方程组及不等式组的应用---利润问题
一元一次方程的应用-利润问题
建立一元一次方程模型
01
02
03
确定未知数
设某商品的成本价为未知 数x,根据题意建立方程。
列出方程
根据利润、折扣等条件, 列出关于x的一元一次方 程。
方程形式
方程通常形如ax+b=c或 ax-b=c,其中a、b、c为 已知数,x为未知数。
求解方法与步骤
移项与合并同类项
将方程中的未知数与常数 项分别移到等号两侧,并 合并同类项。
要点三
打折销售问题中的等 量关系
商品利润=商品售价-商品进价;商品 利润率=商品利润/商品进价×100%; 商品销售额=商品销售价×商品销售量; 商品的销售利润=(销售价-成本价)× 销售量;商品打几折出售,就是按原价 的百分之几十出售,如商品打8折出售, 即按原价的80%出售。
定价策略问题
1 2
02
库存与进货问题中常出现的量有
库存量、进货量、销售量、库存费用、进货费用、利润率等。
03
库存与进货问题中的等量关费用=库存费用+进
货费用;总利润=单件利润×销售量-库存费用。
04 拓展:多元一次方程组在 复杂利润问题中应用
多元一次方程组建立与求解方法
求解未知数
通过简化方程,求解出未 知数的值。
检验解的合理性
将求得的解代入原方程进 行检验,确保解符合题意。
实际案例解析
案例一
某商店以每双6.5元的价格购进一批凉鞋,售价为7.4元。卖到还剩5双时,除成本外还获 利44元。这批凉鞋共有多少双?
案例二
某商品按定价出售,每个可以获得45元的利润。现在按定价打85折出售8个所能获得的利 润,与按定价每个减价35元出售12个所能获得的利润一样。问这一商品每个定价是多少 元?
二元一次方程组和一元一次不等式的应用
二元一次方程组及不等式的综合应用崔莹莹2016-6-112.(2015•广东省,第22题,7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y .答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.6.(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用..分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.7.(2015·山东潍坊第19 题9分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.12.(2015•四川眉山,第24题9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过1100元,列出不等式解答即可.解答:解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得解得:答:一支钢笔需16元,一本笔记本需10元;(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得16x+10(80﹣x)≤1100解得:x≤50答:工会最多可以购买50支钢笔.点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.13. (2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。
等式与不等式的解法与应用知识点总结
等式与不等式的解法与应用知识点总结等式与不等式是数学中非常基础且重要的概念,它们在解数学问题、推导理论以及应用实践中都起到了至关重要的作用。
本文将对等式与不等式的解法以及其在实际问题中的应用进行知识点总结。
一、等式的解法1. 一元一次方程:一元一次方程是指只有一个未知数,并且未知数的最高次数为1的方程。
解一元一次方程可以使用基本的代数运算法则,如加减乘除等。
常用的解法有加减消元法、变量相消法、代入法等。
2. 二元一次方程组:二元一次方程组是指有两个未知数的方程组,并且每个方程中未知数的最高次数为1。
解二元一次方程组可以使用消元法、代入法、加减消元法等解法。
3. 二次方程:二次方程是指未知数的最高次数为2的方程。
解二次方程可以使用配方法、求根公式、完全平方式等。
其中,求根公式为:x=(-b±√(b^2-4ac))/2a。
4. 分式方程:分式方程是指方程中带有分式的方程。
解分式方程需要将方程中的分式进行通分,并使用合适的解方程方法进行求解。
二、不等式的解法1. 一元一次不等式:一元一次不等式是指只有一个未知数,并且未知数的最高次数为1的不等式。
解一元一次不等式需要注意不等号的变换规则,可使用类似于解等式的代数运算法则进行解答。
2. 一次不等式组:一次不等式组是指含有多个一次不等式的方程组。
解一次不等式组可以使用区间法、图解法等。
区间法是将不等式右边等式化,然后通过判断不等式的符号来确定解集的范围。
3. 二次不等式:二次不等式是指未知数的最高次数为2的不等式。
解二次不等式需要根据二次不等式的形式和条件来判断解集的范围,可以通过求根、图像、区间等方法进行求解。
4. 绝对值不等式:绝对值不等式是指方程中含有绝对值的不等式。
解绝对值不等式需要考虑绝对值的定义和性质,可通过分情况讨论、画图等方法进行求解。
三、应用知识点总结1. 线性规划:线性规划是一种优化问题,它将问题转化为目标函数和约束条件下的最大值或最小值求解。
北京中考复习——方程(组)与不等式(组)的应用(解析版)
北京中考复习——方程(组)与不等式(组)的应用一、解答题1、李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟,他骑自行车的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2900米,求他骑行和步行的时间分别是多少?答案:骑行了10分钟,步行了5分钟解答:设他步行了x分钟,则骑行了15-x分钟,依题意得:80x+250(15-x)=2900,解得,x=5.15-x=10答:他骑行了10分钟,步行了5分钟.2、自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?答案:小明家到单位的路程是8.2千米.解答:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解这个方程,得x=8.2.答:小明家到单位的路程是8.2千米.3、某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?答案:每天加工大齿轮的有20人,每天加工小齿轮的有64人.解答:设每天加工大齿轮的有x人,则每天加工小齿轮的有(84-x)人,根据题意可得;2×16x=10(84-x),解得:x=20,则84-20=64(人).答:每天加工大齿轮的有20人,每天加工小齿轮的有64人.4、根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2013年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2013年5月份,该市居民甲用电100度,交电费60元;居民乙用电200度,交电费122.5元.(1)上表中a=______,b=______.(2)试行“阶梯电价”收费以后,该市一户居民2013年8月份平均电价每度为0.63元,求该用户8月用电多少度?答案:(1)0.6;0.65(2)该市一户居民月用电为375度.解答:(1)根据2013年5月份,该市居民甲用电100度时,交电费60元,得出:a=60÷100=0.6,居民乙用电200度时,交电费122.5元.则(122.5-0.6×150)÷(200-150)=0.65,故答案为:0.6,0.65.(2)设居民月用电为x度,依题意得:150×0.6+0.65(x-150)=0.63x,整理得:90+0.65x-97.5=0.63x,解得:x=375,答:该市一户居民月用电为375度.5、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?答案:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次. 解答:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次.依题意得:1696469x y y x +=⎧⎨=-⎩, 解得:3531343x y =⎧⎨=⎩.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.6、体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.求商店购进篮球,排球各多少个.答案:购进篮球12个,购进排球8个.解答:设购进篮球x 个,购进排球y 个,由题意得:()()2095806050260x y x y +=⎧⎨-+-=⎩, 解得:128x y =⎧⎨=⎩.答:购进篮球12个,购进排球8个.7、水上公园的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.答案:该公司租用4座游船5条,6座游船3条.解答:设租用4座游船x 条,租用6座游船y 条.依题意得463860100600x y x y +=⎧⎨+=⎩解得53 xy=⎧⎨=⎩答:该公司租用4座游船5条,6座游船3条.8、小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.答案:到甲超市购买这种cc饮料便宜,证明见解答.解答:设甲超市cc饮料每瓶的价格为x元,乙超市cc饮料每瓶的价格为y元,依题意,得:1065112818x yy x+=⎧⎨-=⎩,解得:33.5xy=⎧⎨=⎩,∵3<3.5,∴到甲超市购买这种cc饮料便宜.9、台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.解答:设北京故宫博物院约有x万件藏品,台北故宫博物院约有y万件藏品.依题意,列方程组得:245250 x yx y+=⎧⎨=+⎩,解得18065xy=⎧⎨=⎩.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.10、某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?答案:(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元.(2)大樱桃的售价最少应为41.6元/千克.解答:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得: 200200800020x y y x +=⎧⎨-=⎩, 解得:1030x y =⎧⎨=⎩, 小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40-30)+(16-10)]=3200(元),∴销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为a 元/千克,(1-20%)×200×16+200a -8000≥3200×90%,解得:a ≥41.6,答:大樱桃的售价最少应为41.6元/千克.11、小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.A 套餐:一份盖饭加一杯饮料B 套餐:一份盖饭加一份凉拌菜C 套餐:一份盖饭加一杯饮料与一份凉拌菜(1)他们点了______份A 套餐,______份B 套餐,______份C 套餐(均用含x 或y 的代数式表示).(2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案. 答案:(1)(10-y );(10-x );(x +y -10)(2)5解答:(1)根据题意,有(10-y )份套餐,只点了饮料,故有(10-y )份A 套餐.有(10-x )份套餐,点了凉拌饭,故有(10-x )份B 套餐.则C 套餐有10-(10-y +10-x )=(x +y -10)份.(2)若x =6,则10-6=4份点了B 套餐,∵A 、B 、C 套餐均至少点了1份,∴共有以下5种点餐方案.如下表:12、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲工厂每天加工40件产品,乙工厂每天加工60件产品.解答:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,依题意得120012001.5x x-=10, 解得:x =40.经检验:x =40是原方程的根,且符合题意.所以1.5x =60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.13、某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?答案:原计划每年建造保障性住房8万套.解答:设原计划每年建造保障性住房x 万套,根据题意可得:()8080125%x x-+=2,解方程,得x =8.经检验:x =8是原方程的解,且符合题意.答:原计划每年建造保障性住房8万套.14、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲、乙两个工厂每天分别能加工新产品40件、60件.解答:设甲工厂每天加工x件新产品,则乙工厂每天加工1.5x件新产品.依题意,得120012001.5x x-=10.解得x=40.经检验,x=40是所列方程的解,且符合实际问题的意义.当x=40时,1.5x=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件.15、某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A、B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成,求A、B两车间每天分别能加工多少件.答案:A车间每天生产384件,B车间每天生产320件.解答:设B车间每天生产x件,则A车间每天生产1.2x件.由题意得44001.2x x++4400x=20.解得x=320.经检验x=320是方程的解.此时A车间每天生产320×1.2=384(件).答:A车间每天生产384件,B车间每天生产320件.16、为应对雾霾天气,使师生有一个更加舒适的教学环境,学校决定为南北两幢教学楼安装空气净化器.南楼安装的55台由甲队完成,北楼安装的50台由乙队完成.已知甲队比乙队每天多安装两台,且两队同时开工,恰好同时完成任务.甲、乙两队每天各安装空气净化器多少台?答案:甲队每天安装空气净化器22台,乙队每天安装20台.解答:设甲队每天安装空气净化器x台,则乙队每天安装(x-2)台,依题意得,55x=502x-,解方程得,x=22.经检验,x=22是原方程的解,且符合实际意义.x-2=22-2=20(台).答:甲队每天安装空气净化器22台,乙队每天安装20台.17、列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫.但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一批进货量的一半.求第一批购进这种衬衫每件的进价是多少元?答案:第一批衬衫每件进价为150元.解答:设第一批衬衫每件进价为x 元, 依题意,得12·4500x =210010x -, 解得x =150.经检验x =150是原方程的解,且满足题意.答:第一批衬衫每件进价为150元.18、某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.答案:每人每小时的绿化面积2.5平方米.解答:设每人每小时的绿化面积x 平方米,由题意,得()180180662x x-+=3,解得:x =2.5.经检验,x =2.5是原方程的解,且符合题意.答:每人每小时的绿化面积2.5平方米.19、小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费. 答案:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.解答:设A 、B 两地距离为x 千米, 由题意可知:10827x x-=0.54,解得:x =150. 经检验:x =150是原方程的解,且符合题意. ∴纯电动汽车每行驶一千米所需电费为:27150=0.18(元/千米). 答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.20、京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时行驶多少千米.答案:小王用自驾车方式上班平均每小时行驶27千米.解答:设小王用自驾车方式上班平均每小时行驶x千米.依题意,得1829x=37×18x,解得:x=27,经检验,x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.。
