算法分析与设计复习题及参考答案

合集下载

《算法与程序设计》复习题

《算法与程序设计》复习题

算法与程序设计一、选择题部分(100题)一章一节:了解计算机解决问题的过程1.用计算机解决问题时,首先应该确定程序“做什么?”,然后再确定程序“如何做?”请问“如何做?”是属于用计算机解决问题的哪一个步骤?()A、分析问题B、设计算法C、编写程序D、调试程序答案:B2.学校要举行运动会,请你设计一个能够对运动员分数自动排序的软件,如果要设计此软件,以下最好的方法和步骤是()。

A、分析问题,编写程序,设计算法,调试程序B、设计算法,编写程序,提出问题,调试程序C、提出问题,设计算法,编写程序,调试程序D、设计算法,提出问题,编写程序,调试程序答案:C3.下列步骤不属于软件开发过程的是()。

A、任务分析与系统设计B、软件的销售C、代码编写与测试D、软件测试与维护答案:B4.用计算机解决问题的步骤一般为()①编写程序②设计算法③分析问题④调试程序。

A.①②③④ B.③④①② C.②③①④ D.③②①④答案:D5.以下描述中最适合用计算机编程来处理的是()。

A、确定放学回家的路线B、计算某个同学期中考试各科成绩总分C、计算100以内的奇数平方和D、在因特网上查找自己喜欢的歌曲答案:C6.以下问题中最适合用计算机编程处理的是()。

A、制定本学期的学习计划B、计算正方形的周长C、创作一首歌曲D、求1000以内的所有素数答案:D7.由“上车—掏钱—投币”所描述的问题是()。

A、无人售票车投币过程B、乘公交车过程C、上车过程D、下车过程答案:A一章二节:算法和算法描述8.下面说法正确的是()。

A、算法+数据结构=程序B、算法就是程序C、数据结构就是程序D、算法包括数据结构答案:A9.算法描述可以有多种表达方法,下面哪些方法不可以描述“水仙花数问题”的算法()。

A.自然语言B.流程图C.伪代码D.机器语言答案:D10.下面关于算法的说法错误的是()。

A、算法必须有输出B、算法就是程序C、算法不一定有输入D、算法必须在有限步执行后能结束答案:B11.算法的三种基本控制结构是顺序结构、分支结构和()。

计算机算法与设计复习题(含答案)

计算机算法与设计复习题(含答案)

1、一个算法的优劣可以用(时间复杂度)与(空间复杂度)与来衡量。

2、回溯法在问题的解空间中,按(深度优先方式)从根结点出发搜索解空间树。

3、直接或间接地调用自身的算法称为(递归算法)。

4、 记号在算法复杂性的表示法中表示(渐进确界或紧致界)。

5、在分治法中,使子问题规模大致相等的做法是出自一种(平衡(banlancing)子问题)的思想。

6、动态规划算法适用于解(具有某种最优性质)问题。

7、贪心算法做出的选择只是(在某种意义上的局部)最优选择。

8、最优子结构性质的含义是(问题的最优解包含其子问题的最优解)。

9、回溯法按(深度优先)策略从根结点出发搜索解空间树。

10、拉斯维加斯算法找到的解一定是(正确解)。

11、按照符号O的定义O(f)+O(g)等于O(max{f(n),g(n)})。

12、二分搜索技术是运用(分治)策略的典型例子。

13、动态规划算法中,通常不同子问题的个数随问题规模呈(多项式)级增长。

14、(最优子结构性质)和(子问题重叠性质)是采用动态规划算法的两个基本要素。

15、(最优子结构性质)和(贪心选择性质)是贪心算法的基本要素。

16、(选择能产生最优解的贪心准则)是设计贪心算法的核心问题。

17、分支限界法常以(广度优先)或(以最小耗费(最大效益)优先)的方式搜索问题的解空间树。

18、贪心选择性质是指所求问题的整体最优解可以通过一系列(局部最优)的选择,即贪心选择达到。

19、按照活结点表的组织方式的不同,分支限界法包括(队列式(FIFO)分支限界法)和(优先队列式分支限界法)两种形式。

20、如果对于同一实例,蒙特卡洛算法不会给出两个不同的正确解答,则称该蒙特卡洛算法是(一致的)。

21、哈夫曼编码可利用(贪心法)算法实现。

22概率算法有数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法23以自顶向下的方式求解最优解的有(贪心算法)24、下列算法中通常以自顶向下的方式求解最优解的是(C)。

算法设计与分析复习题整理 (1)

算法设计与分析复习题整理 (1)

