仰角与俯角课件

合集下载

九下数学课件仰角、俯角和方向角有关的问题(课件)

九下数学课件仰角、俯角和方向角有关的问题(课件)
坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为( D)
(参考数据:sin 43°≈0.68,cos 43°≈0.73,tan 43°≈0.93) A.23米 B.24米 C.24.5米 D.25米
题型一 仰角、俯角问题
解:过点E作EF⊥CD于点F,过点E作EM⊥AC于点M,如图. ∵斜坡DE的坡度(或坡比)i=1:2.4,∴设EF=x米,则DF=2.4x米. 在Rt△DEF中,DE=78米,∵EF2+DF2=DE2,∴x2+(2.4x)2=782, 解得x=30(负值舍去),∴EF=30米,DF=72米.∴CF=DF+DC=72+78=150(米). ∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形.∴EM=CF=150米, CM=EF=30米.在Rt△AEM中,∵∠AEM=43°, ∴AM=EM·tan 43°≈150×0.93=139.5(米), ∴AC=AM+CM≈139.5+30=169.5(米). ∴AB=AC-BC≈169.5-144.5=25(米). 故选D.
为50°,则建筑物AB的高度约为( D )
(参考数据:sin 50°≈0.77;cos 50°≈0.64;tan 50°≈1.19) A.69.2米 B.73.1米 C.80.0米 D.85.7米
题型一 仰角、俯角问题
【变式2】如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操
作:
①在点C处放置测角仪,测得旗杆顶部的仰角∠ACE=α; ②量得测角仪的高度CD=a;
题型一 仰角、俯角问题
【变式4】如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的
俯角为60°,已知楼高AB为30米,则荷塘的宽CD为__________米(结果保留根

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习

《仰角、俯角问题》PPT课件 华师版

《仰角、俯角问题》PPT课件 华师版

45°,求旗杆的高度(精确到0.1m).
解:在等腰三角形BCD中∠ACD=90°
BC=DC=40m 在Rt△ACD中
tan ADC AC DC
AC tan ADC DC
tan 54 40 1.38 40 55.2
54°45°
D 40m
C
所以AB=AC-BC=55.2-40=15.2 答:旗杆的高度为15.2m.
当堂练习
1.如图1,在高出海平面100米的悬崖顶A处,观测海平面上 一艘小船B,并测得它的俯角为45°,则船与观测者之间的 水平距离BC=____1_0_0___米. 2.如图2,两建筑物AB和CD的水平距离为30米,从A点测得 D点的俯角为30°,测得C点的俯角为60°,则建筑物CD 的高为_2_0__3_米.
在图中,α=30°,β=60° Rt△ABD中,α=30°,AD=120,
αD Aβ
所以利用解直角三角形的知识求出
俯角
BD;类似地可以求出CD,进而求出BC.
C
解:如图,a = 30°,β= 60°, AD=120.
tan BD ,tan CD
AD
AD
BD AD tan 120 tan30
120 3 40 3 3
CD AD tan 120 tan 60
B
αD Aβ
120 3 120 3
BC BD CD 40 3 120 3
160 3 277 .1
C
答:这栋楼高约为277.1m
练一练
A
建筑物BC上有一旗杆AB,由距BC40m的D处观
B
察旗杆顶部A的仰角54°,观察底部B的仰角为
B 图1 C
B 图2 C
3.为测量松树AB的高度,一个人站在距松树15米的E处,测 得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确 到0.1米).

