数字信号处理第二章提高题

合集下载

数字信号处理第2章答案 史林 赵树杰编著

数字信号处理第2章答案  史林 赵树杰编著

第二章作业题 答案%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2.1将序列1,01,1()0,22,30,n n x n n n =⎧⎪-=⎪⎪==⎨⎪=⎪⎪⎩其他表示为()u n 及()u n 延迟的和。

解:首先将表示为单位脉冲序列的形式:()x n ()()()()=123x n n n n δδδ--+-对于单位脉冲函数,用单位阶跃序列表示,可得:()n δ()u n ()()()1n u n u n δ=--将上式带入到的单位脉冲序列表达式中,可得:()x n ()()()()()()()()()()()()()()()1231122342122324x n n n n u n u n u n u n u n u n u n u n u n u n u n δδδ=--+-=------+---⎡⎤⎡⎤⎣⎦⎣⎦=--+-+---%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2.5判断下列序列中,哪一个是周期序列,如果是周期序列,求出它的周期。

(1)()sin1.2x n n =(2)()sin 9.7x n n π=(5)()sin()cos()47nnx n ππ=-解:理论分析详见P18性质7)周期序列题中设计到的是正弦信号,对于正弦信号,分析其周期性,则()0()sin x n A n ωϕ=+需判断:2πω1)为整数,则周期;2)为有理数,则周期;3)为无理数则非周期。

观察(1)、(2)、(5),依次为:、、,从而可知0ω0 1.2ω=09.7ωπ=12,47ππωω==(1)为非周期,(2)、(5)为周期序列。

(2)中,,因此周期。

022209.797ππωπ==20N =(5)中,第一部分周期为,第二部分周期为,因此序列1028N πω==20214N πω==周期为。

数字信号处理第2章习题解答

数字信号处理第2章习题解答
n 0
e
n 0


e
j ( 0 )

n
1 1 e e j (0 )
当 e 1 0
2-9 求 x(n) R5 (n) 的傅里叶变换 解:X (e j )
5 j 2
n

j

x ( n )e j n e j n
1 1 1 z 2
1 1 1 2 1 z z 2 4 1
1 1 1 2 X ( z) 1 z z 2 4 n 1 n z 2 n 0
1 x(n ) u(n ) 2
n
1 1 1 z 2 1 1 z 2 1 1 1 2 z z 2 4 1 2 z 4
解:
1 由x1 ( n ) u( n ) 2
1 z 2
n
1 得 X 1 ( z ) ZT [ x1 ( n )] 1 1 1 z 2 n 1 由x2 ( n ) u( n ) 3 1 得 X 2 ( z ) ZT [ x2 ( n )] 1 1 1 z 3
1 z 3
z3 z 3z 5 1 1 1 1 1 z 1 z z 3 z 2 3 2
1 z 3 2
j x ( n ) X ( e ): 2-7 求以下序列 的频谱
(1) (n n0 )
X ( e j )
n j n ( n n ) e 0
0
1/ 4 Re[ z ]
当 n 1 时, F ( z )在围线c内有一 (n 1)阶极点 z 0 在围线c外有单阶极点 z 1/ 4, 且分母阶次高于分子阶次二阶以上

《数字信号处理》(2-7章)习题解答

《数字信号处理》(2-7章)习题解答

第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。

(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。

(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。

(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。

(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。

(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。

(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。

(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。

数字信号处理(方勇)第二章习题答案

数字信号处理(方勇)第二章习题答案

2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωωωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωω21sin 27sin 1137j j j e ee(5) 3350011()(3)44n kj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。