一、基本题:算法:1、程序是算法用某种程序设计语言的具体实现。

2、算法就是一组有穷的序列(规则) ,它们规定了解决某一特定类型问题的一系列运算。

3、算法的复杂性是算法效率的度量,是评价算法优劣的重要依据。

4、算法的“确定性”指的是组成算法的每条指令是清晰的,无歧义的。

5、算法满足的性质:输入、输出、确定性、有限性。

6、衡量一个算法好坏的标准是时间复杂度低。

7、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂性和空间复杂性。

8、任何可用计算机求解的问题所需的时间都与其规模有关。

递归与分治:9、递归与分治算法应满足条件:最优子结构性质与子问题独立。

10、分治法的基本思想是首先将待求解问题分解成若干子问题。

11、边界条件与递归方程是递归函数的两个要素。

12、从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法。

13、将一个难以直接解决的大问题,分解成一些规模较小的相同问题,以便各个击破。

这属于分治法的解决方法。

14、Strassen矩阵乘法是利用分治策略实现的算法。

15、大整数乘积算法是用分治法来设计的。

16、二分搜索算法是利用分治策略实现的算法。

动态规划:17、动态规划算法的两个基本要素是最优子结构性质和重叠子问题性质。

18、下列算法中通常以自底向上的方式求解最优解的是动态规划法。

19、备忘录方法是动态规划算法的变形。

20、最优子结构性质是贪心算法与动态规划算法的共同点。

21、解决0/1背包问题可以使用动态规划、回溯法,其中不需要排序的是动态规划,需要排序的是回溯法。

贪心算法:22、贪心算法总是做出在当前看来最好的选择。

也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的局部最优解。

23、最优子结构性质是贪心算法与动态规划算法的共同点。

24、背包问题的贪心算法所需的计算时间为 O(nlogn) 。

回溯法:25、回溯法中的解空间树结构通常有两种,分别是子集树和排列树。

中南大学现代远程教育课程考试复习试题及参考答案

中南大学现代远程教育课程考试复习试题及参考答案

中南大学现代远程教育课程考试复习试题及参考答案《算法分析与设计》一简答题1.算法的复杂性分析主要是分析算法的什么耗费情况?2.算法的重要特性是什么?3.算法的时间复杂度用什么计量?4.用比较树模型描述三个数排序的过程。

5.分治法的基本思想。

6.二分检索算法为什么可以提高查找的效率?7.简述顺序选择select算法的基本流程。

8.简述顺序选择select2算法的改进思路。

9.简述快速排序的基本思想。

10.快速排序算法的最坏时间复杂性和平均时间复杂性函数。

11.快速排序算法怎样抽取分割元素?12.partition怎样将数组划分成3段?13.分治合并排序的是怎样分治的?14.分治合并排序的二分归并过程在最坏情况下花费多少时间?15.分治合并排序的二分归并过程在最好情况下花费多少时间?16.MaxMin算法是怎样分治的?17.贪心法的基本思路是什么?18.用贪心法求解的问题有什么特点?19.背包问题的目标函数是什么,最优量度是什么?20.带限期的作业调度的贪心策略是什么?约束条件是什么?21.说明n皇后问题的解(x1,x2,….,x n)的含义。

