线性代数--第二章
线性代数第二章方阵的行列式
![线性代数第二章方阵的行列式](https://img.taocdn.com/s3/m/2abce0b70875f46527d3240c844769eae009a3d4.png)
2 n阶行列式的性质
本节教学内容
行列式按一行(列)展开定理
Laplace定理
3 展开定理与行列式的计算
3 展开定理与行列式的计算
行列式按一行(列)展开定理 三阶行列式的一个计算公式 Mij称为aij的余子式 Aij称为aij的代数余子式
3 展开定理与行列式的计算
线性代数 第二章
本章教学内容
1 n阶行列式的定义
2 方阵行列式的性质
3 展开定理与行列式的计算
第二章 方阵的行列式
1 n阶行列式的定义
1.排列与逆序数 定义 由1,2,…,n按任何一种次序排成的有序数 组i1 i2… in称为一个n级排列,简称排列. 例 3级排列:123,132,213,231,312,321,共6个 性质 不同的n级排列共n!个. 排列123,从小到大排,全顺; 排列132,3>2,但3排在2之前,即32是一个逆序 定义 在一个排列i1 i2… in中,若it> is中,但it排在 is之前,则称it与is组成一个逆序.i1 i2… in中所有逆 序的总数称为此排列的逆序数, 记为(i1 i2… in).
2 n阶行列式的性质
例 =0 2r1+r2
2 n阶行列式的性质
性质2.5 即
2 n阶行列式的性质
或 证 由性质2.1及推论2.3得到.
2 n阶行列式的性质
例1
2 n阶行列式的性质
例2
2 n阶行列式的性质
例3 计算行列式 解
2 n阶行列式的性质
2.方阵行列式的性质 定理2.1 设A,B为n阶方阵,为常数,m为正整 数,则 ⑴ A=nA ; ⑵ AB=AB ; ⑶ Am=Am . 注① 一般的A+B≠A+B ; ② 虽然AB≠BA,但AB=BA ; ⑶由⑵推得,下证⑴ ⑵
《线性代数》第二章矩阵及其运算精选习题及解答
![《线性代数》第二章矩阵及其运算精选习题及解答](https://img.taocdn.com/s3/m/a8d8fad233d4b14e85246855.png)
An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠
,
故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠
,
根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E
.
解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算
线性代数-第2章
![线性代数-第2章](https://img.taocdn.com/s3/m/6316ecd9760bf78a6529647d27284b73f2423604.png)
第2章对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。
矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。
任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。
通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。
考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。
总而言之,初等变换不会改变矩阵的秩。
因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。
矩阵的秩,同时又可定义为不为零的子式的最高阶数。
满秩矩阵的行列式不等于零。
非满秩矩阵的行列式必为零。
既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。
另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。
齐次线性方程组的解的结构问题,可以用基础解系来表示。
当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。
通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。
非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。
在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。
矩阵的加法和数乘,与向量的运算类同。
矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。
即可以把一个矩阵看作是一种线性变换在数学上的表述。
矩阵的乘法,反映的是线性变换的叠加。
如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。
线性代数第2章矩阵PPT课件
![线性代数第2章矩阵PPT课件](https://img.taocdn.com/s3/m/dfe686a36394dd88d0d233d4b14e852458fb392c.png)
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
《线性代数》课件-第二章 矩阵及其运算
![《线性代数》课件-第二章 矩阵及其运算](https://img.taocdn.com/s3/m/c699ec060a4c2e3f5727a5e9856a561252d321e7.png)
a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:
(完整版)线性代数吴赣昌第二章
![(完整版)线性代数吴赣昌第二章](https://img.taocdn.com/s3/m/77d6b652aef8941ea66e057e.png)
