线性系统的数学模型(1)
线性系统的数学模型
描述控制系统输入、输出变量及内部变量之间关 系的数学表达式称为系统的数学模型。
★ 描述控制系统的输入-输出变量数学模型:
微分方程、传递函数、方框图、频率特性
★ 描述控制系统的内部变量数学模型: 状态空间
说明 ◆ 要分析自动控制系统的性能,必须先建立该系统 的数学模型; ◆ 一个物理系统,要处理的问题或要达到的精度不 同,得到的数学模型也不同。
3.反馈
R(S) E(S) + B(S) H(S) C(S)
G(S)
负反馈 正反馈 单位反馈:H(S)=1
主 要 内 容
§2-1 微分方程 §2-2 传递函数
§2-3 典型环节的传递函数及动态响应
§2-4 电气网络的运算阻抗与传递函数 §2-5 方框图 §2-5 反馈控制系统的传递函数
§2-1
微分方程
对于线性定常系统, 可以用线性常系数微分方程 作为其数学模型,如 a 0dnc (t)/dtn +a1dn-1c (t) /dtn-1+…+anc (t) =b0dmr(t)/dtm +b1dm-1r(t)/dtm-1+…+bmr(t) c(t): 系统的输出; r(t): 系统的输入; a0……an ; b0……bm 均为实数,均由系统本身的结
对电气网络,可以不列微分方程,仅利用运算电 路,经过简单的代数运算,就可以求得传递函数!
§2-5 控制系统的方框图
方框图是以图形表示系统的数学模型;
通过方框图,能够非常清楚地表示出信号在系统各
环节之间的传递过程;
方框图可以方便地求出复杂系统的传递函数; 方框图是分析控制系统的一个简明而有效的工具。
八.二阶振荡环节 1、传递函数
自动控制原理课件 第二章 线性系统的数学模型
c(t ) e
dt Leabharlann t
c( s )
g ( ) r ( ) d e s ( ) d 0 0 g ( )e s r ( )e s d d 0 0
0
g ( )e
5) 闭环系统传递函数G(s)的分母并令其为0,就是系统的特征方 程。
• 涉及的是线性系统 非线性系统必须 进行线性化处理
§2-6 信号流程图
系统很复杂,为方便研究,也为了与 实际对应,通常将复杂系统分解为 若干典型环节的连接
数学模型的定义 数学模型: 描述系统变量间相互关系的动态性能的运动方程 建立数学模型的方法:
解析法: 依据系统及元件各变量之间所遵循的物理或化学规律列写出相 应的数学关系式,建立模型。 自动控制系统的组成可以是电气的,机械的,液压的,气动的等等,然 而描述这些系统的数学模型却可以是相同的。因此,通过数学模型来研 究自动控制系统,就摆脱了各种类型系统的外部关系而抓住这些系统的 共同运动规律,控制系统的数学模型是通过物理学,化学,生物学等定 律来描述的,如机械系统的牛顿定律,电气系统的克希霍夫定律等都是 用来描述系统模型的基本定律。 实验法: 人为地对系统施加某种测试信号,记录其输出响应,并用适当 的数学模型进行逼近。这种方法也称为系统辨识。 数学模型的形式 时间域: 复数域: 频率域: 微分方程 差分方程 传递函数 结构图 频率特性 状态方程
1 例1 : F ( s) ( s 1)(s 2)(s 3) c c c 1 2 3 s 1 s 2 s 3
1 1 c1 [ ( s 1)]s 1 ( s 1)(s 2)(s 3) 6 1 1 c2 [ ( s 2)]s 2 ( s 1)(s 2)(s 3) 15 1 1 c3 [ ( s 3)]s 3 ( s 1)(s 2)(s 3) 10 1 1 1 1 1 1 F ( s) 6 s 1 15 s 2 10 s 3 1 1 1 f (t ) e t e 2t e 3t 6 15 10
《线性系统》课件
线性系统的控制目标
01
02
03
04
稳定性
确保系统在受到扰动后能够恢 复稳定状态。
跟踪性能
使系统输出能够跟踪给定的参 考信号。
抗干扰性
减小外部干扰对系统输出的影 响。
优化性能指标
最小化系统性能指标,如误差 、超调量等。
线性系统的控制设计方法
状态反馈控制
基于系统状态变量进行 反馈控制,实现最优控
稳定性分析
利用劳斯-赫尔维茨稳定判据等 工具,分析系统的稳定性。
最优性能分析
通过求解最优控制问题,了解 系统在最优控制下的性能表现