22.简述n皇后算法的place函数的功能。

23.简述动态规划方法所运用最优化原理。

24.用多段图说明最优化原理。

二解释下列动态规划优解的一般递归形式。

1)0/1背包2)货郎担问题3)流水作业调度三算法分析。

1.分析汉诺塔算法的时间复杂性。

2.计算冒泡排序算法时间复杂性的阶。

3.分析maxmin算法的时间复杂性。

4.分析分治合并排序算法的时间复杂性。

5.分析二分检索的时间复杂性。

6.背包问题贪心算法的时间复杂性。

7.快速排序的partition过程中,进行了多少次元素之间的比较。

8.多段图算法的时间复杂性。

四算法段填空。

1.MaxMin 算法Maxmin(i,j,max,min)ifthen 对两元素进行比较;return;else{maxmin(i,m,max1,min1); //其中max1和min1为解子问题1的解}2.Hanoi算法Hanoi(n,a,b,c)If n=1 thenElse{;Hanoi(n-1,b, a, c);}3.二分检索BINSRCH(A,n,x,j)low←1;high←n;while low<high do{ ________________ mid←(low+high)/2;case:x=A[mid] :j←mid; return;:x< A[mid]:_________________high←mid-1;:x> A[mid]:_________________low←mid+1;endcase}j←0;end4.快速排序Quicksort(p,q)if p>q then_____________{call partition(p,j);call _______________________call _______________________}end5.贪心方法的抽象化控制procedure GREEDY(A,n)//A(1:n)包含n个输入//solutions←;for i←1 to do{x←SELECT(A)if FEASIBLE(solution,x)then solutions←; endif}return(solution)end GREEDY6.背包问题贪心算法procedure GREEDY-KNAPSACK(P,W,M,X,n)X←0 ;cu←M ;for i←1 to n do{ if then exit endifX(i) ← _ ;cu←;}if i ≤n then X(i) ←;endifend GREEDY-KNAPSACK7.分治合并排序算法procedure MERGESORT(low,high)if low < high thenmid ←_______________________________________________________MERGE(low,mid,high)endifend MERGESORT8. 多段图动态规划算法 procedure FGRAPH(E ,k ,n ,P) 1 real COST(n),integerD(n 一1),P(k),r ,j ,k ,n 2; 3 for to 1 by -1do4 设r 是一个这样的结点,(j ,r)∈E 且使c(j ,r)+COST(r)取最小值5 COST(j)← ;6 ;7 repeat8 P(1)←1;P(k)←n ;9 for do10 P(j)←D ( P(j-1) )11 repeat12 end FGRAPH9. n 后问题递归算法procedure RNQUEENS(K)global x( 1:m ),n;for x(k)←1 to _____ doif place( k )= true thenif k = n then ________else_____________endifendifrepeatend ENQUEENS1. 写递归形式的二分检索算法2. 设计三分检索算法3. 有n 个大小相同而重量不同的集装箱,重量分别为(w1,w2,……,wn),已知货船的额定载重量为M ,Σwi>M,i=1,2,3,…,n 。

算法分析设计期末复习

算法分析设计期末复习

通过解递归方程
logm n1
T (n) nlogm k k j f (n / m j ) j0
学习要点: 理解递归的概念。 掌握设计有效算法的分治策略。 通过下面的范例学习分治策略设计技巧。 (1)二分搜索技术; (2)大整数乘法; (3)Strassen矩阵乘法; (4)棋盘覆盖; (5)合并排序和快速排序; (6)线性时间选择; (7)最接近点对问题; (8)循环赛日程表。
基本运算Oi的执行次数ei分别进行统计分析。 – T(N,I)还需进一步简化,只在某些有代表性的合法输
入中去统计相应的ei来评价其复杂性。 – 一般只考虑三种情况下的时间性:最坏情况、最好
情况和平均情况下的复杂性,分别记为Tmax(N)、 Tmin(N)和Tavg(N)
四种渐近意义下的符号
• 四种渐近意义下的符号 –O –Ω –θ –o
}
----------------------------------------------------------------------------------------
CheckNum( T , p , q , element): ▹计算T[p..q]中element出现的次数
{ cnt ← 0
• 思路二:直接统计各 元素出现的次数,用 某一线性数据结构 存储统计结果(例如 用一个辅助数组存 储统计结果,统计时 用数组下标对应相 应元素)
第三章:动态规划
动态规划算法的基本思想
• 动态规划算法的基本思想
– 其基本思想与分治算法的思想类似——分而治之 – 与分治法的不同之处
• 分解后的子问题往往不互相独立; • 采用记录表的方法来保存所有已解决问题的答案
考虑时间 资源

算法设计与分析期末复习题

算法设计与分析期末复习题

算法设计与分析期末考试复习题1.算法有哪些特点?为什么说一个具备了所有特征的算法,不一定就是使用的算法?2.证明下面的关系成立:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)3.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i<n-1;i++)5. for(j=i+1;j<n;j++)6. if(A[j]<A[i]) {7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执行的元素赋值的次数最少?最少多少次?(2)什么时候算法所执行的元素赋值的次数最多?最多多少次?4.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i<n-1 && !sorted) {6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]<A[j-1]) {9. temp=A[j];10. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执行的元素比较次数最少是多少次?什么时候达到最少?(2)算法所执行的元素比较次数最多是多少次?什么时候达到最多?(3)算法所执行的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执行的元素赋值次数最多是多少次?什么时候达到最多?(5)用О、和Ω记号表示算法的运行时间。

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案

分治法1、二分搜索算法是利用(分治策略)实现的算法。

9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

算法分析与设计习题答案

算法分析与设计习题答案

算法分析与设计习题答案《算法分析与设计》期末复习题及答案⼀、简要回答下列问题:1.算法重要特性是什么?2.算法分析的⽬的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述⼆分检索(折半查找)算法的基本过程。