题型专题训练:7_2 二元一次方程组的应用——销售、利润问题
7.2 二元一次方程组的应用——销售、利润问题【题型销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元?【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元?【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?(解析版)【题型 销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元? 【答案】1680元,480元.【分析】设小颖的票价为x 元,小明的票价为y 元,根据“小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.”找到等量关系,列出方程组,解方程组即可.【详解】设小颖的票价为x 元,小明的票价为y 元,根据题意得:{x −(1000+y )=20010y −x =3120解得:{x =1680y =480答:小颖和小明购买的演唱会门票分别为:1680元,480元.【点睛】本题考查二元一次方程组的应用,正确的找到等量关系是解答关键.【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【答案】(1)每箱井冈蜜柚需要80元,每箱井冈板栗需要120元;(2)李先生比预计的付款少付了328元【分析】(1)、根据“井冈蜜柚和井冈板栗各一箱需要200元,4箱井冈蜜柚和6箱井冈板栗需要1040元”列二元一次方程组,解之即可得.(2)根据节省的钱数=原价×数量﹣打折后的价格×数量,即可求出结论.【详解】解:(1)设每箱井冈蜜柚需要x 元,每箱井冈板栗需要y 元,依题意,得:{x +y =2004x +6y =1040, 解得:{x =80y =120. 答:每箱井冈蜜柚需要80元,每箱井冈板栗需要120元.(2)200+1040﹣80×0.6×(4+1)﹣120×0.8×(6+1)=328(元).答:李先生比预计的付款少付了328元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m 元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元? 【答案】(1)玫瑰和百合单价分别是每支2.5元和每支9.5元(2)小瑞所带的钱还剩下31元【分析】(1)设每支玫瑰x 元,每支百合y 元,利用总价=单价×数量,结合小瑞带的钱数不变,即可得出关于x ,y 的二元一次方程,化简后可得出;(2)设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元,所以列方程{5x +3y =m −10①5x +5y =m +4②,用含m 的代数式解出x 和y ,又因为且一共只买8支玫瑰,所以剩下的钱为:m -8x 即可求解;(1)解:设玫瑰的单价是每支x 元,百合单价是每支y 元.由题意可得{5x +3y =51−10,3x +5y =51+4.解之得{x =2.5,y =9.5.答:玫瑰和百合单价分别是每支2.5元和每支9.5元.(2)解:设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?【答案】(1)一个A类足球需90元,一个B类足球需108元(2)3280(3)八折【分析】(1)设商家购进一个A类足球需x元,购进一个B类足球需y元,由题意:某商家第一次进了38个A类足球和20个B类足球进行出售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.列出二元一次方程组,解方程组即可;(2)设B类足球的售价为m元,由题意:一个A类足球的售价为110元,两类足球销售完毕,商家要获得1880元的利润,列出一元一次方程,解方程即可;(3)B类足球是打n折销售的,由题意:购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A 类足球按原售价销售,使得第二次销售获得利润1688元,列出一元一次方程,解方程即可.(1)解:设商家购进一个A 类足球需x 元,购进一个B 类足球需y 元,由题意得:{38x +20y =5580y =1.2x, 解得:{x =90y =108, 答:商家购进一个A 类足球需90元,购进一个B 类足球需108元;(2)解∶ 设B 类足球的售价为m 元,由题意得:(110-90)×38+(m -108)×20=1880,解得:m =164,则20×164=3280,答:B 类足球的总售价为3280元;(3)解∶设B 类足球是打n 折销售的,由题意得:(110-90)×38+(164×0.1n -108)×20×2=1688,解得:n =8,答:B 类足球是打八折销售的.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准等量关系,正确列出二元一次方程组和一元一次方程是解题的关键.。
不等式的应用与问题解决
不等式的应用与问题解决不等式是数学中常见的基本概念之一,它描述了数值之间的大小关系。
在现实世界中,不等式有着广泛的应用,可以帮助我们解决各种问题。
本文将探讨不等式的应用以及如何使用它们来解决问题。
一、不等式在经济领域的应用1.利润问题:假设一个企业每月的固定成本为C元,每个产品的生产成本为V元,售价为P元,销售量为x个。
利润表示为P * x - (C + V * x)。
我们可以建立不等式P * x - (C + V * x) ≥ 0来表示企业的盈利状况。
通过解这个不等式,我们可以确定销售量的范围,从而帮助企业决策。
2.投资问题:假设一个人在银行存款利息为r的情况下,存入本金P元。
经过t 年,该人希望得到的总额超过初始本金的两倍,即P * (1 + r)^t ≥ 2P。
通过解这个不等式,我们可以确定存款的年限范围,帮助人们做出正确的投资决策。
二、不等式在科学领域的应用1.温度问题:热力学中的不等式可以帮助我们理解温度的传导过程。
例如,根据热导率公式,传热速率Q与温度差ΔT成正比,与物体的面积A和距离l成反比。
我们可以建立不等式Q/A ≤ k * ΔT/l来描述热传导过程,其中k为热导率。
通过解这个不等式,我们可以确定热传导的最大速率。
2.物质平衡问题:在化学反应中,物质的质量守恒是一项重要原则。
我们可以使用不等式来描述物质的转化过程。
例如,对于AB → CD的反应,我们可以建立不等式m(A) + m(B) ≥ m(C) + m(D),其中m表示物质的质量。
通过解这个不等式,我们可以验证反应是否符合质量守恒的原则。
三、不等式在社会生活中的应用1.健康问题:健康是每个人都关注的重要问题。
体重是我们关注的一个指标,那么我们可以使用不等式来判断是否超重。
假设一个人的体重为W,身高为H,BMI指数定义为W/H^2。
根据世界卫生组织的标准,BMI超过25表示超重,我们可以建立不等式W/H^2 ≥ 25来判断一个人的体重状态。
初一数学——利润问题
一、销售利润问题商品的进货价格叫做进价。
商品预售的价格叫做标价或原价。
商品实际卖出的价格叫做售价。
商品利润=商品售价-商品进价。
商品售价=商品原价(或标价)×折数。
商品利润率=商品利润/商品进价=(商品售价-商品进价)/商品进价。
常见的利润问题有:(一)已知进价、售价、求利润率例1.脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?解:设此商品利润率为x%,根据题意得:(12000-10000)/10000=x%解之得:x=20答:此商品的利润率为20%。
(二)已知进价和利润率,求标价或原价例2.某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得:(90%x-250)/250=15.2%解之得:x=320答:商品的标价是320元(三)已知进价、标价及利润率,求标价或原价的折数例3.某名牌西装进价是1000元,标价是1500元,某商场要以利润率不低于5%的价格销售,问售货员可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500·x/10-1000)/1000=5%解之得:x=7答:打7折出售该商品。
在这一类求折数的应用题中,以前通常都是设打x折,然后在列式时把售价列为"1500x",最后x=0.7=7折。
但我认为x=0.7的话,就说明是打0.7折,而不能说是7折,因此这种做法不妥当。
打7折就是原价的7/10,打8折就是原价的8/10。
按照这一原则,列式时我认为应将售价"1500x"列为"1500×x/10",这样才比较合理。
设商品打x折,方程的解x=7,那么商品就是打7折。
这样前后就显得比较一致.(四)已知利润率、标价求进价例4.商场对某一商品作调价,按原价的8折出售,此时商品的利润率是10%,已知商品标价为1375元,求进价。
初一数学知识点精讲精练——二元一次方程组的实际应用之销售利润问题
二元一次方程组的应用-销售利润问题【知识点】1. 列二元一次方程组解应用题的一般步骤(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设未知数:找出题中的两个关键的未知量,并用字母表示出来.(3)找:挖掘题目中的关系,找出两个等量关系;(4)列方程组:列出方程组.(5)求解.(6)检验作答:检验所求解是否符合实际意义,并作答.注意:设未知数的方法:直接设未知数与间接设未知数.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设未知数.2. 用方程解决实际问题的几个注意事项(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得 的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。
3. 商品销售利润问题:(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 利润=售价-成本(进价) 售价-进价利润率进价=100%利润=成本(进价)×利润率 标价=成本(进价)×(1+利润率);实际售价=商品标价×打折率注意:折扣中打几折就是按标价的十分之几或百分之几十销售(例如八折就是按标价的十分之八即五分之四或者百分之八十)【典型例题】1. 某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为 .【考点】本题考查二元一次方程的应用,根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.【解答】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元;若售出甲x 件,则售出乙1.5x 件.0.4ax+0.6b×1.5x ax+1.5bx =0.5,解得a =1.5b ,∴售出的乙种商品的件数比甲种商品的件数少50%时,甲种商品的件数为y 时,乙种商品的件数为0.5y . 这个商人的总利润率为0.4ay+0.6b×0.5y ay+0.5by =0.4a+0.3b a+0.5b =0.9b 2b =45%.故答案为:45%.2.“重百”、“沃尔玛”两家超市出售 同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【考点】此题考查了二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.【解答】解:(1)设一个保温壶售价为x 元,一个水杯售价为y 元.由题意,得:{x +y =602x +3y =130. 解得:{x =50y =10. 答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【练习】1.华润苏果的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是元.2.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.甲种商品与乙种商品的销售单价各多少元?3.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?4. 某专卖店有A,B两种商品.已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元;A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?5. 某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八五折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?6. 某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?【练习解析】1. 解:设一支牙刷收入x 元,一盒牙膏收入y 元,由题意,得39x +21y =396,∴13x +7y =132,∴52x +28y =528,故答案为:528.2. 解:设甲种商品的销售单价为x 元/件,乙种商品的销售单价为y 元/件,根据题意得:{2x =3y 3x −2y =1500,解得:{x =900y =600. 答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.3. 解:设碳酸饮料在调价前每瓶的价格为x 元,果汁饮料调价前每瓶的价格为y 元,根据题意得:{x +y =73(1+10%)x +2(1−5%)y =17.5,解得:{x =3y =4. 答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.4. 解:设打折前A 商品的单价为x 元/件、B 商品的单价为y 元/件,根据题意得:{60x +30y =108050x +10y =840,解得:{x =16y =4, 500×16+450×4=9800(元),9800−19609800=0.8.答:打了八折.5. 解:(1)设随身听和书包的单价分别为x 元,y 元.由题意可得{x +y =452x =4y −8,解得{x =360y =92. 答:随身听和书包的单价分别为360元,92元;(2)A 超市需要:452×0.85=384.2(元);B 超市需要:先购买随身听花费360元,返券90元,还需要92﹣90=2(元),共花费360+2=362(元). 因为384.2>362,所以在B 超市购买省钱.6. 解:(1)设A种服装购进x件,B种服装购进y件,由题意,得{60x+100y=600040x+60y=3800,解得:{x=50y=30.答:A种服装购进50件,B种服装购进30件;(2)由题意,得:3800﹣50(100×0.8﹣60)﹣30(160×0.7﹣100)=3800﹣1000﹣360=2440(元).答:服装店比按标价售出少收入2440元.。
初中数学二元一次方程组的应用题型分类汇编——销售利润问题2(附答案)
价如表所示.