。
2023
PART 06
线性系统的应用实例
REPORTING
线性系统在机械工程中的应用
总结词
广泛应用、控制精度高
详细描述
线性系统在机械工程中有着广泛的应用,如数控机床、机器人、自动化生产线等。这些系统通过线性 控制理论进行设计,可以实现高精度的位置控制、速度控制和加速度控制,提高生产效率和产品质量 。
时域分析法
通过求解线性常微分方程或差分 方程,可以得到系统的动态响应
,包括瞬态响应和稳态响应。
频域分析法
通过分析系统的频率响应函数,可 以得到系统在不同频率下的动态响 应特性。
状态空间分析法
通过建立系统的状态方程和输出方 程,利用计算机仿真技术对系统的 动态响应进行模拟和分析。
2023
PART 05
2023
PART 02
线性系统的数学模型
REPORTING
线性系统的微分方程
总结词
描述线性系统动态行为的数学方程
详细描述
线性系统的微分方程是描述系统状态随时间变化的数学模型,通常采用常微分 方程或差分方程的形式。这些方程反映了系统内部变量之间的关系及其对时间 的变化规律。
自动控制理论_哈尔滨工业大学_2 第2章线性系统的数学模型_(2.4.1) 典型环节的传递函数PPT
0
t
积分环节在单位阶跃输入下的响应
例:积分器
i2
C
ui R
_
i1
uo
+i1 i2Fra bibliotek1 Rui
(t)
C
d dt
u0
(t )
uo
(t)
1 RC
ui (t)dt
G(s) Uo (s) 1 1 Ui (s) RC s
二、几种典型环节的数学模型
4.微分环节
c(t) d r(t)
斜率1/T
0τ
t
例: • 汽车加速、火箭升空; ——作用力和输出速度
• 加热系统; ——加热量和温度变化
• 励磁回路; ——输入电压和励磁电流
惯性大小用τ来量度。 ——τ越大,接近目标值越慢 ,惯性越大;τ越小,接近 目标值越快,惯性越小。
几乎任何物理系统都包含 大大小小的惯性。
二、几种典型环节的数学模型
滞后环节
二、几种典型环节的数学模型
1.比例环节
y(t) Ku(t)
G(s) Y(s) K U (s)
K——称为比例系数或放大系数,也称为环节的增益,有量纲。
输出量无失真、无滞后、成比例地复现输入。
• 无弹性变形的杠杆;
——作用力和输出力
• 忽略非线性和时间迟后的运算放大器;
——比例放大器的输入电压和输出电压
τ=RC—时间常数
当 r(t) 1(t) 时, R(s) 1
s
Y(s) s 1 1 s 1 s s 1
t
y(t) e
t=0时,输出幅值为1;
t→∞时,指数衰减至0。
二、几种典型环节的数学模型
第二章控制系统数学模型
有极限存在。
终值定理在分析研究系统的稳态性能时(例如分析系统的稳态误差,求取系统
输出量的稳态值等)有着很多的应用。因此终值定理也是一个经常用到的运算
定理。
7.初值定理: lim f (t) lim sF (s)
18
2
例2-1:写出RLC串联电路的微分方程。
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:据基尔霍夫电路定理:
L di dt
Ri
1 C
idt
ui
①
uo
1 C
idt
②
由②: i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
3
例2-2 设一弹簧、质量块、阻尼器组成的系统如图所示,当外力 F(t)作用于系统时,系统将产生运动。试写出外力F(t)与质量块的 位移y(t)之间的微分方程。
uR uc Us
把 uR i R
和
ic
C
duc dt
代入电路,可得到电路的
微分方程:
RC
duc dt
uc
Us
23
现在对于上面的微分方程,我们用Laplace变换求解。
首先,利用Laplace变换中的微分定理,将微分方程变换成如下形式:
RC
duc dt
uc
Us
RCsU c (s) Uc (s) Us R(s)
利用待定系数法可求得:
A 1 ARC B 0
F (s) L[ f (t)] f (t)e st dt 0
线性系统理论全
稳定性判据与判定方法
稳定性判据