数字信号处理 第二章习题

数字信号处理 第二章习题

1 为因果序列,故收敛域为: z 2
8
(2) (n n0 ) n0 0
解:
X ( z)
n


x(n) z n
n
(n n0 ) z n
X ( z) z
n0

1 n n0 (n n0 ) 0 other
1 n0 z
z 0.5 左边序列 0.5 z 2 双边序列 右边序列 z 2
16
采用围线积分法求解:
3 2 X ( z) 1 1 0.5 z 1 2 z 1 3(1 2 z 1 ) 2(1 0.5 z 1 ) 5 7 z 1 1 1 (1 0.5 z )(1 2 z ) (1 0.5 z 1 )(1 2 z 1 )
z1 1, z2 2
X(z)的收敛域为
左边序列 z 1 1 z 2 双边序列 z 2 右边序列
24
F ( z) X ( z) z
n 1
z ( z 3) ( z 3) n 1 z zn ( z 1)( z 2) ( z 1)( z 2)
z 2
21
当收敛域为: z 2 0.5
1 n n 1 x(n) 3( ) u (n) 2 u (n 1) 2
22
收敛域为: z 2
右边序列
n 0 ,围线c内有2个1阶极点
x(n) Re s[( z 0.5) F ( z), 0.5] Re s[( z 2) F ( z), 2] ( z 0.5) 5z 7 zn ( z 0.5)( z 2) ( z 2)
双边序列
n 0 ,围线c内有1个1阶极点

数字信号处理 答案 第二章(精编文档).doc

数字信号处理 答案 第二章(精编文档).doc

【最新整理,下载后即可编辑】第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j (3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1222222 3333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2) y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)= ∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()( =∑∞=-0)()(k k n u k u =(n+1),n ≥0 即y(n)=(n+1)u(n)(2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n).解ω(n)=x(n)*h1(n)=∑∞-∞=k ku)([δ(n-k)-δ(n-k-4)] =u(n)-u(n-4)y(n)=ω(n)*h2(n)=∑∞-∞=k k k ua)([u(n-k)-u(n-k-4)]=∑∞-=3nk ka,n≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=a n-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

数字信号处理第二章提高题.

数字信号处理第二章提高题.

一、 信号的取样和内插知识点:● 连续时间信号离散后的频谱特点 ● Nyquist 取样定理的理解和掌握● 理想内插的时域和频域信号特点,了解非理想内插的几个函数1)考虑两个正弦波信号:1()cos(6)g t t 和2()cos(14)g t t ;以 Ω= 20πrad/sec 对此信号进行离散化;然后使用截止频率为 ΩT = 10πrad/sec 的理想低通 滤波器恢复得到模拟信号如下 g 1(t), g 2(t);请给出对应的模拟信号。

解: g 1(t) 满足 Nyquist 抽样定理,无信号的混叠。

g 2(t)不满足 Nyquist 抽样定理,发生信号的混叠。

恢复的模拟信号如下:1122()cos(6)()cos(6)()cos(14)()cos(6)g t t g t t g t t g t t2)设有模拟信号)(1t x a =300)2000sin(t ⋅π,=)(2t x a 300)5000cos(t ⋅π,用抽样s f =3000样值/秒分别对其进行抽样,则)()(11s a nT x n x =,)()(22s a nT x n x =的周期分别为多少?解:1N = 3 ,2N = 6 。

3)已知三角形脉冲的频谱见下图,大致画出三角形脉冲被冲激抽样后信号的频谱(抽样间隔为,令分析:频谱为的信号被冲激信号抽样后,所得的抽样信号的频谱其中为抽样频率,为抽样时间间隔,,此题中,,则.解:如图所示,三角脉冲信号的频谱第一零点值抽样信号的频谱大致如下图所示:4)若连续信号的频谱是带状的(),如题图所示。

利用卷积定理说明当时,最低抽样率只要等于就可以使抽样信号不产生频谱混叠。

解:对连续信号进行冲激抽样,所得的抽样信号(T为抽样间隔)由卷积定理(为抽样频率)若的频谱是带状的,如题如所示,则当时,采用的频率对进行抽样,所得的如下图所示,可见频谱没有发生混叠。

5)内插或以整数因子N增采样的过程可以看成两种运算的级联。

数字信号处理 重点习题(1-5章)

数字信号处理 重点习题(1-5章)

数字信号处理 重点习题(1-5章)第一章5.设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性非时变的。

(6)y(n)=x(n2)(7)y(n)= (8)y(n)=x(n)sin(ωn)6.给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明理由。