7.背包问题的⽬标函数和贪⼼算法最优化量度相同吗?8.采⽤回溯法求解的问题,其解如何表⽰?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么⽤分治法设计的算法⼀般有递归调⽤?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。

14.⼆分检索算法最多的⽐较次数?15.快速排序算法最坏情况下需要多少次⽐较运算?16.贪⼼算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束⼀般指什么?18.阐述归并排序的分治思路。

19.快速排序的基本思想是什么。

20.什么是直接递归和间接递归?消除递归⼀般要⽤到什么数据结构?21.什么是哈密顿环问题?22.⽤回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。

参考答案:1. 确定性、可实现性、输⼊、输出、有穷性2. 分析算法占⽤计算机资源的情况,对算法做出⽐较和评价,设计出额更好的算法。

3. 算法的时间复杂性与问题的规模相关,是问题⼤⼩n的函数。

4.当问题的规模n趋向⽆穷⼤时,影响算法效率的重要因素是T(n)的数量级,⽽其他因素仅是使时间复杂度相差常数倍,因此可以⽤T(n)的数量级(阶)评价算法。

时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。

5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输⼊实例下的算法所耗时间。

最坏情况下的时间复杂性取的输⼊实例中最⼤的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输⼊实例的处理时间与各⾃概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6. 设输⼊是⼀个按⾮降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x⽐较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]回溯法的搜索特点是什么7. 不相同。

算法分析复习题目及答案16-12-10

算法分析复习题目及答案16-12-10

一。

选择题1、二分搜索算法是利用( A )实现的算法。

A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( D )。

A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。

A、分支界限法B、动态规划法C、贪心法D、回溯法5. 回溯法解旅行售货员问题时的解空间树是()。

A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。

A、备忘录法B、动态规划法C、贪心法D、回溯法注意:动态规划采用的是自底向上的方式求解,而贪心算法采用的是自顶向下的方式来求解问题。

7、衡量一个算法好坏的标准是(C )。

A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。

A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。

A、分治策略B、动态规划法C、贪心法D、回溯法11.下面不是分支界限法搜索方式的是( D )。

A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。

A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。

( B )A、分治法B、动态规划法C、贪心法D、回溯法注意:备忘录是动态规划方法的一个步骤。

14.哈弗曼编码的贪心算法所需的计算时间为( B )。

A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。

A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。

A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。

A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。

《算法设计与分析》期末必考复习及答案题整理

《算法设计与分析》期末必考复习及答案题整理

《算法设计与分析》期末必考复习及答案题整理1、分治法的基本思想:是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各子问题的解合并得到原问题的解。

2、贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优的选择,3、 Prim算法:设G=(V,E)是连通带权图,V={1,2,…,n}。

构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i?S,j?V-S,且c[j]最小的边,将顶点j添加到S 中。

这个过程一直进行到S=V时为止。

4、什么是剪枝函数:回溯法搜索解空间树时,通常采用两种策略避免无效搜索,提高回溯法的搜索效率。

其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去得不到最优解的子树。

这两类函数统称为剪枝函数。

6、分支限界法的基本思想:(1)分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。

(2)在分支限界法中,每一个活结点只有一次机会成为扩展结点。

活结点一旦成为扩展结点,就一次性产生其所有儿子结点。

在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

(3)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程,这个过程一直持续到找到所需的解或活结点表这空时为止。

5、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。

6、最优子结构性质:该问题的最优解包含着其子问题的最优解。

7、回溯法:是一个既带有系统性又带有跳跃性的搜索算法。

这在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。

算法分析与设计—部分复习题答案

算法分析与设计—部分复习题答案

算法设计与分析复习题1、一个算法应有哪些主要特征?有限性、确定性、输入、输出、可行性2、分治法(Divide and Conquer)与动态规划(Dynamic Programming)有什么不同?分治法是将一个问题划分成一系列独立的子问题,分别处理后将结果组合以得到原问题的答案。

动态规划同样将一个问题划分成一系列子问题进行处理,但当子问题不是互相独立而是互有联系时,动态规划不会重复计算子问题间联系的问题,是更高效的解决办法。

(具体解释太长了这个答案可以得点分)3、试举例说明贪心算法对有的问题是有效的,而对一些问题是无效的。

贪心算法的思想是通过选择局部最优以求得最优解,但某些最优解问题无法由局部最优推出,如0-1 knapsack problem(背包问题,一个能装20斤的背包装入一定商品,要求价值最高)4、求解方程f(n)=f(n-1)+f(n-2),f(1)=f(2)=1。