使 AB BA成立,必须满足一定的条件。
(2)由这个例子还可知,A O ,B O ,
但却有 AB O,所以由 AB O,不能得
出 A O 或 B O的结论。若 A O,而 A(X Y ) O,不能得出 X Y 的结论。
例3: 某厂向三个商店发送四种产品的数量可列成矩阵
a11 a12 a13 a14 A a21 a22 a23 a24
a31 a32 a33 a34
这四个产品的单价及单位重量可列成矩阵
b11
B
b21
b31 b41
b12
b22
b32 b42
求 AB ,并指出 AB 的含义。
2、线性方程组的矩阵表示
对线性方程组
a11x1 a12 x2
三、 矩阵与矩阵相乘 1、定义
定义5: 设 A (aij )是一个 m s 矩阵,B (bij )
是一个 s n 矩阵,那么规定矩阵 A 与
B 矩阵的乘积是一个 m n矩阵 C (cij ),
s
其中 cij ai1b1 j ai2b2 j aisbsj aikbkj k 1
一、矩阵的加、减法 1、定义
定义1: 设有两个 m n矩阵 A (aij ) 和 B (bij ) ,
规定 A 和 B 的和为
a11 b11 a21 b21 am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n a2n b2n
amn bmn
a21x1
a22 x2
am1x1 am2 x2
a1n xn b1 a2n xn b2
amn xn bm
a11 a12
《线性代数》第二章参考答案+详解
![《线性代数》第二章参考答案+详解](https://img.taocdn.com/s3/m/259bec4df5335a8102d220e5.png)
k 0
k 2 1 0 k k 1 0 1 0 0 k
k 1 0 0
( k 1) k 1
k 1 0
k 1 ( k 1 ) k 1 k 1
所以(AB)2A22ABB2 (3) (AB)(AB)A2B2 吗? 解: (AB)(AB)A2B2
2 A B 0 0 5 2 0 5 0 2 1 6 9 2 因为 A B 2
2 ( A B)( A B) 2
2 0 1 0
而
3 8 1 0 2 8 A2 B2 4 11 3 4 1 7
故(AB)(AB)A2B2
5 举反列说明下列命题是错误的 (1) 若 A20 则 A0
0 解: 取 A 0 1 则 A20 但 A0 0
(2)
2 1 设 a 1 ,b 2 ,A abT , 3 4
T
求 A100 .
2 解: b a 1 2 4 1 8 . 3
则
A100 (abT )100 a (bT a )( bT a )bT a (bT a )bT 2 99 a (b a ) b 1 8 1 2 4 3 4 8 2 99 8 1 2 4 . 3 6 12
2 2 a11x12 a22 x2 a33 x3 2a12 x1x2 2a13 x1x3 2a23 x2 x3
1 1 1 1 2 3 2 设 A 1 1 1 B 1 2 4 求 3AB2A 及 ATB 1 1 1 0 5 1 1 1 1 1 2 3 1 1 1 解: 3AB 2 A 31 1 1 1 2 4 21 1 1 1 1 1 0 5 1 1 1 1 0 5 8 1 1 1 2 13 22 3 0 5 6 21 1 1 2 17 20 2 9 0 1 1 1 4 29 2 1 1 1 1 2 3 0 5 8 A B 1 1 1 1 2 4 0 5 6 1 1 1 0 5 1 2 9 0
线性代数(复旦大学出版社)第二章 矩阵
![线性代数(复旦大学出版社)第二章 矩阵](https://img.taocdn.com/s3/m/0cf0f3e681c758f5f61f6737.png)
第二章矩阵第一节矩阵的概念1、分类:行矩阵:只有一行的矩阵列矩阵:只有一列的矩阵零矩阵O:元素全为零的矩阵单位阵E:主对角线上元素为1,其他元素为0的方阵数量阵(纯量阵):λE对角阵:不在主对角线上的元素都为0的方阵上(下)三角阵:主对角线上以下(上)的元素全为0的方阵2、两矩阵同型:两个矩阵行数且列数都相等两矩阵相等:两矩阵同型,且对应元素相等。
记做A=B。
3、不同型的零矩阵是不相等的第二节矩阵的运算设A,B,C为m×n矩阵,λ, μ为数一、加法:只有同型矩阵才能进行加法运算(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+O=A二、减法:A-B=A+(-B) -B称为B的负矩阵三、乘法:1、只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(行矩阵)的行数时,两个矩阵才能相乘。
简记为:(m×s)(s×n)=(m×n)例: A为2×3矩阵,B为3×2矩阵,则AB=C为2×2矩阵2、数与矩阵:(1)(λμ)A=λ(μA)=μ(λA)(2)(λ+μ)A=λA+μA(3)λ(A+B)=λA+λ B(4)1*A=A, (-1)*A=-A矩阵与矩阵:(1)结合律:(AB)C=A(BC)(2)分配律:A(B+C)=AB+AC(B+C)A=BA+CA(3)λ(AB)=(λA)B=A(λB)(4)EA=AE=A(5)A k A l=A k+l(6)(A k)l=A kl3、矩阵乘法不满足交换律,即(AB)C≠(AC)B另外:(1)一般有AB≠BA (A与B可交换时,等式成立)(2)AB=O,不能推出A=O或B=O(3)AB=AC,A≠O,不能推出B=C(4)(AB)k≠A k B k(A与B可交换时,等式成立)4、可交换的:对于两个n阶方阵A,B,有AB=BA,则称A与B是可交换的。
纯量阵与任意同行方阵都是可交换的。
《线性代数》课件-第2章方阵的行列式
![《线性代数》课件-第2章方阵的行列式](https://img.taocdn.com/s3/m/f0d17dd4760bf78a6529647d27284b73f3423675.png)
教学难点:n阶行列式的计算,拉普拉斯定理的应用.