类型 价格
A型
B型
进价(元/个) 2000
2600
售价(元/个) 2800
3700
(1)若恰好用掉 14.4 万元,那么这两种机器人各购进多少个? (2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的 总利润不少于 53000 元,问至少需购进 B 型智能扫地机器人多少个? 20.梧州市特产批发市场有龟苓膏粉批发,其中 A 品牌的批发价是每包 20 元,B 品牌 的批发价是每包 25 元,小王需购买 A,B 两种品牌的龟苓膏粉共 1000 包. (1)若小王按需购买 A,B 两种品牌龟苓膏粉共用 22000 元,则各购买多少包? (2)凭会员卡在此批发市场购买商品可以获得 8 折优惠,会员卡费用为 500 元.若小王购 买会员卡并用此卡按需购买 1000 包龟苓膏粉,共用了 y 元,设 A 品牌买了 x 包,请求 出 y 与 x 之间的函数关系式; (3)在(2)中,小王共用了 20000 元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏 粉小王需支付邮费 8 元,若每包销售价格 A 品牌比 B 品牌少 5 元,请你帮他计算,A 品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数) 21.某公司用 3000 元购进两种货物,货物卖出后,一种货物的利润率是 10%,另一种 货物的利润率是 11%,两种货物共获利 315 元,如果设该公司购进这两种货物所用的费 用分别为 x 元,y 元,则列出的方程组是__. 22.某厂家以 A、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其 中,甲产品每袋含 1.5 千克 A 原料、1.5 千克 B 原料;乙产品每袋含 2 千克 A 原料、1 千克 B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产 品每袋售价 72 元,则利润率为 20%.某节庆日,厂家准备生产若干袋甲产品和乙产品, 甲产品和乙产品的数量和不超过 100 袋,会计在核算成本的时候把 A 原料和 B 原料的 单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少 500 元,那么厂家 在生产甲乙两种产品时实际成本最多为_____元. 23.今年“五一”,A、B 两人到商场购物,A 购 3 件甲商品和 2 件乙商品共支付 16 元, B 购 5 件甲商品和 3 件乙商品共支付 25 元,求一件甲商品和一件乙商品各售多少元.设 甲商品售价 x 元/件,乙商品售价 y 元/件,则可列出方程组_________. 24.甲.乙两种商品原来的单价和为 100 元,因市场变化,甲商品降价 10%,乙商品提
专题25 二元一次方程组的应用:销售利润问题(解析版)
专题25 二元一次方程组的应用:销售利润问题一、单选题1.某人只带了2元和5元两种货币,他要买一件27元的商品,而商店不给找钱,则此人的付款方式有()A.1种B.2种C.3种D.4种【答案】C【分析】本题中只有一个等量关系,但有两个未知数,属于二元一次方程题,不妨设2元和5元的货币各是x和y 张,那么x张2元的+y张5元的=27元.【详解】解:设2元和5元的货币各是x和y张,则:2x+5y=27,∵x和y是货币张数,皆为整数,∴111xy=⎧⎨⎩=或63xy=⎧⎨⎩=或15xy=⎧⎨⎩=故此人有三种付款方式.故选C.【点睛】用方程解答实际问题时需要注意所求的解要符合实际意义,本题也可以根据不定方程的解法来解.2.麦当劳甜品站进行促销活动,同一种甜品第一件正价,第二件半价,现购买同一种甜品2件,相当于这两件甜品售价与原价相比共打了()A.5折B.5.5折C.7折D.7.5折【答案】D【分析】根据题意设第一件商品x元,买两件商品共打y折,利用价格列出方程即可求解.【详解】解:设第一件商品x元,买两件商品共打了y折,根据题意可得:x+0.5x=2x•y 10,解得:y=7.5,即相当于这两件商品共打了7.5折.故选:D.【点睛】此题考查了一元一次方程的应用,找到正确的等量关系是解题关键.3.某商店卖出两件衣服,每件600元,其中一件赚25%,另一件赔25%,那么这件衣服售出后商店是()A.赚80元B.亏80元C.不赚不亏D.以上答案都不对【答案】B【分析】先列方程分别求出两件衣服的进价,然后计算即可.【详解】设这两件衣服的进价分别是x元和y元,则列方程可得600=25%600=25%yx xy-⎧⎨--⎩,解得x=480,y=800,2×600-(480+800)=-80,因此商店亏了80元,故选:B.【点睛】本题考查了二元一次方程组的应用,根据题意找出等量关系是解题关键.4.元旦期间,灯塔市辽东商业城“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动.某顾客在女装部购买了原价x元,在男装部购买了原价y元的服装各一套,优惠前需付700元,而她实际付款580元,根据题意列出的方程组是()A.5800.80.85700x yx y+=⎧⎨+=⎩B.7000.850.8580x yx y+=⎧⎨+=⎩C.7000.80.85700580x yx y+=⎧⎨+=-⎩D.7000.80.85580x yx y+=⎧⎨+=⎩【答案】D【分析】根据“优惠前需付700元,而她实际付款580元”,列出关于x,y的二元一次方程组,即可得到答案.【详解】根据题意得:7000.80.85580x y x y +=⎧⎨+=⎩, 故选D .【点睛】本题主要考查二元一次方程组的实际应用,掌握等量关系,列出方程组,是解题的关键.5.根据图中提供的信息,可知一个杯子的价格是( )A .6元B .8元C .10元D .12元【答案】B【分析】 设一盒杯子x 元,一个暖瓶y 元,根据图示可得:一个杯子+一个暖瓶=43元,3个杯子+2个暖瓶=94元,列方程组求解.【详解】设一盒杯子x 元,一个暖瓶y 元,由题意得,433294x y x y ++⎧⎨⎩==, 解得:835x y ⎧⎨⎩==, 即一个杯子为8元.故选:B .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.6.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少元若设甲、乙两种贷款的数额分别为x 万元和y 万元,则( )A .15,x =20y =B .12,x =23y =C .20,x =15y =D .23,x =12y =【答案】A【分析】设甲、乙两种贷款的数额分别为x 万元和y 万元,根据题意列出二元一次方程组即可求解.【详解】 依题意,得357%6% 2.25x y x y +=⎧⎨+=⎩,解得1520x y =⎧⎨=⎩.故选A. 【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.7.甲、乙两店分别购进一批无线耳机, 每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为( )A .56元B .60元C .72元D .80元【答案】B【分析】设乙店的耳机进价为x 元,标价为y 元,则根据题意列出二元一次方程组,解方程组,求出x 的值,即可得到答案.【详解】解:根据题意,设乙店的耳机进价为x 元,标价为y 元,则甲店的耳机进价为:(110%)0.9x x -=元;标价为:( 5.4)y -元;∵甲乙两店的利润率分别为20%和17%, ∵ 5.40.920%0.917%y x x y x x --⎧=⎪⎪⎨-⎪=⎪⎩, 解得:6070.2x y =⎧⎨=⎩, ∵乙店每副耳机的进价为60元;【点睛】本题考查了二元一次方程组的应用,解题的关键是熟读题目,找出题目中的关系,列出方程组,从而解方程组.8.某商店卖出一件上衣和一双皮鞋,共收款240 元,其中上衣盈利20%,皮鞋亏本20%,该商店卖出这两件商品,下列判断正确的是()A.赚10 元B.赔10元C.不赔不赚D.无法确定【答案】D【分析】设上衣的进价为x元,皮鞋的进价为y元,根据“共收款240元,其中上衣盈利20%,皮鞋亏本20%”,即可得出关于x(y)的二元一次方程,解之即可得出上衣与皮鞋的进价关系,用其相加−两件商品的售价和,即可找出结论.【详解】设上衣的进价为x元,皮鞋的进价为y元,根据题意得:(1+20%)x+(1−20%)y=240,解得:1.2x+0.8y=240,∵利润为240-(x+y)=1.2x+0.8y-(x+y)=0.2x-0.2y=0.2(x-y)∵进价x,y的大小关系不确定,故利润大小不确定,故选D.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.为处理甲.乙两种积压服装,商场决定打折销售,已知甲.乙两种服装的原单价共为880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲.乙两种服装的原单价分别是()A.400元,480元B.480元,400元C.560元,320元D.320元,560元【答案】B【分析】设甲、乙两种服装的原单价分别是x元、y元,满足等量关系:∵甲、乙两种服装的原单价共为880元;∵打折后两种服装的单价共为684元,由此列出方程组求解.解:设甲、乙两种服装的原单价分别是x元、y元.根据题意,得:8800.80.75684 x yx y⎨⎩++⎧==解得:480400 xy⎧⎨⎩==即:甲、乙两种服装的原单价分别是480元、400元.故选B.【点睛】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.10.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元.打折后,买50件A商品和40件B商品仅需364元,则比打折前少花()A.56元B.116元C.420元D.480元【答案】B【分析】设打折前A商品的单价为x元,B商品的单价为y元,根据买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元列出方程组,求出x、y的值,然后再计算出打折前买50件A商品和40件B 商品共需要的钱数即可.【详解】设打折前A商品的单价为x元,B商品的单价为y元,根据题意得6354,3432,x yx y+=⎧⎨+=⎩解得8,2,xy=⎧⎨=⎩则508402364116⨯+⨯-=(元),所以比打折前少花116元.故选B.【点睛】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.11.根据如图提供的信息,小红去商店买一只水瓶和一只杯子应付()A.30元B.32元C.31元D.34元【答案】C【解析】【分析】设购买一只水瓶需要x元,购买一只杯子需要y元,根据给定的两种购买方案可得出关于x、y的二元一次方程组,将方程∵∵相加,再除以3即可求出结论.【详解】设购买一只水瓶需要x元,购买一只杯子需要y元,根据题意得:237256x yx y+=⎧⎨+=⎩①②,(∵+∵)÷3,得:x+y=31.故选:C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需()A.130元B.100元C.120元D.110元【答案】D【解析】【分析】设甲商品为x元/件,乙商品为y元/件,根据总价=单价×数量依据题意,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设甲商品为x 元/件,乙商品为y 元/件,根据题意得:21302200x y x y +⎧⎨+⎩==,解得:9020x y =⎧⎨=⎩,甲、乙两种商品各一件共需20+90=110元.故选:D .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.小明购买4种数学用品:计算器、圆规、三角板、量角器的件数和用钱总数见下表:则4种数学用品各买一件共需 元.( )A .38B .48C .58D .118 【答案】C【分析】设计算器、圆规、三角板、量角器的单价分别是a 元、b 元、c 元、d 元.根据表格中的信息列方程组,再进一步观察系数的关系,整体求解.【详解】解:设计算器、圆规、三角板、量角器的单价分别是a 元、b 元、c 元、d 元.根据题意,得 3457857998a b c d a b c d +++=⎧⎨+++=⎩①② , ∵减∵,得2b+3c+4d=20∵,∵减∵,得a+b+c+d=78-20=58.故答案为58.【点睛】本题考查多元一次方程组的应用,解题的关键是能够从表格中获得正确信息,根据信息列方程组,注意此题中的整体求解思想.14.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元【答案】A【解析】【分析】设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∵2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元【答案】D【解析】【分析】∵∵∵∵∵∵∵∵∵x∵∵∵∵∵∵∵∵∵∵∵y∵∵∵∵“∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵50∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵30∵”∵∵∵∵∵x∵y∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵【详解】∵∵∵∵∵∵∵∵∵∵∵x∵∵∵∵∵∵∵∵∵∵∵y∵∵∵∵∵∵∵∵0.80.61500.60.8130x yx y+⎧⎨+⎩=,=∵∵∵15050 xy⎧⎨⎩==∵∵D∵【点睛】∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵16.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.15【答案】C【解析】试题分析:要求出第三束气球的价格,根据第一、二束气球的价格列出方程组,应用整体思想求值:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得3x y14 {x3y18+=+=,两式相加,得,4x+4y=32,即2x+2y=16.故选C.17.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是A.100元B.105元C.108元D.118元【答案】A【解析】试题分析:根据题意,找出相等关系为:进价×(1+20%)=120,设未知数列方程求解.解:设这件服装的进价为x元,依题意得:(1+20%)x=120,解得:x=100,则这件服装的进价是100元.故选A.点评:此题考查的是一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=120.18.打折前购买A商品40件与购买B商品30件所花的钱一样多,商家打折促销,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,则打折前A商品和B商品每件的价格分别为( )A.75元,100元B.120元,160元C.150元,200元D.180元,240元【答案】C【分析】设打折前A商品价格为x元,B商品为y元,根据题意列出关于x与y的方程组,求出方程组的解即可得到结果.