(完整版)钢铁行业余热回收

合集下载

钢铁企业余热资源的回收与利用

钢铁企业余热资源的回收与利用

钢铁企业余热资源的回收与利用摘要:本文首先分析了钢铁企业余热回收的现状,接着分析了钢铁企业余热资源的回收与利用的措施,希望能够为相关人员提供有益的参考和借鉴。

关键词:钢铁企业;余热资源;回收;利用;措施引言:当烟气从出口排出时的余热温度在100℃以下,那么将会产生大量的潜热,将这些潜热转换为热量在钢铁行业可以得到有效的应用。

类似的余热利用数不胜数,每年通过余热的利用,钢铁行业可以节约大量的蒸汽等物质,由此可见,余热回收能够有效的节约能源成本,促进钢铁行业的发展,同时也能为我国的节能减排工作做出突出贡献。

1钢铁企业余热回收的现状当前,我国的钢铁企业在进行作业的过程中主要有几种产生余热的形式,分别是高温烟气、冷却介质、炉渣、高温凝结水等。

目前,我国很多钢铁企业在进行钢铁生产的过程中都会通过对于余热的利用来进行低压蒸汽的生产,这种余热回收手段也是最基础、最广泛的余热回收利用手段。

但是,仅仅只有这一种余热利用回收手段仍然显得我国钢铁企业在进行余热回收利用的过程中没有体现其应有的技术水平,余热回收率过低,仅仅有30%左右。

这其中又以高温余热的回收利用率最高,可以达到40%以上,而低温余热的回收利用率却很少,只有1%左右。

但是如果针对世界上其他先进国家进行观察,我们能够发现先进国家的钢铁企业在进行运转的过程中,对于余热的回收利用率往往非常高,普遍在85%以上甚至90%以上。

由此可见,当前我国在钢铁企业余热回收方面仍然处于初级阶段。

2钢铁企业余热资源的回收与利用的措施2.1烧结环冷系统余热回收利用在钢铁生产的烧结工序中,烧结矿在经过环冷机冷却时,会产生大量温度较高的热烟气,如果这部分烟气直接排入大气,不仅会造成较大的能源损失,还会对大气造成严重污染。

烧结工序的能耗仅次于炼钢工序,约占总能耗的9%-15%,所以对烧结环冷机中的余热进行回收利用具有很大的节能空间,并且可产生较大的经济效益。

在烧结机生产线中都会配备相应的环冷机,对于烧结矿经过环冷机时产生的高温烟气可以采用两种余热回收利用措施。

钢铁工业余热回收技术现状研究

钢铁工业余热回收技术现状研究

钢铁工业余热回收技术现状研究钢铁工业是我国重要的产业之一,但钢铁生产过程中会产生大量的余热,如果不能有效地回收利用,不仅会造成能源浪费,还会增加环境负担。

钢铁工业余热回收技术的研究和应用具有重要意义。

本文将从技术现状、研究进展和发展趋势等方面对钢铁工业余热回收技术进行探讨。

一、技术现状1.常用的余热回收技术目前,钢铁工业常用的余热回收技术包括热交换、蒸汽回收和热电联产等。

热交换是最基本的余热回收技术,通过在炉、炉排和炉膛内放置换热器,将高温废气中的热量传递给水或其他介质,并将其转化为能量。

蒸汽回收则是将高温废气中的热量用于发电或其他用途,通过蒸汽发生器将热能转化为动能。

热电联产是将余热发电技术和余热利用技术相结合,将余热转化为电能和热能的一种综合利用方式。

2.存在的问题及挑战钢铁工业余热回收技术在应用中还存在一些问题和挑战。

由于钢铁工业生产环境复杂,余热的温度、压力和成分复杂多变,余热回收技术需要具有较高的适应性和稳定性。

现有的余热回收技术在能效、经济性和环境友好性方面还有提升空间,需要进一步改进和优化。

钢铁工业余热回收技术的推广和应用还面临着技术标准不统一、政策法规不完善等问题。

二、研究进展1.材料与结构的创新在余热回收设备方面,近年来出现了一些新型的材料和结构设计。

一些新型的高效换热器材料广泛应用于余热回收设备中,提高了换热效率和耐温性能。

一些工程师和科研人员也在设计更高效的余热回收结构,改善了余热回收设备的稳定性和可靠性。

2.技术集成与智能化随着信息技术和智能化技术的发展,余热回收技术也出现了一些新的发展趋势。

一些企业和研究机构将余热回收技术与信息技术相结合,实现了余热回收设备的智能化管理和控制。

通过实时监测余热设备的运行情况,提高了设备的能效和安全性。

3.政策与标准的支持近年来,我国政府对能源节约和环保政策力度不断加大,出台了一系列支持清洁能源和能源回收利用的政策。

这些政策的出台为钢铁工业余热回收技术的研究和应用提供了有利的政策环境。

钢厂余热回收

钢厂余热回收
考虑材料回收的潜能有必要看一下炉渣
பைடு நூலகம்
两种炉渣中各自的 成分
矿石材料发泡炉渣来回收 炉渣材料
• 加热炉渣,玻璃及矿石的混合物会产生二 氧化碳和水蒸气
• 用矿石材料做发泡剂去发泡固态粉末状炉 渣
扁热管热交换器在钢铁工业余热回 收中的应用
钢厂中不仅在炉渣中存在大量的热量, 在钢坯的冷却过程中大量的热量也被浪费掉 ,因此回收这一部分热量也至关重要,所以 提出了通过扁热管热交换器进行余热回收的 方法
干法制粒
物理方法:机械破碎法 鼓风 法 离心造粒法
干法制粒
的气化反应
化学方法:烷烃重组反应 煤
机械破碎法
机械破碎法
机械破碎法
机械破碎法
鼓风法
鼓风法
离心造粒法
离心造粒法
烷烃重组反应
煤的气化反应
结论
离心造粒法具有低能耗设备简单等优点粒 子的尺寸和质量也能被很好的控制,越来越多将 会被应用到工程实践中
热回收
材料回收 • 余热回收
钢厂工业余热回 收
炉渣的余热回收
钢材冷却过程中的
炉渣余热回收
我们不仅需要回收炉渣所承载的热量, 而且为了获得不同用途的炉渣,对炉渣的冷 却条件和冷却过程需要进行控制
传统用水冷却炉渣一方面大量浪费水资 源,炉渣的高温显热这样高能级的热量不能 被利用,水与高温炉渣直接接触发生反应生 成含硫气体对空气造成污染而且必须增加额 外能量干燥冷却后的炉渣,这样才能满足炉 渣的后续利用。
离心造粒法在技术上仍然有以下难点:炉 渣具有较高粘度且导热系数低,为获得玻渣颗粒 ,要求快速冷却,期望从炉渣回收热能的连续性 而炉渣的排出是不连续的
化学方法,如甲烷重整反应过程,有良好 的应用前景,但也有一些缺点,如天然气产品难