(斐波那契数列)(证明太复杂了不贴了)k5、求解方程T(n)=2T(n/2)+1,T(1)=1,设n=2。

T(n)=2*(2*T(n/4)+1)+1=2*(2*(T(n/8)+1)+1)+1 推出以下方程且且证明用数学归纳法。

void max_min(int a[],int m, int n, int* min) //运用分治法查找最大值与最小值{ int middle,hmin,gmin; if( m==n ) { * min = a[m]; } else if(m == n-1) { if( a[m] > a[n]) {*min = a[n]; } else { *min =a[m]; } } else { middle = (m+n)/2; max_min(a,m,middle,&gmin); max_min(a,middle+1,n,&hmin); if(gmin < hmin) { *min = gmin; } else { *min= hmin; } } } 6、编写一个Quick Sorting 算法,并分析时间复杂性。

《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。

A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。

在某台计算机上实现并完成概算法的时间为t秒。

现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。

A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。

A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。

A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。

A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。

A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。

A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。

A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。

A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。

算法分析与设计考试复习题及参考答案jing

算法分析与设计考试复习题及参考答案jing

一、填空题1、算法的复杂性是算法效率2、的度量,是评价算法优劣的重要依据。

1、设n为正整数,利用大“O(·)”记号,将下列程序段的执行时间表示为n的函数,则下面程序段的时间复杂度为O(n)2、。

i=1; k=0;while(i<n) { k=k+10*i;i++; }3、计算机的资源最重要的是时间和空间资源。

因而,算法的复杂性有时间复杂度和空间复杂度之分。

3、f(n)= 6×2n+n2,f(n)的渐进性态f(n)= O( 2n4、 )5、递归是指函数直接或者间接通过一些语句调用自身。

4、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立6、且与原问题相同。

二、选择题(本题20分,每小题2分)1、分支限界法与回溯法都是在问题的解空间树T上搜索问题的解,二者( B )。

A.求解目标不同,搜索方式相同B.求解目标不同,搜索方式也不同C.求解目标相同,搜索方式不同D.求解目标相同,搜索方式也相同2、回溯法在解空间树T上的搜索方式是( A)。

A.深度优先B.广度优先C.最小耗费优先D.活结点优先3、在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( B )。

A.回溯法B.分支限界法C.回溯法和分支限界法D.回溯法求解子集树问题4、以下关于判定问题难易处理的叙述中正确的是( C )。

A.可以由多项式时间算法求解的问题是难处理的B.需要超过多项式时间算法求解的问题是易处理的C.可以由多项式时间算法求解的问题是易处理的D.需要超过多项式时间算法求解的问题是不能处理的5、设f(N),g(N)是定义在正数集上的正函数,如果存在正的常数C和自然数N0,使得当N≥N0时有f(N)≤Cg(N),则称函数f(N)当N充分大时有上界g(N),记作f(N)=O(g(N)),即f(N)的阶( A )g(N)的阶。

A.不高于B.不低于C.等价于D.逼近6、对于含有n个元素的子集树问题,最坏情况下其解空间的叶结点数目为( B )。

计算机算法复习题及答案(前三章)

计算机算法复习题及答案(前三章)

计算机算法复习题及答案(前三章)第一章1、什么是绝对误差?什么是相对误差?答:绝对误差等于准确值与近似值差的绝对值。

相对误差是近似数的误差与准确值的比值。

2、什么是绝对误差限?什么是相对误差限?答:绝对误差限为绝对误差的“上界”相对误差限为相对误差绝对值的“上界”3、有效数字与绝对误差限有何关系?有效数字与相对误差限有何关系?答:(绝对)若近似值的绝对误差限是某一位上的半个单位,且该位直到的第一位非零数字一共有几位。

则称近似值有n位有效数字。

(相对)设近似值=±0.···×有n位有效数字,≠0,则真相对误差限为×设近似值=±0.···×的相对误差限为×,≠0,则它有n位有效数字。

4、例1.11、例1.12、例1.15、例1.16.例1.11.设x=4.26972,那么取2位,=4.3,有效数字为2位取3位,=4.27,有效数字为3位取4位,=4.270,有效数字为4位取5位,=4.2697,有效数字为5位例1.12,若=3587.64是x的具有6位有效数字的近似值,则误差限是|-x|≤×=×若=0.0023156是x的具有5位有效数字的近似值,则误差限是|-x|≤×≤×例1.15,若=2.72来表示e的具有3位有效数字的近似值,则相对误差限是=×=×例1.16要使的近似值的相对误差限小于0.1%,要取几位有效数字?由定理1.1,≤×.由于=4.4···,已知=4,故只要取n=4,就有≤0.125×=0.1%只要对的近似值取4位有效数字,其相对误差限就小于0.1%。