在控制工程中,常用的稳定性判据有Routh判据、Nyquist判据、 Bode判据等。这些判据通过分析系统的特征方程或频率响应来判 断系统的稳定性。
判定方法
除了使用稳定性判据外,还可以通过时域仿真、频域分析、根轨 迹法等方法来判定系统的稳定性。这些方法各有优缺点,适用于 不同类型的线性系统和不同的问题背景。
100%
线性偏差分方程
处理离散空间和时间的问题,如 数字滤波器和图像处理等。
80%
初始条件与边界条件
在差分方程中,初始条件确定系 统的起始状态。
状态空间模型
状态变量与状态方程
表示系统内部状态的变化规律 ,揭示系统动态特性。
输出方程
描述系统输出与状态变量和输 入的关系,反映系统对外部激 励的响应。
状态空间表达式的建立
复频域分析法
拉普拉斯变换
将时域信号转换为复频域信号,便于分析系统的稳定性和动态性 能。
系统函数
描述Байду номын сангаас统传递函数的复频域表示,反映系统的固有特性和对输入信 号的响应能力。
极点、零点与稳定性
通过分析系统函数的极点和零点分布,可以判断系统的稳定性以及 动态性能。
04
线性系统稳定性分析
BIBO稳定性
01
线性系统理论全
目
CONTENCT
录
• 线性系统基本概念 • 线性系统数学模型 • 线性系统分析方法 • 线性系统稳定性分析 • 线性系统能控性与能观性分析 • 线性系统优化与综合设计
01
线性系统基本概念
线性系统定义与性质
线性系统定义
满足叠加性与均匀性的系统。
线性系统性质
第2章 线性系统的数学模型
2.2.1
传递函数的定义
传递函数: 初始条件为零时,线性定常系统或
元件输出信号的拉氏变换与输入信号的拉氏变 换的比,称为该系统或元件的传递函数。
线性定常系统微分方程的一般表达式
d n c(t ) d n1c(t ) dc(t ) d m r (t ) an dt n an1 dt n1 a1 dt a0 c(t ) bm dt m b0 r (t )
ma F F FB FK
F (t )
m
k
(1)
f
y (t )
其中 FB f
dy dt FK ky
-阻尼器的粘性摩擦力 -弹簧的弹力
(3)消去中间变量,得到输入与输出的关系方程 将以上各式代入(1)式得 d2y dy m 2 F f ky dt dt
(4)整理且标准化
U2
(3)消去中间变量,得到U2与U1的关系方程
对(2)式求导得
dU 2 1 i, dt C 即i C dU 2 dt
d 2U 2 dU 2 U 2 U1 代入(3)式并整理得 LC 2 RC dt dt
例2-2:如图所示为一弹簧阻尼系统。图中质量为m的物体受 到外力作用产生位移Y,求该系统的微分方程。 解: (1)确定输入量和输出量 输入量:外力F(t) 输出量:位移y(t) (2)列写原始微分方程
2)
c( s) bm (d m s m d m1s m1 1) G( s) r ( s) an (cn s n cn 1s n 1 1)
(T1s 1)(T2 s 1) (Tm s 1) =K (T1s 1)(T2s 1) (Tm s 1)
+
第三章 数学模型1-微分方程.
线性系统
拉氏 变换 傅氏 变换
传递函数
微分方程
频率特性
•
建模方法
机理分析法
适用于比较简单的系统
实验辨识法
适用于复杂系统
数学模型的概括性
• 许多表面上完全不同的系统(如机械系统、电 气系统、液压系统和经济学系统)有时却可能 具有完全相同的数学模型。 数学模型表达了这些系统的共性。
•
•
数学模型建立以后,研究系统主要是以数学模 型为基础分析并综合系统的各项性能,而不再 涉及实际系统的物理性质和具体特点。
自动控制原理
第三章 线性系统的数学模型
本章知识点: 线性系统的输入-输出时间函数描述 传递函数的定义与物理意义 典型环节的数学模型 框图及化简方法
引言
定义: 控制系统的输入和输出之间动态关系 的数学表达式即为数学模型。 用途: 1)分析实际系统 2)预测物理量 3)设计控制系统
表达形式 时域:微分方程、差分方程、状态方程 (内部描述) 复域:传递函数(外部描述)、动态结 构图 频域:频率特性
目的:从时间域角度,建立系统输入量
(给定值)和系统输出量(被控变量)之 间的关系。
两种描述:微分方程描述、单位脉冲响应
描述。
一.