(3) y(n)= x(k) (5) y(n)=e x(n)13.有一连续信号x a(t)=cos(2πft+),式中,f =20 Hz,=π/2。

(1)求出x a(t)的周期;(2)用采样间隔T=0.02 s对x a(t)进行采样,试写出采样信号 的表达式;(3) 画出对应 的时域离散信号(序列)x(n)的波形, 并求出x(n)的周期。

14. 已知滑动平均滤波器的差分方程为(1)求出该滤波器的单位脉冲响应;(2)如果输入信号波形如题14图所示,试求出y(n)并画出它的波形。

第二章3.线性时不变系统的频率响应(频率响应函数)H(e jω)=|H(e jω)|e jθ(ω), 如果单位脉冲响应h(n)为实序列,试证明输入x(n)=A cos(ω0n+)的稳态响应为10.若序列h(n)是实因果序列, 其傅里叶变换的实部如下式:H R(e jω)=1+cosω,求序列h(n)及其傅里叶变换H(e jω)。

18.已知,分别求:(1) 收敛域0.5<|z|<2对应的原序列x(n);(2)收敛域|z|>2对应的原序列x(n)。

24.已知线性因果网络用下面差分方程描述: y(n)=0.9y(n-1)+x(n)+0.9x(n-1),(1)求网络的系统函数H(z)及单位脉冲响应h(n);(2) 写出网络频率响应函数H(e jω)的表达式, 并定性画出其幅频特性曲线; (3) 设输入x(n)=e jω0n, 求输出y(n)。

28.若序列h(n)是因果序列, 其傅里叶变换的实部如下式:,求序列h(n)及其傅里叶变换H(e jω).29.若序列h(n)是因果序列, h(0)=1, 其傅里叶变换的虚部为,求序列h(n)及其傅里叶变换H(e jω)。

数字信号处理答案第2章

数字信号处理答案第2章

1 = ∑e 2 n =0
N −1
j
2π ( m−k ) n N
1 + ∑e 2 n =0
N −1 − j 2π ( m + k ) n N
2π 2π j (m−k ) N − j (m+k ) N 1 1 − e N 1− e N = + 2π 2π 2 j (m−k ) − j (m+ k ) 1− e N 1− e N

N −1
−j
2π kn N
1 N −1 j(ω0 − 2π k ) n N −1 − j(ω0 + 2π k ) n N N = ∑ e − ∑e 2 j n =0 n=0
8
− jω0 N 1 − e jω0 N 1 1− e = − 2π 2π j(ω0 - k) − j(ω0 + k ) 2j N N 1− e 1 − e
12

N [δ( k ) − 1] X (k ) = k 1 − WN
k = 1, 2, L, N − 1
当k=0时, 可直接计算得出X(0)为
N ( N − 1) X ( 0) = ∑ n ⋅ W = ∑ n = 2 n=0 n =0
N −1 0 N N −1
这样, X(k)可写成如下形式:
N ( N − 1) 2 X (k ) = −N k 1 − W N , k =0 k = 1, 2, L , N − 1

6
N =2 0
(7)
k = m, k = N − m k ≠ m, k ≠ N − m
jω0 n
0≤k≤N-1
X 7 (k ) = ∑ e

数字信号处理(第三版)第2章习题答案

数字信号处理(第三版)第2章习题答案

第2章 时域离散信号和系统的频域分析
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
X e (e j ) FT[xr (n)]
Hale Waihona Puke 1 1 ej2 1 e j2 1 (1 cos 2)
24
4
2
因为 所以
Xe
(e j
)
1 2
[X
(e j
)
X
(e j
)]
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0 0≤ω≤π
第2章 时域离散信号和系统的频域分析
当0≤ω≤π时,
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
例如, 已知序列x(n)的傅里叶变换为
X
(e
j
)
1
1 ae
j
a 1
1 求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到 X (z) 1 az 1
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
第2章 时域离散信号和系统的频域分析

《数字信号处理》朱金秀第二章习题及参考答案

《数字信号处理》朱金秀第二章习题及参考答案

第二章 习题及参考答案 一、习题1、 序列x(n)的表达式如下:⎪⎩⎪⎨⎧≤≤-≤≤-+=其它,040,414,32)(n n n n x(1) 画出序列x(n)的波形,并标出各序列值。