教学时间:6学时.
§1 n 阶行列式的定义
设n阶方阵A=(aij),称
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
为方阵A 的行列式,记为| A |或det A .
1.1 n 阶行列式的引出
于是D中可能不为0的均布项可以记为
a a a b b . 1p1 1p2
mpm 1q1
nqn
这里,pi=ri,qi=rm+i-m,设l为排列p1p2 …pm(m+q1) …(m+qn)的 逆序数。以t,s分别表示排列p1p2 …pm及q1q2 …qn的逆序数,
应有l= t+s,于是
D
(1)l a1p1 a2 p2 a b b mpm 1q1 2q2 bnqn
b2
a2n , j 1, 2, , n.
an1
bn
ann
提出三个问题
(1)D=?(怎么算)?
(2)当D≠0时,方程组是否有唯一解?
(3)若D≠0时,方程组有唯一解,解的形式 是否是
xj
Dj D
,
j 1,2,
, n.
1.2 全排列及其逆序数
1、全排列 用1,2,3三个数字可以排6个不重复三位数即:
第二章 方阵的行列式
行列式是一种常用的数学工具,也是代数学中必不可 少的基本概念,在数学和其他应用科学以及工程技术中有 着广泛的应用。本章主要介绍行列式的概念、性质和计 算方法。
教学目的:通过本章的教学使学生了解行列式的概念, 掌握行列式的性质,会计算各种类型的行列式.
线性代数-第二章-向量和向量空间
![线性代数-第二章-向量和向量空间](https://img.taocdn.com/s3/m/9d33a1fc4431b90d6d85c713.png)
n维单 位坐标 向量组
所以,称 是 1, 2 , 3 ,4 的线性组合, 或 可以由 1, 2 , 3 ,4线性表示。
命题2 设向量可由向量组(I) :1,2,,m
线性表出,而(I)中每个向量都可以由向量组
(II) : 1, 2,, s线性表出, 那么也可由向量组
(II)线性表出 给出证明
二 线性相关
当 r( A) r n 时,求得基础解系是1 ,2 , ,nr , 则 x k11 k22 knr nr 是AX 0 的解,
称为通解。
4. 解的结构
AX 0 的通解是 x k11 k22 knr nr
例3 : 求下列齐次方程组的通解。
(1)
x1 2 x1
2 x2 4 x2
分量全为复数的向量称为复向量.
以后我们用小写希腊字母 , , 来代表向量。
例如:
(1,2,3,, n)
(1 2i,2 3i,,n (n 1)i)
第2个分量 第1个分量
第n个分量
n维实向量 n维复向量
向量通常写成一行: a1,a2 , ,an 称为行向量。
有时也写成一列:
a1
xr1 1 0
,nr
是令
xr2
为
0
,
1
,
xn
0
0
0
,
0
所得。
1
Ax 0 的通解是 x k11 k22 knr nr
注:
(1) 证明过程提供了一种求解空间基(基础 解系)的方法。
(2) 基(基础解系)不是唯一的。
(3) 当 r( A) n 时,解空间是{0}.