钢铁工业余热回收的主要环节介绍

钢铁工业余热回收的主要环节介绍

钢铁工业余热回收的主要环节介绍1、铁前---烧结生产线:在烧结生产过程中,烧制好的成品,温度在500∽800℃,为了便于运输,需将其冷却至常温。

烧制好的成品的显热,在冷却的过程中,热量随热空气(300∽350℃)排放到空气中,由于此热空气的量很大,及具回收价值。

目前钢厂对烧结的余热回收已有普遍的认同,约有50%的生产线得到了应用,新建的生产线基本上都有考虑。

常规的回收是通过热管式换热器,产生0.8MPa过热蒸汽用于本生产线物料加温,多余部分并入厂内管网供其它生产使用。

此项目中,如果蒸汽用不完,可考虑建余热电站。

2、炼铁:在炼铁工艺中需要一股850∽1300℃的热风,其由独立的热风炉提供,而且热风温度越高,炼铁的成本越低(可降低焦比,提高喷煤比)。

利用热风炉自身排放的300∽400℃烟气,可提高热风的温度50∽100℃,及具经济价值。

实现的方法是:利用烟气余热将热风炉燃烧用的空气和煤气在安全范围内尽可能地加温,以提高空气和煤气的物理热,提高其燃烧温度,最后实现提高热风炉风温的目的。

目前钢厂对烧结的余热回收已有普遍的认同,约有50%的生产线得到了应用,新建的生产线基本上都有考虑。

3、焦化工序焦化工艺中得到普遍认可的技术是干熄焦技术,将焦炉的上升管(650℃)的降温获得热能。

4、转炉(炼钢)转炉生产工艺中,用于保护烟道的汽化冷却设备将产生大量的饱和蒸汽,此股蒸汽的特点是:不连续,量比较大。

5、轧钢工序在轧钢工艺中蓄热燃烧技术是一个发展趋势,我们不介入领域。

对于未实现蓄热式燃烧的轧钢炉,对其烟气可以进行余热回收,回收方式和利用热能的方式与炼钢的热风炉一样(进行双预热),只不过效益体现在节约煤气上。

目前这方面的应用也比较普及。

一般此类项目的回收期在9-12个月。

1、铁前---烧结生产线:在烧结生产过程中,烧制好的成品,温度在500∽800℃,为了便于运输,需将其冷却至常温。

烧制好的成品的显热,在冷却的过程中,热量随热空气(300∽350℃)排放到空气中,由于此热空气的量很大,及具回收价值。

钢铁工业余热回收技术现状研究

钢铁工业余热回收技术现状研究

钢铁工业余热回收技术现状研究钢铁工业是我国工业生产中的重要行业之一,其生产过程中会产生大量的余热。

如何有效回收利用这些余热,不仅可以减少能源浪费,还可以降低环境污染,提高资源利用效率,因此钢铁工业余热回收技术的现状研究具有重要意义。

1. 余热回收的概念余热是指在工业生产过程中产生的高温废热,如果不加以回收利用就会造成能源资源的浪费。

而余热回收技术就是指利用各种设备和技术手段,将这些高温废热进行有效回收利用,使其转化为热能或其他形式的能源,在节能减排的同时还能降低生产成本。

2. 技术现状目前,钢铁工业余热回收技术主要包括热力回收、工艺改进和热能转换三种类型。

热力回收主要是通过换热器等设备,将高温废热转化为热水或蒸汽,用于供暖或发电。

而工艺改进则是通过对生产工艺的优化和改进,减少能源的消耗和废热的产生。

热能转换则是指利用余热进行热能转换,如热电联产、热泵等技术,将余热转化为电能或其他形式的能源。

以上技术在钢铁工业中的应用已有一定的经验和成果,但仍存在一些问题亟待解决,如技术成本较高、成熟技术不多等。

1. 技术成果目前,我国在钢铁工业余热回收技术方面取得了一些成果。

在热力回收方面,已建成了一批余热发电项目,将钢铁生产过程中的余热转化为电能,实现了能源的再利用。

在工艺改进方面,通过优化炉煤气的利用和余热回收,成功降低了能源消耗和生产成本。

在热能转换方面,热电联产和热泵等技术已在一些钢铁厂得到应用,有效提高了能源利用效率。

虽然在钢铁工业余热回收技术方面取得了一些成果,但仍然面临着一些难点和挑战。

技术成本仍然较高,需要进一步研究开发低成本的余热回收技术。

钢铁生产过程中的余热温度和品质较为复杂,回收利用存在一定的技术难度。

目前我国在钢铁工业余热回收技术方面的成熟技术和设备较少,需要进一步加强研发和技术引进。

三、优化钢铁工业余热回收技术的建议1. 加强科研和技术创新钢铁工业余热回收技术的持续优化需要加强科研和技术创新。

钢铁厂炼焦炉上升管余热回收技术发展及应用

钢铁厂炼焦炉上升管余热回收技术发展及应用

钢铁厂炼焦炉上升管余热回收技术发展及应用摘要传统荒煤气冷却工艺造成大量显热流失浪费,同时消耗淡水资源带来环境压力。

在技术人员的多年努力下,上升管余热回收技术及装置已日臻成熟并得到了推广应用,创造了良好的经济和环保效益。

一、钢铁联合企业炼焦工序余热资源长流程钢铁生产工艺,高炉炼铁工序中作为还原剂的主要原料是焦炭。

用于还原铁矿石中的铁元素,生产出的生铁供给后续炼钢车间炼钢。

高炉内的化学方程式为:Fe0+C=Fe+CO。

钢铁联合企业一般自备炼焦炉系统生产焦炭满足生产需求。

焦炭由炼焦煤在炼焦炉碳化室中,隔绝空气高温干馏去除有机质、挥发分生成。

炼焦生产过程中有三种余热资源产生:红焦显热、烟道废气显热、荒煤气显热。

各自在焦炉总体热量消耗中所占比例分别为:37%、17%、36%本文讨论荒煤气显热的回收----上升管余热回收技术:二、炼焦炉上升管余热(荒煤气显热)回收的必要性红焦炭带出的显热及烟道废气显热,通过采用成熟可靠的干熄焦发电装置和烟道余热锅炉已实现有效回收利用。