(2) 请用延迟的单位抽样序列及其加权和表示序列x(n)。

(3) 令y(n)=2x(n-2),请画出y(n)的波形。

2、 判断下列序列是否是周期序列,并求出周期序列的周期。

(1)是常数αππα,)843sin()(-=n n x(2)是常数ββπ,)()16(-=n j en x3、设x(n)与y(n)分别表示系统的输入和输出,试判断下列差分方程所描述的系统是否是线性移不变的? (1)y(n)=x(n)+5x(n-2) (2)y(n)=3x(n)+1(3)y(n)=x(n-n 0) , n 0为整数 (4)y(n)=x(-n) (5)y(n)=x 2(n) (6)y(n)=x(n 2) (7)∑==ni 0x(i)y(n)4、试判断下列差分方程所描述的系统是否具有因果性、稳定性,并说明理由。

(1)y(n)=x(n)+x(n+2) (2)∑+-==x(m)y(n)n n n n m(3)y(n)=x(n-m) (4)y(n)=e x(n) (5)∑-==20k)-x(n y(n)N k5、输入序列x(n)及线性时不变系统的单位脉冲响应h(n)如下所示:)3(2)1()2()(-+-++-=n n n n x δδδ )2(5.0)1()(2)(-+-+=n n n n h δδδ求该系统的输出序列y(n),并画出y(n)的波形。

6、设由下列差分方程描述的系统为因果系统, 3)1()(3)1()(-++-=n x n x n y n y 要求用递推法求系统的单位脉冲响应。

7、设)()(3n R n x =, 试求x(n)的共扼对称序列)(n x e 和共扼反对称序列)(n x o ,并分别用波形图表示。

8、根据系统的单位脉冲响应h(n),分析下列系统的因果稳定性: (1))(0n n -δ (2))(n u (3))(3n u n (4))(3n R N n(5))(31n u n - (6)n n u )((7)!)(n n u9、已知线性移不变系统的单位脉冲响应h(n)以及输入序列x(n),求输出序列y(n),并画出y(n)的波形图。

数字信号处理_第二章_习题

数字信号处理_第二章_习题

r
y [k rN ]
l

h 解: 序列 x[k ] 的点数为N1 30, [k ] 的点数为 N 2 10, 故 x[k ] h[k ] 的点数应为39,起始点位置a=10
L N1 N 2 1 39
又 g[k]为x[k]与h[k]的30点循环卷积,即N=30。
5.设有信号处理器,抽样点数必须为2的整数幂,要求 频率分辨率10Hz,抽样时间间隔0.1ms,求:(1) 最小 数据记录时间;(2).所允许处理的信号最高频率;(3). 在一次最小记录中的最少点数。 6.画出基2时间抽取蝶形运算图。 7.每个蝶形运算有_____次复数乘法,______次复数加 法。当N=32时,由_____级蝶形运算组成;每级有 _____个蝶形结构;共有______个蝶形运算;共有 ____次复数乘法,_____次复数加法。直接完成DFT 计算共需要_______次复数加法, _____次复数乘法。
g[k]是线性卷积以30为周期周期延拓后取主值序列 48( a L 1) 10
20 ( N a)
40 18 ( N a L 1) ( a N )
78 ( a N L 1)
混叠点数为L-N=39-30=9
k 10~ k 18( a L N 1)
2-14. 设有两个序列
x[k ], 0 k 29 x[k ] 其它k 0, h[k ], 10 k 19 h[k ] 其它k 0,
x[k]和h[k]的30点循环卷积记为g[k],线性卷积记 为y[k]。 试确定在哪些点上有y[k]=g[k]。
yc [k ]
X [m] N x[0]
m 0
X [m] 10 x[0] 20