【详解】设打折前A商品价格为x元,B商品为y元,根据题意得∵4030400.8600300.9x yx y=⎧⎨⨯+=⨯⎩∵解得∵150200 xy=⎧⎨=⎩∵则打折前A商品价格为150元,B商品为200元.故选∵C.【点睛】此题考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系时解决问题的关键. 19.春节前夕,唐狮服装专卖店按标价打折销售.茗茗去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给茗茗40元,则这两件衣服的原标价各是A.100元,300元B.100元,200元C.200元,300元D.150元,200元【答案】A【解析】【分析】设这两件衣服的原标价各是x元,y元,根据题意可得:第一件打七折,第二件打五折,共计260元,第二件打七折,第一件打五折,共计260-40元,据此列方程组求解即可∵【详解】设这两件衣服的原标价各是x元,y元,由题意得,0.70.52600.50.726040x yx y+⎧⎨+-⎩==∵解得:300100 xy=⎧⎨=⎩∵即这两件衣服的原标价各是300元,100元,故选A∵【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.二、填空题20.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花__元.【答案】400【分析】设打折前A商品的单价为x元,B商品的单价为y元,根据“打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(500x+500y﹣9600)中即可求出结论.【详解】解:设打折前A商品的单价为x元,B商品的单价为y元,依题意,得:60301080 5010840x yx y+=⎧⎨+=⎩,解得:164xy=⎧⎨=⎩,∵500x+500y﹣9600=400.故答案为:400.【点睛】本题考查了打折问题,二元一次方程组的应用,根据题意正确布列方程组是解题的关键.21.我国过年历史悠久,在传承发展中己形成了一些较为固定的习俗,有许多还相传至今,如买年货、扫尘、贴对联、吃年夜饭、守岁、拜岁、拜年、舞龙舞狮、拜神祭祖、祈福攘灾、游神、押舟、庙会、游锣鼓、游标旗、上灯酒、赏花灯等.某商店新进一批“福”字贴画和数对灯笼(灯笼一对为2件),共超过250件但不超过300件,灯笼的对数正好是“福”字贴画数量的15,每张“福”字贴画进价是4元,每对灯笼的进价是50元(灯笼成对出售),商店将“福”字贴画以高出进价的34售出,将灯笼每对按高出进价的40%售出,最后留下了35件物品未卖出,并把这批物品免费送给了自己的亲戚朋友,最后商店经过计算总利润率为20%,则最初购进灯笼___________对.【答案】41【分析】设最初购进灯笼x对,则“福”字贴5x张,留下的35件有y对灯笼,(35﹣2y)张“福”字帖,由题意列出不等式求出x的取值范围,根据利润=总售价﹣总进价=总进价×利润率列出x、y的等量关系,用x表示y的关系式,进而求得y的取值范围,由x、y取整数可求得x、y的值,即可求解.【详解】解:设最初购进灯笼x对,则“福”字贴画5x张,留下的35件有y对灯笼,(35﹣2y)张“福”字帖画,根据题意,250≤2x+5x≤300,解得:250300 77x≤≤,∵x取整数,∵36≤x≤42,∵灯笼的售价为50×(1+40%)=70元,“福”字帖画的售价为4+4×34=7元,∵总进价为50x+4×5x=70x元,总售价为70×(x﹣y)+7×[5x﹣(35﹣2y)]=(105x﹣56y﹣245)元,由题意,105x﹣56y﹣245﹣70x=20%×70x,解得:x=83y+353,∵36≤x≤42,∵36≤83y+353≤42且35﹣2y≥0,解得:738≤y≤918,∵y为整数,∵ y的值为10或11,当y=10时,x=1153(不是整数,舍去),当y=11时,x=41,∵最初购进灯笼41对,故答案为:41.【点睛】本题考查一元一次不等式的应用、二元一次方程的应用,解答的关键是读懂题意,找寻等量关系,正确列出不等式及方程,注意x、y都取整数的条件.22.云南为了打赢脱贫攻坚战,近年来利用网络帮助花农打开销售渠道.一电商对玫瑰、康乃馨、茉莉花(分别记为A、B、C)进行搭配销售,推出甲、乙两种盒装花束.其中盒装花束的成本是盒中所有A、B、C花束的成本之和.每盒甲由3束A,1束B,1束C组成;每盒乙由2束A,4束B,4束C组成.每盒甲中所有A、B、C的成本之和是1束A成本的15倍,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.该电商在双十一期间销售这两种盒装鲜花的总销售额为99200元,总利润率为24%,则销售甲盒装鲜花的总利润是__________元.【答案】3500【分析】设A的单价为x元,B的单价为y元,C的单价为z元,根据题意等量关系,列出甲成本与A的数量关系,得到y+z=12x,将其整体代入乙成本中,得到甲、乙成本之比,再设甲每盒成本m元,乙每盒成本103m元,由题意,分别计算甲、乙的单件售价,设销售甲的数量为a,销售乙的数量为b,根据两种盒装鲜花的总销售额为99200元,列方程、解方程即可.【详解】设A的单价为x元,B的单价为y元,C的单价为z元,由题意得,甲的成本:3x+y+z;乙的成本:2x+4y+4z,因为甲成本是1束A成本的15倍,即3x+y+z=15x,解得y+z=12x将y+z=12x代入乙成本:50x所以甲成本:乙成本=3:10设甲每盒成本m元,乙每盒成本103m元,根据题意得,乙每盒售价为10(120%)43m m+=,甲每盒售价为4010120%3mm=+设销售甲的数量为a,销售乙的数量为b,则10104(124%)() 33ma mb ma mb +=+⨯+解得10157 7575mb ma=15710b a ∴=由104992003ma mb+=得,10157499200310ma ma+⨯=解得=1500ma销售甲的总利润为107350033ma ma ma-==(元)故答案为:3500【点睛】本题考查一元一次方程的应用—利润问题、二元一次方程组的应用,其中涉及一元一次方程的解法,整体代入法等知识,是重要考点,难度一般,掌握相关知识是解题关键.23.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..【答案】31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.24.端午节期间超市销售某品牌粽子,购买1袋大包装粽子和2袋小包装粽子共用 24元, 买2袋大包装粽子和3袋小包装粽子共用44元,小聪快速计算出1 袋小包装粽子_____元; 他想用不超过110元购买大包装粽子和小包装粽子共计20袋(两种都购买), 他可以有______种购买方案.【答案】4 2【分析】设大包装粽子每袋x元,小包装粽子每袋y元,根据题意得到方程2242344x yx y+=+=⎧⎨⎩,求解即可;设可以买大包装粽子a袋,小包装粽子(20-a)袋,根据题意列出不等式16a+4(20-a)≤110,求解即可.【详解】解:设大包装粽子每袋x元,小包装粽子每袋y元,依题意有:224 2344 x yx y+=+=⎧⎨⎩解得164xy==⎧⎨⎩,故1袋小包装粽子4元;设可以买大包装粽子a袋,小包装粽子(20-a)袋,依题意有:16a+4(20-a)≤110,整理得:12a≤30,即a≤52,∵a为正整数,即a=1时,则b=20-1=19,a=2时,即b=20-2=18,故有2种购买方案;故答案为:4;2.【点睛】本题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,根据题意列出式子是解题关键.25.小华在文具超市挑选了6支中性笔和5本笔记本.结账时,小华付款50元,营业店员找零4元,小华说:“阿姨您好,6支中性笔和5本笔记本一共42元,应该找零8元.”店员说:“啊…哦,我明白了,小朋友你真棒,我刚才把中性笔和笔记本的单价弄反了,对不起,再找给你4元”.根据两人的对话计算:若购买一支中性笔和一本笔记本一共需要付款______元.【答案】8【分析】设购买一支中性笔x元,购买一本笔记本y元,根据“6支中性笔和5本笔记本一共42元”,“5支中性笔和6本笔记本一共46元”列出方程组并解答.设购买一支中性笔x元,购买一本笔记本y元,则65504 6542y xx y+=-⎧⎨+=⎩①②,由∵+∵,得11(x+y)=88,所以x+y=8,即:购买一支中性笔和一本笔记本一共需要付款8元,故答案为:8.【点睛】本题考查二元一次方程组的应用,理解题意,正确列出二元一次方程组是解题的关键,解方程组时,注意观察方程组的特点,可进行简便运算.26.小慧带着妈妈给的现金去蛋糕店买蛋糕.他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元;若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元.若他只买8个桂圆蛋糕,则剩余的钱为________元.【答案】49【分析】设买一个巧克力x元,买一个蛋糕y元,根据已知条件可得到他妈妈给小慧的钱为5x+3y-16和3x+5y+10,由此建立关于x,y的方程,求出x-y的值,然后求出他买8个桂圆蛋糕的剩余的钱为5x+3y-16-8y,将其整理可求出结果.【详解】解:设买一个巧克力x元,买一个蛋糕y元,∵他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元,∵他妈妈给小慧的钱为5x+3y-16;∵ 若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元,∵3x+5y+10∵5x+3y-16=3x+5y+10,解之:x-y=13.他买8个桂圆蛋糕的钱为8y,他剩余的钱为5x+3y-16-8y=5x-5y-16=5(x-y)-16=5×13-16=49元.故答案为:49.本题考查了二元一次方程的应用,以及整式的加减,根据题意找出等量关系是解决本题的关键.三、解答题27.经营户小熊在蔬菜批发市场上了解到以下信息内容:他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完.请你计算出小熊能赚多少钱?【答案】73元【分析】根据题意可知本题的等量关系有:西红柿的重量+辣椒的重量=44;1.6×西红柿的重量+4×辣椒的重量=116.根据这两个等量关系,可列出方程组,从而计算出当天能赚的钱数.【详解】解:设小熊在市场上批发了红辣椒x千克,西红柿y千克.根据题意得444 1.6116 x yx y+=⎧⎨+=⎩,解得:1925 xy=⎧⎨=⎩,25×3+19×6-116=73(元),∵当天卖完,小熊能赚73元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.28.某商场欲购进甲乙两种商品,若购进甲2件,乙3件,则共需成本1700元;若购进甲3件,乙1件,则共需成本1500元.(1)求甲乙两种商品成本分别为多少元?(2)该商场决定在成本不超过3万元的前提下购进甲、乙两种商品,若购进乙种商品的数量是甲种商品的3倍多10件,求最多购进甲种商品多少件?【答案】(1)甲种商品的成本为400元/件,乙种商品的成本为300元/件;(2)20件【分析】(1)设甲种商品的成本为x元/件,乙种商品的成本为y元/件,根据“购进甲2件,乙3件,共需成本1700元;购进甲3件,乙1件,共需成本1500元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设甲种商品购进m件,则乙种商品购进(3m+10)件,根据总价=单价×数量结合用不超过3万元购买甲、乙两种商品,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最大正整数即可得出结论.【详解】解:(1)设甲种商品的成本为x元/件,乙种商品的成本为y元/件,根据题意得:231700 31500x yx y+=⎧⎨+=⎩,解得:400300 xy=⎧⎨=⎩.答:甲种商品的成本为400元/件,乙种商品的成本为300元/件.(2)设甲种商品购进m件,则乙种商品购进(3m+10)件,根据题意得:400m+300(3m+10)≤30000,解得:m≤2010 13.∵m为正整数,∵m最大为20.答:最多购进甲种商品20件.【点睛】本题主要考查了二元一次方程组的应用和一元一次不等式的应用,准确计算是解题的关键.29.小圆玩具工厂生产男孩玩具和女孩玩具,若生产男孩玩具8件,女孩玩具5件,需要成本3600元;若生产男孩玩具12件,女孩玩具10件,需要成本6400元.(1)男孩玩具和女孩玩具每件成本多少元?(2)根据市场调查,销售一件男孩玩具可获利100元,销售1件女孩玩具可获利240元,小圆玩具工厂计划投入不超过21万资金生产两种玩具,且男孩玩具产量是女孩玩具产量的3倍,预计全部销售后利润不少于11万元,请通过计算说明有几种生产方案.【答案】(1)男孩玩具每件成本为200元,女孩玩具每件成本为400元;(2)7种【分析】(1)设男孩玩具每件成本为x 元,女孩玩具每件成本为y 元,根据“生产男孩玩具和女孩玩具,若生产男孩玩具8件,女孩玩具5件,需要成本3600元;若生产男孩玩具12件,女孩玩具10件,需要成本6400元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设女孩玩具产量为a 件,则男孩玩具产量为3a 件,根据小圆玩具工厂计划投入不超过21万资金生产两种玩具,且全部销售后利润不少于11万元,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,再根据a 为整数即可得出生产方案的种数.【详解】解:(1)设设男孩玩具每件成本为x 元,女孩玩具每件成本为y 元,根据题意得:85360012106400x y x y +=⎧⎨+=⎩,解得:200400x y =⎧⎨=⎩. 答:男孩玩具每件成本为200元,女孩玩具每件成本为400元.(2)设女孩玩具产量为a 件,则男孩玩具产量为3a 件,根据题意得:20034002100001003240110000a a a a ⨯+≤⎧⎨⨯+≥⎩,解得:550027≤a ≤210, 又∵a 为整数,∵204≤a ≤210.∵共有7种生产方案.【点睛】本题考查了一元一次不等式组的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据数量关系,正确列出一元一次不等式组.30.为保障学生在学校期间保持清洁卫生,学校准备购买甲、乙两种洗手液,已知购买2瓶甲洗手液和3瓶乙洗手液共需140元,购买1瓶乙洗手液比购买2瓶甲洗手液少用20元.(1)求购买甲、乙两种洗手液每瓶各需多少元?(2)若要购买甲、乙两种洗手液共20瓶,且总费用不超过546元,求至少要购进甲种洗手液多少瓶?。
2020初中数学二元一次方程组典例应用:利润问题
2020初中数学二元一次方程组典例应用:利润问题
知识梳理:
商品利润=商品售价-商品进价;利润率=利润进价100%。