但荒煤气的显热由于种种因素一直没有好的办法来回收。

传统工艺为便于后工序的煤气净化与处理,普遍的做法是:先在桥管和集气管喷洒循环氨水与荒煤气直接接触,靠循环氨水大量气化,使荒煤气急剧降温至80~85℃;降温后荒煤气在初冷器中再用冷却水间接冷却至常温。

所得到的效果是:荒煤气被冷却,其中所夹带的粉尘被清洗除去,绝大部分焦油蒸汽冷凝、萘凝华(并溶于焦油)而被脱除,为煤气的输送、深度净化和化学产品回收创造了较好的条件。

上述过程对荒煤气的冷却和初步净化而言是高效的,但在热力学上却是不完善的。

第一、该回收的能量未回收。

荒煤气在桥管和集气管内急剧降温─增湿过程是高度不可逆过程,其物理显热损失达90%以上.第二、冷却水耗量大。

荒煤气从650~850℃降温至常温所放出的热量绝大部分是在初冷器中靠冷却水移除的(以两段循环水一段深冷水的横管初冷器为例,冷却水总比用量约43t/km3)。

(完整版)钢铁行业余热回收

(完整版)钢铁行业余热回收

(完整版)钢铁行业余热回收烧结线余热烧结生产线有两部分余热,一是冷却机产生的热风,二是烧结机尾的高温烟气。

用余热锅炉将这两部分余热来产生蒸汽,再通过汽轮机发电。

据经验数据,每10m2的烧结面积可产生1.5t/h的蒸汽,可发电300kW,折合标煤120kg/h。

转炉余热转炉汽化冷却烟道间歇产生的蒸汽,通过蓄能器变为连续的饱和蒸汽,采用我公司的专利——机内除湿再热的多级冲动式汽轮机发电。

每炼1t钢,可产生80kg 饱和蒸汽,每吨饱和蒸汽大约可发电150kWh,折合标煤60kg。

转炉煤气经过汽化冷却烟道冷却后温度仍高达800~900℃,采用我公司的干法煤气显热回收技术,通过下降管烟道、急冷换热器回收显热生产蒸汽,经蓄能器调节后发电。

电炉余热电炉冶炼过程中产生200~1000℃的高温含尘废气,采用余热锅炉将其回收,电炉烟气属于周期波动热源,因此余热锅炉产生的蒸汽需要经过蓄能器调节后方可进入汽轮机发电。

加热炉余热加热炉有两处余热可以利用:一处是炉内支撑梁的汽化冷却系统,另一处是烟道高温烟气。

根据炉型不同,加热炉的烟气量在7000~300000Nm3/h,若用来发电,以烟气量10万Nm3,烟气温度400℃计算,发电量约2000kWh,折合标煤0.8t;汽化冷却系统可生产0.4~1.0Mpa的饱和蒸汽,每吨蒸汽(0.5Mpa)可发电120kWh,折合标煤48kg。

高炉冲渣水用高速水流冲击炉渣使之充分急冷、粒化的过程中,会产生大量的冲渣热水。

每吨铁排出约0.3t渣,每吨渣可产生80~95℃,5~10t 的冲渣水,将这部分热水减压产生低压蒸汽,再进入饱和蒸汽凝汽式汽轮机发电。

每吨90℃热水可发电1.5kWh,折标煤0.6kg,80℃热水可发电1kWh,折标煤0.4kg。

干法熄焦采用惰性气体来冷却红焦,加热后的气体在余热锅炉中产生蒸汽,蒸汽可发电或并入蒸汽管网。

吨焦可生产3.9Mpa、300℃的蒸汽0.45t~0.6t,可发电85~115kWh,折合标煤35~46kg。

中国钢铁行业余热余压回收利用途径分析1

中国钢铁行业余热余压回收利用途径分析1

中国钢铁行业余热余压回收利用途径分析北极星节能环保网2014/5/30 11:51:22 我要投稿关键词:余热回收设备烟气余热余热余压北极星节能环保网讯:现阶段,钢铁工业各生产工序已回收余热余压资源情况及利用途径分析如下:焦化工序。

焦化工序现阶段已回收利用的余热余压资源包括焦炭显热、焦炉煤气潜热、烟道气显热和初冷水显热。

焦炭显热主要是采用干熄焦技术回收利用产生蒸汽用于发电,目前干熄焦发电技术在国内钢铁联合企业的应用普及率已很高。

焦炉煤气热值高,是一种优质燃料,目前已得到充分利用,放散率很低,主要利用途径是供各生产用户使用,富余资源用于驱动锅炉发电。

同时,由于焦炉煤气富含氢气和甲烷,提升利用品位,将其作为化工原料生产甲醇、合成氨等化工产品和天然气资源的利用方式近年来得到了更多的关注。

烟道气显热的温度一般是250 C ~300 C,目前主要采用余热回收设备回收蒸汽供生产、生活用户或作为煤调湿热源。

焦化初冷水显热温度一般是60 C ~70 C,主要采用换热器回收热量用于北方地区冬季采暖。

烧结工序。

烧结工序现阶段已回收利用的余热余压资源包括烧结矿显热和烧结烟气显热。

烧结矿显热的回收主要在环冷机部分,按烟气温度分高、中、低三部分,目前高温段烟气余热回收利用较为充分,主要采用余热锅炉产生蒸汽用于发电或者供生产用户;中、低温烟气余热一般采用直接利用方式,用于预热混料或热风烧结等。

对于烧结烟气显热的回收利用近几年开始起步,在部分企业已有应用,主要集中在烧结大烟道高温区(300 C ~400 C )的回收,采用余热锅炉或热管换热器回收产生蒸汽。