(2) s t
则向量组 1,2 , , s 必线性相关。
线性代数教案-第二章 线性变换与矩阵
![线性代数教案-第二章 线性变换与矩阵](https://img.taocdn.com/s3/m/a73fbb084431b90d6c85c73b.png)
第二章 线性变换与矩阵代数学最基本的研究对象是代数系统本身的结构和不同代数系统之间的联系.上一章,对线性空间这种最重要和最基本的代数系统作了比较深入的研究.本章讨论线性空间之间的联系,即线性空间之间的映射,而很多时候这种映射被称为变换.一、教学目标与基本要求线性变换和矩阵 掌握线性变换的概念及性质,以及逆变换的概念,掌握线性变换的矩阵表示方法,掌握矩阵线性空间的概念以及矩阵的乘法,了解矩阵的转置及分块,掌握方阵的逆的概念及其求法,了解矩阵的初等变换及初等方阵的概念(一)重要内容及定理1.线性变换概念及其性质设V ,W 是两个线性空间.一个V 至W 的线性映射T ,就被称为V 至W 的线性变换. 定义2.1.1集合})(|{θx x x =∈T V 且被称为线性变换T 的零空间(或称为T 的核),记为)(T N .定理2.1.1T 的值域W V T ⊂)(是W 的一个子空间.T 映V 的零元素为W 的零元素. 定理2.1.2若V 是有限维的,则)(V T 也是有限维的,且有dim N (T )+dim )(V T =dim V即一个线性变换的零维与秩之和等于其定义域的维数.定义2.1.2设S ,T 是任意的V 至W 的线性变换,c 是任意实数.按如下方式定义线性变换的加法和数乘:)()())((x x x T S T S +=+.)())((x x cT cT =.这里x 是V 中任意元素.容易验证,按此定义的线性变换的加法和数乘,使全体V 至W 的线性变换构成之集成为一个线性空间,将其记为)(W V L ,.定义2.1.3设U ,V ,W 是任意三个集合.T :U →V ,S :V →W 是两个映射,复合映射ST :U →W 按如下方式定义:)]([))((x T S x ST =,任意U ∈x .映射的复合显然不满足交换律.但满足结合律,即若T :U →V ,S :V →W ,R :W →X ,则有T RS ST R )()(=.定义2.1.4对映射T :V →V 按如下方式定义其幂:I T =0,1n-n TT T =(n ≥1取整数)这里I 是恒等映射.2.逆 变 换定义2.2.1给定集合V ,W 及映射T :V →W .映射S :)(V T →V 被称为T 的左逆,如果对任何x ∈V ,有x x T S =)]([.此时,若用V I 记V 中的恒等映射,则有=ST V I .映射R :)(V T →V 被称为T 的右逆,如果对任意y ∈)(V T ,有y y R T =)]([.此时,若用V)T (I 记)(V T 中的恒等映射,则有=TR V)T (I .定义2.2.2设T :V →W 是1-1映射,则T 有唯一左逆(它同时是T 的右逆),将其记为1-T .此时称T 是可逆映射,并称1-T 为的T 逆.定理2.2.1 一个映射T :V →W 最多有一个左逆.若T 有左逆S ,则S 也是T 的右逆. 定理2.2.2若映射T :V →W 是单射,则T 必有左逆.反之亦真.定理2.2.3设V ,W 是线性空间,)(W V L T ,∈,则下列命题等价:(1)T 是V 和)(V T 间的1-1映射.(2)T 是可逆映射,其逆1-T :)(V T →V 是线性变换.(3)θx =)(T 蕴涵θx =.换言之,零空间N (T )只含V 的零元素.定理2.2.4设V ,W 是线性空间,V 是有限维的(设dim V n =),)(W V L T ,∈.则下列命题等价:(1)T 是V 和)(V T 间的1-1映射.(2)若}{1k e e ,, 是V 中独立集,则)}()({1k T T e e ,,是)(V T 中独立集. (3) dim )(V T n =.(4)若}{1n e e ,, 是V 的一组基,则)}()({1n T T e e ,,是)(V T 的一组基.3 线性变换的矩阵表示定理2.3.1设}{1n e e ,, 是n 维空间V 的一组基,n u u ,, 1是线性空间W 中任意n 个元素.则唯一存在线性变换T :V →W , 使k k T u e =)(,n k ,,1=. (2.3.1) 而且,此变换对任意∑==n k k k x 1e x ∈V ,有∑==n k k k x T 1)(u x .定理2.3.2设V 是n 维线性空间, }{1n e e ,, 是V 的一组基;W 是m 维线性空间, }{1m w w ,, 是W 的一组基.T :V →W 是线性变换,][ik a 是T 在给定基下的矩阵表示.则对任意∑==n k k kx 1e x ∈V ,若设∑==mi i i y T 1)(w x ,则 ∑==n k k ik i x ay 1,m i ,,1=. 定理2.3.3设V 和W 是有限维线性空间,dim V n =,dim W m =,)(W V L T ,∈,)(dim V T r =是T 的秩.