线性系统的微分方程描述(机理建模法)
SISO线性定常系统的输入输出关系微分方程描 述的标准形式
an1c(t ) anc(t )
1.
c( n) (t ) a1c( n1) (t ) a2c( n2) (t )
列写系统微分方程的步骤
① ② ③
划分不同环节,确定系统输入量和输出量;
写出各环节(元件)的运动方程;
消去中间变量,求取只含有系统输入和输出变 量及其各阶导数的方程; 化为标准形式。
自动控制原理课件:线性系统的数学模型
L1——信号流图中所有不同回环的传输之和;
L2——所有两个互不接触回环传输的乘积之和;
L3——所有三个互不接触回环传输的乘积之和;
……………
Lm——所有m个互不接触回环传输的乘积之和;
26
梅逊公式:信号流图上从源节点(输入节点)到汇节点(输出节点)的总传输公式.
1 n
G ( s ) Pk k
1. 确定系统的输入量和输出量;
2. 根据物理或化学定理列出描述系统运动规律的一组
微分方程;
3. 消去中间变量,最后求出描述系统输入与输出关系
的微分方程---数学模型。
如微分方程为线性,且其各项系数均为常数,则称为
线性定常系统的数学模型。
例2.1 如图所示为一RC网络,图中外加输入电压ui,电容电压
L 0
1
2
1
1
2
2
2
1 L1 1 G2 (s)H1 (s) G1 (s)G2 (s)H2 (s)
1 1
2 1
G1 ( s )G2 ( s ) G3 ( s )G2 ( s )
C (s)
R( s ) 1 G2 ( s ) H1 ( s ) G1 ( s )G2 ( s ) H 2 ( s )
duc (t )
RC
uc (t ) ui (t )
dt
设初始状态为零,对方程两边求拉普拉斯变换,得
U c (s)
1
G (s)
U i ( s ) RCs 1
典型环节的传递函数
b0 s m b1s m1 bm1s bm
G( s)
a0 s n a1s n1 an1s an
自动控制原理 经典控制部分 线性系统的数学模型
可由下列的语句来输入 >>G=4*conv([1,2],conv([1,3],[1,4]))
32/27
2.6 在MATLAB中数学模型的表示
有了多项式的输入,系统的传递函数在 MATLAB 下可由其分子和分母多项式唯一地确定 出来,其格式为
sys=tf(num,den)
其中num为分子多项式,den为分母多项式
>>A =[1,3]; B =[10,20,3]; >>C = conv(A,B) C = 10 50 63 9
即得出的C(s)多项式为10s3 +50s2 +63s +9
31/27
2.6 在MATLAB中数学模型的表示
MATLAB提供的conv( )函数的调用允许多级嵌
套,例如
G(s)=4(s+2)(s+3)(s+4)
>>P=[1 0 2 4]
注意尽管s2项系数为0,但输入P(s)时不可缺省0。
MATLAB下多项式乘法处理函数调用格式为
C=conv(A,B)
30/27
2.6 在MATLAB中数学模型的表示
例如给定两个多项式A(s)=s+3和B(s)=10s2+20s+3, 求C(s)=A(s)B(s),则应先构造多项式A(s)和B(s),然后再 调用conv( )函数来求C(s)
num=[b0,b1,b2,…,bm];den=[a0,a1,a2,…,an];
19/27
§ 2.5 信号流图
2.5.6信号流图的增益公式
给定系统信号流图之后,常常希望确定信 号流图中输入变量与输出变量之间的关系,即 两个节点之间的总增益或总传输。上节采用信 号流图简化规则,逐渐简化,最后得到总增益 或总传输。但是,这样很费时又麻烦,而梅逊 (Mason) 公式可以对复杂的信号流图直接求出 系统输出与输入之间的总增益,或传递函数, 使用起来更为方便。
线性系统理论ppt课件
第一节 线性关系
数学模型是由描述系统的变量和常量 构成的数学表达式,建立数学模型后,首 先要区分系统是线性还是非线性的。