《现代数字信号处理》第2章习题答案

《现代数字信号处理》第2章习题答案
k k =0 k =0


1 1− z
1 2 −1
+
1 3 1 −1 = ⋅ 1 1 −1 1− 2 z 4 (1 − 2 z )(1 − 1 2 z)
−1 1 (1 − 1 3 1 3 1 2 z ) (1 − 2 z ) = ⋅ ⋅ ⋅ = ⋅ −1 1 −1 1 1 −1 1 1 4 (1 − 2 z )(1 − 2 z ) (1 − 3 z ) (1 − 3 z ) 4 (1 − 3 z )(1 − 1 3 z )
1 1− ∑ a (k ) z
k =1 2 v p
−k
2 2 , Px ( z ) =H ( z ) H * (1/ z * ) σ w =σw
1 1− ∑ a (k ) e
k =1 p
2
− jkω
(b) Pz ( z ) = Px ( z ) + σ
2.4 设给定一个线性移不变系统,其系统函数为 H ( z ) = (1 −
σ ∑⎢ ⎣
i =1
N

2 x

2 2 1 2⎤ σx + σx ⎥ N N ⎦
=
N −1 2 σx N
(b) E
{(σ
2
x
− E {σ x }
2
)}
2
⎧⎛ 2 N − 1 2 ⎞ 2 ⎪ ⎫ ⎧ N − 1 2 2 ( N − 1) 2 4 ⎫ ⎪ ˆx − = E ⎨⎜ σ σ x ⎟ ⎬ = E ⎨σ x4 − 2 σ xσ x + σx ⎬ 2 N N N ⎝ ⎠ ⎩ ⎭ ⎪ ⎪ ⎩ ⎭
{ }
N
( N − 1) 2 4 σx N2
− x)
(I)

数字信号处理 课后习题答案 第2章.docx

数字信号处理 课后习题答案 第2章.docx

习题1.设X(e"。

)和r(e JC0)分别是印7)和)仞的傅里叶变换,试求下面序列的傅里叶变换:(1) x("-"o) (3) x(-n) (5) x(")y(")(7) x(2n)⑵ x*(〃)(4) x(") * v(«) (6) nx(n) (8) /(〃)解:⑴00 FT[X(/7-Z70)] = £x(〃一〃o)e—S令n r = n-n0,即〃=n' + n Q,贝!J00FT[x(n-n o y\=工》(〃')以"''*""="初。

乂(烈)00 00(2)FT[x («)] = £ x* (n)e*= [ £ 戏〃)攻以]* = X* (e「W=—00 w=—00(3)00FT[x(—")]= 〃)e*"令=一〃,则00FT[x(—”)]= Zx(〃')e" =X(e—〃")”'=—00(4)00 x(〃) *'(〃)= ^\x(jrT)y(n -m)W=-0000 00FT[x(n) * v(w)] = Z【Z x("y("-初)]e""' n=-<x> w=-oo k = n-m,贝U00 00FT[x(ri)*y(ri)]= £[ £x(初) k=—CD W=-0000 00k=-<x> m=—cc= X(e5(em)_00 00 1时[x(M)贝〃)]= Z》(〃)贝〃)e「9 = Zx(〃)[-Lf/(em'"'"d 渺]e-加""=—00 〃=—00 2l "1 00=—£ Y(e j0)')2l " n=—<x>1 伙=一L "口")*?®"、技或者FT[x{n)y{ny\ = —「171 »兀oo(6)因为X(e,")= »("初,对该式两边口求导,得到叫、)=-J £仗"如=-jFT[nx(n)]因此矶孙(〃)]=j至@3)dco00⑺ FT\x(2ri)\=加n=-(x)令n' = 2n ,则FT[X(2W)]= £x(z/)e 7 %W--00,且取偶数00 1 r r・l 八1°0 . 1 00 . 1£?kO + (T)“x(")厂=| 广伽+£ef ("广伽〃=—oo 匕匕〃=—oo 〃=—00=L「xa*+x(/*E)F7[x(2z?)] = | X(e‘2") + X(—e'尸)(8) F7[X2(»)]= J X2(77)6^»=-OO利用(5)题结果,令x{n) = y{n),则F巾2(”)] = _£x(em)*X(eS) = —「X®。