则存在V 中一组基}{1n e e ,, 及W 中一组基}{1m w w ,, ,使i i T w e =)(,r i ,,1=, θe =)(i T ,n r i ,,1+=.4 矩阵线性空间定义2.4.1设][ik a A =,][ik b B =是两个同型矩阵,c 是任意数.矩阵A 与B 的和(记为B A +)及数c 与矩阵A 的乘积(记为cA 或Ac )定义为][ik ik b a B A +=+,cA =][ik ca Ac =.重要结论:设V 和W 是两个线性空间,dim V n =,dim W m =,V 和W 的基已经取定.则线性空间)(W V L ,与线性空间n m M ,是同构的5 矩阵乘法定义2.5.1设p m ij a A ⨯=][及n p ij b B ⨯=][是任意两个p m ⨯及n p ⨯矩阵.则矩阵A 与矩阵B 的乘积AB 定义为n m ij c ⨯][,这里∑==pk kj ik ij b a c 1,m i ,,1=;n k ,, 1=. 6 矩阵的转置及分块定义2.6.1给定矩阵n m ij a A ⨯=][.称第i 行第j 列元素为ji a 的m n ⨯矩阵为A 的转置矩阵,记为TA .定义2.6.2设][ij a A =为n 阶方阵.若有A A =T ,即A 的元素满足ji ij a a = )1(n j i ,,, =,则称A 为对称阵.7 方阵的逆矩阵的初等变换和初等方阵定义2.7.1设A 是一个n 阶方阵.若另有n 阶方阵B 使得n E BA =,则称A 是非奇异方阵,并称B 是A 的左逆.(1)对调两行(对调i ,j 两行,记着ij R ).(2)以数0≠k 乘某一行中所有元素(第i 行乘k ,记着i kR ).(3)把某一行所有元素的k 倍加到另一行相应元素上去(第j 行的k 倍加到第i 行上,记着j i kR R +).定理2.7.2设A 是一个n m ⨯矩阵,对A 施行一次行初等变换,相当于以相应的m 阶初等方阵左乘A ;对A 施行一次列初等变换, 相当于以相应的n 阶初等方阵右乘A .定理2.7.3设A 是可逆方阵,则存在有限个初等方阵1F ,2F ,…, l F ,使 l F F F A 21=.(二)领会1. 领会线性变换的定义;2. 领会线性变换与矩阵的关系;3. 领会线性变换空间与同型矩阵空间的同构;。
线性代数第二章,矩阵及其运算
![线性代数第二章,矩阵及其运算](https://img.taocdn.com/s3/m/d8ece1ff65ce0508763213d8.png)
a1n b1
a2n
b2
L L
amn bm
§2 矩阵的运算
一、加法
设 A (ai j )mn , B (bi j )mn 都是m n 矩阵,则加法定义为
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
显然,
AB B A
a22
L
L L L
am1 am2 L
a1n
a11 a21 L
a2n
,记
AT
a12
a22
L
L
L L L
amn
a1n an2 L
则称
AT
A
是
的转置矩阵。
am1
am 2
L
amn
显然,
① ( AT )T A ,② ( A B)T AT BT ,③( A)T AT ,④( AB)T BT AT
2. 即使 Amn , Bnm ,则Amn Bnm 是m 阶方阵,而Bnm Amn 是n 阶方阵;
3. 如 果 A , B
都 是n
阶
方
阵
,
例
如
2
A
1
4
2
,
B
2
3
4
6
,则
16
AB
8
32 16
,而BA
0 0
0
0
;
AB BA
综上所述,一般
(即矩阵乘法不满足交换率)。
但是下列性质显然成立:
三、乘法
乘法运算比较复杂,首先看一个例子
设变量t1, t2 到变量 x1, x2 , x3 的线性变换为
线性代数第二章矩阵及其运算
![线性代数第二章矩阵及其运算](https://img.taocdn.com/s3/m/6c83afc6e53a580216fcfee3.png)
ann 0
0
5. 形如 下面两个矩阵 的方阵称为下三角矩阵(lower triangular matrix).
a11 0 a21 a22
an1
an2
0 0
0
0
ann
an1
0 a1n
a2n1
a2n
ann1 ann
6. 若方阵 A (aij )n 中 aij a ji , 则称为对称矩阵 (symmetric matrix). 即
一、线性方程组
定义1 设有 n 个未知数 m 个方程的线性方
程组
a11 x1 a12 x2 L a1n xn b1 ,
a21 x1 a22 x2 L LLL
a2n xn L
b2 ,
am1 x1 am2 x2 L amn xn bm .
(1)
其中aij 表示第i个方程第j个未知数的系数(coefficient), bi 是第i个方程的常数项(constant),i=1,2,…,m, j =1,2,…, n.