以前的科学研究主要对象是线性系统, 而今正转向非线性系统,并且未来科学的 本质上是非线性科学
线性与非线性原本就是一对数学关系,用以区 分不同变量之间的两种基本的相互关系。
a11x1+a12x2+a13x3≤b1 a21x1+a22x2+a23x3≤b2
…… 它表示变量x1,x2,x3只能在给定的若干个代数 关系内变化,并且每个变量的变化都影响另 外两个变量的变化。
以上所讲的变量之间的关系都是静态相互 关系,都是用函数和代数方程进行描述。
实际上的动态过程中的诸变量的相互依存关 系要丰富的多。其数学表达式中将出现微分、 差分、积分等描述动态特性的项,反映这些 动态量对各个变量的依存关系。
xn
对于变系统系统,系统的系数为t的函数aij(t),系数矩阵为 A(t)
因此,对于最简单的一维系统就有:
x=ax
对于二维系统,有:
x=a11 x+a12 y y=a21 x+a22 y
以此类推至多维线性系统。
矩阵式描述对象整体特性的数学工具之一,方程给定后,借助代数 方法,通过分析系数矩阵,可以全面的了解系统的动态行为。
∇= a11a22 − a12a21
"鞍点"在三维空间中定义(图中的坐标原点),经过"鞍 点"平行于z轴的平面束代表无穷多个发展方向,每个平 面与曲面相交得到对应的曲线,代表该方向的发展轨迹。 不同的方向有的上升,有的下降。影射汽车市场,诸如 二手车置换的兴旺、汽车金融的产生、弱者被淘汰出局、 汽车出口呈上升态势、自主品牌的崛起、技术创新成企 业竞争王牌……不同的方面将有不同的发展。
线性系统原理及应用
线性系统原理及应用线性系统原理及应用线性系统是一类重要的数学模型,其原理基于线性方程组的理论,在工程、物理、经济等领域有广泛的应用。
本文将介绍线性系统的基本原理,并讨论其在不同领域中的应用。
一、线性系统的原理线性系统是指满足线性性质的系统,其特点是符合叠加原理和比例原理。
1. 叠加原理:对于任意输入信号,线性系统的输出等于各个输入信号分别作用于系统时的输出之和。
即系统对于输入信号的响应是可相加的。
数学表示为:y(t) = k1*x1(t) + k2*x2(t) + ... + kn*xn(t),其中y(t)为系统的输出,x1(t)、x2(t)、...、xn(t)为不同的输入信号,k1、k2、...、kn为对应的系数。
2. 比例原理:线性系统对于输入信号的放大或缩小会使得输出信号也按相同的比例放大或缩小。
即系统对于输入信号的响应是可比例的。
数学表示为:y(t) = a*x(t),其中y(t)为系统的输出,x(t)为输入信号,a为比例系数。
线性系统满足叠加原理和比例原理的特性,可使其在分析和处理复杂问题时更加灵活和方便。
二、线性系统的应用线性系统在各个领域中都有广泛的应用,以下将分别介绍其在工程、物理和经济领域的应用。
1. 工程领域的应用线性系统在工程领域中广泛应用于控制系统、通信系统、信号处理等方面。
在控制系统中,线性系统被用于描述系统的动态特性和稳定性,通过对系统输入信号和输出信号的分析和处理,实现对系统的控制和稳定。
在通信系统中,线性系统被用于信号传输和调制解调过程的分析和设计,通过对信号的处理和传输,实现高质量的通信。
在信号处理中,线性系统被用于对信号进行滤波、降噪、增强等处理,提高信号的质量和可靠性。
2. 物理领域的应用在物理领域中,线性系统被广泛应用于描述和分析力学、电磁学、声学等问题。
在力学中,线性系统被用于描述刚体和弹性体的振动特性、动力学过程和结构响应等问题。
在电磁学中,线性系统被用于描述电路元件、天线、传感器等的电特性、电磁场分布和辐射特性等问题。
第2章线性系统的数学模型
duC (t ) d 2 u C (t ) u r (t ) RC LC u C (t ) 2 dt dt
整理成规范形式 LCuC (t ) RCuC (t ) uC (t ) ur (t )
【例2】建立下面机械平移系统的数学模型 求在外力F(t)作用下,物体的运动轨迹。
数学模型的形式
时域(t)