此时由开方表得≈4.472 5、课本13~14页习题1、2、3、4.习题1:下列各数都是经过四舍五入得到的近似数,试指出它们是具有几位有效数字的近似数,并确定++和的误差限答:=1.1021,5位,=0.031,2位,=385.6,4位|++|-|++|≤|-|+|-|+|-|=×+×+×=0.5055 η()≈||η()+|η()|=1.1021××+0.031××=0.00055105+0.00000155=0.0005526η()≈||η()+||η() =0.001708255+0.21308256 =0.2148习题2.已测得某场地长L 的值为=110m ,宽d 的值为=80m,已知|L-|≤0.2m ,|d-|≤0.1m ,试求面积S=Ld 的绝对误差限和相对误差限。

计算机算法设计与分析期终考试复习题

计算机算法设计与分析期终考试复习题

计算机算法设计与分析复习题一、填空题1、一个算法复杂性的高低体现在计算机运行该算法所需的时间和存储器资源上,因此算法的复杂性有时间复杂性和空间复杂性之分。

2、出自于“平衡子问题”的思想,通常分治法在分割原问题,形成若干子问题时,这些子问题的规模都大致相同。

3、使用二分搜索算法在n个有序元素表中搜索一个特定元素,在最佳情况下,搜索的时间复杂性为O(1),在最坏情况下,搜索的时间复杂性为O (logn)。

4、已知一个分治算法耗费的计算时间T(n),T(n)满足如下递归方程: n?2O(1)? T(n)??2T(n/2)?O(n)n?2?解得此递归方可得T(n)= O()。

nlogn 5、动态规划算法有一个变形方法备忘录方法。

这种方法不同于动态规划算法“自底向上”的填充方向,而是“自顶向下”的递归方向,为每个解过的子问题建立了备忘录以备需要时查看,同样也可避免相同子问题的重复求解。

递归的二分查找算法在divide阶段所花的时间是 O(1) ,conquer阶段6.所花的时间是 T(n/2) ,算法的时间复杂度是 O( log n) 。

7.Prim算法利用贪心策略求解最小生成树问题,其时间复杂度是2O(n) 。

8.背包问题可用贪心法,回溯法等策略求解。

39.用动态规划算法计算矩阵连乘问题的最优值所花的时间是 O(n) ,子2问题空间大小是 O(n) 。

10.图的m着色问题可用回溯法求解,其解空间树中叶子结点个数是nm ,解空间树中每个内结点的孩子数是 m 。

11.单源最短路径问题可用贪心法、分支限界等策略求解。

12、一个算法的优劣可以用(时间复杂度)与(空间复杂度)与来衡量。

13、回溯法在问题的解空间中,按(深度优先方式)从根结点出发搜索解空间树。

14、直接或间接地调用自身的算法称为(递归算法)。

15、?记号在算法复杂性的表示法中表示(渐进确界或紧致界)。

16、在分治法中,使子问题规模大致相等的做法是出自一种(平衡(banlancing)子问题)的思想。

东南大学算法设计与分析复习题

东南大学算法设计与分析复习题

什么是基本‎运算?答:基本运算是‎解决问题时‎占支配地位‎的运算(一般1种,偶尔两种);讨论一个算‎法优劣时,只讨论基本‎运算的执行‎次数。

什么是算法‎的时间复杂‎性(度)?答:算法的时间‎复杂性(度)是指用输入‎规模的某个‎函数来表示‎算法的基本‎运算量。

T(n)=4n3什么是算法‎的渐近时间‎复杂性?答:当输入规模‎趋向于极限‎情形时(相当大)的时间复杂‎性。

表示渐进时‎间复杂性的‎三个记号的‎具体定义是‎什么?答:1. T(n)= O(f(n)):若存在c > 0,和正整数n‎0≣1,使得当n≣n0时,总有T(n)≢c*f(n)。

(给出了算法‎时间复杂度‎的上界,不可能比c‎*f(n)更大)2. T(n)=Ω(f(n)):若存在c > 0,和正整数n‎0≣1,使得当n≣n0时,存在无(给出了算法‎时间复杂度‎的下界,复杂度不可‎能比c*f(n)穷多‎个n ,使得T(n)≣c*f(n)成立。