解直角三角形(仰角和俯角)讲义

解直角三角形(仰角和俯角)讲义

解直角三角形(仰角和俯角)一、知识点讲解1、仰角和俯角的定义:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。

二、典例分析利用解直角三角形解决仰角、俯角问题例1 一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)变式练习:1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为A、50B、51C、50+1D、101第1题第2题第3题2、如图,从坡顶C处测得地面A、B两点的俯角分别为30°、45°,如果此时C处的高度CD为150米,且点A、D、B在同一直线上,则AB两点间距离是米。

3、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)4、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度m(结果保留根号)反馈练习 基础夯实1、如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看地平面 A 、 1200m B 、 1200m C .、 1200m D 、 2400m第1题 第2题 第3题 第4题2、如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,、 米B D 的仰角为α,从点A 测得点D 的仰角为β,已知甲、乙两建筑物之间的距离为a ,则甲建筑物的高AB 为 。

24.4仰角、俯角

24.4仰角、俯角
C
D A
E B
例2:在山脚C处测得山顶A的仰角为45°。 问题如下: 1)沿着水平地面向前300米到达D点,在D点 测得山顶A的仰角为600 , 求山高AB。
A
45°
60°
C
D
B
例3:如图,为了发挥ቤተ መጻሕፍቲ ባይዱ源优势,现将地处A、B两地的两 所技校合并为职业技术教育中心,为了方便A、B两校师 生的交往,学校准备在相距5千米的A、B两地之间修筑一 条笔直公路(即图中的线段AB),经测量,在A地的北 偏东600方向、B地的北偏西450的方向C处有一个半径为 1.8千米的湖泊,问计划修筑的这条公路会不会穿过湖泊.
在进行测量时,从下向上看,视线与水平线 的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
视线 铅 直 线
仰角 水平线 俯角 视线
例1:如图,为了测量旗杆的高度BC,在离 旗杆底部10米的A处,用高1.50米的测角仪 DA测得旗杆顶端C的仰角a=52°,求旗杆 BC的高.(精确到0.1米)
补充作业
如图,小明同学在东西方向的环海路A处,测得海中灯塔P 在北偏东60°方向上在A处向东500米的B处,测得海中灯 塔P在北偏东30°方向上,则灯塔P到环海路的距离PC= 米(结果保留根号)
P117 3,4
寄语


严格性之于数学家,犹如道德之于人. 条理清晰,因果相应,言必有据.是初学 证明者谨记和遵循的原则.
一起小结
找出两个图形中α 、β 、AC、DE之间的关系.
1、解直角三角形的关键是找到与已知和未知相关联
的直角三角形,当图形中没有直角三角形时,要通过 作辅助线构筑直角三角形(作某边上的高是常用的辅 助线);当问题以一个实际问题的形式给出时,要善 于读懂题意,把实际问题化归为直角三角形中的边角 关系。 2、一些解直角三角形的问题往往与其他知识联系, 所以在复习时要形成知识结构,要把解直角三角形作 为一种工具,能在解决各种数学问题时合理运用。