: 微分方程 复域(s): 传递函数 频域(w):频率特性
三种数学模型之间的关系 线性系统
拉氏 传递函数 变换
微分方程
傅氏 变换
频率特性
§2-2 时域数学模型
时域中数学模型的基本形式是微分方程。 线性定常连续系统其最基本的时域数学模型为: 常系数线性微分方程,其一般形式可表为:
f (t ) L [ F ( s)]
1
拉氏变换的基本知识 拉氏变换的基本性质 (1)线性性质
L[af1 (t ) bf 2 (t )] aL[ f1 (t )] bL[ f 2 (t )]
(2)微分性质
若 L[ f (t )] F ( s ) ,则有 L[ f (t )] sF (s) f (0) f(0)为原函数f(t) 在t=0时的初始值。
u uc ur u Ri Rf
运算放大器的数学模型为
uc (t )
Rf Ri
u r (t )
2.线性系统的特点
1)定义
如果系统的数学模型是线性微分方程,这样的
系统就是线性系统 具有迭加性和齐次性的元件称为线性元件。
2)性质:满足叠加原理
迭加性 齐次性
L[ f1 (t ) f 2 ( )d ] F1 (s) F2 (s)
控制工程第二章线性系统的数学描述1
3. 控制系统中常见的三类数学模型 ➢ 输入输出描述,或外部描述 • 用数学方式把系统的输入量和输出量之间的 关系表达出来。 微分方程、传递函数、频率特性和差分方程 。
➢ 状态空间描述或内部描述 不仅可以描述系统输入、输出之间的关系,而且 还可以描述系统的内部特性。 它特别适用于多输入、多输出系统, 也适用于时变系统、非线性系统和随机控制系统
解 设回路电流为i(t),由基尔霍夫电压定律可写出回路方程为 di(t) 1
L dt C i(t)dt Ri(t) ui (t)
1
C i(t)dt uo (t)
消去中间变量i(t),可得描述该无源网络输入输出关 系的微分方程
LC
d
2uo (t) dt 2
RC
duo (t) dt
uo
(t )
ui
(t )
也可以写为
T1T2
d 2uo (t) dt 2
T2
duo (t) dt
uo (t)
ui (t)
其中:T1 L R , T2 RC 。 这是一个典型的二阶线性常系数微分方程,对应的
系统称为二阶线性定常系统。
➢ 例: 下图表示一个含有弹簧、运动部件、阻尼器的机 械位移装置。外力 f(t) 是系统的输入量,位移 y(t) 是 系统的输出量。试确定系统的微分方程。
转动惯量J 粘滞摩擦系数f
扭转系数k
角位移
角速度
RLC串联网络 电压u 电感L 电阻R
电容的倒数1/C 电荷q 电流i
*非线性微分方程的线性化
➢ 为什么要研究非线性方程的线性化问题? 系统、元件非线性特性的普遍存在性; 精确描述系统的动态方程通常为非线性微分方 程; 高阶非线性微分方程除计算机求解外,无一般 形式的解,这给研究系统带来理论上的困难; 线性微分方程理论比较成熟。
自动控制理论第二章--线性系统的数学模型全
理
论 一.物理模型 、数学模型及数学建模
物理模型 :
任何元件或系统实际上都是很复杂的,难以对
它作出精确、全面的描述,必须进行简化或理想化。
简化后的元件或系统称为该元件或系统的物理模型。
简化是有条件的,要根据问题的性质和求解的精确
要求来确定出合理的物理模型。
2
第二章 线性系统的数学模型
自
动
控
制 理
物理模型的数学描述。是指描述系统
零初使条件是指当t≤0时,系统r(t)、c(t)以及它们的各阶
导数均为零。
传递函数
输出信号的拉氏变换 输入信号的拉氏变换
零初始条件
C(s) R(s)
26
第二章 线性系统的数学模型
自
动
控 线性系统微分方程的一般形式为:
制
理 论
制 理 论
F(s)
br (s p1)r
br 1 (s p1)r1
b1 (s p1)
ar 1 s pr1
an s pn
br
B(s)
A(s)
(s
p1
)r
s p1
br 1
d
ds
B(s) A(s)
(s
p1 ) r
s p1
br j
1 dj
j!
