e t A ==⎰∞-τ0022021220)1()211)(1()1)(1(11υυυυυυυυυυυν⋅+≈⋅⋅++≈⋅-+=⋅-+=-c c c cc c c即证11. 答:Hz cccc 146801.010241.5106328.01039.01.19.01.111⨯=⨯⨯⋅=⋅=-+=-+λυυνν 同理可求:Hz c 141.010288.4⨯=-ν;Hz c 145.010211.8⨯=+ν;Hz c 145.010737.2⨯=-ν12.答:Hz c 81460680010848.81074.4108667.1)108667.11()1035601()1(⨯=⨯⨯⨯=∆⇒⨯+=⨯+=+=--νννυνν 13.答;(1)368.01)0()()0()(10001.0===⇒=⋅--ee I z I e I z I Az (2)11693.02ln 2)0()()0()(-⋅==⇒==⇒=m G e I z I e I z I G Gz思考练习题21. 利用下列数据,估算红宝石的光增益系数n 2-n 1=5⨯1018cm -3,1/f (ν)=2×1011s -1,t 自发=211A -≈3⨯10-3s ,λ=0.6943μm ,μ=l.5,g 1=g 2。

答:)(8)(8)(8)()(222133321333212121νπμλννμνπμννπμννμνf A n f h c h c A n G c h B A f h c nB G ⋅⋅∆=⋅⋅∆=⇒⎪⎪⎭⎪⎪⎬⎫=∆=11122431871.010215.18)106943.0(1031105)(---=⨯⨯⨯⋅⨯⋅⨯=cm G πν 2. He-Ne 激光器中,Ne 原子数密度n 0=n 1+n 2=l012 cm -3,1/f (ν)=15×109 s -1,λ=0.6328μm ,t 自发=211A -=10-17s ,g 3=3,g 2=5,11μ≈,又知E 2、E 1能级数密度之比为4,求此介质的增益系数G 值。

答:11112211211112312210103141081021410⨯=-=∆⇒⎪⎩⎪⎨⎧⨯=⨯=⇒⎭⎬⎫=+=-n g g n n n n E E cm n n n 比能级数密度之比为和 332121333332121888νπνπνπμh c A B c h c h B A =⇒== 192617112212172.0105.118)106328.0(1010314)(8)()(--=⨯⨯⨯⨯⨯=∆=∆=cmf A n f h c nB G πνπλννμν3. (a)要制作一个腔长L =60cm 的对称稳定腔,反射镜的曲率半径取值范围如何?(b)稳定腔的一块反射镜的曲率半径R 1=4L ,求另一面镜的曲率半径取值范围。

答:(a )R R R ==21;cm R RLR L 301)1)(1(0≥⇒≤--≤ (b )L R L R R LR L R L 31)1(4301)1)(1(022221-≤≥⇒≤-⋅≤⇒≤--≤或 4. 稳定谐振腔的两块反射镜,其曲率半径分别为R 1=40cm ,R 2=100cm ,求腔长L 的取值范围。

答:cm L cm L L L R L R L 1401004001)1001)(401(01)1)(1(021≤≤≤≤⇒≤--≤⇒≤--≤或5. 试证非均匀增宽型介质中心频率处的小讯号增益系数的表达式(2-28)。

证明:2102100021000210002100)ln2( 2)()2ln (2)()( )()( )(πννμνπννννμνννμνh c B n G f f h c B n G f h cB n G D D DD D D D D ∆∆=⇒⎪⎪⎭⎪⎪⎬⎫∆=∆=⇒∆= 即证。

6. 推导均匀增宽型介质,在光强I ,频率为ν的光波作用下,增益系数的表达式(2-19)。

证明:220022000)2)(1()()(])2()[()()(1 )()(ννννννννννν∆++-∆+-=+=s s I I G f f I I G G 而:())()(2)2()(12)()()(2)()( )()( )(0022000000002100002100ννπνννπννννννπνννμνννμνG G f f G f f h c B n G f h cB n G ∆∆+-∆==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫∆=∆=∆≈依据上面两式可得:220002)2)(1()()()2()(νννννν∆++-∆=s I I G G ;即证。

7. 设均匀增宽型介质的小讯号增益曲线的宽度为ν∆,。

证明:(1)220002220022000)2)(1()()()2()2)(1()()(])2()[()()(1 )()(νννννννννννννννν∆++-∆=∆++-∆+-=+=s s s I I G I I G f f I I G G 当1=s I I 时,增益系数的最大值为:2)()(000ννG G =;当增益系数的最大值为增益系数的最大值的一半时,即4)()2(2)()()2()()(1 )()(0022000200ννννννννννG G f f G G =∆⋅+-∆=+=时,对应有两个频率为:νννννννννν∆'∆∴∆=∆+=2)2(2)2(2210201=-=-以及(2)物理意义:当光强s I I =时,介质只在ν∆2范围内对光波有增益作用,在此范围外增益可忽略不计,而光波也只在这个线宽范围内对介质有增益饱和作用。

8. 研究激光介质增,线型的受激发射截面为222(()8e c f νσνπνμτ=)。

证明:τμπνννμπντννμνπμνσννσνπμννμν222222333213332121218)()(81)(8)()()(8)()(f c f c f h c h c A n G c h B A f h cnB G e e =⋅=⋅=⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫∆==∆=9. 饱和 答:(1)τνσνννπννσννμμτνπνννμνννστμνπν)()(2)()()(2)()()()()(2)(0000000021210e s e s e s h I f f h cc I f h c nB G n G B c I =⇒⎪⎪⎭⎪⎪⎬⎫∆=∆=⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫∆=∆=∆=(2) 25322000220020000/10213.34)()(8)()()()(cmW hc h I f c h I e s e e s ⨯=∆==⇒⎪⎪⎭⎪⎪⎬⎫==λνμπτνσνντμπνννστνσνν 10.实答:(1)13211421010837.1)30501(10103)1()()(----⨯=+⨯=+=cm I I D G s D D νν(2)99.0120)10910837.1exp(12)exp(43221≥⇒≥⋅⨯-⨯⇒≥-=--r r L a G r r K 内 (3)mW I A P 44.010501011.0008.0320=⨯⨯⨯⨯=⋅⋅=-τ 11.求答: 315926722222/10048.110)106328.0(1.00167.0108)(18)(8m f L Rf c a n ⨯=⨯⨯⨯⨯=-=∆--πνλτπμντμπν总阈=12.红宝石激光器答:3341910342102103/6501031051.021********.622cm W hcn V n h P =⨯⨯⨯⨯⨯⨯⨯⨯==---λττν=阈13. YAG 激光器答:(1)3443410163232144/21103.21075.01063.6103108.1/cm W hcn V h n P =⨯⨯⨯⨯⨯⨯⨯⨯=∆=∆---λττν阈阈阈= (2)倍数=65/2.1=31思考练习题31.答:Hz L cq 881035.0121032⨯=⨯⨯⨯==∆μν,210310688=⨯⨯=∆∆=q n νν,则可能存在的纵模数有三个,它们对应的q 值分别为:68141095.11031085.522⨯=⨯⨯=⨯=⇒=νμμνc L q L qc ,q +1=1950001,q -1=1949999 2.答:Hz L cq 88105.11121032⨯=⨯⨯⨯==∆μν,10105.1105.189=⨯⨯=∆∆=q n νν即可能输出的纵模数为10个,要想获得单纵模输出,则:m c L Lcq 2.0105.1103298=⨯⨯=∆<∴=∆<∆νμμνν 故腔长最长不得大于m 2.0。

相关文档
最新文档