第十二讲仰角、俯角

第十二讲仰角、俯角

第十二讲、仰角、俯角第一部分、教学目标:1、能够用三角函数有关知识解决问题,学会解决仰角俯角问题。

2、掌握仰角俯角的关系,能利用解直角三角形的知识,解决相关的实际问题。

第二部分、教学重点和难点:1、理解仰角与俯角的概念,并能灵活运用。

2、利用仰角与俯角等条件,解决有关的实际问题。

第三部分、教学过程:例题讲解:例1、直角梯形ABCD如图放置,AB、CD为水平线,BC⊥AB,如果∠BCA=67°,从低处A处看高处C处,那么点C在点A的()A.俯角67°方向B.俯角23°方向C.仰角67°方向D.仰角23°方向【分析】求出∠BAC=23°,即可得出答案.【解答】解:∵BC⊥AB,∠BCA=67°,∴∠BAC=90°﹣∠BCA=23°,从低处A处看高处C处,那么点C在点A的仰角23°方向;故选:D.练1.1、跳伞运动员小李在200米的空中测得地面上的着落点A的俯角为60°,那么此时小李离着落点A的距离是()A.200米B.400米C.米D.米【分析】已知直角三角形的一个锐角和直角边求斜边,运用三角函数定义解答.【解答】解:根据题意,此时小李离着落点A的距离是=,故选:D.练1.2、如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC 的长为()A.B.C.D.1800米【分析】此题可利用俯角的余弦函数求得缆车线路AC的长,AC=.【解答】解:由于A处测得C处的俯角为30°,两山峰的底部BD相距900米,则AC==600(米).故选:B.例2、如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD 为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+【分析】根据直角三角形锐角三角函数即可求解.【解答】解:∵在Rt△ABC中,BC=AB•tanα=a tanα,在Rt△ABD中,BD=AB•tanβ=a tanβ,∴CD=BC+BD=a tanα+a tanβ.故选:C.练2.1、某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150米C.900米D.(300+300)米【分析】由题意可得在Rt△ACD中,∠A=30°,CD=300米,在Rt△BCD中,∠B=45°,然后利用三角函数,求得AD与BD的长,继而求得答案.【解答】解:∵在Rt△ACD中,∠A=30°,CD=300米,∴AD===300(米),∵在Rt△BCD中,∠B=45°,CD=300米,∴BD=CD=300米,∴AB=AD+BD=(300+300)米.故选:D.练2.2、在湖边高出水面40m的山顶A处看见一架无人机停留在湖面上空某处,观察到无人机底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则无人机底部P距离湖面的高度是()A.(40+40)m B.(40+80)m C.(50+100)m D.(50+50)m 【分析】设AE=x,则PE=AE=x,根据山顶A处高出水面40m,得出OE=40,OP′=x+40,根据∠P′AE=60°,得出P′E=x,从而列出方程,求出x的值即可.【解答】解:设AE=xm,在Rt△AEP中∠P AE=45°,则∠P=45°,∴PE=AE=x,∵山顶A处高出水面40m,∴OE=40m,∴OP′=OP=PE+OE=x+40,∵∠P′AE=60°,∴P′E=tan60°•AE=x,∴OP′=P′E﹣OE=x﹣40,∴x+40=x﹣40,解得:x=40(+1)(m),∴PO=PE+OE=40(+1)+40=40+80(m),即无人机离开湖面的高度是(40+80)m.故选:B.例3、如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()A.千米B.千米C.千米D.千米【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可表示出此时飞机离地面的高度.【解答】解:作PC⊥AB交AB于点C,如右图所示,AC=,BC=,∵m=AC﹣BC,∴m=﹣,∴PC==,故选:A.练3.1、小明同学在数学实践课中测量路灯的高度.如图,已知他的目高AB为1.5米,他先站在A处看路灯顶端O的仰角为30°,向前走3米后站在C处,此时看灯顶端O的仰角为60°(≈1.732),则灯顶端O到地面的距离约为()A.3.2米B.4.1米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F.设DF=x,∵tan60°=,∴OF=x,∴BF=3+x,∵tan30°=,∴OF=(3+x)•,∴x=(3+x),∴x=1.5,∴OF=1.5×≈2.60,∴OE≈2.60+1.5≈4.1,故选:B.