ds
j
B(s) A(s)
(s
p1
La
dia (t ) dt
Raia (t )
Ea
+
(1) -
La
if Ra
m
+ ia
Ea ——电枢反电势,其表达式为 Ua
Ea S M
负 载
jmfm
Ea Cem(t) (2) --
第二章1线性连续系统的数学模型
f2
1 i1
2
f3
1 i1i2
2
角位置跟踪系统(随动系统)的线性方程组
ue u1 u2 K (r c )
ut KV ue
ua Kwut
ua
Raia
La
dia dt
Eb
Mm Cmia
Mm
Jm
d
dt
fm
Jm
d 2m
+ ua ia _
Ra
+ Eb_
if ω
Mm
ua
Raia
La
dia dt
Eb
电枢绕组的电势平衡方程
Mm Cmia
电枢电流与磁场相互作用而产生电磁转矩
Mm
Jm
d
dt
fm
Jm
d 2m
dt 2
fm
dm
dt
电机转矩平衡方程
Eb
Kb
dm
dt
当电枢运动时电枢绕组中有反电势产生
5.机械传动机构
y1
t
Y1(s) Y(sG)=(sK) Y1(s)y2
t
§1.3 系统动态结构图的绘制
一、动态结构图的组成与绘制 二、结构图的等效变换和化简方法
一、动态结构图的组成与绘制
定义:结构图是描述系统各组成元件之间信号传递关系的数
学图形,是系统图解形式的动态数学模型。
动
组成:
原u
理
R 相L 加点
i
R+
C uc
di L dt Ri u uc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RC网络
教学ppt
8
2.并联 :若各个环节接受同一输入信号而输出信号又 汇合在一点时,称为并联。
如图所示。由图可知
C(s) C1(s) C2 (s) Cn (s)
C1 (s) G1 (s)R(s)
C2 (s) G2 (s)R(s)
Cn (s) Gn (s)R(s)
总的传递函数为
G(s) C(s) C1(s) C 2(s) Cn (s)
教学ppt
1
构成方框图的基本符号有四种,即信号线、 比较点、传递环节方框和引出点。
教学ppt
2
2.4.2系统方框图的构成
对于一个系统,在清楚系统工作原理及信号 传递情况下,可按方框图的基本连接形式,把各个 环节的方框图,连接成系统方框图。 例2-5 图中为一无源RC网络。选取变量如图所示,根 据电路定律,写出其微分方程组为
n个环节串联后总的传递函数 :
G(s) C(s) X1(s) X 2 (s) C(s) R(s) R(s) X1 (s) X n1 (s)
即环节串联后 G总1 (的s)传G2递(s函)数G等n (于s) 串联的各个环节传
递函数的乘积。
教学ppt
7
注意环节的单向性。只有前一环节的输出不受后一 环节影响时(即无负载效应),才可将它们串联。
R(s)
G(s)
C(s)
R(s)
G(s)
C(s)
分支点(引出点)前移
R(s)
分支点(引出点)后移
R(s)
G(s) G(s)
C(s) C(s)
G(s) R(s)
C(s) R(s)
C (s)R(s)G (s)
缩小放大
R(s)R(s)G(s) 1 R(s) G(s)
放大缩小
分支点移教动学示ppt 意图
16
除了前面介绍的串联、并联和反馈连接可以简 化为一个等效环节外,还有信号引出点及比较点前 后移动的规则。
教学ppt
13
对于一般系统的方框图,系统中常常出现信号或 反馈环相互交叉的现象,此时可将信号相加点(汇合 点)或信号分支点(引出点)作适当的等效移动,先 消除各种形式的交叉,再进行等效变换即可。
在有关移动中,“前”、“后”的定义:按信号 流向定义,也即信号从“前面”流向“后面”,而不 是位置上的前后。
反馈连接后,信号的传递形成了闭合回路。通 常把由信号输入点到信号输出点的通道称为前向通 道;把输出信号反馈到输入点的通道称为反馈通道。
教学ppt
10