更小)3. T(n)= Θ(f(n)):若存在c1‎,c2>0,和正整数n‎0≣1,使得当n≣n0时,总有T(n)≢c1*f(n),且有无穷多‎个n,使得T(n)≣c2*f(n)成立,即:T(n)= O(f(n))与T(n)=Ω(f(n))都成立。

(既给出了算‎法时间复杂‎度的上界,也给出了下‎界)什么是最坏‎情况时间复‎杂性?什么是平均‎情况时间复‎杂性?答:最坏情况时‎间复杂性是‎规模为n的‎所有输入中‎,基本运算执‎行次数为最‎多的时间复‎杂性。

平均情况时‎间复杂性是‎规模为n的‎所有输入的‎算法时间复‎杂度的平均‎值(一般均假设‎每种输入情‎况以等概率‎出现)。

一般认为什‎么是算法?什么是计算‎过程?答:一般认为,算法是由若‎干条指令组‎成的有穷序‎列,有五个特性‎a.确定性(无二义)b.能行性(每条指令能‎够执行)c.输入 d.输出 e.有穷性(每条指令执‎行的次数有‎穷)只满足前4‎条而不满足‎第5条的有‎穷指令序列‎通常称之为‎计算过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学网络教育课程考试复习题及参考答案算法分析与设计一、名词解释:1.算法2.程序3.递归函数4.子问题的重叠性质5.队列式分支限界法6.多机调度问题7.最小生成树 二、简答题:1.备忘录方法和动态规划算法相比有何异同?简述之。

2.简述回溯法解题的主要步骤。

3.简述动态规划算法求解的基本要素。

4.简述回溯法的基本思想。

5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。

6.简要分析分支限界法与回溯法的异同。

7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面? 8.贪心算法求解的问题主要具有哪些性质?简述之。

9.分治法的基本思想是什么?合并排序的基本思想是什么?请分别简述之。

10.简述分析贪心算法与动态规划算法的异同。

三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。

2.按要求完成以下关于排序和查找的问题。

①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。

②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。

③给出上述算法的递归算法。

④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。

3.已知1()*()i i k kij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。

4.根据分枝限界算法基本过程,求解0-1背包问题。

已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。

5.试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。

试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少,请写出该算法。

6.试用动态规划算法实现下列问题:设A 和B 是两个字符串。

我们要用最少的字符操作,将字符串A 转换为字符串B ,这里所说的字符操作包括: ①删除一个字符。

②插入一个字符。

③将一个字符改为另一个字符。

请写出该算法。

7.对于下图使用Dijkstra 算法求由顶点a 到顶点h 的最短路径。

8.试写出用分治法对数组A[n]实现快速排序的算法。

9.有n 个活动争用一个活动室。

已知活动i 占用的时间区域为[s i ,f i ],活动i,j 相容的条件是:sj ≥f i ,问题的解表示为(x i | x i =1,2…,n,),x i 表示顺序为i 的活动编号活动,求一个相容的活动子集,且安排的活动数目最多。

10.设x 1、x 2、x 3是一个三角形的三条边,而且x 1+x 2+x 3=14。

请问有多少种不同的三角形?给出解答过程。

11.设数组A 有n 个元素,需要找出其中的最大最小值。

①请给出一个解决方法,并分析其复杂性。

②把n 个元素等分为两组A1和A2,分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。

如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。

直至子集中元素至多两个元素为止。

这是什么方法的思想?请给出该方法的算法描述,并分析其复杂性。

12.有n 个程序和长度为L 的磁带,程序i 的长度为a i ,已知L ani i∑=1,求最优解(x i ,x 2 ,...,x i ,…,x n ),x i =0,1, x i =1,表示程序i 存入磁带,x i =0,表示程序i 不存入磁带,满足L ax ni ii ≤∑=1,且存放的程序数目最多。

13.试用分治法实现有重复元素的排列问题:设),...,,{21n r r r R =是要进行排列的n 个元素,其中元素n r r r ,...,,21可能相同,试设计计算R 的所有不同排列的算法。

14.试用动态规划算法实现0-1闭包问题,请写出该算法。

15.试用贪心算法求解下列问题:将正整数n 分解为若干个互不相同的自然数之和,使这些自然数的乘积最大,请写出该算法。

16.试写出用分治法对一个有序表实现二分搜索的算法。

17.试用动态规划算法实现最长公共子序列问题,请写出该算法。

18.假设有7个物品,它们的重量和价值如下表所示。

若这些物品均不能被分割,且背包容量M =150,使用回溯方法求解此背包问题,请写出状态空间搜索树。

19.求解子集和问题:对于集合S={1,2 ,6,8},求子集,要求该子集的元素之和d=9。

①画出子集和问题的解空间树;②该树运用回溯算法,写出依回溯算法遍历节点的顺序;③如果S 中有n 个元素,指定d ,用伪代码描述求解子集和问题的回溯算法。

20.求解填字游戏问题:在3×3个方格的方阵中要填入数字1到N (N ≥10)内的某9个数字,每个方格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。