练3.2、当地时间2019年4月15日下午,法国巴黎圣母院发生火灾,大火烧毁了巴黎圣母院后塔的塔顶.烧毁前,为测量此塔顶B的高度,在地面选取了与塔底D共线的两点A、C,A、C在D的同侧,在A处测量塔顶B的仰角为27°,在C处测量塔顶B的仰角为45°,A到C的距离是89.5米.设BD的长为x米,则下列关系式正确的是()A.tan27°=B.cos27°=C.sin27°=D.tan27°=【分析】根据三角函数得出CD=BD,进而利用根据CD=AD﹣AC可得答案.【解答】解:∵在A处测量塔顶B的仰角为27°,在C处测量塔顶B的仰角为45°,A到C的距离是89.5米.设BD的长为x米,可得:tan27°=,故选:A.例4、如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A、B两点的俯角分别为60°和45°.若飞机离地面的高度CO为900m,且点O,A,B在同一水平直线上,则这条江的宽度AB为.(结果保留根号)【分析】在Rt△ACO和Rt△OCB中,利用锐角三角函数,用CO表示出AO、BO的长,然后计算出AB的长.【解答】解:由于CD∥OB,∴∠CAO=∠ACD=60°,∠B=∠BCD=45°在Rt△ACO中,∵∠CAO=30°∴AO=CO=300米,在Rt△OCB,∵tan∠B=∴OB=(米).∴AB=OB﹣OA=900﹣300(米)故答案为:900﹣300(米)练4.1、如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN 为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【分析】根据题意需求AB长.由已知易知AB=BM,解直角三角形MNB求出BM即AB,再求速度,与限制速度比较得结论.注意单位.【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.练4.2、如图,无人飞机从A点水平飞行10秒至B点,在地面上C处测得A点、B点的仰角分别为45°,75°,已知无人飞机的飞行速度为80米/秒,则这架无人飞机的飞行高度为.【分析】如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.【解答】解:如图,作BD⊥AC,AH⊥水平线,由题意得:∠BCH=75°,∠ACH=30°,AB∥CH,∴∠BAC=45°,∠ACB=30°,∵AB=80×10=800m,∴BD=AD=400m,CD==400m,∴AC=CD+AD=(400+400)m,则AH=AC•sin45°=(400+400)m.答:这架无人飞机的飞行高度为(400+400)m例5、金牛区某学校开展“数学走进生活”的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为42°,测得楼AB的底部B处的俯角为30°.已知D处距地面高度为12m,则这个小组测得大楼AB的高度是多少?(结果保留整数,参考数据:tan42°=0.90,tan48°=1.11,≈1.73)【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△AED、△CBD,通过解这两个直角三角形求得AE、DC的长度,进而可解即可求出答案.【解答】解:如图,过点D作DE⊥AB于点E.依题意得:∠ADE=42°,∠CBD=30°,CD=12m.可得四边形DCBE是矩形.∴BE=DC,DE=CB.∵在直角△CBD中,tan∠CBD=,∴DE=CB=.∵在直角△ADE中,tan∠ADE=.∴AE=DE•tan42°.∴AE=•tan42°≈=18.68(米).∴AB=AE+BE≈31(米).答:楼AB的高度约为31米.练5.1、如图,小明家的窗口到地面的距离CE=9米,他在C处测得正前方花园中树木顶部A点的仰角为37°,树木底部B点的俯角为45°,求树木AB的高度.(参考数据sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】根据等腰直角三角形的性质求出DC,根据正切的概念计算即可.【解答】解:如图,由题意得,DB=CE=9,∵∠CDB=90°,∠DCB=45°,∴CD=DB=9,在Rt△ADC中,AD=DC×tan∠ACD=9tan37°,∴AB=AD+BD=9+9tan37°≈15.75,答:旗杆AB的高约为15.75米.练5.2、从一栋二层楼AE的楼顶点A处看对面的教学楼CD,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知楼AE高6米,AB⊥CD于B,求楼CD高度(结果保留根号)【分析】在Rt△ABC根据三角函数求出CB,再在Rt△ABD中根据三角函数求出BD,继而相加可求出CD.