数字信号处理 刘顺兰第二章完整版习题解答

数字信号处理 刘顺兰第二章完整版习题解答
2 k)N N 2 k) N
即 0 不在采样点上时,
X (k )
1 e
1 e
b 当 ○
j ( 0

1 e 1 e
j 0 N 2 k) N
j ( 0

sin[(
0
2


N
k)N ] e ) N
j(
0
2 N
k )( N 1)
sin(
0
2
k
0
X (1) 2 2 j
nk N
x(n)W
n 0
N 1
k 2k 3k 1 jW N WN jW N ,
可求得 X (0) 0,
N 1 n 0
X (1) 4, X (2) 0 , N ( k ) c 1 N 1 c c 1 k cW N
(3) x( n) c , 0 n N 1
n
解: (1) X ( k )
x(n)W
n 0
3
nk 4
1 W4k W42 k W43k , k 0,1,2,3 X (2) 0, X (3) 2 2 j N 4
可求得 X (0) 0, (2) X ( k )
1 N 1 j ( k ' k ) n N 1 j N ( k k ') n X ( k ) [ e N e ] 2 n 0 n 0 N , 2 0 ,
(3) X ( k )
N 1 N 1 n 0
2
2
k k ' 及k N k ' 其它
k N
1 k N 1

N ( N 1) , 2 X (k ) N k , W N 1

数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)第二章测试训练题解

数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)第二章测试训练题解

数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)第二章测试训练题解1.DFT和DTFT之间的关系是2.DFT和DFS之间的关系是3.对于一个128点的DFT,最先4个DFT相应于数字频率4.某滤波器的频响为H(ω) = 0.3cos2ω- 0.2cosω+ 0.05,相应于6点的DFT的H[k]为5.采样频率为22.05kHz的1024点DFT所对应的频率分辨率为6.采样率为8kHz的信号的256点DFT的第一个周期覆盖的频率范围是从0Hz至7.信号[ 1 0 2 ]的DFT每隔3个样点值重复,为8.以1600Hz对一220Hz的信号采样,进行64点DFT,最接近的DFT频率为9.以12kHz的信号对一4.25kHz的信号抽样,其256点DFT幅谱图的基带最大峰值点所对应的下标为10.采样频率为6kHz,1kHz信号的频率分辨率要达到50Hz,需11.采样频率为16kHz,1024点DFT的窗口长度为12.关于谱泄漏与窗口长度的关系是13.频谱图是展现信号的什么14.周期性方波的频谱图15.在FFT中的乘数因子是16.与512点的DFT相比,512点的FFT只需约几分之一的计算量17、一个长度为N的有限长序列可否用N个频域的采样值唯一地确定?18、计算两个N点序列的线性卷积,至少要做多少点的DFT?19、x(2n)与x(n)的关系20、对于高斯序列x(n)=exp[-(n-p)2/q],取16点作FFT,其幅度谱中低频分量最多的是21、一般地说按时间抽取基二FFT的_______序列是按位反转重新排列的。

22、信号x(n)=sin(nπ/4) - cos(nπ/7)的数字周期为23、N=2L点基二FFT,共有______列蝶形,每列有____个蝶形。

24、信号s(t)=sin(4000πt)+sin(600πt),则采样频率至少应为25、用按时间抽取法计算256点的FFT时,n=233的二进制位反转值是26、FFT之所以能减少DFT的运算量,是因为:,FFT减少DFT 运算量的基本处理思想是。

数字信号处理课后答案+第2章(高西全丁美玉第三版)

数字信号处理课后答案+第2章(高西全丁美玉第三版)



上式中|H(ejω)|是ω的偶函数, 相位函数是ω的奇函数, |H(ejω)|=|H(e-jω)|, θ(ω)=-θ(-ω), 故
1 y (n) A H (e j0 ) e jj e j0 n e j (0 ) e jj e j0 n e j (0 ) 2 A H (e j0 ) cos(0 n j (0 ))

j
πk 4
π δ( k ) 2
5. 设题5图所示的序列x(n)的FT用X(ejω)表示, 不直接求出 X(ejω), 完成下列运算或工作:
题5图
j0 (1) X (e )
(2)