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
L
L
L
L
称为单位阵(unit
matrix),
记作 En . 0 0 L 1
4. 形如 下面两个矩阵 的方阵称为上三角矩阵(upper triangular matrix).
a11a12 0 a22
0 0
a1n
a2n
ann
a11 a1n1 a1n
a21
a2n1
0
a11 a12 L a1n
线性代数第二章
![线性代数第二章](https://img.taocdn.com/s3/m/6362f344f7ec4afe04a1dfaa.png)
例3
1 11 2 0 4 1 设 A 11 4 56 2 1 5
例4
1 1 2 参 数 ____ 时, 矩 阵 2 1 5 的 秩 最 小 1 10 6 1
例3
1 11 2 2 0 4 1 1 设 A , 求 rA 11 4 56 5 2 1 5 6
1 1 1 例4 令A 1 1 0 1 1 1 1 1 0 1 1 1 2 0 2 1 1 解:A 0 0 0 3 0 2 1 4 1 1 1 2 0 2 1 1 0 0 0 3 0 0 0 0
说 明
(5)n阶矩阵A为满秩矩阵 A可逆 |A 0 | (6)n阶矩阵A为降秩矩阵 rA n |A 0 |
2.矩阵秩的求法 定理 矩阵经初等变换后秩不变 推论1 注: 推论2 若A ≌ B , 则 rA= rB 若rA= rB , A 与B不一定等价
若A 、B是同阶矩阵, 则A ≌ B当且仅当rA= rB
1 A 4 2 2 5 0 3 6 1 4 0 8 1 三阶子式: 4 2 2 5 0 4 0 8
说 明
例
定义
若在m×n矩阵A中 有一个r阶子式不为0, 而所有r +1阶子式全为0, 则称数r为A的秩. 记为rank(A)=r 或 rA = r
rA=m, 则称A为行满秩矩阵;
五. 矩 阵 的 秩
1. 概念
2.矩阵秩的求法
1. 概念
定义 设A=(aij)m×n , 任取k行k列,1≤k ≤min{m, n}, 位于 这些行列交点处的k2 个元素, 按其在A中原相对 位置构成的k阶行列式称为A的k阶行列式 (1) aij即为A的1阶子式 (2)n阶矩阵A, 其行列式|A|是A的唯一的n阶子式
线性代数课件第2章矩阵
![线性代数课件第2章矩阵](https://img.taocdn.com/s3/m/7ed5c79e2e3f5727a4e962b3.png)
(2)分配律:A(B C) AB AC, (B C)A BACA
(3)对任意数 有 (AB) ( A)B A(B)
(4)设 A是 m n矩阵 ,则
Em Amn A,mn Amn En Amn
或简记为 EA AE A
即单位矩阵是矩阵乘法的单位元,作用类似
于乘法中的数1. 20
(2)列矩阵 当 n 时1 ,即只有一列的矩阵
b1
B
b2
称为列矩阵或列向量. bm
3
(3)零矩阵 所有元素全为零的矩阵称为零
矩阵,记为O.例如,m n的零矩阵可记为
0 0
0
Omn
0
0
0
0
0
0
(4)方阵 行.数和列数都等于 n的矩阵,称 为 n 阶矩阵或 n阶方阵,记为 A,n
记为
1 0
0
E
En
0
1
0
或
0
0
1
1
1
1
7
(7)n阶数量矩阵 主对角元素等于同一个数
k 的 n阶对角阵,称为 n阶数量矩阵,记为
k 0
0
kE
0
k
0
或
0
0
k
k
k
.
k
8
2.2 矩阵的运算
9
2.2.1 矩阵的线性运算
1.矩阵的加法
定义2 两个 m n的同型矩阵 A (和aij ) B 的(bij )
A1n A2n Ann
称为矩阵的伴随矩阵.