试采用回溯法写出满足这个要求的一种数字填法的算法和满足这个要求的全部数字填法的算法。

21.试用动态规划算法实现最大子矩阵和问题:求n m ⨯矩阵A 的一个子矩阵,使其各元素之和为最大。

22.试用回溯法解决下列整数变换问题:关于整数i 的变换f 和g 定义如下:⎣⎦2/)(;3)(i i g i i f ==。

对于给定的两个整数n 和m ,要求用最少的变换f 和g 变换次数将n 变为m 。

23.关于15谜问题。

在一个4×4的方格的棋盘上,将数字1到15代表的15个棋子以任意的顺序置入各方格中,空出一格。

要求通过有限次的移动,把一个给定的初始状态变成目标状态。

移动的规则是:每次只能把空格周围的四格数字(棋子)中的任意一个移入空格,从而形成一个新的状态。

为了有效的移动,设计了估值函数C1(x),表示在结点x的状态下,没有到达目标状态下的正确位置的棋子的个数。

请使用该估计函数,对图示的初始状态,给出使用分支限界方法转换到目标状态的搜索树。

初始状态目标状态参考答案一、名词解释:1.算法:算法是指解决问题的一种方法或一个过程。

算法是若干指令的有穷序列,满足性质:(1)输入:有零个或多个外部量作为算法的输入;(2)输出:算法产生至少一个量作为输出;(3)确定性:组成算法的每条指令清晰、无歧义;(4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。

2.程序:程序是算法用某种程序设计语言的具体实现。

3.递归函数:用函数自身给出定义的函数称为递归函数。

4.子问题的重叠性质:递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次,这种性质称为子问题的重叠性质。

5.队列式分支限界法:队列式(FIFO)分支限界法是将活结点表组织成一个队列,并按照队列的先进先出(FIFO)原则选取下一个结点为扩展结点。

6.多机调度问题:多机调度问题要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m台机器加工处理完成。

同时约定每个作业均可在任何一台机器上加工处理,但未完工前不允许中断处理。

作业不能拆分成更小的子作业。

7.最小生成树:G=(V,E)是无向连通带权图,G的子图称为G的生成树,生成树上各边权的总和称为该生成树的耗费,在G的所有生成树中,耗费最小的生成树称为G的最小生成树。

二、简答题:1.备忘录方法和动态规划算法相比有何异同?简述之。

备忘录方法是动态规划算法的变形。

与动态规划算法一样,备忘录方法用表格保存已解决的子问题的答案,在下次需要解此问题时,只要简单地查看该子问题的解答,而不必重新计算。

备忘录方法与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。

因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同的子问题的重复求解,而直接递归方法没有此功能。

2.简述回溯法解题的主要步骤。

回溯法解题的主要步骤包括:1)针对所给问题,定义问题的解空间;2)确定易于搜索的解空间结构;3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

3.简述动态规划算法求解的基本要素。

动态规划算法求解的基本要素包括:1)最优子结构是问题能用动态规划算法求解的前提;2)动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果,即重叠子问题。

4.简述回溯法的基本思想。

回溯法的基本做法是搜索,在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。

如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。

将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。

该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。

2)用递推来实现递归函数。

3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。

后两种方法在时空复杂度上均有较大改善,但其适用范围有限。

6.简要分析分支限界法与回溯法的异同。

1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。

7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面?算法复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要的空间资源的量称为空间复杂性。

这个量应该只依赖于算法要解的问题的规模、算法的输入和算法本身的函数。

如果分别用N、I和A表示算法要解问题的规模、算法的输入和算法本身,而且用C表示复杂性,那么,应该有C=F(N,I,A)。

算法复杂性度量主要包括算法的时间复杂性和算法的空间复杂性。

8.贪心算法求解的问题主要具有哪些性质?简述之。

贪心算法求解的问题一般具有二个重要的性质:一是贪心选择性质,这是贪心算法可行的第一个基本要素;另一个是最优子结构性质,问题的最优子结构性质是该问题可用贪心算法求解的关键特征。

相关文档
最新文档