π
π
X (e j )d
(3) X (e jπ ) (4) 确定并画出傅里叶变换实部Re[X(ejω)]的时间序列 xa(n); (5) (6)
令n′=2n, 则
FT[ x(2n)]
n , n取偶数


x(n)e jn / 2
j n 1 n [ x(n) (1) x(n)]e 2 2 n


1
1 1 j n j n 1 x ( n )e 2 e jn x(n)e 2 2 n n
题4解图
或者
1 1 j πk j πk e 2 (e 2 1 j πk e 2 )
~ X (k )

n 0
1
π j kn e 2

1 e jπk
π j k 1 e 2

1 1 1 j πk j πk j πk e 4 (e 4 e 4 )

1 j πk e 4
证明输入x(n)=A cos(ω0n+j)的稳态响应为

数字信号处理第二章习题答案

数字信号处理第二章习题答案

2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωω(等比数列求解)ωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωωω21sin 27sin 1137j j j e ee ((1-e^a)提出e^(0.5a))(5) 3350011()(3)44nkj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。

数字信号处理第二章习题答案

数字信号处理第二章习题答案

2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωω(等比数列求解)ωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωωω21sin 27sin 1137j j j e ee ((1-e^a)提出e^(0.5a))(5) 3350011()(3)44nkj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于准确的带限内插, 是一个理想的低通滤波器。
(1)确定系统A是否是线性的。
(2)确定系统A是否是时不变的。
(3)若 如图所示,且N=3,画出 。
解:
(1)取 和 ,并设


所以
因此
可见系统是线性的。
(2)取
(3)则在N=4时,有
(4)取
则在N=4时,有
如下图所示,可见系统A是时变的。
(3)
上式的傅里叶变换为
解答:
由DTFT定义得
由DTFT性质有
频谱大致分布
考察点:DTFT性质
5.若序列 是因果序列,已知傅里叶变换的实部为 ,求序列 及其傅里叶变换 。
解答:
6.假设序列 分别如图所示,其中 的傅里叶变换为 ,试用 表示其它三个序列的傅里叶变换。
解答:
二、
知识点
Z变换及其收敛域的判断;
留数法求Z反变换;
Z反变换求离散系统响应;
考察点:留数法求逆z变换
8.设 。试求 的反变换。
解答:
根据收敛域是环状域,原序列为双边序列
三、
知识点
Z变换与拉氏变换、傅里叶变换的关系;
Z变换求LTI系统的输出及稳态解;
离散系统的传输函数零极点分布,及系统幅频响应。
考察点:Z变换求LTI系统的输出
9.已知系统的差分方程为 。
输入信号为 。初始条件为 。求系统的输出响应。
考察点:DTFT性质
1.设信号 的傅里叶变换为 ,利用傅里叶变换的定义或性质,求下列序列的傅里叶变换
(1) (2) (3) (4) (5)
(6)
解答:(1)
(2)
(3)
(4)
(5)
(6)
考察点:DTFT性质
2.如图所示序列 ,设其DTFT为 ,试利用DTFT的物理含义及性质,完成以下运算
(1) (2) (3)
当 时,极点矢量长度最长,所以幅度值最小;
幅频特性关于 对称。可以定性画出系统的幅频特性如下图:
考察点:系统零极点分布,系统频率响应
11.一离散时间系统有一对共轭极点 , ,且在原点有二阶重零点。
(1)写出该系统的传递函数 ,画出极零图;
(2)试大致画出其幅频响应( );
(3)若输入信号 ,且系统初始条件 ,求该系统的输出 。
解:(b) _非线性、移不变、稳定、因果。
5)设某线性时不变系统,其单位抽样响应为
试讨论该系统的因果性和稳定性。
解:讨论因果性: 时, ,故此系统是因果系统。
讨论稳定性:
所以 时,系统稳定。
6)常系数线性差分方程为
边界条件为 ,试说明它是否是线性时不变系统。
解:(1)令