【解答】解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AE=6米,∴AB=BC=AE=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6,∴DC=CB+BD=6+6(米).答:教学楼的高CD是(6+6)米.例6、为庆祝中华人民共和国成立70周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角为32°,测得“平安中心”AB的顶部A处的仰角为44°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知C、D、B三点在同一水平直线上,且CD=400米,求平安金融中心AB的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,tan44°≈0.99,≈1.41,)【分析】作EF⊥AB于F.在Rt△DCE中,根据正切函数的定义即可求出大厦DE的高度;设EF=DB=x米,BF=DE,∠AEF=60°.在Rt△ABC中,根据正切函数的定义得出AB=BC•tan∠ACB,在Rt△AFE中,根据正切函数的定义得出AF=EF•tan∠AEF,由AB=BF+AF列出方程求出x,从而求解.【解答】解:如图,作EF⊥AB于F.∵在Rt△DCE中,∠CDE=90°,∠ECD=32°,CD=400米,∴DE=CD•tan∠ECD≈400×0.62=248(米).设EF=DB=x米,BF=DE=248米,∠AEF=60°.∵在Rt△ABC中,∠ABC=90°,AB=BC•tan∠ACB≈0.99(400+x)(米),∵在Rt△AFE中,∠AFE=90°,∴AF=EF•tan∠AEF=x(米),∴AB=BF+AF=248+x=0.99(400+x),解得x=200,AB=0.99(400+x)=0.99×(400+200)=594.故平安金融中心AB的高度约为594米.练6.1、在小水池旁有一盏路灯(如图),已知支架AB的长是0.8m,A端到B地面的距离AC是4m,支架AB与灯柱AC的夹角为65°小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.(结果精确到0.1.参考数据:sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】作BF⊥AC于F,作BG⊥CD于G,则CG=BF,BG=CF,在Rt△ABF中,由三角函数得出BF=AB×sin65°≈0.72,AF=AB×cos65°≈0.32,得出BG=CF=AF+AC =0.32+4=4.32,CG=BF=0.72,在Rt△ACE中,由三角函数得出CE=≈3.333,证明△BDG是等腰直角三角形,得出DG=BG=4.32,求出CD的长,即可得出答案.【解答】解;作BF⊥AC于F,作BG⊥CD于G,如图所示:则CG=BF,BG=CF,在Rt△ABF中,∠BAF=65°,AB=0.8,sin∠BAF=,cos∠BAF=,∴BF=AB×sin65°≈0.8×0.9=0.72,AF=AB×cos65°≈0.8×0.4=0.32,∴BG=CF=AF+AC=0.32+4=4.32,CG=BF=0.72,在Rt△ACE中,tan∠CEA=,∴CE=≈≈3.333,∵∠BDG=45°,∠BGD=90°,∴△BDG是等腰直角三角形,∴DG=BG=4.32,∴CD=CG+DG=0.72+4.32=5.04,∴DE=CD﹣CE=5.04﹣3.333≈1.7(m);答:小水池的宽DE约为1.7m.练6.2、如图是某校体育场内一看台的截面图,看台CD与水平线的夹角为30°,最低处C 与地面的距离BC为2.5米,在C,D正前方有垂直于地面的旗杆EF,在C,D两处测得旗杆顶端F的仰角分别为60°和30°,CD长为10米,升旗仪式中,当国歌开始播放时,国旗也在离地面1.5米的P处同时冉冉升起,国歌播放结束时,国旗刚好上升到旗杆顶端F,已知国歌播放时间为46秒,求国旗上升的平均速度.(结果精确到0.01米/秒)【解答】解:由题意得,∠FCD=90°,∠FDC=60°,∴FC=CD•tan∠FDC=10,在Rt△CGF中,FG=FC•sin∠FCG=10×=15,∴PF=FG+GE﹣PE=15+2.5﹣1.5=16,16÷46≈0.35,答:国旗上升的平均速度约为0.35米/秒.第四部分、出门测试时间(10分钟左右)第六部分、作业布置今天是2020年月日星期天气今日所学:仰角俯角今日作业:自我巩固1-10题老师说:1、下次正常上课2、路上注意安全。