球团工序。

球团工序现阶段已回收利用的余热余压资源包括球团矿显热、烟气显热和冷却水显热。

球团矿显热主要通过获取热风回用于生产,作为烘干、预热等热源。

烟气显热温度较低(约120 C ),少数企业采用热管换热器回收热量用于职工洗浴等生活用户。

竖炉大水梁冷却水显热通常采用汽化冷却方式替代水冷方式,避免循环冷却水消耗,并回收产生蒸汽。

钢铁工业余热回收技术现状研究

钢铁工业余热回收技术现状研究

钢铁工业余热回收技术现状研究1. 引言1.1 背景介绍钢铁工业是我国重要的基础产业之一,在生产过程中会产生大量的余热。

余热是指在生产过程中未被充分利用而流失的热能,其损失不仅会造成资源浪费,还会增加环境负荷。

据统计,我国钢铁工业每年消耗的电力、燃料等能源中有相当一部分以废热的形式散失,造成了能源资源的浪费和环境的污染。

钢铁工业余热回收技术的研究和应用具有重要的意义。

通过回收利用余热,不仅可以减少能源的消耗,降低生产成本,还可以减少对环境的污染,实现资源的循环利用。

目前,国内外对钢铁工业余热回收技术进行了广泛的研究和实践,取得了一系列的成果。

钢铁工业余热回收技术仍存在诸多挑战和问题,需要进一步深入研究和探讨。

本文旨在对钢铁工业余热回收技术的现状进行全面分析,探讨其影响因素和技术发展趋势,同时结合实际案例进行探讨,以期为该领域的研究和应用提供参考和借鉴。

1.2 研究意义钢铁工业是我国重要的基础产业之一,其生产过程中会产生大量的余热。

而利用余热回收技术可以有效减少能源消耗、降低环境污染,提高能源利用效率。

研究钢铁工业余热回收技术的现状具有重要的意义。

通过对现有技术的概述和分析,可以全面了解目前钢铁行业中余热回收技术的应用情况和发展状况,为企业在技术选择和应用方面提供参考。

分析影响因素可以帮助钢铁企业更好地优化生产流程,提高能源利用效率,降低生产成本。

探讨技术发展趋势和应用案例,有助于钢铁行业更好地了解未来发展方向,促进技术创新和发展。

研究钢铁工业余热回收技术的现状具有重要的经济、环保和社会效益,对于推动钢铁行业的可持续发展具有深远意义。

2. 正文2.1 钢铁工业余热回收技术概述钢铁工业是一个能源消耗大、排放量大的行业,其中大量的余热能够被回收利用,以提高能源利用效率和减少环境污染。

钢铁工业余热回收技术是指利用钢铁生产过程中产生的废热,经过热能转换设备进行回收和利用。

该技术能够有效地提高钢铁生产过程中的能源利用效率,减少能源消耗和污染物排放,从而实现资源的节约和环境保护。

钢铁生产过程余热资源回收与利用技术-图文

钢铁生产过程余热资源回收与利用技术-图文

随着钢铁工业生产流程的不断优化和工序能耗的逐步降低 ,回收利用各生产工序产生的余热余能资源是钢铁企业节能 减排的方向、途径及潜力所在。
企业能耗
工序能耗 =
∑(能源 j 实物耗量)×(能源 j 折标系数)—(能源回收利用量)
j
统计期内工序的实物产量
降低工序能耗必须从两方面入手:
(1)降低各工序生产单位产品所直接消耗的燃料量和 各种动力;
0.94 0.28
产 焦炭显热
品 显
铁水显热
热 钢坯显热
0.59 0.06 1.22 1.10 0.60 0.24
小计 2.41 1.49 0.94 0.28
渣 高炉渣显热 0.59 0.01
显 钢渣显热 0.15 0
热 小计
0.74 0.01
0.94 0.28 0.59 0.06 1.22 1.10 0.60 0.24 3.35 1.68 0.59 0.01 0.15 0 0.74 0.01
技术概括
我国干熄焦装置从2005年的36套增加到2010年的112套 ,在建的干熄焦装置还有近50套。干熄焦产能相应地从 3800万吨/年增加到10895万吨,约占我国炼焦产能的24% 。重点钢铁企业的干熄焦普及率从2005年的26%提高到 2010年的85%,我国干熄焦装置和熄焦能力均居世界第一 。
(2)CDQ
(2)干熄焦(CDQ)技术
工艺流程
工艺流程:首先,将炼焦炉推出的大约为1050℃的赤热 焦炭置于熄焦室中,在熄焦室中被逆向流动的冷惰性气体( 主要成分为氮气,温度170~190℃)熄灭,同时惰性气体被 加热到700~800℃,然后经除尘后进入余热锅炉,最后将产 生的余热蒸汽再送往汽轮机发电。 优点:采用干熄焦装置可回收红焦显热,节约工业水消 耗,降低焦化工序能耗;减少环境污染,改善环境质量; 同时,还可改善焦炭质量,降低高炉焦比,提高产量。

炼钢余热深度余热回收技术

炼钢余热深度余热回收技术

炼钢余热深度回收技术的研究与应用
引言:
随着工业化进程的加速,能源消耗问题日益凸显。

尤其是在炼钢行业,大量的余热资源未得到充分利用,不仅造成了能源浪费,也对环境产生了负面影响。

因此,如何有效回收并利用炼钢过程中的余热资源成为了当前亟待解决的问题。

一、炼钢余热的产生及特性
炼钢过程中产生的余热主要包括炉渣余热、废气余热和冷却水余热等。

这些余热具有温度高、数量大、持续性强等特点,具备很高的回收价值。

二、炼钢余热深度回收技术
1. 炉渣余热回收技术:主要采用换热器进行余热回收,通过将出炉的高温炉渣与换热介质(如水或蒸汽)进行热交换,将热量传递给换热介质,再进一步转化为电能或热能。