典型例题:
思路点拨:
本题有两个未知数,即商品本钱和预售总价,也有两个明显的等量关系,即两种打折出售的获利情况,根据售价-成本-存货费用=利润,可以列出方程组求解即可。
变式拓展:
思路点拨:
本题易知第一个等量关系为甲乙两种商品共50件,则有x+y=50。
根据甲乙商品的进价和利润率可知甲商品每件利润为350.2=7元,乙商品每件利润为200.15=3元,再由所获总利润得到第二个等量关系,组成方程组求解即可。
部编数学七年级下册专题22二元一次方程组的实际应用之销售利润问题(解析版)含答案
专题22 二元一次方程组的实际应用之销售利润问题【例题讲解】某超市第一次用3800元购进了甲、乙两种商品,其中甲种商品40件,乙种商品160件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为25元/件.(1)甲、乙两种商品每件进价各多少元?(2)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次售完获得的总利润多160元,那么a的值是多少?(1)解:设甲种商品每件进价x元,乙种商品每件进价y元,由题意可得:5401603800y xx y-=ìí+=î,解得:1520xy=ìí=î,答:甲种商品每件进价15元,乙种商品每件进价20元;(2)解:由题意()()() 40201%15160251%203a a´+-+´---éùéùëûëû,()()4020151602520160=´-+´-+,解得10a=.答:a的值是10.【综合解答】1.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价﹣进价)×销售量]A B进价(万元/套) 1.5 1.2售价(万元/套 1.65 1.4(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)现商场决定再用30万同时购进A,B两种设备,共有哪几种进货方案?【答案】(1)购进A品牌的教学设备20套,购进B品牌的教学设备30套(2)有4种方案,方案见解析【分析】(1)根据题意设购进A 品牌的教学设备x 套,购进B 品牌的教学设备y 套,再根据总进价为66万元,毛利润为9万元,列出二元一次方程组,解出答案即可;(2)根据题意设再用30万购进A 品牌的教学设备a 套,购进B 品牌的教学设备b 套,根据题意列出二元一次方程,由于a , b 均为正整数,即可得出方程的解,即可得出有4种进货方案.【详解】(1)解:设购进A 品牌的教学设备x 套,购进B 品牌的教学设备y 套,得,()()1.5 1.2661.65 1.5 1.4 1.29x y x y +=ìí-+-=î,解得,2030x y =ìí=î,经检验,2030x y =ìí=î符合题意,答:购进A 品牌的教学设备20套,购进B 品牌的教学设备30套;(2)设再用30万购进A 品牌的教学设备a 套,购进B 品牌的教学设备b 套,由题意得,1.5 1.230a b +=,∵a , b 均为正整数,∴此方程的解为:420a b =ìí=î,或815a b =ìí=î,或1210a b =ìí=î,或165a b =ìí=î,综上所述,有4种方案:①购进A 品牌的教学设备4套,购进B 品牌的教学设备20套;②购进A 品牌的教学设备8套,购进B 品牌的教学设备15套;③购进A 品牌的教学设备12套,购进B 品牌的教学设备10套;④购进A 品牌的教学设备16套,购进B 品牌的教学设备5套.【点睛】本题考查了二元一次方程(组)的应用,找出等量关系列出方程和方程组是本题的关键.2.2022年北京冬奥会、冬残奥会的纪念品得到广大民众的喜爱,某校想要购买A 型、B 型两种纪念品.已知购买2件A 型纪念品和1件B 型纪念品共需150元;购买3件A 型纪念品和2件B 型纪念品共需245元.(1)求A 型纪念品和B 型纪念品的单价;(2)学校现需一次性购买A 型纪念品和B 型纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个A 型纪念品?【答案】(1)A 型纪念品和B 型纪念品的单价分别是55元和40元3.为了丰富学生的课余生活,某校计划购买足球和篮球给同学们活动使用,若购买1个足球和2个篮球需用220元;若购买2个足球和1个篮球需用230元;(1)求购买一个足球和一个篮球各多少元;(2)如果购买足球和篮球共75个,且购买足球的数量不低于篮球数量的1.4倍,求最多可购买多少个篮球?(3)学校根据实际情况,在(2)的前提下,要求购买的总费用不超过5700元,请问有哪几种购买方案?哪种方案最省钱?【答案】(1)购买一个足球需80元,一个篮球需70元;(2)最多可购买31个篮球;(3)有两种购买方案:①购买篮球30个,购买足球45个;②购买篮球31个,购买足球44个.其中方案②购买篮球31个,购买足球44个最省钱.∴购买篮球31个,购买足球44个最省钱.【点睛】本题考查一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式,利用方程的思想和不等式的性质解答.4.下表是某店某天销售A,B两种小商品的账目记录.销售数量/件总销售金额/元A B第一天2010560第二天1515540(1)求A,B两种商品的售价;(2)若A的进价为14元/件,B的进价为12元/件,某天共卖出两种商品40件,且两者总利润不低于210元,则至少销售A商品多少件?(3)在(2)的条件下,如果将A商品打9折销售,那么A商品的利润率是多少(结果精确到0.1%)?5.商场正在销售帐篷和棉被两种防寒商品,已知购买1顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.(1)求1顶帐篷和1床棉被的价格各是多少元;(2)某学校准备购买这两种防寒商品共80件送给灾区,要求每种商品都要购买,且帐篷的数量多于棉被的数量,但因为学校资金不足,购买总金额不能超过8500元,请问学校共有哪几种购买方案?【答案】(1)帐篷120元,棉被90元(2)3种购买方案:帐篷41顶,棉被39床;帐篷42顶,棉被38床;帐篷43顶,棉被37床【分析】(1)根据1顶帐篷的钱数+2床棉被的钱数=300元,2顶帐篷的钱数+3床棉被的钱数=510元,可得出方程组,解出即可;(2)设帐篷a顶,则棉被(80-a)床,再由购买总金额不能超过8500元,可得出不等式组,解出即可.(1)解:设一顶帐篷x元,一床棉被y元,则2300 23510x yx y+=ìí+=î,解得:12090xy=ìí=î.答:1顶帐篷120元,1床棉被90元;(2)6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?∴a≤41,答:A 种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.7.某电器商城准备销售每台进价分别为200元、150元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)销售数量销售时段A 种型号B 种型号销售收入第一个月3台5台2300元第二个月4台10台4000元(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5500元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为2100元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为300元、280元(2)超市最多采购A 种型号电风扇20台时,采购金额不多于5500元(3)超市不能实现利润2100元的目标,理由见解析【分析】(1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据总价=单价×数量结合近两月的销售情况统计表,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设A 种型号的电风扇采购a 台,则B 种型号的电风扇采购()30a - 台,根据进货总价=进货单价×进货数量结合超市准备用不多于5500元的金额采购两种型号的电风扇共30台,即可得出关于a 的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售利润为2100元时的A 种型号电风扇采购台数a ,再判断即可.(1)解:设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:3523004104000x y x y +=ìí+=î,解得:300280x y =ìí=î,答:A 、B 两种型号电风扇的销售单价分别为300元、280元;(2)解:设采购A 种型号电风扇a 台,则采购B 种型号电风扇()30a -台.依题意得:()200150305500a a +-£,解得:20a £.答:超市最多采购A 种型号电风扇20台时,采购金额不多于5500元;(3)解:依题意有:()()()300200280150302100-+--=a a ,解得:60a =,∵20a £,∴在(2)的条件下超市不能实现利润2100元的目标.答:超市不能实现利润2100元的目标.【点睛】本题主要考查解二元一次方程组、一元一次方程与一元一次不等式,解题的关键是根据条件列出相应的方程或者不等式.8.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如下表:销售量/件月份冰墩墩雪容融销售额/元第1个月1204017160第2个月1506022200求此款“冰墩墩”和“雪容融”玩具的零售价格.解题方案:设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,(Ⅰ)根据题意,列出方程组______,______.ìíî(Ⅱ)解这个方程组,得______,______.x y =ìí=î答:此款“冰墩墩”玩具的零售价格为______元,“雪容融”玩具的零售价格为______元.【答案】1204017160,1506022200,118,75,x y x y +=+=118, 75.【分析】设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,再根据表格信息可得两种情况下的销售额,再列方程组,解方程组即可.【详解】解:设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,(Ⅰ)根据题意,列出方程组1204017160150+60,22200x y x y +==ìíî(Ⅱ)解这个方程组,得118,75x y =ìí=î答:此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元.【点睛】本题考查的是二元一次方程组的应用,确定相等关系是解本题的关键.9.某商店准备销售甲、乙两种商品共80件,已知甲商品进货价为每件70元,乙商品进货价为每件35元,在定价销售时,1件甲商品比1件乙商品售价多30元,3件甲商品比2件乙商品售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?【答案】(1)每件甲商品售价为90元,每件乙商品售价为60元(2)至多进货甲商品40件【分析】(1)设每件甲商品与每件乙商品的售价分别是x 元、y 元,根据“1件甲商品比1件乙商品售价多30元,3件甲商品比2件乙商品售价多150元”列出二元一次方程组求解即可;(2)设进货甲商品a 件,则乙商品(80)a -件,根据题意列出一元一次不等式求解即可.(1)设每件甲商品与每件乙商品的售价分别是x 元、y 元,得3032150x y x y -=ìí-=î 解得:9060x y =ìí=î答:每件甲商品售价为90元,每件乙商品售价为60元.(2)设进货甲商品a 件,则乙商品(80)a -件,依题意得:()7035804200a a+-£,解得40a£因此,至多进货甲商品40件.【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.10.我县某小区积极响应国家号召,落实“垃圾分类回收,科学处理”的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在小区各个合适位置,以方便进行垃圾分类投放.小区物业共支付费用4240元,A、B型号价格信息如表:型号价格A型200元/只B型240元/只(1)请问小区物业购买A型和B型垃圾回收箱各是多少只?(2)因受到居民欢迎,物业准备再次购进A、B两种型号的垃圾分类回收箱共40只,总费用不超过9000元,那么物业至少购进A型号回收箱多少只?【答案】(1)购买A型垃圾回收箱14只,购买B型垃圾回收箱6只;(2)15只【分析】(1)设学校购买A型垃圾回收箱x只,购买B型垃圾回收箱y只,根据学校购买两种型号的垃圾回收箱共20只且共花费4240元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据节省的总费用=每只节省的费用×购买B型垃圾回收箱的数量,即可求出结论.【详解】解:(1)设购买A型垃圾回收箱x只,购买B型垃圾回收箱y只.依题意得:20 2002404240x yx y+ìí+î==.解得:146xyìíî==.答:购买A型垃圾回收箱14只,购买B型垃圾回收箱6只.(2)设再次购买A型垃圾回收箱m只,则购买B型垃圾回收箱(40﹣m)只,依题意得:200m+240(40﹣m)≤9000,解得:m≥15.答:至少购买A型垃圾回收箱15只.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.11.某景点的门票价格如表:购票人数/人1~5051~100100以上每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【答案】(1)七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.【详解】试题分析:(1)设七年级(1)班有x 人、七年级(2)班有y 人,根据如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元建立方程组求出其解即可;(2)用一张票节省的费用×该班人数即可求解.试题解析:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得12101118{8()816x y x y +=+=,解得:49{53x y ==.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12-8)×49=196元,七年级(2)班节省的费用为:(10-8)×53=106元.考点:二元一次方程组的应用.12.在“6·18”活动中,某电商上架200个A 商品和150个B 商品进行销售,已知购买3个A 商品和6个B 商品共需780元,购买1个A 商品和5个B 商品共需500元.(1)求A 商品和B 商品的售价分别是多少元?(2)在A商品售出35,B商品售出23后,为了尽快回笼资金,店主决定对剩余的A商品每个打a折销售,对剩余的B商品每个降价2a元销售,很快全部售完.若要保证本月销售总额不低于29250元,求a的最小值.13.