北师大版数学九年级下册第2课时 仰角、俯角问题课件

北师大版数学九年级下册第2课时 仰角、俯角问题课件

30º
60º
50 m
解:如图∠DAC=30°,∠DBC=60°,AB=50m,设塔高DC=x m.
Rt△ADC中, tan 30 = DC .
AC
Rt△BDC中,
tan 60
=
DC BC
.
∴AB=AC-BC=
x tan 30
x tan 60
.
30º
60º
50 m
∴x=
50 1-1
25 3 ≈43(m).
楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高 AB是100 m,则乙楼的高CD为___1_0_03_3___(结果保留根号).
tan 30 CD CD 3
AD 100 3
45º
CD 100 3 3
100 m
100 m
3.[内江中考]如图,有两座建筑物DA 与CB,其中 CB的高为120 m, 从DA 的顶点A测得CB顶部B的仰角为30°,测得其底部C的俯角为 45°,这两座建筑物的地面距离DC为多少米?(结果保留根号)
解:在Rt△CBD中,∵BC=5tan40°≈4.195(m), ∴EB=EC+CB=2+4.195=6.195(m). 在Rt△EBD中,
ED BE 2 DB2 6.1952 52 7.96m .
∴钢缆ED的长度约为7.96m.
课堂小结
通过本节课的学习, 你有哪些收获?
数学源于生活 又服务于生活
tan 30
PQ CM MQ CP 1 1475.6 248 1229m .
答:这座大桥PQ的长度约为1229m.
M
4. 如图,一灯柱AB被一钢缆CD固定,CD与地面成40°夹角, 且DB=5m.在C点上方2m处加固另一条钢缆ED,那么钢缆ED 的长度为多少?(结果精确到0.01m)

1.5 三角函数的应用 第1课时 方位角问题 仰角与俯角问题 课件 初中数学北师大版九年级下册

1.5 三角函数的应用 第1课时 方位角问题 仰角与俯角问题 课件 初中数学北师大版九年级下册
∴∠PAB=∠CAB-∠CAP=20°.∵∠APC=∠PAB+∠B,
∴∠B=∠APC-∠PAB=40°-20°=20°.∴AP=PB.∴AH=BH.
∵AP=40 n mile,∴AH=AP·cos 20°≈40×0.94=37.6(n mile).
∴AB=2AH=75.2(n mile).∴轮船的航行速度为
5
三角函数的应用
第1课时
方位角问题
与方位角有关的两地间距离的计算
[例1] (2022安徽)如图所示,为了测量河对岸A,B两点间的距离,某
数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°
方向上,沿正东方向行走90 m至观测点D,测得A在D的正北方向,B在D
的北偏西53°方向上.求A,B两点间的距离(参考数据:sin 37°≈
角分别是60°和30°.则该电线杆PQ的高度是 (6+2 ) m(结果可
保留根号).
3.如图所示,小石同学在A,B两点分别测得某建筑物上条幅两端C,D两
点的仰角均为60°,若点O,A,B在同一条直线上,A,B两点间的距离为
3 m,则条幅的高CD为 3 m.
4.(2023凉山)超速容易造成交通事故.高速公路管理部门在某隧道内

)
2.如图所示,一架飞机在点 A 处测得水平地面上一个标志物 P 的俯角

为α,tan α= ,水平飞行 900 m 后,到达点 B 处,又测得标志物 P 的


俯角为β,tan β= ,飞机离地面的高度为 1 200 m.

与仰角、俯角有关的宽度计算
[例2] (2022广元)如图所示,计划在山顶A的正下方沿直线CD方向开
∴隧道 EF 的长度为(80 +70)m.