2. 废气余热回收技术:主要采用热管换热器或陶瓷换热器进行余热回收,将废气中的热量传递给换热介质,再进一步转化为电能或热能。

3. 冷却水余热回收技术:主要采用热泵技术进行余热回收,通过将冷却水中的热量提取出来,再进一步转化为电能或热能。

三、炼钢余热深度回收技术的应用
目前,上述余热回收技术已在许多炼钢厂得到了广泛应用,并取得了显著的经济效益和社会效益。

例如,某炼钢厂通过应用余热回收技术,每年可节省标准煤约万吨,减排二氧化碳近万吨,同时还能提高生产效率,降低生产成本。

四、结论
综上所述,炼钢余热深度回收技术是一种有效的节能降耗措施,不仅可以实现能源的高效利用,还可以减少环境污染,具有广阔的推广应用前景。

未来,我们应继续加大技术研发力度,推动炼钢余热深度回收技术的进一步发展和完善。

钢铁行业余热回收 相关的政策

钢铁行业余热回收 相关的政策

钢铁行业余热回收相关的政策一、背景钢铁行业作为国民经济重要的基础产业,其产能和产量均居全球第一位。

然而,钢铁生产过程中会产生大量的余热,不仅资源浪费严重,还会对环境造成污染。

因此,钢铁行业余热回收已成为当前能源节约和环境保护的紧迫任务。

二、意义1. 能源节约:钢铁行业的余热回收可有效利用高温烟气中的余热,提高能源利用效率,保护有限的能源资源。

2. 减少排放:余热回收可以减少炼钢企业排放的废热和废气,降低环境污染,改善空气质量。

3. 降低成本:通过合理利用余热,可以减少对外购能量的依赖,降低生产成本,提高企业竞争力。

三、政策措施1. 奖励制度:政府可以出台奖励措施,对使用余热回收技术并取得一定效果的钢铁企业给予一定的财政奖励。

2. 政策引导:政府可以加大对余热回收技术的扶持力度,通过贷款贴息、税收减免等方式鼓励企业投资并采用余热回收设备。

3. 技术支持:政府可以加大对余热回收技术的研发投入,鼓励企业开展科技创新,提高余热回收技术的先进性和可靠性。

4. 限制排放:政府可以制定环保政策,限制钢铁企业的废热和废气排放量,强制企业加强余热回收设备的安装和使用。

5. 行业标准:政府可以牵头组织制定行业标准,要求钢铁企业在余热回收方面达到一定的技术和效果标准。

四、预期效果1. 能源节约:通过余热回收,预计可以减少钢铁行业的能源消耗,提高能源利用效率,减少资源浪费。

2. 环境改善:余热回收可以大幅度减少钢铁行业的废热和废气排放,降低环境污染,改善周边环境质量。

3. 产业升级:通过余热回收技术的推广应用,将促进我国钢铁行业的技术升级和发展,提高产业的可持续竞争力。

五、总结钢铁行业余热回收是国家能源节约和环境保护的紧迫任务,只有整合政府和企业的力量,出台相关政策措施,推动钢铁行业余热回收技术的应用,才能实现能源效益和环境效益的双赢。

同时,行业主管部门应加大监督检查力度,确保政策的有效实施,为钢铁行业的可持续发展提供有力的支持。

钢厂余热回收项目方案

钢厂余热回收项目方案

钢厂余热回收项目方案一、高炉冲渣水余热的利用钢铁产业是耗能大户,在消耗能源的同时会产生大量的余热余能。

目前,钢铁产业余热余能的回收利用率相当低,其中,高温余热比较容易回收,在节能降耗的技术改造中已大部分得到回收;但低温余热的回收却几乎为零,如高炉冲渣水的余热,大多被浪费掉。

应该指出,低温余热约占总余热的35%,因此,钢铁产业的低温余热存在着巨大的回收潜力。

如何实现高炉冲渣水的余热利用,是一个具有重大意义的节能课题。

钢铁厂在高炉炼铁工艺中,产生的炉渣温度大约为1000℃。

目前,大多数炼铁企业的处理方法是:将此炉渣在冲渣箱内由冲渣泵提供的高速水流急冷冲成水渣并粒化,以供生产水泥之用。

这一过程中能够产生大量温度在80~95℃的热水。

通常,为了保证冲渣水的循环利用效果,需要将这部分冲渣水在沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣。

这样就使得很大一部分热量在空冷塔中流失,既造成了能源的浪费,又对环境造成了热污染。

高炉冲渣水低温余热的特点是:热源温度较低,但其流量却相当大。

回收高炉冲渣水的余热,既能节约能源,又能保护环境,具有重要的意义。

目前,提出对冲渣水余热的回收方式有:利用冲渣水采暖或作浴池用水;冲渣水余热发电。

冲渣水余热发电无疑是一种最有价值的研发方向,但其技术含量相当高,目前还处于研究阶段关于高炉冲渣水余热回收发电系统的一般思路是:该系统主要由循环工质蒸汽发生器、动力机、工质循环增压泵和发电机组成。

高炉冲渣水进入余热蒸汽发生器,放出热量,循环工质进入余热蒸汽发生器中吸收热量汽化为工质蒸汽。

工质蒸汽进入动力机中,推动动力机转动,并带动发电机产生电能。

其中动力机本身具有减温减压的功能。

液态工质在增压泵的作用下进入余热蒸汽发生器中再次吸收热量,循环往复。

要实现这一系统的正常运行,关键是选择合适的循环工质。

针对钢铁厂高炉冲渣水温度低,流量大的特点,为了能够高效回收低温余热,需要采用低沸点的循环工质。

钢铁生成流程余热回收技术介绍

钢铁生成流程余热回收技术介绍

钢铁生成流程余热回收技术介绍下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!钢铁生成流程余热回收技术。