同样利用
可递推求得
所以


同样可递推求得
解答:考Biblioteka 点:系统幅频响应10.设一阶系统的差分方程为 ,试定性分析系统的幅频特性。
解答:
由系统的差分方程得到系统函数为
系统零点为 ,极点为 ,零极点分布如图。
取单位圆上点A,可以画出极点矢量和零点矢量,A从 开始,沿单位圆逆时针转一圈,观察极点矢量长度和零点矢量长度的变化。可得
当 时,极点矢量长度最短,所以幅度值最大;
一、
知识点
连续时间信号离散后的频谱特点
Nyquist取样定理的理解和掌握
理想内插的时域和频域信号特点,了解非理想内插的几个函数
1)考虑两个正弦波信号:
和 ;
以= 20rad/sec对此信号进行离散化;然后使用截止频率为T= 10rad/sec的理想低通滤波器恢复得到模拟信号如下g1(t), g2(t);请给出对应的模拟信号。
解:g1(t)满足Nyquist抽样定理,无信号的混叠。g2(t)不满足Nyquist抽样定理,发生信号的混叠。恢复的模拟信号如下:
2)设有模拟信号 =300 , 300 ,用抽样 =3000样值/秒分别对其进行抽样,则 , 的周期分别为多少?
解: =3, =6。
3)已知三角形脉冲的频谱见下图,大致画出三角形脉冲被冲激抽样后信号的频谱(抽样间隔为 ,令
所以
和 为移一位关系,但 和 不是移一位关系,因而系统不是时不变系统。
(2)前面已证明

则得
同样可递推求得
所以

所以
因此,这个系统不是线性系统。
7)设
试画出 ,其中 。
解:
一、
知识点
连续采样信号傅里叶变换与离散时域信号傅里叶变换的关系
利用DTFT的定义及性质求DTFT
离散时间信号截断后傅里叶变换
离散时间信号的内插与抽取
(4)确定并画出傅里叶变换为 的时间序列
(5) (6)
解答:
(4)
考察点:离散时间信号抽取
3.若 为 的傅里叶变换, ,求
解答:
考察点:离散时间信号的截断
4.将一个 的无限长信号截短,最简单的方法是用一个窗函数去乘该信号。若所用的窗函数为矩形窗,即
则 实现了 的截短
若 的频谱 ,求 傅里叶变换,并画出频谱大致分布;
分析:
频谱为 的信号被冲激信号抽样后,所得的抽样信号 的频谱
其中 为抽样频率, 为抽样时间间隔, ,此题中, ,则 .
解:
如图所示,三角脉冲信号的频谱
第一零点值
抽样信号的频谱大致如下图所示:
4)若连续信号 的频谱 是带状的( ),如题图所示。利用卷积定理说明当 时,最低抽样率只要等于 就可以使抽样信号不产生频谱混叠。
解答:
(1)系统的传递函数
零极点分布图
(2)幅频响应
(3)
考察点:z变换收敛域判断及用留数法求Z反变换
7.已知
(1)根据零极点分布,写出所有可能的收敛域;
(2)若系统稳定,用留数法求逆z变换;
(3)若系统稳定非因果,用留数法求逆z变换。
解答:
(1) 有两个极点: ,因为收敛域总是以极点为界,因此收敛域有三种情况:
(2)若系统稳定,则收敛域为
(3)若系统因果非稳定,则收敛域为
如图所示
二、离散系统及其普遍关系
知识点
掌握离散系统的线性,时变,稳定和因果的判断方法;
理解单位脉冲响应对应的稳定和因果的判断方法;
掌握线性时不变系统的离散卷积计算方法。
3)试判断下列系统是否线性?是否时不变?是否稳定?是否因果?
解:线性、移变、非稳定、因果。
4)试判断下列系统是否线性?是否时不变?是否稳定?是否因果?
解:
对连续信号 进行冲激抽样,所得的抽样信号
(T为抽样间隔)
由卷积定理
( 为抽样频率)
若 的频谱是带状的,如题如所示,则当 时,采用 的频率对 进行抽样,所得的 如下图所示,可见频谱没有发生混叠。
5)内插或以整数因子N增采样的过程可以看成两种运算的级联。第一个系统(系统A)相当于在x[n]的每个序列值之间插入(N-1)个零序列值,因而
相关文档
最新文档