解有关仰角、俯角的问题-课件

解有关仰角、俯角的问题-课件

11.如图,孔明同学在学校某建筑物的 C 点处测得旗杆顶部 A 点的仰 角为 30°,旗杆底部 B 点的俯角为 45°,若旗杆底部 B 点到建筑物的 水平距离 BE=9 米,旗杆台阶高 1 米,则旗杆顶点 A 离地面的高度为 __(3___3_+__1_0_) ____米.(结果保留根号)
12.某城市在发展规划中,需要移走一棵古树AB,在地面上事先划定 以B为圆心,半径与AB等长的圆形为危险区,现在一名工人站在离B点 3米远的D处测得树的顶端A点的仰角为60°,树的底部B点的俯角为 30°,问距离B点8米远的保护物是否在危险区内?
则 B,C 两地之间的距离为( A )
A.100 3 m B.50 2 m
C.50 3 m
100 3 D. 3 m
3.升国旗时,某同学在距旗杆底部 24 米处行注目礼,当国旗升到旗
杆顶端时,该同学视线的仰角恰好为 30°,若他两眼距离地面 1.5 米, 则旗杆的高度为__(_8___3_+__32_) ______米.(结果保留根号)
4.(2015·阜新)如图,为了测量楼的高度,自楼的顶部 A 看地面上的一 点 B,俯角为 30°,已知地面上的这点与楼的水平距离 BC 为 30 m,那 么楼的高度 AC 为__1_0__3___m.(结果保留根号)
5.如图,甲、乙两楼相距 20 m,甲楼高 20 m,自甲楼楼顶看乙楼楼顶, 仰角为 60°,则乙楼的高为__2_0_(__3_+__1_)_m____.(结果可用根式表示)