余热回收技术是指将钢铁生产过程中产生的余热回收利用,以提高能源效率的方式。

中国钢铁行业余热余压回收利用途径分析1

中国钢铁行业余热余压回收利用途径分析1

中国钢铁行业余热余压回收利用途径分析北极星节能环保网 2014/5/30 11:51:22 我要投稿分析如下:焦化工序。

焦化工序现阶段已回收利用的余热余压资源包括焦炭显热、焦炉煤气潜热、烟道气显热和初冷水显热。

焦炭显热主要是采用干熄焦技术回收利用产生蒸汽用于发电,目前干熄焦发电技术在国内钢铁联合企业的应用普及率已很高。

焦炉煤气热值高,是一种优质燃料,目前已得到充分利用,放散率很低,主要利用途径是供各生产用户使用,富余资源用于驱动锅炉发电。

同时,由于焦炉煤气富含氢气和甲烷,提升利用品位,将其作为化工原料生产甲醇、合成氨等化工产品和天然气资源的利用方式近年来得到了更多的关注。

烟道气显热的温度一般是250℃~300℃,目前主要采用余热回收设备回收蒸汽供生产、生活用户或作为煤调湿热源。

焦化初冷水显热温度一般是60℃~70℃,主要采用换热器回收热量用于北方地区冬季采暖。

烧结工序。

烧结工序现阶段已回收利用的余热余压资源包括烧结矿显热和烧结烟气显热。

烧结矿显热的回收主要在环冷机部分,按烟气温度分高、中、低三部分,目前高温段烟气余热回收利用较为充分,主要采用余热锅炉产生蒸汽用于发电或者供生产用户;中、低温烟气余热一般采用直接利用方式,用于预热混料或热风烧结等。

对于烧结烟气显热的回收利用近几年开始起步,在部分企业已有应用,主要集中在烧结大烟道高温区(300℃~400℃)的回收,采用余热锅炉或热管换热器回收产生蒸汽。

球团工序。

球团工序现阶段已回收利用的余热余压资源包括球团矿显热、烟气显热和冷却水显热。

球团矿显热主要通过获取热风回用于生产,作为烘干、预热等热源。

烟气显热温度较低(约120℃),少数企业采用热管换热器回收热量用于职工洗浴等生活用户。

竖炉大水梁冷却水显热通常采用汽化冷却方式替代水冷方式,避免循环冷却水消耗,并回收产生蒸汽。

炼铁工序。

炼铁工序是主要耗能大户,同时也是余热余压资源较为丰富的工序,现阶段已回收利用的余热余压资源包括高炉煤气潜热和余压、热风炉烟气显热和高炉渣显热。

钢铁工业余热能量及回收

钢铁工业余热能量及回收
15
如何有效回收利用烧结矿余热,降低烧结工艺能耗, 是国内钢铁行业中普遍存在并关注的一个课题。目前,国 内钢铁企业中不少企业采用烧结矿余热回收蒸汽,如武 钢、鞍钢等,但是对于蒸汽的利用不充分,造成能源浪 费。国外先进企业生产每吨烧结矿可回收余热蒸汽80~ 100 kg/t。 另外近两年,济钢和马钢分别采用国产和日本技术把 烧结矿余热回收的蒸汽用于发电,取得了良好的利用效 果,但其技术完善和蒸汽能源的合理利用方法有待进一步
焦化
烧结
4.89 ~0.35 -
高炉
转炉炼 钢 轧钢
0.41 ~0.10 -
分析表明:
—— 无论选取何种基准温度,各工序二次能源所占钢铁制造 流程二次能源总量的比例相差不大,高炉工序二次能源产生量 最大,约占50%以上。 —— 各工序二次能源的理论产生量约为408.73 kgce/t-s(修正的 基准温度下),如果充分利用现有技术,二次能源回收利用率可 以达到约85.6%。 —— 二次能源中,副产煤气占比例最大,约74.6%,其中 COG 22.29%,BFG 43.66%,LDG 9.02%。若不含煤气和顶 压的余热资源约为104kgce/t-s。 —— 目前高炉渣、钢渣显热尚无有效回收利用技术;高炉煤 气显热、烧结和焦化烟气显热由于工艺操作原因,尚未很好地 回收利用。
12
2.2 煤调湿技术(Coal Moisture Control,CMC)
我国的煤调湿建设情况 现在我国宝钢、太钢和攀钢已建成以蒸汽为热源的 CMC装置,采用国产的回转式干燥机。 济钢于2007年10月投产了自已开发的以焦炉烟道废气 为热源、具有风选功能的流化床煤调湿装置。 首钢、昆钢、鞍钢、沙钢和安钢正在进行CMC的前期 工作。 CMC节能效果: 采用CMC技术,煤料含水量每降低1%,炼 焦耗热量就降低62.0MJ/t(干煤)。当煤料水分从11%下 降至6%时,炼焦耗热量节省310MJ/t(干煤);

钢铁企业余热回收利用现状与技术

钢铁企业余热回收利用现状与技术
钢铁企业余热回收利用现状与技术
钢铁工业的余热
钢铁工业余热回收方法与现状
钢铁工业的余热回收新技术
问 题:
(1)中国钢铁工业的节能水平如何简述?
(2)炼一吨钢需多少能源? 钢铁工业占全国能耗? (3)节能就是节油\节煤\余热利用?
(4)钢铁厂耗能最大的工序在哪?
(5)设备大型化可以节能吗? 《钢铁产业发展政策》 ,BF>1000m3,
小结
钢铁工业的余热利用新方法之一是:发电.是 中国钢铁工业深层次节能和提高中国钢铁工 业综合水平的表现,是一钢铁大国向钢铁强 国迈进的一个步骤. 可适用范围: 1)大宗集中的余热 2)零散间歇的余热 3)难以利用的中低温余热
要加强适合中国条件的新节能技术的开发,
深层次节能要强—强联合(大量新技术有待 开发).
(2)对高中低温的零散和间歇余热的回收 例 1: 宝钢某厂现有近200座各种加热炉,已采取了 各种技术措施,回收了大量排放的余热,但还有大量中 低温余热还未被利用,如何进一步提高能源利用率,将 这些零散和间歇的余热利用起来? 发电是一条新路. 1)不需要很高温度(水开产生一定压力的蒸汽即可). 2)可以解决难利用的零散和间歇余热. 3)四季可用. 4)对原工艺和操作指标提高了. 例 2:间歇排放的转炉渣的高质量高温余热的利用: 发电也是一条很好的方法. 正在研究既多功能地利用 高温余热,又利用渣本身的“资源—能源”同时利用的 工业生态技术.从分子和晶体结构水平研究经过高温处 理后的物态及余热多种利用途径.
中国已有很多很好的余热利用和回收的技术和 方法,但面对新形势提出的深层次的节能要求,还有许 多工作要做.
余热回收存在的问题: (1)水平不一 (2) 重视不够 (3) 技术开发有待继续提高(难回收的部分) (4) 投入不够
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烧结线余热烧结生产线有两部分余热,一是冷却机产生的热风,二是烧结机尾的高温烟气。