江津区开展“一卷诗书,万千世界”读书节活动,初一年级倡导书目确定为《我们仨》和《围城》.已知购买3本《我们仨》和4本《围城》共需160元.购进2本《我们仨》和1本《围城》共需65元.(1)购买一本《我们仨》和一本《围城》各需多少钱?(2)针对此次活动,学校图书馆为方便学生借阅,计划购进两种书籍共100本,且总费用不超过2345元,预计购进《我们仨》的数量不超过《围城》数量的12,有哪几种购买方案?【答案】(1)购买一本《我们仨》需20元,购买一本《围城》需25元(2)有3种购买方案:①购买《我们仨》31本,购买《围城》69本;②购买《我们仨》32本,购买《围城》68本;③购买《我们仨》33本,购买《围城》67本.14.今年神舟十四号成功发射,某航天博物馆顺势推出了“我要做太空人”系列航天纪念品,提供“漫步星河”、“梦想远航”两种不同的纪念品套餐供游客选择.已知购买2份“漫步星河”与5份“梦想远航”共需付款160元,购买2份“漫步星河”比购买1份“梦想远航”多付款40元.(1)请问每份“漫步星河”多少元?每份“梦想远航”多少元?(2)近期越来越多的学校选择来该博物馆进行研学之旅,于是该博物馆决定对纪念品推出两种优惠活动,如表所示:“漫步星河”纪念品“梦想远航”纪念品活动一每份为原价的56每份5折活动二每购买一份“漫步星河”纪念品,就赠送一份“梦想远航”纪念品若某中学某年级决定购买“漫步星河”、“梦想远航”两种纪念品套餐共100份(其中“漫步星河”纪念品不超过50份),则购买“漫步星河”纪念品套餐多少份时,选择优惠一和优惠二购买所需的费用相同?依题意得:151000102000m m +=-+,解得:40m =答:购买“漫步星河”纪念品套餐40份时,选择优惠一和优惠二购买所需的费用相同.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.15.某忠州腐乳销售店的麻辣味和红油味最畅销,今年1月麻辣味卖出55罐,红油味卖出40罐,共收入5300元:2月麻辣味卖出80罐,红油味卖出60罐,共收入7800元.并且今年1月和2月两种罐装风味豆腐乳的销售价不变.(1)求今年1月麻辣味和红油味的销售价(单位:元/罐);(2)为回馈顾客,在今年3月,麻辣味销售价降10%,销售量在2月的基础上增加了25m 罐,红油味销售价降12m 元,销售量在2月的基础上增加了40%.若今年3月的总销售额比今年1月至少增加2812元,求m 的最大值.【点睛】本题考查了二元一次方程组的应用和一元一次不等式组的应用,解题的关键在于找准等量关系和数量关系.16.某街道为了绿化一块闲置空地,购买了甲、乙两种树木共72棵种植在这个空地上,购买时,已知甲种树木的单价是乙种树木的单价的98,乙种树木的单价是每棵80元,购买甲、乙两种树木的总费用是6160元.(1)甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好,该街道决定再次购买这两种树木来绿化另一块闲置空地,购买时,发现甲种树木的单价比第一次购买时的单价下降了50a ,乙种树木的单价比第一次购买时的单价下降了110,于是,该街道购买甲种树木的数量比第一次多了15,购买乙种树的数量比第一次多了50a ,且购买甲、乙两种树木的总费用比第一次多了2125a ,请求出a 的值.解得∶a=5,答∶a的值为5.【点睛】本题考查了二元一次方程组的应用的应用以及一元一次方程的应用,解题的关键是∶(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.17.某零食店销售牛轧糖、雪花酥2种糖果,如果用800元可购买5千克牛轧糖和4千克雪花酥,用760元可购买7千克牛轧糖和2千克雪花酥.(1)求牛轧糖、雪花酥每千克的价格分别为多少元?(2)已知该零食店在12月共售出牛轧糖50千克、雪花酥30千克.春节将近,1月份超市将牛轧糖每千克的售价提升43m元,雪花酥的价格不变,结果与12月相比,牛轧糖只销售了45千克,雪花酥销量上升1m5千克,销售总额超过了12月份销售总额;求m的取值范围.程和不等式并正确计算.18.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克)34零售价(元/千克)47(1)当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?(2)当天他卖完这些黄瓜和茄子后,又花了50元去批发了m 千克黄瓜和n 千克茄子(m 、n 为整数),求m n 、的值.【答案】(1)这天他批发的黄瓜和茄子分别是15千克和25千克(2)211m n =ìí=î或68m n =ìí=î或105m n =ìí=î或142m n =ìí=î【分析】(1)设这天他批发的黄瓜和茄子分别是x 千克和y 千克,根据题意即可列出二元一次方程组,解方程组即可求得;(2)根据题意即可列出二元一次方程,再根据m n 、为整数,即可求得(1)解:设这天他批发的黄瓜和茄子分别是x 千克和y 千克,根据题意得()()34145437490x y x y +=ìí-+-=î 整理得:34145390x y x y +=ìí+=î①②由3´-②①得,5y =125,解得y =25,把y =25代入②得,x +75=90,解得x =15,故这天他批发的黄瓜和茄子分别是15千克和25千克;(2)19.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,由于第二次购进水果的量比较大,水果店决定降价销售,第二次购进的水果按第一次的售价降价1元卖出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于864元,则该水果店第二次购进的水果每千克售价至少为多少元?解:第一次所购该水果的重量为8004200¸=(千克).第二次所购该水果的重量为2002400´=(千克).设该水果店第一次购进的水果每千克售价为a 元,根据题意得()()()20013%40015%180********a a -+----³,解得6a ³,则15a -=,即该水果店第二次购进的水果每千克售价至少为5元.答:该水果店第二次购进的水果每千克售价至少为5元.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.。
初中数学二元一次方程组的应用题型分类汇编——销售利润问题3(附答案)
则商品 A、B 的单价分别是( )
A.60 元,90 元
B.90 元,60 元
C.90 元,120 元
D.120 元,90 元
10.小华准备购买单价分别为 4 元和 5 元的两种拼装饮料,若小华将 50 元恰好用完,
两种饮料都买,则购买方案共有( )
A.2 种 B.3 种 C.4 种 D.5 种
11.某种商品的进价为 18 元,标价为 x 元,由于该商品积压,商店准备按标价的 8 折
销售,可保证利润率达到 20%,则标价为_____.
12.某营业员昨天卖出 7 件衬衫和 4 条裤子共 460 元,今天又卖出 9 件衬衫和 6 条裤子
共 660 元,则每件衬衫售价为_____,每条裤子售价为_____.
13.佳惠康超市的账目记录显示,某天卖出 12 支牙刷和 9 盒牙膏,收入 105 元;另一
降价的钱数为( )A.5 元B.10 元C.0 元 D.36 元
7.已知甲、乙两种商品的进价和为 100 元,为了促销而打折销售,若甲商品打八折, 乙商品打六折,则可赚 50 元,若甲商品打六折,乙商品打八折,则可赚 30 元,甲、乙 两种商品的定价分别为( ) A.50 元、150 元 B.50 元、100 元 C.100 元、50 元 D.150 元、50 元 8.春节期间,家家乐商场购进一批糖果,加价 40%作为销售价.为了吸引顾客,决定 由顾客抽奖确定折扣.某顾客购买甲、乙两种糖果,分别抽到七折和九折,共付款 399 元,两种商品原售价之和为 490 元,甲、乙两种糖果的进价分别是( ) A.200 元,150 元 B.210 元,280 元 C.280 元,210 元 D.150 元,200 元 9.小林在某商店两次购买商品 A、B,购买商品 A、B 的数量和费用如下表:
二元一次方程组与一元一次不等式组经典应用题
二元一次方程组与一元一次不等式(组)应用题1.某商店准备购进甲、乙两种商品,已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。
(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件?(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少?2.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310 元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?3.为了打造区域中心城市,实现跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?4.某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1 块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?5.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购4套A型和6套B型课桌凳共需1820元。
不等式利润问题
拓展提升
某商品的进价是120元,标价为180元,但销量较 小.为了促销,商场决定打折销售,为了保证利润 率不低于20%,那么最多可以打几折出售此商品?
综合运用
某商店用36000元购进甲、乙两种商品,销售完后共获 利6000元,其进价和售价如下表:
(1)该商店购进甲、乙两种商品各多少件; (2)商店第二次以原进价购进甲、乙两种商品.购进 乙种商品的件数不变,而购进甲种商品的件数是第一次 的2倍,甲种商品按原售价出售,而乙种商品打折销售。 若两种商品销售完毕,要使第二次经营活动获利不少于 8160元,乙种商品最低售价为每件多少元?
总结归纳
应用一元一次不等式解决实际问题的步骤:
实际问题 找出不等关系 列不等式 设未知数
解不等式
结合实际 确定答案
解得
x ≥ 125.
答:每套童装的售价至少是125元.
练习
1、商家花费760元购进某种水果80千克,销售中有 5%的水果正常损耗.为了避免亏本,售价至少应定 为每千克元?
2、某商店的老板销售一种商品,他要获得不低于进 价20%的利润才能出售,但为了获得更多利润,他 以高出进价80%的价格标价,若你想买下标价为360 元的这种商品,商店老板让价的最大限度为多少元?
售价=
标价×
折扣数 10
×100%
售价= 进价 ×(1+利润率)
典例精析
例 某童装店按每套90元的价格购进40套童装,应
缴纳的税费为销售额的10%. 如果要获得不低于900元的 纯利润,每套童装的售价至少是多少元?
分析: 本题涉及的数量关系是: 销售额-成本-税费≥纯利润(900元).
解: 设每套童装的售价是 x 元.根据题意得: 40x-90×40-40x·10%≥900.
初中数学二元一次方程组的应用题型分类汇编——销售利润问题6(附答案)
初中数学二元一次方程组的应用题型分类汇编——销售利润问题6(附答案)1.某商场经销一种商品,由于进货时的价格比原来的进价低了8%,但售价不变,这样使得利润率由原利润率a%增长为(a+10)%,则原利润率为______________.2.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价20%,乙商品提价60%,调整后两种商品的单价和比原来的单价和提高了50%,则购买调价后的3件甲商品和2件乙商品共需________元.3.某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是万元.4.今年春节,A,B两人到商场购物,A购3件甲商品和1件乙商品共支付11元,B 购5件甲商品和3件乙商品共支付25元,则购2件甲商品和1件乙商品共需支付______ .元5.若买2支圆珠笔、1本笔记本需14元;买1支圆珠笔,2本笔记本需16元,则买5.支圆珠笔、5本笔记本需______元6.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支.7.“国十条”等楼市新政的出台,使得房地产市场交易量和楼市房价都一味呈现止涨观望的态势.若某一商人在新政的出台前进货价便宜8%,而现售价保持不变,那么他的利润率(按进货价而定)可由目前的x%增加到(x+10)%,x等于_____.8.某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份展开促销活动,男女服装的销售收入分别比二月份增长了40%,64%,已知第一季度男女服装的销售总收入为20万元.(1)二月份销售收入为_______万元.三月份销售收入为______万元.(2)二月份男女服装的销售收入分别是多少万元?9.小明用48元钱按零售价买了若干练习本. 如果按批发价购买, 每本便宜2元, 恰好多买4本. 那么零售价每本_______ 元.10.某商场进了一种T恤衫30件和一种衬衫20件,T恤衫的售价是m元/件,衬衫的售价是T恤衫的2倍,销售一段时间后,T恤衫和衬衫卖出的数量恰好相同.此时商场决定调价,把T恤衫的售价提高75%,把衬衫的售价降低50%,当商场卖完这两种衣服后,发现这批衬衫和T恤衫的平均售价是一样的,那么调价前卖出的衬衫和T恤衫的数量都是____ __件.11.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B 产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?12.某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.13.某电器商场销售进价分别为120元、190元的,A B两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润=销售收入-进货成本):(1)求,A B两种型号的电风扇的销售单价;(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案;若不能,请说明理由.14.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.15.某农场去年计划生产玉米和小麦共200吨.采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%.该农场去年实际生产玉米、小麦各多少吨?16.2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?17.爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款的自行车单价相同,书包单价也相同,自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元.