对于负反馈连接,给定信号r(t)和反馈信号b(t)之差, 称为偏差信号e(t) 即
e(t) r(t) b(t) E(s) R(s) B(s)
通常将反馈信号B(s)与误差信号E(s)之比,定义为开 环传递函数,即
教学ppt
3
i1(
t
)
u1( t
) u0( R1
t
)
i2 i3
( (
t t
) )
u0 i1(
( t
t )
) u2( t R2 i2( t )
)
u0 (Βιβλιοθήκη t)1 C1
i3( t )dt
u2 (
t
)
1 C2
i2( t )dt
教学ppt
4
零初始条件下,对等式两边取拉氏变换,得
I
1(
s
)
U
E( s ) R( s ) B( s ) R( s ) H ( s )C( s )
得闭环传递函数为
C( s )
G( s )
Φ( s )
R教学( pspt) 1 G( s )H ( s )
12
2.4.4方框图的变换和简化
有了系统的方框图以后,为了对系统进行进 一步的分析研究,需要对方框图作一定的变换, 以便求出系统的闭环传递函数。方框图的变换应 按等效原则进行。所谓等效,即对方框图的任一 部分进行变换时,变换前、后输入输出总的数学 关系式应保持不变。
开环传递函数= B(s) G(s)H (s) E(s)
教学ppt
11
输出信号C(s)与偏差信号E(s)之比,称为前向通道传
递函数,即 前向通道传递函数= C(s) G(s)
E(s)
而系统输出信号C(s)与输入信号R(s)之比称为闭 环传递函数,记为Φ(s)或GB(s)。
由 C( s ) G( s )E( s )
信号相加点的移动分两种情况:前移和后移。为
使信号相加点移动前后输出量与输入量之间的关系不
变,必须在移动相加信号的传递通道上增加一个环节
,它的传递函数分别为1/G(S)(前移)和G(S)(后
移)。
教学ppt
14
R(s)
G(s)
+
比较点前移 Q(s)
R(s)
+
G(s)
C(s) Q(s)
C(s)
C(s)R(s)G(s)Q(s)
教学ppt
§ 2.4 方框图
在控制工程中,为了便于对系统进行分析和设 计,常将各元件在系统中的功能及各部分之间的联 系用图形来表示,即方框图和信号流图。
2.4.1方框图
方框图也称方块图或结构图,具有形象和直观 的特点。系统方框图是系统中各元件功能和信号流 向的图解,它清楚地表明了系统中各个环节间的相 互关系。
1
(
s
)U R1
0
(
s
)
I I
2 3
( (
s s
) )
U0 I1(
(s s)
)U2( R2 I2( s
s )
)
U
0
(
s
)
1 C1s
I3(
s
)
U
2(
s
)
1 C2s
I2(
s
)
教学ppt
5
各环节方框图
RC网络方框图
教学ppt
6
2.4.3环节间的连接
环节的连接有串联、并联和反馈三种基本形式: 1.串联:在单向的信号传递中,若前一个环节的输 出就是后一个环节的输入,并依次串接如图所示, 这种联接方式称为串联。
[R(s)Q(s)]G(s) G(s)
R(s)
+
C(s) G(s)
比较点后移
Q(s)
R(s)
G(s)
C(s)
+
Q(s)
G(s)
C(s)[R(s)Q (s)G ](s) R(s)G (s)Q (s)G (s)
放大缩小
缩小放大
比较点移动示意图
教学ppt
15
信号分支点(取出点)的移动也分前移和后移两 种情况。但分支点前移时应在取出通路上增加一个传 递函数为G(S)的环节,后移时则增加一个传递函数 为1/G(S)的环节。
R(s)
R(s)
即环节并联后总G的1(s传) 递G函2 (s数) 等于 G并n联(s)的各个环节传
递函数的代数和。
教学ppt
9
3.反馈:若将系统或环节的输出信号反馈到输入端, 与输入信号相比较,就构成了反馈连接,如图所示。 如果反馈信号与给定信号极性相反,则称负反馈连接。 反之,则为正反馈连接,若反馈环节H(s)=1称为单位 反馈。