31
定理1 设 A是 n阶方阵, A为* 的A 伴随矩阵,则
定理2 阶AA方*阵 A可* A逆 A E ,且
n
A A 0
线性代数知识点总结第二章
![线性代数知识点总结第二章](https://img.taocdn.com/s3/m/493b2cbf294ac850ad02de80d4d8d15abf23004b.png)
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵;简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元;说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵; 扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A ; 记作:A n; 行列矩阵:只有一行列的矩阵;也称行列向量; 同型矩阵:两矩阵的行数相等,列数也相等; 相等矩阵:AB 同型,且对应元素相等;记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零;单位阵:主对角线上元素都是1,其它元素都是0,记作:E n 不引起混淆时,也可表示为E 课本P29—P31注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同;第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算;课本P33 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-;课本P33数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵,,λμ为数()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+;课本P33矩阵相加与数乘矩阵统称为矩阵的线性运算;矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1;A 与B 能相乘的条件是:A 的列数=B 的行数;2;矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵;3;对于n 阶方阵A 和B,若AB=BA,则称A 与B 是可交换的;矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯== ()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即kk A A AA =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数;规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠但也有例外课本P36纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍;且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的;课本P36 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528T A ⎛⎫⎪= ⎪ ⎪⎝⎭; 转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =;课本P39方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n 阶行列式则是这些数按一定的运算法则所确定的一个数; 运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===课本P40对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij jia a i j n ==那么A 称为对称阵;说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的;即反对称矩阵A =a ij 中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵; 性质 AA A A A E **==易忘知识点课本P总结1只有当两个矩阵是同型矩阵时,才能进行加法运算;2只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律;3矩阵的数乘运算与行列式的数乘运算不同;第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵;1A A -的逆矩阵记作,1A B -=即;说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵;3.若A 是可逆矩阵,则A 的逆矩阵是唯一的;定理1 矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=重要证明见课本P奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵;即0A A A ⇔⇔≠可逆为非奇异矩阵;推论若(A=E)AB E =或B ,则1B A -=证明见课本P求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。
线性代数第二章 n维向量
![线性代数第二章 n维向量](https://img.taocdn.com/s3/m/f9e29bd4360cba1aa811da90.png)
第二章 n维列向量
§2.2 向量组的秩和线性相关性
例4. 设有两个向量组 I: α1=[1, 1], α2=[1, −1], α3=[2, 1], II: β1= [1, 0], β2= [1, 2]. 1 β + 1β , α = 3 β − 1β , 则 α 1= 2 1 2 2 2 2 1 2 2 3 β + 1β , α3= 2 1 2 2 即I可以由II线性表示. 可以由II线性表示 线性表示. 1 α + 1 α +0α , β = 3 α − 1 α +0α , β1= 2 1 2 2 2 2 1 2 2 3 3 II可以由 线性表示. 可以由I 即II可以由I线性表示. 故向量组I II等价 等价. 故向量组I与II等价.
β2 = α2 + 2α3, β3 = α3 + 2α1.
证明: 证明: β1, β2, β3线性无关. 线性无关.
第二章 n维列向量
§2.2 向量组的秩和线性相关性
二. 向量组之间的关系 1. 给定两个向量组 A: α1, α2, …, αr B: β1, β2, …, βs 若B组中的每个向量都能由A组中的向 组中的每个向量都能由A 量线性表示, 则称向量组B 量线性表示, 则称向量组B能由向量组 A线性表示. 线性表示. 2 , 3 1 , 0 能由 例如: 例如: 线性表示, 线性表示, 0 0 0 1 1 , 0 2 , 3 不能由 但 线性表示. 线性表示. 0 1 0 0
第二章 n维列向量
§2.1 n维向量及其运算
例1. n维基本单位向量组
ε1 =
1 0 … … 0
, ε2 =
0 1 … … 0
, …, εn =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 3 6 2 8 1 6 8 9
2、 矩阵加法的运算规律
1 A B B A;
2 A B C A B C .
a11
3
A
a21
am1
a12 a22 am1
6 2
2i 2
是一个
33
复矩阵,
1 2
2 2 2
4
2 3 5 9
是一个 3 1 矩阵,
4
是一个 1 4 矩阵,
是一个 11 矩阵.
几种特殊矩阵
(1)行数与列数都等于 n 的矩阵 A ,称为 n 阶 方阵.也可记作 An .
例如
13 6 2 2 2 2
是一个3 阶方阵.
2
2
2
(2)只有一行的矩阵
记作 Am n、Bmn、
主对角线 a11
A
a21
副对角线 am1
a12 a22 am1
a1n a2n amn
简记为
A Amn
aij
mn
aij
.
矩阵A的
m , n元
这m n个数a ij称为A的元素
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
13 2
2. 某航空公司在A,B,C,D四
对线性方程组的 研究可转化为对 这张表的研究.
B
城市之间开辟了若干航线 ,
如图所示表示了四城市间的 A
C
航班图,如果从A到B有航班,
则用带箭头的线连接 A 与B.
D
四城市间的航班图情况常用表格来表示: 到站
A
B
C
D
A
发站 B C
D
其中 表示有航班.