(1)求自行车和书包单价各为多少元;(2)新年来临赶上商家促销,乙商场所有商品打八五折(即8.5折)销售,甲全场购物毎满100元返购物券30元(即不足100元不返券,满100元送30元购物券,满200元送60元购物券),并可当场用于购物,购物券全场通用.但爸爸只带了400元钱,如果他只在同一家商场购买看中的两样物品,在哪一家买更省钱?18.华为手机与苹果手机受消费者喜爱,某商户每周都用25000元购进250张华为手机壳和150张苹果手机壳.(1)商户在第一周销售时,每张华为手机壳的售价比每张苹果手机壳的售价的2倍少10元,且两种手机壳在一周之内全部售完,总盈利为5000元,商户销售苹果手机壳的价格每张多少元?(2)商户在第二周销售时,受到各种因素的影响,每张华为手机壳的售价比第一周每张华为手机壳的售价增加5%3a,但华为手机壳的销售量比第一周华为手机壳的销售量下降了a%;每张苹果手机壳的售价比第一周每张苹果手机壳的售价下降了a%,但苹果手机壳销售量与第一周苹果手机壳销售量相同,结果第二周的总销售额为30000元,求a(0a )的值.19.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元;(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以x>件甲种玩具需要花费y元,请你写出y与x的函数表享受7折优惠,若购进x()0达式.20.某校为了体育活动更好的开展,决定购买一批篮球和足球.据了解:篮球的单价比足球的单价多20元,用1000元购买篮球的个数与用800元购买足球的个数相同.(1)篮球、足球的单价各是多少元?(2)若学校打算购买篮球和足球的数量共100个,且购买的总费用不超过9600元,问最多能购买多少个篮球?21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:(1)分别求A、B两种型号的净水器的销售单价;(2)若该电器公司准备用不多于54000元的金额采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?22.随着科技的发展,智能产品越来越受到人们的喜爱,为了奖励员工,某公司打算采购一批智能音箱.现有A,B两款智能音箱可供选择,已知A款音箱的单价比B款音箱的单价高50元,购买5个A款音箱和4个B款音箱共需1600元.(1)分别求出A款音箱和B款音箱的单价;(2)公司打算采购A,B两款音箱共20个,且采购A,B两款音箱的总费用不超过3500元,那么A款音箱最多采购多少个?23.随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买3张电影票的费用比现场购买2张电影票的费用少10元:从网上购买5张电影票的费用和现场购买1张电影票的费用共200元.(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?(2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为500张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低2元,售出总票数就比五一当天增加4张.经统计,5月5日售出的总票数中有60%的电影票通过网上售出,其余通过现场售出,且当天票房总收入为17680元,试求出5月5日当天现场购票每张电影票的价格为多少元?24.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.25.某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克?26.学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元.(1)求每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案?27.某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元;购进甲商品1件和乙商品2件共需70元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.28.为建设美丽家园,某社区将辖区内的-块面积为1000m2的空地进行绿化,-部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y l(元)与x(m2)的函数关系图象如图所示,栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.Olx2-20x+30000(0≤x≤1000).(1)求y l(元)与x(m2)的函数关系式;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求绿化总费用W的最大值.29.打折前,买20件A商品和30件B商品要用2200元,买50件A商品和10件B商品要用2900元.若打折后,买40件A商品和40件B商品用了3240元,比不打折少花多少钱?30.重庆不仅是网红城市,更是拥有长安,力帆等大型车企的一座汽车城,为了更好的推广和销售汽车,每年都会在悦来会展中心举办大型车展.去年该车展期间大众旗下两品牌汽车迈腾和途观L共计销售240辆,迈腾销售均价为每辆20万元,途观L销售均价为每辆30万元,两种车型去年车展期间销售额共计5600万元.(1)这两种车型在去年车展期间各销售了多少辆?(2)在今年的该车展上,各大汽车经销商纷纷采取降价促销手段,而途观L坚持不降价,与去年相比,销售均价不变,销量比去年车展期间减少了a%,而迈腾销售均价比去年降低了a%,销量较去年增加了2a%,两种车型今年车展期间销售总额与去年相同,求a的值.参考答案1.15%.【解析】试题分析:设原商品的进价为b元,商品的售价为x元,由商品的利润率为a%,可知x=b (1+a%),然后根据现在商品的利润率为(a+10)%列方程求解即可.解:设原商品的进价为b元.根据题意得:.解得:x=b(1+a%).根据题意得:=(a+10)%.解得:a%=15%.故答案为15%.考点:一元一次方程的应用.2.310【解析】试题分析:设甲商品单件为x元,乙商品单价为y元,根据题意可得:1000.8 1.6150x yx y+=⎧⎨+=⎩,解得:12.587.5xy=⎧⎨=⎩,则调价后甲的价格为:12.5×0.8=10元,乙的价格为140元,则共需要花费:10×3+140×2=310元.3.120【解析】解:设去年五月份的销售额为x万元,那么由题意列方程:2x-40=200,解得:x=120.答:去年五月份的销售额为120万元.4.9【解析】【分析】设1件甲商品的价格为x元,1件乙商品的价格为y元,根据“A购3件甲商品和1件乙商品共支付11元,B购5件甲商品和3件乙商品共支付25元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入2x+y中即可得出结论.【详解】解:设1件甲商品的价格为x元,1件乙商品的价格为y元,根据题意得:3x11 5325yx y+=⎧⎨+=⎩,解得:x25y=⎧⎨=⎩,∴2x+y=2×2+5=9.故答案为9.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.50【解析】【分析】设1支圆珠笔的价格为x元,1本笔记本的价格为y元,根据“买2支圆珠笔、1本笔记本需14元;买1支圆珠笔,2本笔记本需16元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入5x+5y中即可求出结论.【详解】设1支圆珠笔的价格为x元,1本笔记本的价格为y元,根据题意得:214216x yx y+=⎧+=⎨⎩,解得:{46x y==,55545650x y∴+=⨯+⨯=.故答案为50.【点睛】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.6.1或2或3【解析】试题分析:∵小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,∴当买中性笔1只,则可以买橡皮5只, 当买中性笔2只,则可以买橡皮3只, 当买中性笔3只,则可以买橡皮1只, 考点:二元一次方程的应用 7.15 【解析】试题解析:设进货价钱为X ,售价为Y ,由题意可得,()92%10%%92%Y X Y Xx x X X---=+-,解得115%Y X =, 代入%Y Xx X-=,解得:15x =, ∴x 等于15. 故答案为:15.8.(1)6,9;(2)男3.5万元 女2.5万元 【解析】试题分析:(1)根据扇形统计图中的百分比以及总收入求出二月份和三月份的销售收入;(2)设二月份男装为x 万元,女装为y 万元,然后根据题意列出二元一次方程组进行求解,得出答案.试题解析:(1)二月份:20×30%=6(万元) 三月份:20×45%=9(万元) (2)设二月份男装为x 万元,女装为y 万元,根据题意得:6{1.4 1.649x y x y +=+=解得: 3.5{ 2.5x y == 答:二月份男装为3.5万元,女装为2.5万元. 考点:扇形统计图、二元一次方程组的应用 9.6 【解析】试题分析:设每本X 元,共买了Y 本则有所以X=6考点:列方程求解点评:本题属于对列方程求解的基本知识的考查和运用 10.10 【解析】解:设调价前卖出的衬衫的数量为x 件,由题意得+(30-x)(m+m 75%)2+(20-x)=3020mx mx m⨯ 解得x=1011.(1)打包成件的A 产品有200件,B 产品有120件;(2)设计方案有3种,方案①运费最少,最少运费是29600元. 【解析】 【分析】(1)设打包成件的A 产品有x 件,B 产品有y 件,利用A 产品和B 产品共320件,A 产品比B 产品多80件可列两个方程组成方程组,然后解方程组即可;(2)设租用甲种货车m 辆,利用甲乙货车装A 产品的数量和甲乙货车装B 产品的数量列不等式组,解不等式求出它的正整数解可得到运输方案,然后比较各方案的运输费即可. 【详解】(1)设打包成件的A 产品有x 件,B 产品有y 件,根据题意得32080x y x y +=⎧⎨-=⎩ ,解得200120x y =⎧⎨=⎩,答:打包成件的A 产品有200件,B 产品有120件; (2)设租用甲种货车m 辆,根据题意得4020(8)2001020(8)120m m m m +-≥⎧⎨+-≥⎩,解得2≤m ≤4,而m 为整数, 所以m =2、3、4,所以设计方案有3种,分别为:所以方案①运费最少,最少运费是29600元. 【点睛】此题考查二元一次方程组的实际应用和一元一次不等式组的应用,解题关键在于列出方程组. 12.(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a )m+30000;(3)①当10≤a <20时, W 随m 的增大而增大,②当a=20时,W 随m 的增大没变化;③当20≤a≤30时, W 随m 的增大而减小. 【解析】 【分析】(1)根据甲乙两仓库原料间的关系,可得方程组; (2)根据甲的运费与乙的运费,可得函数关系式; (3)根据一次函数的性质,要分类讨论,可得答案. 【详解】解:(1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨,由题意,得()()450140%160%30x y y x +=⎧⎨---=⎩, 解得240210x y =⎧⎨=⎩,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m 吨原料到工厂,则从乙仓库云原料(300﹣m )吨到工厂, 总运费W=(120﹣a )m+100(300﹣m )=(20﹣a )m+30000;(3)①当10≤a <20时,20﹣a >0,由一次函数的性质,得W 随m 的增大而增大, ②当a=20是,20﹣a=0,W 随m 的增大没变化; ③当20≤a≤30时,则20﹣a <0,W 随m 的增大而减小. 【点睛】本题考查了二元一次方程组的应用,一次函数的应用,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.13.(1)150元/台, 260元/台;(2) 见解析. 【解析】 【分析】(1)设A 种型号的电风扇的销售单价为x 元/台,B 种型号的电风扇的销售单价为y 元/台,根据总价=单价×数量结合近二周的销售情况统计表,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设再购进A 种型号的电风扇m 台,则购进B 种型号的电风扇(120-m)台,根据利润=销售收入-进货成本,即可得出关于m 的一元一次方程,解之即可得出结论. 【详解】(1)设A 种型号的电风扇的销售单价为x 元/台,B 种型号的电风扇的销售单价为y 元/台,根据题意,得:562310893540x y x y +=⎧⎨+=⎩, 解得150y 260x =⎧⎨=⎩,答:A 种型号的电风扇的销售单价为150元/台,B 种型号的电风扇的销售单价为260元/台; (2)设再购进A 种型号的电风扇m 台,则购进B 种型号的电风扇(120-m)台, 依题意,得:2310+3540+150m+260(120-m)-120(5+8+m)-190[6+9+(120-m)]=8240, 解得:m=40, ∴120-m=80.答:再购进A 种型号的电风扇40台,B 种型号的电风扇80台,就能实现这两批电风扇的总利润为8240元的目标. 【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:①找准等量关系,正确列出二元一次方程组;②找准等量关系,正确列出一元一次方程.14.(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元. 【解析】 【分析】(1)根据“2套A 型桌椅和1套B 型桌椅共需2000元,1套A 型桌椅和3套B 型桌椅共需3000元”,建立方程组即可得出结论;(2)根据题意建立函数关系式,由A 型桌椅不少于120套,B 型桌椅不少于70套,确定出x 的范围;(3)根据一次函数的性质,即可得出结论. 【详解】(1)设A 型桌椅的单价为a 元,B 型桌椅的单价为b 元, 根据题意知,2200033000a b a b +=⎧⎨+=⎩,解得,600800a b =⎧⎨=⎩,即:A ,B 两型桌椅的单价分别为600元,800元;(2)根据题意知,y=600x+800(200﹣x )+200×10=﹣200x+162000(120≤x≤130), (3)由(2)知,y=﹣200x+162000(120≤x≤130), ∴当x=130时,总费用最少,即:购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元. 【点睛】本题考查一次函数的应用,二元一次方程的应用,一元一次不等式组的应用,读懂题意,列出方程组或不等式是解本题的关键.15.农场去年实际生产小麦52.5吨,玉米172.5吨 【解析】 【分析】设农场去年实际生产小麦x 吨,玉米y 吨,利用去年实际产量为225吨,则x+y=250,再利用小麦超产15%,玉米超产5%,可以得出去年计划生产玉米15%+x 吨和小麦115%+y吨,由去年计划生产玉米和小麦共200吨,可得20015%115%+=++x y,进而组成方程组求出答案. 