用余热锅炉将这两部分余热来产生蒸汽,再通过汽轮机发电。

据经验数据,每10m2的烧结面积可产生1.5t/h的蒸汽,可发电300kW,折合标煤120kg/h。

转炉余热转炉汽化冷却烟道间歇产生的蒸汽,通过蓄能器变为连续的饱和蒸汽,采用我公司的专利——机内除湿再热的多级冲动式汽轮机发电。

每炼1t钢,可产生80kg 饱和蒸汽,每吨饱和蒸汽大约可发电150kWh,折合标煤60kg。

转炉煤气经过汽化冷却烟道冷却后温度仍高达800~900℃,采用我公司的干法煤气显热回收技术,通过下降管烟道、急冷换热器回收显热生产蒸汽,经蓄能器调节后发电。

电炉余热电炉冶炼过程中产生200~1000℃的高温含尘废气,采用余热锅炉将其回收,电炉烟气属于周期波动热源,因此余热锅炉产生的蒸汽需要经过蓄能器调节后方可进入汽轮机发电。

加热炉余热加热炉有两处余热可以利用:一处是炉内支撑梁的汽化冷却系统,另一处是烟道高温烟气。

根据炉型不同,加热炉的烟气量在7000~300000Nm3/h,若用来发电,以烟气量10万Nm3,烟气温度400℃计算,发电量约2000kWh,折合标煤0.8t;汽化冷却系统可生产0.4~1.0Mpa的饱和蒸汽,每吨蒸汽(0.5Mpa)可发电120kWh,折合标煤48kg。

高炉冲渣水用高速水流冲击炉渣使之充分急冷、粒化的过程中,会产生大量的冲渣热水。

每吨铁排出约0.3t渣,每吨渣可产生80~95℃,5~10t的冲渣水,将这部分热水减压产生低压蒸汽,再进入饱和蒸汽凝汽式汽轮机发电。

每吨90℃热水可发电1.5kWh,折标煤0.6kg,80℃热水可发电1kWh,折标煤0.4kg。

干法熄焦采用惰性气体来冷却红焦,加热后的气体在余热锅炉中产生蒸汽,蒸汽可发电或并入蒸汽管网。

吨焦可生产3.9Mpa、300℃的蒸汽0.45t~0.6t,可发电85~115kWh,折合标煤35~46kg。

高炉煤气余压利用高炉炉顶煤气的压力能和热能,通过透平膨胀机做功发电,但不影响煤气后续利用。

高炉炉顶压力达0.15~0.25Mpa,平均每吨铁可发电20~50kWh,折标煤8~20kg,单位投资费用约4500元/kW,根据压力及除尘方式不同,投资回收期在2~6年。

煤气——蒸汽联合循环发电利用高炉煤气和焦炉煤气作为能源发电,煤气先在燃气透平中燃烧发电,燃气透平排出的高温烟气再在余热锅炉生产蒸汽,通过蒸汽轮机发电,总发电效率可达40~46%。

1万m3的煤气(热值3000kJ/m3),约发电4000kWh左右,折合标煤1.6t,单位投资费用4500~6500元/kW左右,投资回收期为3~5年。

注:电力折标系数为0.404kg 标煤/kWh。

(经验计算总量煤气90000m3/h÷3.6=25000kw/h发电机功率)(1kw/h≈热值3.6~4 MJ/m3) (经验计算发电总功率25MW×3.6~4.4≈90~110t高温高压煤气锅炉)(经验换算发一度电(1KWh)大概用热值3.6-4 MJ/m3高炉煤气)。

钢铁行业余热回收钢铁工业是我国重点的耗能大户,总能耗约占全国总能耗量的15%左右,钢铁生产工艺流程长,工序多,且主要以高温冶炼、加工为主,生产过程中产生大量余热能源,主要来自烧结机烟气显热、红焦显热、转炉烟气及加热炉炉底的余热回收装置等,各种余热资源约占全部生产能耗的68%,说明在目前钢铁生产过程中2/3以上的能量是以废气、废渣和产品余热形式消耗。

在余热发电技术的研发应用方面,与日本、德国等发达国家钢铁工业相比,我国钢铁行业的余热发电技术起步较晚。

目前,钢铁工业余热发电主要有以下三种方式,一是利用焦化、烧结工序烟气余热换热产生过热蒸汽发电;二是利用炼钢、轧钢工序烟气余热换热产生饱和蒸汽发电;第三种是利用高炉的冲渣热水发电。

A. 过热蒸汽发电a.干熄焦余热发电炼焦生产中,高温红焦冷却有两种熄焦工艺:一种是传统的采用水熄灭炽热红焦的工艺,简称湿熄焦,另一种是采用循环惰性气体与红焦进行热交换冷却焦炭,简称干熄焦。

干熄焦余热发电技术是指利用与红焦热交换产生的高温烟气驱动汽轮发电机组进行发电,其主要工艺流程为:焦炉生产出来的约1000摄氏度赤热焦炭运送入干熄炉,在冷却室内与循环风机鼓入的冷惰性气体进行热交换。

惰性气体吸收红焦的显热,温度上升至800摄氏度左右,经余热锅炉生产中高压过热蒸汽,驱动汽轮发电机组发电,同时汽轮机还可产生低压蒸汽用于供热。

随着干熄焦技术所产生的社会和节能环保效益得到普遍认可,干熄焦余热发电技术也得到了国内钢铁企业越来越广泛的应用。

该项发电技术已十分成熟,目前的发展趋势集中在进一步提高余热的回收利用效率上,正逐步由传统的小型中压参数系统向系列化、大型化、高参数发展。

典型用户及投资效益:马钢煤焦化公司,投资约2亿元,安装了中温中压强制循环干熄焦余热锅炉及汽轮发电机组,干熄焦能力为125t/h,日发电量30万kwh,年回收热能折标煤52020t,投资回收期4年。