为了便于计算,把表中的 0,就得到一个数表:
矩阵记作 omn 或 o .
注意 不同阶数的零矩阵是不相等的.
例如
0 0 0 0
0 0
0 0
0 0
0 0
0
0
0
0.
0 0 0 0
(5)方阵
1 0
E
En
0
1 O
0 0
O
0 0
1
称为单位矩阵(或单位阵).
全为1
同型矩阵与矩阵相等的概念
1.两个矩阵的行数相等,列数相等时,称为同 型矩阵.
第二章 矩阵
2.1 矩阵概念与运算 2.2 几种特殊的矩阵 2.3 可逆矩阵 2.4 分块矩阵 2.5 矩阵的初等变换与初等矩阵 2.6 矩阵的秩
2.1 矩阵概念与运算
2.1.1 矩阵的概念
a11 x1 a12 x2 a1n xn b1
1.
线性方程组
a21 x1
Hale Waihona Puke a22 x2 例如
1 5
62 与 184
3 4
为同型矩阵.
3 7 3 9
2.两个矩阵 A aij 与B bij 为同型矩阵,并且
对应元素相等,即
aij bij i 1,2, ,m; j 1,2, ,n,
则称矩阵 A与B相等,记作 A B.
小结
(1)矩阵的概念 m行n列的一个数表
a11
a1n
a2n
aij
,
amn
称为矩阵A的负矩阵.
4 A A 0, A B A B.
练习
设矩阵X满足 X+5E=B-5X,其中
B
- 5
7
3
-2
12 43
5
4
-
9
求X
二、数与矩阵相乘
1、定义2.1.4
数与矩阵A的乘积记作A或A , 规定为
a11 a12
A
A
A
a21
am1
a12 a22 am1
a1n a2n amn
方阵 m n;
a1
(2) 特殊矩阵
行矩阵与列矩阵;
单位矩阵; 11
00 对角矩阵;
A 00 12
aB1
,a
20000,aan2.,
,an
,
零矩阵.
00 00 1n
思考题
矩阵与行列式的有何区别?
思考题解答
a2n xn b2
an1 x1 an2 x2 ann xn bn
的解取决于
系数 aiji, j 1,2, ,n,
常数项 bi i 1,2, ,n
线性方程组的系数与常数项按原位置可排为
a11 a21 an1
a12 a22 an2
a1n b1 a2n b2 ann bn
改成1,空白地方填上
A
B
C
D
A B C D
0
1
1
0
1
0
1
0
1
0
0
1
0
1
0
0
这个数表反映了四城市间交通联接情况.
定义2.1.1
由 m n 个数 aij i 1,2, ,m; j 1,2, ,n
排成的 m行 n列的数表
a11 a12 a1n
a21 a22 a2n
am1 am2 amn
称为 m n矩阵.简称 m n 矩阵.
A
B
a21
b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n a2n b2n
amn bmn
说明 只有当两个矩阵是同型矩阵时,才能进 行加法运算.
12 3 5 1 8 9 例如 1 9 0 6 5 4
3 6 8 3 2 1
矩阵与行列式有本质的区别,行列式是一个 算式,一个数字行列式经过计算可求得其值,而 矩阵仅仅是一个数表,它的行数和列数可以不同.
2.1.2 矩阵的线性运算
一、矩阵的加法
1、定义2.1.3
设有两个m n矩阵 A aij , B bij , 那么矩阵
A 与 B 的和记作A B,规定为
a11 b11
s n 矩阵,那末规定矩阵A与矩阵B的乘积
是一个m n 矩阵 C cij ,其中
s
cij ai1b1 j ai 2b2 j aisbsj aikbkj k 1 i 1,2, m; j 1,2, ,n,
并把此乘积记作 C AB .
例1
C 2 1
4 2
a21
a22
am1 am1
a1n
a2n
.
amn
2、数乘矩阵的运算规律 (设 A、B为 m n 矩阵, ,为数)
1 A A; 2 A A A; 3 A B A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
2.1.3 矩阵的乘法
1、定义2.1.4
设 A aij 是一个m s 矩阵,B bij 是一个
A a1,a2 , ,an ,
称为行矩阵(或行向量).
只有一列的矩阵
a1
B
a2
,
an
称为列矩阵(或列向量). 不全为0
1 0
(3)形如
0
2
0 O 0
0 O0
的方阵,
称为对角
n
矩阵(或对角阵).
记作 A diag1,2 , ,n .
(4)元素全为零的矩阵称为零矩阵,m n 零