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/52021/3/52021/3/52021/3/53/5/2021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月5日星期 五2021/3/52021/3/52021/3/5
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(tan52°=1.280,结果精确到0.1米)
解 在Rt△CDE中,α=52°
C
∵ CE=DE×tanα
=AB×tanα
=10×tan 52°
∴ ≈12.80
BC=BE+CE
=DA+CD
=1.50+12.80 ≈14.3(米)
D52°
E
答:旗杆BC的高度约为14.3米. 1.5米 10m
仰角与俯角
左侧P点处,测得大楼的顶部仰角为45°,测得
大楼底部俯角为30°,求飞机与大楼之间的水
平距离.
A
答案: (3001003) 米
P 45°
30°
200米 D
O
B
仰角与俯角
10
合作与探究
变式:如图,直升飞机在高为200米的大楼AB 上方P点处,从大楼的顶部和底部测得飞机的 仰角为30°和45°,求飞机的高度PO .
AB7源自解题步骤小结1、首先要弄清题意,结合示意图分清已知条件和 所求结论。
2、找出与问题有关的直角三角形,或通过作辅助
线构造直角三角形,把实际问题转化为解直角三角 形的问题。
3、选择合适的边角关系式,使计算尽可能简单,答
案按要求确定精确度以及注明单位.
仰角与俯角
8
仰角与俯角
9
合作与探究
练习1:如图,直升飞机在高为200米的大楼AB
三边之间关系 锐角之间关系
a2+b2=c2(勾股定理) ∠A+∠B=90º
边角之间关系 (以锐角A为例)
sinAA斜 的边 对边 BAB CcoAsA斜 的边 邻边 A AC B
tanA A A的 的邻 对边 边 B AC C
仰角与俯角
1
孟庄镇中心校 王爱莲
仰角与俯角
2
学习目标
1、了解仰角、俯角的概念,能根据直角三角形的知识 解决仰角、俯角有关的实际问题。
1000 1000 308 ∴x= 3tan6801 1.72.51
∴潜艇C离开海平面的下潜深度约为308 米。……9分
仰角与俯角
18
作业
课本P114练习12
仰角与俯角
19
小结
1.弄清俯角、仰角意义,明确各术语与示意图中的 什么元素对应,只有明确这些概念,才能恰当地把实际 问题转化为数学问题
2.认真分析题意、画图并找出要求的直角三角形, 或通过添加辅助线构造直角三角形来解决问题.
仰角与俯角
17
19.解:过点C作CD⊥AB,交BA的延长线于点D. 则AD即为潜艇C的下潜深度. 根据题意得 ∠ACD=30°,∠BCD=68°. 设AD=x.则BD=BA十AD=1000+x. 在Rt△ACD中,CD= AD x =3x………4分
tanACD tan300
在Rt△BCD中,3 BD=CD·tan68° ∴1000+x= x·tan68° ………………………7分
P
O
仰角与俯角
30° A
45°
200米
B
C
13
本节课你有什么收获?
仰角与俯角
14
利用解直角三角形的知识解决实际问题的一般过程是:
1.将实际问题抽象为数学问题; (画出平面图形,转化为解直角三角形的问题)
2.根据条件的特点,适当选用锐角三角函数, 解直角三角形; 3.得到数学问题的答案;
4.得到实际问题的答案.
3.选择合适的边角关系式,使计算尽可能简单,且 不易出错.
4.按照题中的精确度进行计算,并按照题目中要求的 精确度确定答案以及注明单位.
仰角与俯角
20
本节课我们用解直角三角形的有关知识解决 有关俯角、仰角的实际问题。
(1)你怎么理解俯角、仰角?
(2)在分析处理这类实际问题时,你应该采取怎样的 步骤呢?
仰角与俯角
15
模型一
我的收获
模型二
A
C
D
B
模型三
仰角与俯角
16
(2014--19)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯
角为30度.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68度.
试根据以上数据求出潜艇C离开海平面的下潜深度.
(结果保留整数。参考数据:sin680≈0.9,cos680≈0.4,,tan680≈2.5. ≈1.7)
仰角与俯角
22
温馨提示 解直角三角形的思路可概括为“有斜斜边用弦 正弦、余弦,无斜用切正切,宁乘勿除,取原 避中”.
仰角与俯角
23
方法总结 仰角、俯角问题是常见的实际问题,一般题目中会 出现两个不同的仰角、俯角或一个仰角、一个俯角.解 决此类问题时,一般是先设出未知数,用同一个未知数 表示问题中不同的未知量,然后根据问题中的数量关系 列出方程求解.
P
C
30° A
45°
200米
O
B
仰角与俯角
11
合作与探究
变式:如图,直升飞机在高为200米的大楼AB 上方P点处,从大楼的顶部和底部测得飞机的 仰角为30°和45°,求飞机的高度PO .
P
C
30° A
45°
200米
O
B
仰角与俯角
12
合作与探究
变式:如图,直升飞机在高为200米的大楼AB 上方P点处,从大楼的顶部和底部测得飞机的 仰角为30°和45°,求飞机的高度PO .
从A看B的仰角是_∠__B_A_C_;
从B看A的俯角是 ∠FBA; D
从B看D的俯角是 ∠FBD ; 从D看B的仰角是 ∠BDE 。 A
水平线
仰角与俯角
B E C
6
例3 如图24.4.4,为了测量旗杆的高度BC,在离
旗杆10米的A处,用高1.50米的测角仪DA测得旗
杆顶端C的仰角α=52°,求旗杆BC的高。
2、通过借助辅助线解决实际的问题过程,掌握数形结 合、抽象归纳的思想方法。
3、感知本节与实际生活的密切联系,认识知识应用于 实践的意义。
学习重点
解直角三角形在实际生活中的应用。
学习难点
将某些实际问题中的数量关系,归结为直角三角形中
元素之间的关系,从而解决问题。
仰角与俯角
3
自主探究(时间2分钟)
请同学们自学教材p113——114页内容,
(3)除了以上知识你还有哪些收获?有哪些不解?谈
谈你的看法。
仰角与俯角
21
1、掌握仰角和俯角的概念,把实际问题转化为直角 三角形中的边角关系.
2、解直角三角形的关键是找到与已知和未知相关联 的直角三角形,当图形中没有直角三角形时,要通过 作辅助线构造直角三角形(作某边上的高是常用的辅 助线);当问题以一个实际问题的形式给出时,要善 于读懂题意,把实际问题化归为直角三角形中的边角 关系。
解决以下问题:
1、什么叫仰角? 2、什么叫俯角? 3、解答例3提出的问题,并与同桌交流。
仰角与俯角
4
在进行测量时,从下向上看,视线与水平
线的夹角叫做仰角;
从上往下看,视线与水平线的夹角叫做俯 角.
视线A
铅 垂 观察点 线 仰角
俯角
水平线
视线
B
仰角与俯角
5
如图,BCA=DEB=90, FB//AC // DE, F
相关文档
最新文档