沙钢集团,投资约2亿元,安装了中温高压强制循环干熄焦余热锅炉及汽轮发电机组,年发电1.5亿 kWh,取得经济效益8000万元,投资回收期2.5年。

技术的利用现状和市场潜力:目前中国的干熄焦技术普及率较低,且大部分为中低压干熄焦,高压干熄焦的推广潜力很大。

“十一五”期间该技术在行业能推广到的比例为20%,总投资约为60亿元,年可发电量45亿 kWh。

b.烧结余热发电具有较好回报价值的烧结余热是指从烧结机尾部风箱排出的废气及热烧结矿在冷却机前段受空气冷却后产生的热废气,温度一般可达到300-400摄氏度,这两部分热废气所含热量占整个烧结矿热能消耗的23%-28%左右,具有温度高、数量大、运行稳定的特点,是烧结工序节能和回收利用的重点。

国内钢铁企业大多将烧结余热用于助燃空气、预热混合料或利用余热回收装置产生蒸汽,回收利用效率不高。

特别是现阶段伴随着烧结机的大型化,传统的余热利用途径已无法充分利用余热资源,达到效益的最大化。

因此,从实现能源梯级利用的高效性和经济性角度分析,利用余热发电是现今最为有效的余热利用途径。

烧结余热发电是指将烧结机生产过程中产生的高温废烟气,经余热锅炉产生中低压过热蒸汽,驱动汽轮发电机组发电。

技术原理:在烧结工序总能耗中,有近50%的热能以烧结烟气和冷却机废气的显热形式排入大气。

由于烧结冷却机废气的温度不高,仅 150~450℃,加上以前余热回收技术的局限,余热回收项目往往被忽略。

烧结冷却机余热的回收,是通过回收烧结机尾落矿风箱及烧结冷却机密闭段的烟气加热余热锅炉来回收低品味余热能源,结合低温余热发电技术,用余热锅炉的过热蒸气来推动低参数的汽轮发电机组做功发电的成套技术。

具体流程是:给水经给水泵进入余热锅炉,经废气加热后,一部分变为过热蒸汽,进入汽轮机作功发电。

另一部分经余热锅炉低温段加热后,产生过热或饱和蒸汽进入汽轮机相应低压进汽口作功发电。

冷凝水经低压省煤器后由中压锅炉给水泵供给低压汽包,低压汽包具有自除氧功能,实现一个完整的热力循环。

烧结冷却机烟气具有如下特点:1)烧结余热热源品质整体较低,低温部分占比例大;2)烧结过程中,随着烧结矿在烧结机上的烧成情况不同,其烟气温度也不同;3)在烧结生产中由于设备的运行的不确定性,短时间停机不可避免,造成烧结烟气不连续性。

因此,要求发电系统:1)汽轮机必须带有前压调节装置,当机组在正常运行时,以汽轮机的进口压力作为主要控制参数,来调节机组输出功率以保证压力基本稳定,这种方式可适应废气余热参数的变化,使整个系统有较高的适应性和可靠性;2)用于余热利用的汽轮发电机的特点是以汽定电,所以要求带负荷的能力可在较大范围内波动,尤其是发电机的选型要考虑能超过设计发电量的 15%左右。

经济社会效益:从能源利用角度原来生产线 24%左右的热能随废气排放到大气中,不仅造成能源的浪费,同时产生温室效应。

建设余热发电项目后,不仅节约能源而且减少排放。

以360m2烧结机余热电站为例,总投资为1.7亿元,每年可发电1.4亿kWh,产生净经济效益 7000 万元,投资回收期为 2.5 年。

近几年,随着双压、闪蒸发电和补汽蒸汽式汽轮机在技术上获得突破,烧结余热发电技术已逐渐进入成熟阶段,同时其在节能环保、减少污染排放、经济效益等方面的显著优势使得其发展迅速。

2005年9月,马钢引进日本川崎技术在2台300M2烧结机上建成了国内第一套17.5MW余热发电机组,截至到2009年底,国内钢铁企业共有19台烧结机配套建设了余热发电机组,配备余热发电机组10套,总装机容量136.7MW。

此外,安钢等一些企业正在施工建设烧结余热发电站。

烧结余热发电技术推广比例不及4%。

烧结余热发电技术在国内应用已经成熟,全套设备可以国产化,已具备全面推广的条件。

B.饱和蒸汽发电除上述余热资源外,钢铁企业生产过程中炼钢、轧钢等工序尚产生大量低压饱和蒸汽,按产生制度分为间断蒸汽及相对连续蒸汽,其相比焦化、烧结工序余热资源,利用价值相对较低。

间断蒸汽,这部分主要是指炼钢工序产生的余热蒸汽。

转炉在吹炼过程中,产生大量1200摄氏度以上高温烟气,为降低烟气温度、回收高温烟气中的余热同时为转炉烟气除尘机煤气回收创造条件。

目前大多数转炉均配套设置了烟道式汽化冷却装置,电炉炼钢烟道也在向汽化冷却的方向发展,但由于炼钢生产的间断性,决定由该装置产生的蒸汽具有饱和不连续性。

钢铁企业饱和蒸汽产生量大,但利用效率低,特别是在南方大部分冬季不采暖地区的钢铁厂。

采用饱和蒸汽发电,既可以充分利用饱和蒸汽,避免蒸汽放散造成的浪费,同时能提供电能,产生新的效益。

因此,可以预计该项发电技术未来的发展潜力将很大。

C.热水发电高炉炼铁过程中,产生的炉渣温度大约为1000摄氏度,炉渣在冲渣箱内由冲渣泵提供的高速水流急冷冲成水渣并粒化,这一过程中能够产生大量温度在80-95摄氏度的低温热水,热水量达到几千吨/小时,长期排放既浪费了能源,又造成环境污染和水资源流失。

由于高炉冲渣水具有温度低、流量大的特点,应用较为困难,现阶段除北方少数钢铁企业用于冬季采暖外,大部分企业均未利用。

针对这种情况,目前认为比较可行的应用措施是利用有机工质形成双循环,吸收排放的废热水的热能,将有机工质加热成汽液两相,直接进入螺杆膨胀动力机或汽轮机,驱动发电机进行发电。

从技术角度分析,高炉冲渣水发电已完全可行,国内也有多家钢铁企业对此项目进行了前期论证,目前尚未有实际应用实例,但随着企业对节能减排工作的日益重视以及该项技术相关细节的进一步完善,它的发展应用将只是一个时间的问题。

相关文档
最新文档