【详解】设农场去年实际生产小麦x 吨,玉米y 吨,根据题意可得:25020015%115%x y xy +=⎧⎪⎨+=⎪++⎩, 解得:52.5172.5x y =⎧⎨=⎩,答:农场去年实际生产小麦52.5吨,玉米172.5吨. 【点睛】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.16.(1)每箱井冈蜜柚需要80元,每箱井冈板栗需要120元;(2)李先生比预计的付款少付了328元 【解析】 【分析】(1)、根据“井冈蜜柚和井冈板栗各一箱需要200元,4箱井冈蜜柚和6箱井冈板栗需要1040元”列二元一次方程组,解之即可得.(2)根据节省的钱数=原价×数量﹣打折后的价格×数量,即可求出结论. 【详解】解:(1)设每箱井冈蜜柚需要x 元,每箱井冈板栗需要y 元,依题意,得:200461040x y x y +=⎧⎨+=⎩,解得:80120x y =⎧⎨=⎩.答:每箱井冈蜜柚需要80元,每箱井冈板栗需要120元.(2)200+1040﹣80×0.6×(4+1)﹣120×0.8×(6+1)=328(元). 答:李先生比预计的付款少付了328元. 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 17.(1)自行车的单价为360元/辆,书包的单价为92元/个;(2)在甲商店购买更省钱. 【解析】 【分析】(1)设自行车的单价为x元/辆,书包的单价为y元/个,根据“自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据甲、乙两商店的优惠政策分别求出在两商店购买所需费用,比较后即可得出结论.【详解】(1)设自行车的单价为x元/辆,书包的单价为y元/个,根据题意得:45248x yy x+=⎧⎨-=⎩,解得:36092xy=⎧⎨=⎩,答:自行车的单价为360元/辆,书包的单价为92元/个;(2)在甲商店购买所需费用为:360+92﹣30×3=362(元),在乙商店购买所需费用为:452×0.85=384.2(元),∵362<384.2,∴在甲商店购买更省钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据甲、乙两商店的优惠政策分别求出在两商店购买所需费用.18.(1)50;(2)20【解析】【分析】(1)设苹果手机壳的售价为每张x元,华为手机壳的售价为每张y元,列出方程组求解即可;(2)根据题意表示出第二周华为手机壳的售价及销售量,和苹果手机壳第二周的售价,然后再由第二周的总销售额为30000元,列出方程求解即可.【详解】解:(1)设苹果手机壳的售价为每张x元,华为手机壳的售价为每张y元,依题意,得:210 150250250005000 y xx y=-⎧⎨+-=⎩,解得:5090x y =⎧⎨=⎩,则苹果手机壳的售价为每张50元;(2)由题得第二周华为手机壳的售价为:901%53a ⎛⎫+⎪⎝⎭,第二周华为手机壳的销售量为:250(1%)a -,第二周苹果手机壳的售价为:50(1%)a -,依题意,得:901%250(1%)50(1%)1503000035a a a ⎛⎫+⨯-+-⨯= ⎪⎝⎭, 整理,得:23.75750a a -=,解得:10a =(不合题意,舍去),220a =, 则a 的值为20. 【点睛】本题是对一元二次方程运用的考查,熟练掌握二元一次方程组及一元二次方程的运用是解决本题的关键.19.(1)每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y =30x ;当x>20时,y =21x +180. 【解析】 【分析】(1)设每件甲种玩具的进价是m 元,每件乙种玩具的进价是n 元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组求解即可;(2)分不大于20件和大于20件两种情况,分别列出函数关系式即可. 【详解】解:(1)设每件甲种玩具的进价是m 元,每件乙种玩具的进价是n 元. 由题意得53231,23141.m n m n ⎧⎨⎩+=+=解得3027m n =⎧⎨=⎩答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y =30x ;当x>20时,y =20×30+(x -20)×30×0.7=21x +180. 【点睛】本题考查二元一次方程组的应用,一次函数的应用.(1)中能抓住题目中的一些关键性词语,找出等量关系是解题关键;(2)中需注意要分段讨论.20.(1)篮球的单价为100元,则足球的单价为80元;(2)最多能买80个篮球 【解析】 【分析】(1)设篮球的、足球的单价分别为x 元、(20)x -元,根据题意找到等量关系构造出分式方程即可解决问题.(2)设购买a 个篮球,根据题意找到不等量关系构造出不等式即可解决最值问题. 【详解】解:(1)设篮球的单价为x 元,则足球的单价为()20x -元,依题意得:100080020x x =- 解得:100x =经检验100x =是分式方程的根且符合题意, ∴2080x -=答:篮球的单价为100元,则足球的单价为80元. (2)设最多能买a 个篮球,依题意得:()100801009600a a +-≤解得:80a ≤答:最多能买80个篮球. 【点睛】本题考查了分式方程的应用、一元一次不等式的应用等知识,解题的关键是理解题意、学会正确寻找等量关系以及不等量关系,从而构造出方程或不等式解决问题,属于中等题. 21.(1)A 型号净水器的销售单价为2500元,B 型号净水器销售单价为2100元; (2)A 型号净水器最多采购10台. 【解析】 【分析】(1)设A 型号净水器的销售单价为x 元,B 型号净水器销售单价为y 元,销售单价⨯销售。
初一语文方程利润应用题
初一语文方程利润应用题
一、题目背景
这个方程利润应用题是初一语文课本中的一道数学题目。
通过
解答该题,学生能够运用方程式计算利润,并理解利润的概念和应用。
二、题目描述
某商店购进一批图书,每本进价为x元,该商店决定以每本15元的价格出售这些图书。
在出售后,商店总共赚取了300元的利润。
现在请你利用方程求解,找出每本图书的进价是多少。
三、解答过程
设图书的进价为x元,商店购进的图书数量为n本。
根据题目的描述,商店以每本15元的价格出售这些图书,总
共赚取了300元的利润。
根据利润的计算公式,利润=售价-成本,我们可以得到方程式:15n - xn = 300。
化简方程式,得到:15n - xn = 300。
将x和n整理到等号的一边,得到:15n - xn - 300 = 0。
我们可以将方程改写成如下形式:n(15 - x) - 300 = 0。
这个方程是一个一元一次方程,可以通过求解来得到图书的进价x。
求解该一元一次方程,得到:x = 15。
四、答案验证
将x = 15代入原方程中,得到:15n - 15n = 300。
经过计算,两边相减等于0,验证了我们的解答是正确的。
五、总结
通过解答这个方程利润应用题,我们的答案是每本图书的进价为15元。
学生通过这个题目的练习,不仅加深了对方程的理解,
还学会了利润的计算和应用。
这也让他们更好地理解商业运作中的利润概念,并能够运用数学知识解决实际问题。
函数利润问题
函数利润问题引言函数利润问题是指在一个经济模型中,根据给定的函数关系,通过确定函数的输出值来最大化利润或最小化成本的问题。
这是一个在微观经济学和数学优化中经常遇到的问题。
本文将通过介绍函数利润问题的基本概念、解决方法和实际应用,深入探讨这一主题。
二级标题理解函数利润问题在函数利润问题中,我们需要确定一个函数的输入值,以使得函数的输出值能够达到最大化利润或最小化成本。
这个函数可以是一个简单的数学模型,也可以是一个复杂的经济模型。
无论是哪种模型,函数利润问题都需要通过优化方法来解决。
解决函数利润问题的方法在解决函数利润问题时,我们可以使用不同的数学工具和优化算法。
下面是一些常用的方法:1.梯度下降法:梯度下降法是一种常用的优化算法,通过不断调整函数的输入值,以最小化函数的输出值。
这种方法特别适用于函数利润问题,因为我们可以通过计算函数关于输入值的导数来确定下降的方向和步长。
2.线性规划:线性规划是一种数学优化方法,适用于函数利润问题中的线性模型。
通过将函数利润问题转化为一个线性方程组或线性不等式组,我们可以使用线性规划方法来找到最优解。
3.整数规划:当函数利润问题中的变量是离散的整数时,我们需要使用整数规划方法来求解。
整数规划是一种对变量进行整数约束的数学优化方法,它在一些实际应用中具有重要意义。
实际应用案例函数利润问题在实际应用中有着广泛的应用。
下面是一些常见的案例:1.生产优化:在生产过程中,我们需要确定生产的数量以最大化利润。
通过研究生产函数和成本函数的关系,我们可以使用函数利润问题的方法来确定最优的生产方案。
2.资源分配:在资源有限的情况下,我们需要确定资源的分配方式以最大化利润。
通过将资源分配问题转化为函数利润问题,我们可以使用优化算法来确定最佳的资源分配方案。
3.市场定价:在市场竞争中,我们需要确定产品的定价以最大化利润。
通过研究市场需求函数和成本函数的关系,我们可以使用函数利润问题的方法来确定最优的市场定价策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案二:甲进货49件,乙进货51件;方案三:甲进
货50件,乙进货50件.
(3).在条件(2)下,并且不再考虑其他因素, 如甲、乙两商品全部售完,哪种方案利润最大?
最大利润是多少? 解:销售的利润
W=100×10% a +80(100- a )×25% =2000-10 a
∵ -10<0 ∴当x取最小值48时,W取得最大值, ∴2000-10×48=1520元 此时,乙商品进货的件数时100-48=52件
例2. (2016.湘西)某商店购进甲、乙两种商品,甲
的进货单价比乙的进货单价高20元,已知20个 甲商品的进货总价与25个乙商品的进货总价相同.
(1)求甲、乙每个商品的进货单价;
(2)若甲、乙两种商品共进货100件,要求两种 商品的进货总价不高于9000元,同时甲商品按进 价提高10%后的价格销售,乙商品按进价提高25% 后价格销售,两种商品全部售完后的销售总额 不低于10480元,问有哪几种进货方案?
1.某商店A商品售价为120元,进价为100元.
(1)每件商品利润为:______2_0_元________, 利润率为:______2_0_%____________.
(2)若该商品一天售出60件,则这天总利润为: ___1_2_0_0_元_____________.
2.某商店甲牛奶标价为100元,“五一”打9折 销售,则售价为:____9_0_元______.
方程(组)及不等式(组) 的应用---利润问题
1.销售问题: (1)利润=售价-_进__价_ =进价×利润率
(2)利润率=售价进-价进___价_ 100%
利润 进价
100%
(3)售价= 标价 打___折__数_ =进价×(1-利润率)
10
(4)总利润=(售价- 进价 )×销售量
=每件利润×销售量 =总支出-总支出
答:当甲进货48件,乙商品进货52件时,获得利润 最大,最大利润时1520件.
思考: (2016.龙东)某中学开学初到商场购买A、B 两种品牌的足球,购买A品牌的足球50个,购买B 品牌的足球25个,共花费4500元,已知购买一个 B品牌的足球比购买一个A种品牌的足球多花30元.
变式练习: 绵阳人民商场准备购进甲、乙两种牛奶进行 销售,若甲种牛奶的进价比乙种牛奶的进价每件 少5元,其用90元购进甲种牛奶的数量与用100元 购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
解:设乙种牛奶的进价为每件 x 元,则甲种牛 奶的进价为每件(x 5)元.
例1.(2016.泸州)某商店购买60件A商品和30 件B商品共用了1080元,购买50件A商品和20件 B商品共用了880元.
(1)A、B两种商品的单价分别是多少元?
(2)已知该商店购买B商品的件数比购买A商 品的件数的2倍少4件,如果需要购买A、B两种 商品的总件数不少于32件,且该商店购买的A、 B两种商品的总费用不超过296元,那么该商店 有哪几种购买方案?
解:(2)设购进乙种牛奶 a 件,则购进甲种
{ 牛奶 3a 3a5件5。a95
由题意得:
( 49 45)( 3a 5) ( 5550 ) a 371
解得: 23 a 25 ∵ a 为正整数,∴ a 可为24或25,∴共有两种方案:
方案一:购进甲种牛奶67件,乙种牛奶24件; 方案二:购进甲种牛奶70件,乙种牛奶25件. 答:方案一:购进甲种牛奶67件,乙种牛奶24件;
由题意得:
100 a (1100%) 80100 a (1 25%)10480
解得: 48 a 50
∵ a 为正整数,∴ a 可为24或25,∴共有两种方案:
方案一:甲进货48件,乙进货52件;方案二:甲进
货49件,乙进货51件;方案三:甲进货50件,乙
进货50件. 答:有三种方案.方案一:甲进货48件,乙进货52件;
解:(1)设甲种商品的单价为 x 元,乙种商品 的单价为 y 元.
{ { 由题得:
x y20
x 100
解得
20 x25 y
y 80
答:甲种商品的单价为100元,乙种商品的单价为 80元.
解:(2)设甲进货 a 件,则购进乙进货100 a
{ 件.
100 a 80 (100 a )9000
50 x20 y880
5 x 2yy848
答:A种商品的单价为16元,B种商品的单价为4元.
例1.(2016.泸州)某商店购买60件A商品和30 件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元. (1)A、B两种商品的单价分别是多少元?
(2)已知该商店购买B商品的件数比购买A商 品的件数的2倍少4件,如果需要购买A、B两种 商品的总件数不少于32件,且该商店购买的A、 B两种商品的总费用不超过296元,那么该商店 有哪几种购买方案?
例1.(2016.泸州)某商店购买60件A商品和30件 B商品共用了1080元,购买50件A商品和20件B 商品共用了880元. (1)A、B两种商品的单价分别是多少元? 解:(1)设A种商品的单价为 x 元,B种商品的单价 为 y 元.
{ {{ 60x30 y1080
由题意得
解得Байду номын сангаас
2 x xy3616
由题意得 90 100
x5 x
解得 x =50.
经检验, x =50是原分式方程的解,且符合实际 意义. ∴甲的进价为;50-5=45元 答;甲牛奶的进价为45元,乙牛奶的进价为50元.
(2)若该商场购进甲种牛奶的数量是乙种牛 奶的3倍少5件,两种牛奶的总数不超过95件 ,该商场甲种牛奶的销售价格为49元,乙种 牛奶的销售价格为每件55元,则购进的甲、 乙两种牛奶全部)超过371元,请通过计算求 出该商场购进甲、乙两种牛奶有哪几种方案 ?
方案二:购进甲种牛奶70件,乙种牛奶25件.
(3).在条件(2)下,并且不再考虑其他因素, 如甲、乙两种牛奶全部售完,哪种方案利润最大? 最大利润是多少?
解:(法2)销售的利润
W=(49-45)×3 a -5 =17 a -20
a
∵ 17>0 ∴当x取最大值25时,W取得最大值为:405元
答:当甲进货48件,乙商品进货52件时,获得利润 最大,最大利润时405元.